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Hole spin relaxation in quantum dots
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We present results for relaxation of the spin of a hole in a cylindrical quantum dot due to acoustic
phonon assisted spin flips at low temperatures with an applied magnetic field. The hole dispersion is calculated
by numerical diagonalization of the Luttinger Hamiltonian and applying perturbation theory with respect
to the magnetic field, and the hole-phonon coupling is described by the Bir-Pikus Hamiltonian. We find that
the decoherence time for hole spins for dots&20 nm is on the order of 1028 s. This is several orders
smaller than the decoherence time due to phonon assisted processes for electron spins in similar dots and is
comparable to the total decoherence time of an electron spin in a quantum dot, which is controlled by the
hyperfine interaction with nuclei. We obtain the dependence of the relaxation rate of the hole spin on dot size
and hole mass.
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I. INTRODUCTION

Recently considerable interest has been devoted to de
oping a theory for the relaxation of an electron spin localiz
in a quantum dot~QD!.1–3 The problem is of importance
for processing and transferring information coheren
in structures of interest for quantum computation. It h
been found that two processes are responsible for the
of coherence of the electron spin. First, phonon assis
spin flips mediated by spin-orbit coupling give relaxati
rates on the order of 1024 s in QD’s where the dominan
phonon scattering arises from piezoelectric couplin1

and interface motion.2 Second, the spatially inhomogeneo
coupling of nuclei via the hyperfine interaction to the ele
tron wave function gives an effective dephasing time on
order of 1026 s ~Ref. 3!.

The valence band in typical III–V semiconductors hasp
symmetry and does not couple to nuclei. Thus the potenti
slower relaxation due to phonons is expected to domin
Hole spin relaxation has been studied in bu
semiconductors4 and in quantum wells.5,6 There, relaxation
typically occurs by elastic phonon processes mediated
spin-orbit coupling and gives rapid rates on the order of
and ns, respectively, due to strong phonon scatte
of holes. In dots, on the other hand, the hole states are
crete, and thus phonon induced scattering involves inela
processes. Therefore hole spin relaxation could be slow
QD’s, and holes might become attractive candidates as
riers of quantum information~‘‘qubits’’ !. To date, however,
hole relaxation in quantum dots remains poorly understo
In part this is because of the theoretical challenges resu
from the coupling of the valence bands. We address
problem here.

We study the relaxation of a hole spin localized in
QD due to scattering with acoustic phonons in the prese
of a magnetic field. The formulation here can represen
range of QD systems. To be definite, calculations are d
for a QD in cylindrical form with a lateral size larger than i
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vertical extension. This model represents deep etched d7

well, and it would also represent, at least qualitatively, d
formed by Stranski-Krastanov growth.8 Here we perform a
numerical diagonalization of the 434 Luttinger Hamiltonian
to obtain the valence subbands and energy dispersions.
includes the interaction between the light and heavy hole
the dot, which is known to modify the spectrum significant
The magnetic field is included perturbatively.

In zincblende semiconductors the holes havep-type sym-
metry. In nanostructures there can be strains at interface
addition acoustic phonons involve dynamic strains. Here
use a Bir-Pikus Hamiltonian as a general representa
of the valence band with strains. We calculate the scat
ing between the two bands highest in energy with t
Hamiltonian, and we also find the dependences on phys
factors of interest, including size, magnetic field, mass, a
temperature.

II. VALENCE SUBBANDS AND HOLE-PHONON
COUPLING

We consider a quantum dot~QD! obtained by deep etch
ing of an InGaAs/GaAs quantum well. The valence subba
are studied by a standard four-bandk•p effective-mass
approach,9 which allows us to treat the interaction betwe
light and heavy holes. In the effective-massk•p method the
dynamics of the holes is determined by its structure at
zone edgek50, and only small terms~up tok2) are present
in the Hamiltonian. The total wave functionCk is repre-
sented as a product of a Bloch functionuj k50 and an enve-
lope functionc j k , and thereforeCk5( jc j kuj k50, wherej
runs over all bands. The basis statesuj k50 used here have
total angular momentumJ5 3

2 with projectionsmJ56 3
2 for

the heavy holes andmJ56 1
2 for the light holes. In this basis

the Hamiltonian has the form10
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which describes the hole band mixing. Here

P6Q52~g16g2!
\2k'

2

2m0
2~g172g2!

\2kz
2

2m0
, ~2!

S52A3g2

\2kzk'

2m0
, ~3!

R5A3g2

\2k'
2

2m0
. ~4!

The coupling between the conduction electron and the h
bands is smaller, and it is not included here. We use
spherical approximation11 for the Luttinger g coefficients.
For the wave vector the conventions arek'

2 5kx
21ky

2 and
k65kx6 iky . The magnetic fieldB is along z axis, and it
enters the Hamiltonian through the diagonal Zeeman te
and through the magnetic-field dependence ofk52 iD
1eA/\, whereA is the vector potential. A parameterL is
included representing the spin-independent strain split
between the heavy- and light-hole bands that originates f
a lattice mismatch at the interfaces11 and it gives rise to the
uniaxial strain.

For the structures considered here the three-dimensi
confinement can be described by infinite wall potentials
the lateral direction with d/2 the radius of the dot and
confining potential along thez direction

Vz5H 0, uzu<c/2

V0 , uzu.c/2.
~5!

Here V05269.2 meV is for the heavy-hole bands, an
2(69.2–L) meV for the light-hole bands, which are chos
from In0.1Ga0.9As, andL is taken to beL540 meV ~Ref.
13!. The well widthc is chosen to be 5 nm, and the QD is
a cylindrical form.

The hole-phonon interaction including the effects of str
from phonons is given by the Bir-Pikus Hamiltonian.12 The
components of the strain tensore in terms of normal-mode
coordinates are

e i j 5(
Q

i

2
A \

2rvQ
~Qi ĥ j1Qj ĥ i !e

iQ•r. ~6!
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Herer is the mass density of the material,Q is the phonon
wave vector,ĥ is the phonon polarization, andvQ is the
phonon frequency.

The form of the hole-phonon interaction is similar to th
in Eq. ~1! but with matrix elements

PQ5DdTr~e!, ~7!

QQ52
2

3
Du~exx1eyy22ezz!, ~8!

RQ5
1

A3
Du~exx2eyy!2 i

2

A3
Du8exy , ~9!

SQ52
2

A3
Du8~ezx2 i ezy!, ~10!

whereDd58.9 eV, Du55.4 eV, andDu851.98 eV are the
deformation potential constants characteristic of InGa
heterostructures.16 The matrix elementsPQ , QQ , RQ , and
SQ are expressed in terms of the strain tensor compon
e i j .

The hole-phonon scattering rate is calculated from
Fermi golden rule

G5
2

~2p!3\
E d3Q@NQ1 1

2 6 1
2 #uMQu2d~\vQ2DE!,

~11!

whereNQ is the phonon occupation factor,DE is the energy
difference between the two lowest hole states, andMQ is the
corresponding matrix element. HereMQ5^c init uHQuc f in&
with HQ the matrix for the hole-phonon interaction an
uc init , f in& are the initial and final hole states.

In order to calculate the hole-phonon scattering, the h
wave functions are needed. For that purpose the Hamilton
H from Eq. ~1! must be diagonalized. In general this is
formidable task, and therefore we apply a two-step pertur
tion theory. The first perturbation is for small magnetic fie
B. Thus we separate the Hamiltonian from Eq.~1! into H
5H01HB , whereH0 is for B50 andHB contains all the
terms with the magnetic fieldB.

To describe the valence-band states the valence-sub
mixing must be taken into account in solvingH0. Since the
0-2
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system has cylindrical symmetry, the Hamiltonian commu
with the operatorFz of the projection of the total angula
momentumF5L1J, whereJ is the Bloch angular momen
tum andL is the envelope angular momentum.H0 is diago-
nalized numerically for a givenFz using the following basis
of envelope functions:13

cFz63/25
ei (Fz63/2)

A2p
RFz63/2~r!ZFz63/2~z!, ~12!

cFz61/25
ei (Fz61/2)

A2p
RFz61/2~r!ZFz61/2~z!, ~13!

where the radial functionsR(r) satisfy the boundary condi
tion R(d/2)50 andd is the diameter of the dot. The radia
functions are expanded in the orthonormal basis set of Be
functions,

Rmj
5(

i
ai

mjJmj S bmj

i 2r

d D ~14!

with bmj

i the i th root of the Bessel functionJmj
.

The function along thez directionZ(z) is expanded in an
orthonormal basis set as

Zmj
5(

i
bi

mjj i
mj~z!, ~15!

wherej i(z) are the solutions of the Schro¨dinger equation in
the vertical direction

F\2kz
2

2mz
1V~z!Gj i~z!5Ei ,zj i~z!. ~16!

This expansion works for heterostructures with mater
having similar material characteristics. The small differen
in the effective masses within and outside of the quantum
are neglected. To treat the continuum states and the bo
states of the vertical well, the scheme of Ando14 is used by
enclosing the dot into a large box with 100 times largez
extension. The eigenstatesZ(z) are characterized by the in
dex i for each band and by ‘‘parity.’’ The definite parity is
consequence of the symmetric form of the potential well

In principle, one can perform the direct numerical diag
nalization of the total Hamiltonian forB50. H0 is diagonal-
ized in the above basis set for a specific quantum num
Fz . For realistic quantum dots, however, the direct nume
cal evaluation of the matrix from Eq.~1! generally requires
the expansion of the wave functions in large basis sets
diagonalization of very large matrices in order to obta
convergence.13 To overcome this we apply a second expa
sion in H0 with respect to the parallel wave vectork' as in
Ref. 13 where the lateral dimension of the dot is mu
greater than the vertical dimension. This method is espec
useful for systems with lower dimensions. Then, the Ham
tonian for zero magnetic field is

H05H0~k'50!1H8, ~17!
12533
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\2

2m0
@ ĥ1k11ĥ2k21ĥ21k1

2 1ĥ22k2
2 #, ~18!

whereĥ1,2 and ĥ21,22 can be found from the Hamiltonian
in Eq. ~1! and kx, ky are evaluated byp/d, whered is the
lateral size of the dot. The energy spectrum and vale
bands are calculated by treatingH8 perturbatively, using the
method in Ref. 13 and they are characterized by the ind
nr , nz , and parity. The unperturbed wave functions are th
in Eqs.~12! and ~13!

Next, we apply perturbation theory with respect to t
magnetic field throughHB for B small. The wave function
can be written as

cFz63/25cFz63/2
0 1a1(2)cFz21/2

0 1b1(2)cFz11/2
0 , ~19!

cFz61/25cFz61/2
0 1a3(4)cFz23/2

0 1b3(4)cFz13/2
0 , ~20!

where thea andb coefficients are determined fromHB and
they are all;\eB/2m0. The energiesEFz63/2 and EFz61/2

are calculated up to the first order in the magnetic fieldB.

III. SCATTERING RATES FOR HOLE SPINS

To calculate the rate of the hole scattering between s
states we first determine the valence bands highest in en
using the method described in Sec. II. The calculation
done by numerical diagonalization ofH0 using the perturba-
tive approach described above. For the QD’s studied here
two bands highest in energy preserve their heavy- and lig
hole character, and they are degenerate forB50 with mj
563/2. The perturbationHB causes a splitting between th
mj53/2 andmj523/2 bands, and the character of the ban
becomes a mixture of heavy and light holes. The highes
energy bands have quantum numbersFz523/2 for mj
53/2 andFz53/2 for mj53/2.

The transitions of interest for hole dephasing by spin fl
are

MQ5^cFz53/2,mj 523/2,AuHQucFz523/2,mj 53/2,B&, ~21!

whereA andB stand for the parity of the bands. This expre
sion has several terms due to the complex nature of the h
phonon couplingHQ—Eqs.~1!, ~7!–~10!.

The scattering rates are calculated using the Fermi go
rule and the matrix element for the lowest transition from E
~21!. Analytical results can be obtained if we consider t
limit of small phonon wave vectorQ in the exponential fac-
tor eiQ•r'(11 iQ•r ) from the strain tensore. We have ex-
amined contributions from all types of acoustic phon
polarizations—longitudinal~LA ! ĥ i5Qi /Q and the two
transverse~TA! ĥ t15(QxQz ,QyQz ,2Q'

2 )/QQ' and ĥ t2

5(Qy ,2Qx ,0)/Q' , where Q5AQx
21Qy

21Qz
2 and Q'

5AQx
21Qy

2. The result for the scattering rates are
0-3
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G5
2p

\ FA3g2

\eB

2m0DE

1

ghh
G2S d

2cD 4

3K
Du

21Du8
2

2r s̄2 S 3km0B

\ s̄
D 5

xi , ~22!

whereDE5(EFz53/2,mj 523/2
0 2EFz53/2,mj 521/2

0 ) is the energy

difference between the heavy and light holes forB50. ghh

5A2mz
hh/\2(V0

hh2uEzu) with appropriate parameters for th
heavy-hole subband.K51.882 is a numerical factor obtaine
from the numerical diagonalization of the hole band
and s̄ is the sound velocity of InGaAs. The parameterxi
5 32

35 , 16
105, 16

15 for LA, TA1, and TA2 polarizations.
Equation~22! for spin relaxation rates allows us to dete

mine the dependences on several physical parameters.
Eq. ~22! the scattering rate is proportional toB7. One is also
able to see how the size of the QD affectsG. The depen-
dence on the lateral size comes from thed4 and DE22 pa-
rameters. The relaxation rate as a function of the dot dia
eter is shown in Fig. 1. The figure shows that after a diam
d0;20 nm the scattering starts to increase nonlinearly le
ing to a nonlinear decrease of the coherence time. Belowd0
the rate is nearly a constant with a coherence time;ms. For
the QD’s studied here the two bands closest to the Fe
level preserve their heavy- and light-hole character, and
bands closest toEF are degenerate forB50 with mj
563/2.

Figure 1 also shows that both the longitudinal and tra
verse polarizations are important with the TA scattering r
slightly larger. The scattering rates will increase at small
ameters due to coupling to interfrace motion,2,15 but these
effects are not included here. Holes can interact with the
phonons through thePQ , QQ , andRQ terms from the Bir-
Pikus Hamiltonian. The interaction with the TA phono
comes from the termsRQ andSQ through theexy , eyz , and
exz components of the strain tensor. The height of the doc,
entersghh . Here we usec55 nm, and it is not changed in
the calculation.

A comparison can be made with the phonon induced

FIG. 1. Scattering rate for a cylindrical quantum dot withc
55 nm along thez direction and magnetic fieldB51 T. The con-
tributions from longitudinal acoustic phonons are denoted as
and those from the two transverse acoustic phonons as TA1
TA2.
12533
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laxation rates of an electron spin in a QD.2 For an electron
spin the relaxation rate is about 4 orders smaller than the
for holes with lowest value for electrons on the order
1023–1024 s21. The electron scattering rate;R4, whereR
is the radius of the QD~Ref. 2! and it goes as;mel

4 . The
explicit dependences ofG on size and mass is difficult to
obtain for the holes because of the complicated diagonal
tion procedure. The radial mass is contained inDE and K
through the numerical diagonalization. The mass alongz axis
is contained inghh and K. For the sake of argument, if w
take the hole energy to have a similar size and mass de
dences as the electron energy,E;1/mR2, and use Eq.~22!
we see that the hole scattering rate is;m'

2 /mz and
;R8. Since the electron mass is much less than the h
mass, the electron will have much slower relaxation th
the hole. This could explain the dramatic difference in t
value for the decoherence time for the electron
(;1023–1024 s) and that for the hole (;1028 s). In gen-
eral the coherence time is longer for smaller dots for b
holes and electrons.

We give the scattering as a function of temperature
Fig. 2. The temperature dependence comes from the pho
occupation factorNQ in G in Eq. ~11!. The scattering rate
is temperature independent up toT;0.5 K. For higher
T it increases linearly withT from NQ .

IV. DISCUSSION

In this paper we have given calculations of the scatter
rates for relaxation of holes in cylindrical~deep etched!
quantum dots due to the emission and absorption
acoustic phonons via the deformation potential interact
mediated by the spin-orbit interaction described by
Bir-Pikus Hamiltonian. A magnetic field is applied i
the z direction. The Luttinger Hamiltonian was solved b
numerical diagonalization forB50, and the magnetic field
is introduced with perturbation theory. In this way we det
mine the valence bands closest to the Fermi level and t
energies.

The Bir-Pikus Hamiltonian for strained structures is us

,
nd

FIG. 2. Scattering rate for a cylindrical quantum dot with
diameterd520 nm andc55 nm as a function of temperature a
B51 T.
0-4
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to calculate the hole-phonon relaxation rates. The calcula
includes both longitudinal and transverse acoustic phon
The relaxation rates as functions of magnetic field, late
size of the dot and temperature were determined. We
that the decoherence time due to hole relaxation is lower
smaller dots and for dots&20 nm dots is of the order o
1028 s. Corresponding spin-flip rates for electrons in qua

*Present address: Department of Physics, University of So
Florida, Tampa, FL 33620.
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