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Hole spin relaxation in quantum dots
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We present results for relaxation of the spin of a hole in a cylindrical quantum dot due to acoustic
phonon assisted spin flips at low temperatures with an applied magnetic field. The hole dispersion is calculated
by numerical diagonalization of the Luttinger Hamiltonian and applying perturbation theory with respect
to the magnetic field, and the hole-phonon coupling is described by the Bir-Pikus Hamiltonian. We find that
the decoherence time for hole spins for det20 nm is on the order of 1 s. This is several orders
smaller than the decoherence time due to phonon assisted processes for electron spins in similar dots and is
comparable to the total decoherence time of an electron spin in a quantum dot, which is controlled by the
hyperfine interaction with nuclei. We obtain the dependence of the relaxation rate of the hole spin on dot size
and hole mass.
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I. INTRODUCTION vertical extension. This model represents deep etched dots
well, and it would also represent, at least qualitatively, dots
Recently considerable interest has been devoted to devebbrmed by Stranski-Krastanov growihHere we perform a
oping a theory for the relaxation of an electron spin localizechumerical diagonalization of thexd4 Luttinger Hamiltonian
in a quantum dotQD).}~ The problem is of importance to obtain the valence subbands and energy dispersions. This
for processing and transferring information coherentlyincludes the interaction between the light and heavy holes in
in structures of interest for quantum computation. It hasthe dot, which is known to modify the spectrum significantly.
been found that two processes are responsible for the logshe magnetic field is included perturbatively.
of coherence of the electron spin. First, phonon assisted |n zincblende semiconductors the holes hpwgpe sym-
spin flips mediated by spin-orbit coupling give relaxation metry. In nanostructures there can be strains at interfaces. In
rates on the order of 10 s in QD’s where the dominant aqgition acoustic phonons involve dynamic strains. Here we
phonon  scattering _arises from piezoelectric coupling yse a Bir-Pikus Hamiltonian as a general representation
and interface motiof.Second, the spatially inhomogeneous f the valence band with strains. We calculate the scatter-
coupling of nuc!ei Vi‘f" the hyperfiqe interactiqn to the elec'ing between the two bands highest in energy with this
tron wave function gives an effective dephasing time on thq—|amiltonian, and we also find the dependences on physical

6
order of 10 s (Ref. 3) . . factors of interest, including size, magnetic field, mass, and
The valence band in typical I[lI-V semiconductors Ipas
ggemperature.

symmetry and does not couple to nuclei. Thus the potentiall
slower relaxation due to phonons is expected to dominate.

Hole spin relaxation has been studied in bulk

semiconductofsand in quantum well3® There, relaxation

typically occurs by elastic phonon processes mediated by !l VALENCE SUBBANDS AND HOLE-PHONON
spin-orbit coupling and gives rapid rates on the order of ps COUPLING

and ns, respectively, due to strong phonon scattering . . )
of holes. In dots, on the other hand, the hole states are dis- We consider a quantum doQD) obtained by deep etch

crete, and thus phonon induced scattering involves inelastic 9 of an .InGaAs/GaAs quantum well. The valenf:e subbands
fre studied by a standard four-bamkdp effective-mass

riers of quantum informationf“qubits” ). To date, however, k ) ; :
hole relaxation in quantum dots remains poorly understooddynamics of the holes is determined by its structure at the
In part this is because of the theoretical challenges resultingone edgé=0, and only small terméup tok?) are present
from the coupling of the valence bands. We address thi§ the Hamiltonian. The total wave functiow, is repre-
problem here. sented as a product of a Bloch functiajx-, and an enve-
We study the relaxation of a hole spin localized in alope functiony;,, and thereforeV,=X;; U;x=o, Wherej
QD due to scattering with acoustic phonons in the presenceuns over all bands. The basis statgg_, used here have
of a magnetic field. The formulation here can represent dotal angular momenturd= 3 with projectionsm;= =3 for
range of QD systems. To be definite, calculations are donthe heavy holes aneh,= =+ 3 for the light holes. In this basis
for a QD in cylindrical form with a lateral size larger than its the Hamiltonian has the forth
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which describes the hole band mixing. Here
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Herep is the mass density of the materig),is the phonon
wave vector,7 is the phonon polarization, andg is the

o . h2k? R phonon frequency.
PxQ=—(71%72) 2m, —(71+272)—2m0 ' 2) The form of the hole-phonon interaction is similar to that
in Eqg. (1) but with matrix elements
72k k
S=2\3y,——, (3) Po=DqTr(e), (7)
2mg
ﬁzkf Qo=— §Du(€xx+ Eyy— 2€;7), (8)
R=\3y2 5, (4)
1
The coupling between the conduction electron and the hole RQ:TDu(fxx_ 6yy)—iTD(J€xy, 9
bands is smaller, and it is not included here. We use the 3 3
spherical approximatidh for the Luttingery coefficients.
For the wave vector the conventions =k2+k2 and , .
Ek% Xy So=— EDU(EZX—IEZy), (10

k.=ky*ik,. The magnetic field is alongz axis, and it

enters the Hamiltonian through the diagonal Zeeman terms

and through the magnetic-field dependence kof —iA
+eAl/f, whereA is the vector potential. A parametdr is

whereD4=8.9 eV, D,=5.4 eV, andD/=1.98 eV are the
deformation potential constants characteristic of InGaAs

included representing the spin-independent strain splittingjeterostructure¥’ The matrix element®q, Qq, Rq, and
between the heavy- and light-hole bands that originates frorfg are expressed in terms of the strain tensor components

a lattice mismatch at the interfa¢tésnd it gives rise to the
uniaxial strain.

Eij .
The hole-phonon scattering rate is calculated from the

For the structures considered here the three-dimension&ermi golden rule
confinement can be described by infinite wall potentials in
the lateral direction with d/2 the radius of the dot and a
confining potential along the direction

B (2#)3ﬁj d*Q[Ng+ 3+ 3] |Mg|?8(hwg—AE),
(11

whereNg is the phonon occupation facta g is the energy
difference between the two lowest hole states, biglis the
corresponding matrix element. Hedd o= (init|Ho| ¥in)
with Hg the matrix for the hole-phonon interaction and
| init.fin) are the initial and final hole states.

In order to calculate the hole-phonon scattering, the hole
wave functions are needed. For that purpose the Hamiltonian
H from Eqg. (1) must be diagonalized. In general this is a
formidable task, and therefore we apply a two-step perturba-
tion theory. The first perturbation is for small magnetic field
B. Thus we separate the Hamiltonian from E#) into H
=Hy+Hg, whereH is for B=0 andHg contains all the
terms with the magnetic fielB.

To describe the valence-band states the valence-subband
mixing must be taken into account in solvikty,. Since the

0, |zl=sc/2
2| Vg, |Z|>cl2.

5
Here Vo= —69.2 meV is for the heavy-hole bands, and
—(69.2-A) meV for the light-hole bands, which are chosen
from Iny:Gay As, and A is taken to beA =40 meV (Ref.
13). The well widthc is chosen to be 5 nm, and the QD is in
a cylindrical form.

The hole-phonon interaction including the effects of strain
from phonons is given by the Bir-Pikus HamiltonitnThe
components of the strain tenserin terms of normal-mode

coordinates are
h - + - iQ-r
V —prQ(Qiﬂj Qjm)e™".

2

eij=2

Q

(6)
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system has cylindrical symmetry, the Hamiltonian commutes hZ R R .

with the operatorF, of the projection of the total angular H'= ﬁ[mkﬁ'hfk7+hz+k2++hsz27]- (18
momentumF=L +J, whereJ is the Bloch angular momen- 0

tum andL is the envelope angular momentuhh, is diago- R .

nalized numerically for a giveR, using the following basis Whereh, _ andh,, ,_ can be found from the Hamiltonian

of envelope function® in Eq. (1) andKk,, k, are evaluated byr/d, whered is the
lateral size of the dot. The energy spectrum and valence
el (Fz312) bands are calculated by treatifly perturbatively, using the

Yr, = 300= ?szﬂ,z(p)zpzis,z(z), (12 method in Ref. 13 and they are characterized by the indices
2m n,, n,, and parity. The unperturbed wave functions are those
in Egs.(12) and(13)
Next, we apply perturbation theory with respect to the
Yr =12 WRFZiUZ(P)ZFZil/Z(Z)v (13 magnetic field througiH for B small. The wave function
can be written as

where the radial functionR(p) satisfy the boundary condi-

tion R(d/2)=0 andd is the diameter of the dot. The radial

functions are expanded in the orthonormal basis set of Bessel

functions,

ol (Fz112)

_ 0 0 0
Y w327 Uk w3t @12)lF - 12 Br2)WF + 12, (19)

| 2 Ve c10= VR w12 QbR a2t Baaylp, ez (20)
R, = 2 a{“JJm,.( B, g) (14

where thex and B coefficients are determined frokhg and

with ﬂinj theith root of the Bessel functiody, they are all~#ieB/2m,. The energie€r .3, and E¢ .15

orthonormal basis set as

Ill. SCATTERING RATES FOR HOLE SPINS
Zym =2 b1E"(2), (15
1

To calculate the rate of the hole scattering between spin
. states we first determine the valence bands highest in energy
where¢;(z) are the solutions of the Schdimger equation in  ysing the method described in Sec. Il. The calculation is
the vertical direction done by numerical diagonalization bify using the perturba-
tive approach described above. For the QD’s studied here the
two bands highest in energy preserve their heavy- and light-
§i(2)=Ei:6(2). (16) hole character, and they are degenerateBfer0 with m;
= +3/2. The perturbatioil g causes a splitting between the
This expansion works for heterostructures with material§y, =3/2 andm; = — 3/2 bands, and the character of the bands
having similar material characteristics. The small differencesbécomes a mJixture of heavy and light holes. The highest in
in the effective masses within and outside of the quantum dognergy bands have quantum numbés=—3/2 for m;
are neglected. To treat the continuum states and the boundgz/2 andrF,=3/2 for m; = 3/2.
states of the vertical well, the scheme of Aftiis used by The transitions of interest for hole dephasing by spin flips
enclosing the dot into a large box with 100 times larger 4e
extension. The eigenstatg$z) are characterized by the in-
dexi for each band and by “parity.” The definite parity is a
consequence of the symmetric form of the potential well. MQ:<¢FZ:3/2,mj:—3/2,A|Hq|lﬂFZ:—s/z,mJ:s/z,B)' (21
In principle, one can perform the direct numerical diago-

nalization of the total Hamiltonian fd8=0. H, is diagonal-  whereA andB stand for the parity of the bands. This expres-
ized in the above basis set for a specific quantum numbesion has several terms due to the complex nature of the hole-
F,. For realistic quantum dots, however, the direct NUMErphonon couplingd o—Egs. (1), (7)—(10).

cal evaluation of the matrix from Ed1) generally requires ~  The scattering rates are calculated using the Fermi golden
the expansion of the wave functions in large basis sets andjje and the matrix element for the lowest transition from Eq.
d|agonal|zat|gn of very large matrices in order to obtain(21). Analytical results can be obtained if we consider the
cpnvgrgencé. To overcome this we apply a second expan-jimit of small phonon wave vecto® in the exponential fac-
sion in Hy with respect to the parallel wave vector asin = o eQ"~(1+iQ-r) from the strain tensoe. We have ex-
Ref. 13 where the lateral dimension of the dot is muchymined contributions from all types of acoustic phonon

greater than the vertical dimension. This method is especiall TS PR T S A
useful for systems with lower dimensions. Then, the Ham"_ﬁolarlzatlons longitudinal(LA) #=Q;/Q and the two

h2K2

m, +V(2)

tonian for zero magnetic field is transverse(TA) 7u=(QxQ;.QyQ,.—Q%)/QQ, and 7,
=(Q !_QX10)/QL 1 Where Q= \/QX+Qy+QZ and QL
Ho=Ho(k, =0)+H’, 1n  =JQ%+ Qyz. The result for the scattering rates are
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FIG. 1. Scattering rate for a cylindrical quantum dot with ) o .
=5 nm along the direction and magnetic fielB=1 T. The con- _ FIG. 2. Scattering rate for a cyllndrlca_l quantum dot with a
tributions from longitudinal acoustic phonons are denoted as LA,d""‘_”"aterd:20 nm andc=>5 nm as a function of temperature at
and those from the two transverse acoustic phonons as TAl afg=1 T
TA2.

laxation rates of an electron spin in a GFor an electron

20 reB 112/ d\* spin the relaxation rate is about 4 orders smaller than the rate
r= 7[\/572m— (2—) for holes with lowest value for electrons on the order of
MoAE Yhnl | <C 10 3-10 % s~ . The electron scattering rateR*, whereR
D24 D% 3kueB )| ° is the radius of the Q@IRef. 2 and it goes asvmgl . The
XK 27 o Xi (220  explicit dependences df on size and mass is difficult to

obtain for the holes because of the complicated diagonaliza-

tion procedure. The radial mass is containedAiB and K

whereAE=(E‘F’ 3o = — 312~ E(F’ _3pm —_10) IS the energy through the numerical diagonalization. The mass albagis

difference between the heavy and light holesBor0. 5, IS contained inyy, andK. For the sake of argument, if we

_ \/Zm“h/hz(vgh—|E Y with appropriate parameters for the take the hole energy to have a S|m|lgzr size and mass depen-
z z

heavy-hole subbanék =1.882 is a numerical factor obtained \?vinC::eaS{htzte agCt;]%Teegiﬁ{;ilrl]m rét:nfsrﬁ?rr?q(;ﬁzj

from the numerical diagonalization of the hole bands, g™ . ng Loz

ands is the sound velocity of InGaAs. The parameter ~R®. Since the electron mass is much less than the hole

27 1 16 mass, the electron will have much slower relaxation than

=35, 105, 15 fOr LA, TA1, and TAZ polarizations. the hole. This could explain the dramatic difference in the
Equation(22) for spin relaxation rates allows us to deter-, aj,e for the decoherence time for the electron

mine the dependences on several physical parameters. Frctm 10°3-10"* s) and that for the hole~10"8 s). In gen-
Eq. (22) the scattering rate is proportional B3. One is alsO g4 the coherence time is longer for smaller dots for both
able to see how the size of the QD affetts The depen-

holes and electrons.
: -2
dence on the lateral size comes from tfeand AE™* pa- We give the scattering as a function of temperature in

rameters. The relaxation rate as a function of the dot diamFig. 2. The temperature dependence comes from the phonon
eter is shown in Fig. 1. The figure shows that afterad|ametee')ccupaﬁOn factoNg in T in Eq. (11). The scattering rate

do~20 nm the scattering starts to increase nonlinearly leady temperature independent up ®~0.5 K. For higher
ing to a nonlinear decrease of the coherence time. Bélpw 7 it increases linearly wit from Nq.

the rate is nearly a constant with a coherence times. For

the QD’s studied here the two bands closest to the Fermi

level preserve their heavy- and light-hole character, and the

t;aﬂc:i)jzclosest tcE are degenerate foB=0 with m; V. DISCUSSION

Figure 1 also shows that both the longitudinal and trans- In this paper we have given calculations of the scattering
verse polarizations are important with the TA scattering rateates for relaxation of holes in cylindricdeep etched
slightly larger. The scattering rates will increase at small di-quantum dots due to the emission and absorption of
ameters due to coupling to interfrace motfoli,but these acoustic phonons via the deformation potential interaction
effects are not included here. Holes can interact with the LAnediated by the spin-orbit interaction described by the
phonons through th®q, Qq, andRq terms from the Bir-  Bir-Pikus Hamiltonian. A magnetic field is applied in
Pikus Hamiltonian. The interaction with the TA phononsthe z direction. The Luttinger Hamiltonian was solved by
comes from the termRy and S, through thee,y, €,,, and  numerical diagonalization foB=0, and the magnetic field
€,, components of the strain tensor. The height of the clot, is introduced with perturbation theory. In this way we deter-
entersyy,,. Here we use&=5 nm, and it is not changed in mine the valence bands closest to the Fermi level and their
the calculation. energies.

A comparison can be made with the phonon induced re- The Bir-Pikus Hamiltonian for strained structures is used
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to calculate the hole-phonon relaxation rates. The calculatiotum dots due to phonon scattering were found to be several
includes both longitudinal and transverse acoustic phononsrders of magnitude smaller.

The relaxation rates as functions of magnetic field, lateral

size of the dot and temperature were determined. We find This work was supported in part by the U.S. Office of
that the decoherence time due to hole relaxation is lower foNaval Research and by the DARPA QuIST program. One of
smaller dots and for dotss20 nm dots is of the order of us (L.M.W.) acknowledges an NRC/NRL Research Associ-
1078s. Corresponding spin-flip rates for electrons in quan-ateship.
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