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Clauser-Horne inequality for electron-counting statistics in multiterminal mesoscopic conductors
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In this paper we derive the Clauser-Hor(teéH) inequality for the full electron-counting statistics in a
mesoscopic multiterminal conductor and discuss its properties. We first consider the idealized situation in
which a flux of entangled electrons is generated bgmatangler Given a certain average number of incoming
entangled electrons, the CH inequality can be evaluated for different numbers of transmitted particles. Strong
violations occur when the number of transmitted charges on the two terminals is the@am®4), whereas
no violation is found foiIQ# Q,. We then consider two actual setups that can be realized experimentally. The
first one consists of a three terminal normal beam splitter and the second one of a hybrid superconducting
structure. Interestingly, we find that the CH inequality is violated for the three terminal normal device. The
maximum violation scales asNl/and 1M? for the entangler and normal beam splitter, respectiveVy,k&ing
the average number of injected electrons. As expected, we find full violation of the CH inequality in the case
of the superconducting system.
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[. INTRODUCTION the incoming bean® The distribution of transmitted elec-
trons is binomial and symmetric with respect to the average

Entanglemeritdenotes the nonlocal correlations that ex-number of transmitted charges. Moreover, this is important
ist, even in the absence of direct interaction, between twdOr the problem studied in the present work, the joint prob-
(spatially separatddparts of a given quantum system. En- ability for counting electrons at d|ff§re_nt leads unamb_lgu-
tanglement is believed to be the main ingredient of Compu_ously characterizes the state of the incident electrons if one

. . . . ses spin-sensitive electron counters. In this case the joint
tational speed-up in quantum information protocols. Becaus D ;
of its fundamental importance, a great deal of interest ha g?rg%k;:ltgro%ixanlti)ttiege expressed as a product of single
been brought forth by its role in quantum informatfon. |

h Kk | has b di Given the general setup to detect entanglement, an impor-
Most of the work on entanglement has been performed iRyt jssye is to understand how to generate it. This has been

opucgl systems with photoﬁ’s;avny QED systemSand ion  giscussed in several papers. Most of the existing proposals
traps” Only recently attention has been devoted to the Magre pased on the generation of Bell states by means of
nipulation of entangled states in a solid-state environmentig|ectron-electron interaction. This can be achieved through
This interest, originally motivated by the idea to realize asuperconductin correlatioHs in hybnd normal-
solid-state quantum computsr? has been rapidly growing superconductin‘g‘15 and superconductor—carbon nanotubes
and by now several works discuss how to generate, manipwsystems®~18 quantum dots in the Coulomb blockade
late, and detect entangled states in solid-state systems. It isgime!® or Kondo-like impurities® Then, by using energy
probably worth to emphasize already at this point that, dif-or spin filters, the two electrons forming the Bell state are
ferently from the situation encountered in quantum optics, irseparated. The entanglement can be created in the spin or in
solid-state systems entanglement is rather common. What te orbital® degrees of freedom. Very recently, as is also
not trivial is its control and detectiofespecially if the inter-  discussed in Sec. Ill C, it was shown that in a mesoscopic
action between the different subsystems forming the enmultiterminal conductor entanglement can be produced also
tangled state is switched off !n the apsence of electron interacti%irBesiqes electrons, .it .
Despite the large body of knowledge developed in theS possible to produce entangled states with Cooper pairs in
study of optical systems, new strategies have to be design&Perconducting nanoc_erLﬁfsor by coupling a mesoscopic
to reveal the signatures of nonlocal correlations in the case of?SE€PNSON junctions with superconducting resonato 8.

. y 7 . . .
electronic states. For mesoscopic conductors, the prototype SII’]|C? ge_llst work? f't "?‘].ggown th_atl;la Clat.ss'c.al theory
scheme was discussed in Ref. 9. In this work it has beefP!Mu!ated in terms ot a hidden varnable sa isfying reason-

shown that the presence of spatially separated pairs of el,;.a_ble condition of locality, yields predictions which are dif-

tanaled electrons. created by soatganaler can be revealed erent from those of quantum mechanics. These predictions
gi€ e y gler . ere casted into the form of inequalities which any realistic
by using a beam splitter and by measuring the correlations q\g

. | i cal theory must obey. Bell inequalities have been formu-
the current fluctuations in the leads. Provided that the eleGyiaq for mesoscopic multiterminal conductors in Refs. 15

trons injected are in an entangled state, bunching and antyy  ang 28-31 in terms of electrical noise correlations at
tuations are found depending on whether the state is a spBell inequalities in mesoscopic physics is very challenging
singlet or a spin triplet. Not only the noise, but the full count- and most probably it would be rather difficult, if not impos-

ing statistics is sensitive to the presence of entanglement igiple, to get around all possible loopholes. Although solid-
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state systems are not the natural arena where to test the foun-
dations of quantum mechanics, it is nevertheless very
interesting to access, manipulate, and quantify these nonlocal
correlations.

In this work we derive a Bell inequality for the full
electron-counting statistics and discuss its properties. The
formulation we follow is based on what is known as the
Clauser-HorngCH) inequality®>* We shall show that the
joint probabilities for a given number of electrons to pass
through a mesoscopic conductin a given time should FIG. 1. (Color onling Idealized setup for testing the CH in-
satisfy, for a classical local theory, an inequality. equality for electrons in a solid-state environment. It consists of two

The paper is organized as follows: In the following sec-parts: an entangletshaded block that produces pairs of spin-
tion we motivate our approach to the problem, derive the CHeNtangled
inequality, and express the joint probabilities needed in th&lectrons exiting from terminals 3 and 4. These termin_als are con-
CH inequality in terms of the scattering properties of the“ef:ted to Ifeads 1 and 2 through two condugtors descrlbgd by scat-
mesoscopic conductor. Section Il is devoted to the discusi®ing matricesS;andS,,. Electron counting is performed in leads
sion of the results. We first consider the idealized situatiort 2"d 2 along the local spin-quantization axis oriented at angles
where an incoming flux of fully entangled electrons is in- and 6.
jected into the mesoscopic region. Then we move on to ana- o . | L i
lyze actual setups. We consider the case where entanglemegﬂam'zat'on axis at ang 'a%l and 6. Dgtechon IS rea ized
is produced by Andreev reflection. However, interacting y means of spin selective counters, i.e., by counting elec-

electrons are not necessary to have an entangled state. InddEy'S .W'th the projection of the_ Spin a'O'?g a given local
we show that a three terminal normal device is enough t uantization axis. In analogy with the optical case we say

lead to violation of the CH inequality. In the last section we hat the analyzer is not present when the electron counting is

present the conclusions and a brief summary of this work spin insensitive(electrons are counted irrespective of their
" spin direction. Since we assume no backscattering from

counters to the entangler, the particles which are not counted
Il. CH INEQUALITY FOR THE FULL COUNTING are lost and hence there is no communication between the
STATISTICS two detectors. In the case where only two entangled electrons
) ] ) . are injected, we find a situation similar to that with photons.
As mentioned in the Introduction, during the last few \iore generally, we discuss the case where a large number of
years Bell-like inequalities have been proposed to study ergjectrons are injected, finding that the CH inequality is vio-
has been shown that zero-frequency current cross correlgy sec. |1 A we present the derivation of the CH inequality
tions, in the tunneling limit, can be used to formulate a Bellfor the FCS and in Sec. 11 B we resume, for completeness,

inequality. The same authors, in Ref. 30, have shown thae relation between FCS and the scattering marix
such a result can be extended to arbitrary tunneling rates,

since a pair of orbitally entangled electrons is postselected by
the measurement. In this paper we take a different route by
resorting to electron full counting statistidSCS for analyz- The basic object for the formulation of the CH inequality
ing electronic entanglement. FCS refers to the probabilityis the joint probabilityP(Q,,Q,) for transferring a number
that a given number of electrons has traversed, in atjme of Q; andQ, electronic charges into leads 1 and 2 over an
mesoscopic conductor. In the long time limit the first and theobservation time. We follow closely the derivation given in
second moment of the probability distribution are related toRef. 34. Our starting point is the following algebraic inequal-
the average current and noise, respectively. ity

In its original versior? the Bell inequality was derived
for dichotomic variables. Here we consider the more general —1sxy—xy' +x'y+x'y’'=x'—y<0, (1)

formulation proposed by Clauser and Hofidlo this aim, . .
wation prop y " s Al Chwhlch holds for any variable €x,y,x’,y’<1. Let us now

we consider the idealized setup, illustrated in Fig. 1, whi . X . :
P J introduce explicitly a set of hidden variableswhich take

consists of the following parts. On the left we place an en- I X & hat the i : led
tangler that produces pairs of electrons in a spin-entangle!Ues In a spacgé. We assume that the incoming entangle

state. Each electron propagates, respectively, into leads 3 afiifctron states are described bjn all the details necessary
4 in a superposition of spin statésand | . (In Sec. Il two to dgtermme the probability dlstr|put|orﬁé(Qa,r) for trans-
different situations for the implementation of the entangler€’fiNg & number ofQ, electronic charges into lead
are discusseflTwo conductors, characterized by some scat-— 1+2- By imposing that the hidden variable theory is local, it
tering matrix, connect the terminals 3 and 4 of the entanglefollows that the joint probability can be expressed in the
with the exit leads 1 and 2 so as to carry the two particledo!lowing form:

belonging to each pair into two different spatially separated

reservoirs. The electron counting is performed in leads 1 and P(Q;,Q,)= f M(7)P(Qq,7)P(Q,,7)dr )
2 for electrons with spin aligned along the local spin- ’ T ’ ’ '

4 2 \92

A. Derivation of the CH inequality
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where M(7)dr defines a probability measure on the spaceFCS is formulated for a mesoscopic conductor in the scatter-
7. The physical meaning of Eq2) is straightforward: it ing approach. Within this framework, the transport properties
states that the probability distribution on leaddoes not of a metallic phase-coherent structure attachedreservoirs
depend on the probability distribution on the legd are determined by the matri® of scattering amplitude?.

We now introduceP?1:%2(Q,,Q,) as the joint probability ~Such amplitudes are defined through the scattering states de-
for transferringQ, and Q, electronic charges when both scribing particles propagating through the leads. For one-
analyzers are present, whileP%2'(Q;,Q,) and dimensional conductors, for example, the scattering state
P~%(Q,,Q,) are the corresponding joint probabilities arising from a unitary flux of particles at energyoriginat-
when one of the two analyzers is removed. If the conditioning in theith reservoir reads

! !

P(Qq,7)<P(Qq,7) () ekiEX 4 r i (E)e kiE)X
i(x)= 6
(known asno-enhancement assumptjaos verified, it is pos- (%) vho;(E) ©
sible to identify the variables appearing in Ef) as follows: )
for theith lead, and
Pal(leT) PQZ(QZ!T) ik (E)
=SB0 o Y- o o ti(E)e"it®X
P(Q1.7) P(Qz,7) o= 0B T @)
, , \/hl}j(E)
_ Pgl(leT) _ PHZ(Q2=T)

Ly (4 for the jth lead, withj#i. Herer;(E) is the reflection am-
P(Q1,7) P(Qz,7) plitude for particles at energ§, wave vectork;(E), and
n group velocityv;(E) andt;(E) is the transmission ampli-
in the presence of an analyzer. Equatidn can then be tude from lead to leadj. Note thalj_ri|2 is the probability for
rewritten in terms of probabilities by multiplying each side & Particle to reflect back into thith lead andt; | is the

: ; bability for the transmission of a particle from leatb
of the equation byP(Q;,7)P(Q,,7) M(7)dr and integrat- Probabiity 5SI0| par _
ing over the spac. Finally the following inequality is ob- leadj. In the second quantization formalism, the field opera-

P%Q,,7) being the single terminal probability distributio

tained: tor z://j(,(x,t) for spin o particles in lead is built from scat-
tering states and it is defined as
Sch=P%%2(Q,Q,) —P1%2(Q;,Q,) +P1:2(Q,Q,) o iEUA
1.6, _pfi- Yjo(X,t) = f dE ——=[a;,(E)e"i*+ ¢; (E)e '],
+P%"2(Q1,Q2) =P 7(Q1,Q2) ! Vho(E) ! J

~P7"2(Q1,Q) =<0, ®) ®

Equation (5) is the CH inequality for the full counting Wherea;,(E)[;,(E)] is the destruction operator for in-
statistics®® holding for all values of); andQ, which satisfy ~coming(outgoing particles at energ§ with spino in lead;.
the no-enhancement assumption. We stress that the ndhese operators are linked by the equation
enhancement assumption, upon which &gis based, is not

satisfied, in general, like its optical version. The quantities <§5n ém
that we have to compare are probability distributions, so that fﬁ a
Eq. (3) must be checked over the whole rangeQfFor a Hlog | 7Y (9)

fixed timet and a given mesoscopic system, hence for a 3)21 521
given scattering matrix and incident particle state, the no- .

enhancement assumption is valid only in some range of val-

ues of Q. In particular, different sets of system parametersand obey anticommutation relations

correspond to different such ranges. The quardiy in Eq. . A

(5) depends orQ,; andQ, so that the possible violation, or {aiT(,(E), aj,(E")}=6 64, 0(E-E"). (10
the extent of it, also depends @y andQ,. Given a certain
average numbeM of entangled pairs that have being in-
jected in the time, one can look for the maximum violation
as a function of the transmitted charg@s and Q..

In the case of two- and three-dimensional leads one can sepa-
rate longitudinal and transverse particle motion. Since the
transverse motion is quantized, the wave function relative to
the plane perpendicular to the direction of transport is char-
acterized by a set of quantum numbers which identifies the
channels of the lead. Such channels are referred to as open
The joint probabilities appearing in E¢G) can be deter- when the corresponding longitudinal wave vectors are real,
mined once the scattering matr&of the mesoscopic con- since they correspond to propagating modes. Note that the
ductor is known. The FCS in electronic systems was firscase of a single open channel corresponds to a one-
introduced by Levitowet al.in Refs. 36 and 37 in the context dimensional lead.
of the scattering theory and later on the Keldysh Green func- Let us now turn our attention to the probability distribu-
tion method® to FCS was developed in Ref. 8fr a review tion for the transfer of charges. Following Ref. 42, within the
see Ref. 4D In this paragraph we briefly describe how the scattering approach the characteristic function of the prob-

B. Scattering approach to the full counting statistics
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ability distribution for the transfer of particles in a structure pression for the characteristic function when spielectrons

attached ta leads at a given enerdy can be written as are counted in lead 1 and spiri- electrons are counted in
lead 2:

- - DRI R DR i R

NN |)= el MM e MNtNog=jiNo ) | » - o
xethxo={ 11 A, Xe(hag Nagr) = 1+(e” M= 1)(RE) + (e~ o'~ 1)

(11) x(NZg—’>+(e,i)\lg_l)(efi)\za_/_l)

where the brackets- - -) stand for the quantum statistical ©
average over the thermal distributions in the leads. Assuming x(NL7R2'Y, 17

a single channel per Iea&l{f’o) is the number operator for

incoming (outgoing particles with spino in leadj and X In the relevant energy range<(E<eV. The parameters

- 9 9 P P J T corresponding to all others terminals are set to zero.

A | are vectors ofi real numbers, one for each open channel.  ysing Egs.(15), (16), and(17), at zero temperature, one

In terms of incomingloutgoing creation operator the NUM- ¢4 calculate the single terminal probability distribution
ber operators can be expressed as follows:

N7=ala,,, N§=al,d,. (12 P(Qu)= ( o, |[1= (UINGTTIM = ar(y IR ) oo
Equation(11) can also be recasted in the fofin (18
and the joint probability distribution

XE():T,):l):de(]I_nE"‘nE STAT S A): (13)
(M=Q14) +(M=Qp47)

wherel is the unit matrixng is the diagonal matrix of Fermi P(Q1y,Quy)= AZM=Q1,= Q241K

distribution functionsf;(E) for particles in the reservoir k=max[M — Q1 , ,M—Qz,]

and defined asng);,.j,=f;(E), whereasA is a diagonal Mk ~KeMEQ, o R0 | Mk

matrix defined as: &), j,=€xp(\;,). For long measure- X Bt Coer (WING'NG [4)

ment times the total characteristic functiop is the product

of contributions from different energies, so that XTM,Q14,Qz0 k), (19

o i o where  A=1—(yINg"[)— (yING” | o) + (UINGNE" ),

x(M,M>=eXp<ﬁf dE'an(MM)- 49 B=(yINg'(1-Ng)|w), C=(ul(1-Ng)NG"[#), and

f(M,Q15, Q207 . K) = MI/[(K=M + Qz,/)!(2ZM —k — Qy,,
At zero temperature, the statistical average over the Fermi-Q,,.)!]. In doing so we have written the expressions for
distribution function in Eq(11) simplifies to the expectation the probability distributions in terms of the expectation val-
value calculated on the statg) containing two electrons of ues of “outgoing” number operators. F®;,=Q,, =M,
both spin species for each channel of a given lead up to thEg. (19) reduces to
energy corresponding to the chemical potential of such lead.

Furthermore, in the limit of a small bias voltayeapplied P(Q1,=M,Qp, =M)=(y|NFNZ |/HM. (20
between the reservoirs, the argument of the integral is energy
independent so that E¢l4) can be approximated to When both spin species are counted in one of the termi-
nals the characteristic function is different from the one
X()(T 'Xl):[XO(XT 'ii)]M* (150  givenin Eq.(17). In particular, the characteristic function for

o ) counting both spins in terminal 1 reads
where only the zero-energy characteristic function appears

and M.= eVth is. Fhe average number of injected pgrticles.XE(M,)\zg,): 1+ (e M- 1)<(|§|g+ NlOL)H (e P20’ —1)
The joint probability distribution for transferrin@, , spin-o

electrons in lead 1Q,, spin-o electrons in lead 2, etc., is x(Néﬂ’H(e*iM_1)(efi>\zfr'_1)
related to the characteristic function by the relatiore as- A o _ o
sume that no polarizers are pregent X (NG +NGING Y+ (e M- 1)ANG NG )
P(Q1,Q1 Qa1 -+ ) +(e" M- 1) (e e —1)(NE NG NE™),
1 J+w - (21)
= dN AN AN - (N N .
(2m)%") - = 110hg Az x () where we have sek;;=\; =\;. The expression for the
o joint probability distribution is, in general, complicated, as
x eM Qg Q (16)  one can see in the Appendix where such expressions for dif-

) _ ferent systems are reported.
In the rest of the paper we will consider systems where

only two counting terminals are present. In particular, while
the counting terminals are kept at the lowest chemical poten-
tial, all other terminals are biased at chemical potergidl The inequality presented in E¢p) can be tested in vari-
For later convenience, we write down the most general exeus multiterminal mesoscopic conductors. In this section we

IIl. RESULTS
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present several geometries that can be experimentally realkhere
ized. In order to get acquainted with the informations that

can be retrieved from Eq5) we start from an ideal case in o 0 i nf
which the entangled pair is generated by sanénglerin % 2
the same spirit as in the works of Refs. 9 and 10. In Sec. Uy= 0 E (26)
Il B we analyze the role of superconductivity in creating _Sin§ coi

spin singlets. In Sec. Ill C we shall demonstrate that a nor-
mal beam splitter in the absence of interaction is enough tqhe probability distributions are now given by the expres-
generate entangled pairs of electrons, therefore constitutinggions in Eq(18) and Eq.(19) where the statpy) is given by

simple realization of an entangler. Eq.(22). In the case where both analyzers are present we set
o=c¢'=71. The probability distribution when one of the ana-
A. Entangled electrons lyzers is removed also possesses the structure of(F3).

In the setup depicted in Fig. 1 we assume the existence ¢fince, in this case, the correlator$Ng Ng") and
an entangler that produces electron pairs in the Bell state (N3'NG/N2') appearing in Eq.21) vanish. In particular
when, for example, the upper analyzer in Fig. 1 is removed

1 Silo e AT L LT Q20" it K127
ly)= —[agT(E)aZI(E)ia&(E)aL(E)]IO), (220  We need to replachly” with N +Ng andNg™ with N’ .
2 For the other correlators one gets

of spin triplet(upper sigh or spin singletlower sign in the A R T
energy range & E<eV. These electrons propagate through (YINY |9y = (| NE | )y = 5 (27)
the conductors which connect terminals 3 and 4 with leads 1
and 2, as though terminals 3 and 4 were kept at a potential T
eV with respect to 1 and 2. Our aim is to test the violation of (YINS )= =, (28)
the CH inequality given in Eq(5) for such maximally en- 2
tangled states. T2 0.+ 9

When the angle#,; and ¢, are parallel to each other, the (YINYRE )= —sin2< 1 2), (29)
scattering matrix of the two conductors, in the absence of 2 2

spin mixing processes, can be written as and
S5 O ) o T2 [6,%0,
= | (23) (YINGNE | )= —Cosz( ) (30)
0 s, 2 2
where For the single terminal probability distributions in leads
i=1,2 we get, in the presence and in the absence of an ana-
o rsg 0 tey O lyzer, respectively,
A rs ta 0 r3 0 gy _ —o.
Sl?’:(“ i ): 0 o | @ po o [(M)[T\O( TM
tiz Iy iz 1y PY(Qi)= o/\2 1-35 , (3D)
1
. - . . . M
Herer., (t;i,) is the probability amplitude for an incoming _ o M—Q;

N A . . . P(Q;)= T)~(1-T i 2
particle with spino from lead] to be reflectedtransmitted in Q) i (T ) (32
leadi). For a normal-metallic wire we set”=tm=\/f, :

. so that the no-enhancement assumption reads
ti;=t;;=—+T, and rj;=r;;=V1-T, where T is the P
transmission probability. The expression 85, is written . T\M-Q)/1 QI< LTy =12, (33
analogously. For simplicity we will assume tHag; and S,, 2 7] =l o 1Ehe

are equal. The general scattering matrix relative to noncol- S
linear angles is obtained fro® by rotating the spin quanti- Note that the probabilities in Eq¢31) and (32) do not de-

zation axis independently in the two conductén®te that pend on the angleé, andg, because the expectation values
this is possible because the two wires are decouplElde in Egs.(27) and (28) are invariant under Spin rotation. As a
“rotated” S matrix is obtainetf by the transformation consequence, the effect of the analyzer is equivalent to a

_ + . . A reduction of the transmission probabilifyby a factor of 2,
Sty,0,=USU", wherel/ s the rotation matrix given by resulting in a shift of the maximum of the distribution. From

Eq. (33 it follows that, for a given numbeM =eVth of

Us, 0 0 entangled pairs generated by the entangler, the no enhance-
1 0 ment assumption holds only for certain valuesToand of
U= 0 U, ol (25 Q. Thus the CH inequality of Eq(5) can be tested for
b2 violation only for appropriate values ®f, T andQ; or Q,.
0O 0 1 For example, for a given observation tirné.e., a givenM)
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and a given value o), CH inequality can be tested only for 05
transmissionT less than a maximum value given by the ex-
pression T
2Qi/(M=Q)) _ 1 05 }
Thae————— 34 I
M 2Q/M-Q) _ L (34) = 1 i
At the edge of the distribution;=M) the no-enhancement 2 sk .
assumption is satisfied for evelly The window of allowed -
Q; values where the no-enhancement assumption is satisfie 2 o\ [T
gets wider on approaching the tunneling limit. For lae i \"_. i
Tma=2(In2)Q;/M. The previous inequality can be also in- > il }
terpreted as a limit for the allowed measuring time given a 3 _ e
setup at disposal. Alternatively, given a certain transmission, 0 0.2 1
the no-enhancement assumption is verified for points of the O/n

distribution such that FIG. 2. The quantityScy=Scy/(T2M/2M) is plotted as a func-

1-T/2 tion of the angle® for different numberav of injected entangled
In pairs by the entangler. The range of angles relative to positive val-
92 1-T (35) ues shrinks with increasiniyl, while the value of the maximum
M 1-T/2° slightly decreases.
In2+In -7

so that the no-enhancement assumption is always satisfied
The various probabilities needed to defifgy are col- and the quantityScy can be easily evaluated:
lected in the Appendix. However, it is useful to note here that

the joint probabilities with a single analyzer are factorized: M girg, 0+ 0)
91 — o SCH:_M S|nzM—2 —SII’]ZM 2
P77(Q1,Q2)=P(Q1)P(Q2), 2
P *2(Q1,Q2) = P(Qu)P*2(Qy), 36) roirtn 20 G B0 o (a9

while joint probabilities with two analyzers are not factor-

ized. Furthermore, all such probabilities have a common facthe rotational invariance makda?s:~ and P~+% indepen-
tor, T?*22/2" which leads to an exponential suppressiongent of angles, an@’2:%2 dependent on the angles through
for large M and Q,+Q,. We shall address the question of (g + 9,)/2." This allows us, without loss of generality, to
whether this also produces a suppressioibgf in case of  yafine an angle® such that B =g,+ 6,= 6.+ 6,= 0,

violation. 4 '
- S *+60,=(60,%605)13. As a result Eq(5) takes the form
Let us now analyze the possibility of violation of the CH 02= (61 0) ult Eq(5)

inequality for different values o®; andQ,. First consider R0 30
the situation where the entangler emits a single entangled Scn=3P1AQ1,Q2) = P15(Q1,Q2) = P1-(Q1,Q2)
air of electrons in  which case P%:%(1,1 _
par o , clectrons ch case B (L) P- AQ1,Q2)=0, (40)
=(INg'Ng'[#), P~%2(1,1)=(y|(Ng +Ng)INg'|#), and . _
P (1,1)=(y|NL (N2 +R2')| ). We find that the CH in- WhereP7,=P%% and P, =P~ It is useful to define
equality is maximally violated for the following choice of the reduced quantit$cy=Scy/(T?"/2M) which is plotted
angles:0,— 0,= 0,— 0;=3m/4. More precisely, we obtain in Fig. 2 as a function o® for differeﬂt values oM [note
that since P’r~(M,M)=(T2M/2M), Scy is nothing but
S —T2 V2-1 37) Scu/P%~(M,M)]. The violation occurs for every value of
cH 2 M in a range of angles aroun@= /2 (note thatScy is

C . . mmetric with respect tar/2). The range of angles for
which is equal to the result obtain for an entangled pair ofSy P ) g g

photons3* whereT plays the role of the quantum efficiency which gCH is positi_ve shrinks with increasinlyl, while the
of the photon detectors. In the more general caséQef Maximum value ofScy decreases very weakly witfl (more

=Q,=M, for M>1, we have precisely,S¢ic1/M). This means that the effect of the fac-
tor T2M/2M on the value ofS.y, is exponentially strong, mak-

o102 M M) = T2M ir? 0,= 6,\ M ing the violation of the CH inequality exponentially difficult
(M,M)= om | ° 2 ' to detect for largéM andQ, = Q,=M. The weakening of the
violation is mainly due to the suppression of the joint prob-
oM abilities. As we shall show later, by optimizing all the param-
P~ (M,M)=P " %2(M,M)= e (38)  etersitis yet possible to eliminate this exponential suppres-
sion.
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................. — Q=20
004 ' o|.1 ' 0{2 ' 0|.3 ' o|.4 05 00155 ' o|.1 ' 0{2 ' 0|.3 o|.4 05
O/t O/t
FIG. 3. The quantityScy is plotted as a function of the angke FIG. 4. The quantityScy is plotted as a function of the angk

for M=20 and T=0.069 17, which corresponds to the highestfor M=20 and T set to the highest value allowed by the no-
value allowed by the no-enhancement assumptioncferl. The  enhancement assumption, different from e&ghThe curves are
curves are relative to different values Q=[1,4]. Note that for  relative to different values 0Q=[1,20]. The maximum ofScy
Q=4 the variation ofScy over the whole range dP is small on  increases witlQ reaching its largest value f@ =28 and decreasing
the scale of the plot. Violations are found only f@r=1 andQ for Q>8. Note that the variation & with ® for Q=20 it is not
=20. appreciable on this scale.

Let us now consider the violation of the CH inequality asdecrease exponentially, but rather amM1/ Despite the ex-

a function of the transmitted charges. We notice that the Chbonential suppression of the joint probability wit, the
inequality is not violated for the off-diagonal terms of the extent of the maximal violation scales wiM much slowly
distributions(whenQ;# Q,), meaning that one really needs (polynomially).

to look at “coincidences.” Therefore we discuss the case It may be useful to look at the same situation from a
Q:=0Q,=Q<M [remember that the no-enhancement as-different perspective. Given a certain transmissiorii.e.,
sumption is satisfied only foF<T,,5,(Q)]. In Fig. 3 we plot  fixing the transport properties of the conducjore want to
the quantitySc for M =20 as a function 00 and different  find when the CH inequality is maximally violated. For a
values of Q. The transmissio is fixed at the highest al- given observation timé, the no-enhancement assumption,
lowed value by the no-enhancement assumption, which coiEq. (34), imposes a minimum value f@. In Fig. 6 we plot
responds to the smallestQ considered T,,,(Q=1) the quantityScy, maximized over the angl® andQ, as a
=0.069 17. Figure 3 shows that the largest positive value ofunction of T for different M. The curves are a piecewise
Scn and the widest range of angles corresponding to positivéncreasing function ofT, where the discontinuities corre-
Scy occur forQ=1, i.e., for a joint probability relative to spond to an increase of the value@by one imposed by the
the detection of a single pair. One should not conclude thatjo-enhancement assumption. More precisely, whas in-

in order to detect the violation of the CH inequality, only

very small values of the transmitted charge should be taken  0.06 ian
We have, in fact, consideref=T,,,, relative toQ=1 and i o —aM=10
the maximum violation, for giveM andQ, always occurs at 0.05[ ~—aM=15| A
T=Ta. In order to get the largest violation of the CH in- — oo M=20
equality at a giverM andQ one could, in principle, choose . o0.04F o M=30] |
the highest allowed value of for each value ofQ[T 5
=ThadQ)]. We show in Fig. 4 the corresponding plot,
to be compared with Fig. 3. For evey<M the violation L |
occurs in the same range of angles, namelf<0 < /2, 0.021- JpreEt . |
because of the following properties of the joint probability L g A7 N
distributions:  P$4Q;,Q2)=P3%(Q1,Q,) =P1-(Q1,Q,) il PR S d E BTSN
for ®=a/4. This implies that Scy(®=x/4)=0, and | o & e e |
PYAQ1.Q)=P%Q1.Q2).PY-(Q1.Q2) P AQ1.Q) for /4 L& L TR N R
=0 =<7/2. Furthermore, in this specific case Mf=20, we Q

find that the maximum values & occurs atQ=38.

In Fig. 5 we plot the maximum value & with respect to FIG. 5. The maximum value of the quantit§.,,, evaluated
andT, as a function of for different values oM. Several  over angle® and transmission probabilitids is plotted as a func-
observations are in order. For increasiMg the position of  tion of Q. The curves are relative to different valueshfranging
the maximum,Qax, iS very weakly dependent oM. Re-  from 10 to 30. For points corresponding to the maximum of the
markably, the value of the maximum of the curves does noturves we indicate the corresponding value of transmisgion

0.03

Max[S
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0.06 : | ; 1 ; ; |

— M=10 0=8
0.05F |— M=20 i

0.04 — -

FIG. 7. (Color onling Setup of a realistic system consisting of a
superconducting beam splittéshaded regionfor testing the CH
inequality. Bold lines represent two conductors of transmission
/ probability T. The superconducting condensate electrochemical po-

Max[S CH]
T

0.02-

| o
O'OOIT L O_AZ A/\ oi4/\

0

tential is set tow, while terminals 1 and 2 are grounded.

8

The system can be decomposed into two subsystems: on
v Y the left-hand side of Fig. 7 we place the superconducting slab
T attached to two normal termina(S and 6 characterized by a
reflection amplitudes matriR; defined, in terms of the par-
ticle operators, by

FIG. 6. (Color online The maximum value of the quantit§g,, ,
evaluated over angle® and number of counted electroy is
plotted as a function of. Both curves, relative t&1 =10 andM
=20, exhibit discontinuities which correspond to an increase of the &jaU(E)= > > > [R(E)]jaokpo’ é.leo.r(E).
value ofQ by 1. This increase is imposed by the no-enhancement k=56 g=eh ;' =1 |
assumption, Eq(35), which depends on the value ©f We indicate (4)

the value ofQ which corresponds to the largest violation. Here=5,6 and the additional indices and 3 refer to the

creased above a threshold for which Egg) is not satisfied, Particle-hole degree of freedom, in particular= e for par-
one needs to increas@ by one unit in order for this condi- ticles anda=h for holes and - - - Jj., ks, represents the
tion to be recovered. The result of this is a jump in the valuespecified element of the matrix. Note tta{ is block diag-
of the probabilities that leads to a discontinuity&f,,. Fig-  onal in spin indices so that

ure 6 allows to choose the best valuesvbndQ to get the

maximum violation. R/ = R0 ) 42)
If the entangler is substituted with a source that emits s 0 R

factorized states, the CH inequality given in E§). is never )

violated. In this case, in contrast to H82), the state emitted With

by the source readsy)=aj.a},|0). All the previous calcu- .

lations can be repeated and we find, as expected, that the Pse se

characteristic functions factorizes, so that the two terminal - a

joint probability distributions are given by the product of the bsh) .y “on

single terminal probability distributions. To conclude, we ;bw B Ager |’

wish to mention that the CH inequality, E¢G), holds for N ~

joint probabilities relative to arbitrary observation time, al- Pen| Aeh)

though the FCS requires long observation time, so Mat

>1.
We are now ready to analyze realistic structures by replac- Pee Pph Tee Ten

ing the shaded block in Fig. (which represents the entan- = Phe  Phh  The Thh 43

gler) with a certain system, and discuss the CH inequality Tee Teh p{)p Penl’

along the lines of Sec. Il A. , , , ,
The Thh Php Phh
B. Superconducting beam splitter where pee (phn) is the normal reflection amplitude for par-
In many proposals superconductivity has been identifiedicles (holeg in terminal 5,p.p, (pne) is the Andreev reflec-
as a key ingredient for the creation of entangled pairs ofion for a hole to evolve into a particlgarticle to evolve
electrons. The idea is to extract the two electrons which cominto a hole in terminal 5.7 (7,5, is the normal transmis-
pose a Cooper paig) pair of spin-entangled electronsom  sion amplitude for particleg¢holes to be transmitted from
two spatially separated terminals. We analyze the case of t&rminal 5 to terminal 67¢, (7h) is the Andreev transmis-
superconducting beam splitféf° depicted in Fig. 7, which sion amplitude for holegparticles in terminal 5 to be trans-
consists of a superconducting leagith condensate chemi- mitted in terminal 6 as particleoles. Primed amplitudes
cal potential equal tq) in contact with two normal wires. refer to reflections occurring in lead 6 and transmissions
The wires are then connected to two leads attached to resdrom lead 6 to lead 5.
voirs kept at zero potential. This is basically what is obtained On the right-hand side of Fig. 7 we have the subsystem
by replacing the entangler of Fig. 1 by a superconductingcomposed of two identical decoupled conductors character-
lead with two terminals. ized by the 1& 16 scattering matrix
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R, T. In the limit of zero temperature and small bias voltage, we
Se= - (44) only need the scattering amplitudes at the zero en@grgymi
Te Re level) so that the overall characteristic function can be ap-
The four submatrices in Eq44) are block diagonal in spin Proximated like in Eq(15). We parametrize the matrig; of
space, for exampleR. can be written as the wires as follows: rze;=rsee=v1=T, T1ee="2e0
=V1-T, tie,=t1e, =T, andtj,,=the, = — T, whereT
Re 0 is the wire transmission probability of the wires. The ampli-
<™ 0 R/’ (45 tudes relative to hole degree of freedom are determined from
¢’ the ones above by making use of the particle-hole symmetry.
WhereRI: is a diagonal matrix defined by The no-enhancement assumption can be calculated along the
R lines of Egs.(31)—(33) and it is easy to check that f@,
‘Af’BeT Ager =Q3=M it is always satisfied.
. a Although Andreev processes are fundamental for the in-
$3n| ol 3h) jection of Cooper pairs, in the case where Andreev transmis-
‘}54eT =R é4eT ' sions only are nonzero an=1 the joint probabilities fac-

N ~ torize in a trivial way,
bany 84n)

Pf1:%2(Q,,Q,) = 6Q,.2M0Q,.2M
rzer O 0 0

0 rzy O 0 P’ 7(Q1,Q,) = 6Q,,2M0Q,.am » (50

(46)

0 0 Traep O in such a way that the CH inequality is never violated. This
0 0 0 rup apparent contradiction is due to the fact that in this situation

. . . . . o the scattering processes occur with unit probability, so that
Rtl? _'S defl_ne_d IlkeRi chhang_lngT with _l' whereasT¢ is the condition of locality is fulfilled. Nonlocality can be
defined similarly toR; replacingrs,, with t1,, aNdraas  achieved by imposing<1. In the limit T<1 we obtain the
with tp,,. The matricesR;” and T.” are defined analo- propapilities P %2(Q,,Q,) and P~%2(Q,,Q,) reported,
gously using the amplitudes; oo, 240+ t1aes @Nd15,,.  respectively, in Eqs(AA5) and (AA6) of the Appendix,
The spin quantization axis of the two wires can be rotatedyhich reduce to
independently as in Sec. Il A by applying the transformation

Rl=

Sp,.0,=USI", wherel/is defined in Eq(25), obtaining the . 27276 ME g e, M
scattering matrix PR(MM)= [A-T(A-1)]® 2
R T 51
Sglrgzz “-I‘-C ~Ré ' (47 and
The overall matrix of reflection amplitudes is calculated by 2T2p6 M
composing the scattering matrices relative to the two P~ %2(M,M)= — (52
subsystem&? [A-T(A-1)]
~ ~ ~ ~ — — H — 1% .
RL=R +T{I-RR] R, (48) for Q,=Q3=M, with A=1+ 7,.7% . Equations(51) and

(52) are equal to Eq9.39), relative to the case of an entan-
whereR;,, is defined by gler, once Z2AS[A—-T(A—-1)]® is replaced withT?%/2.

From this follows that superconductivity leads to violation of

- _ , - the CH inequality FoA=2, i.e., perfect Andreev transmis-
d’i“"(E)_kzzl,z sSen T;,l [Riol E)Jjao kg BB sion, the quantity Z?A%/[A—T(A—1)]® tends toT?/2 in

(49)  the limit T—0 so that the analysis of Sec. Il C relative to

the caseQ,=Q,=M applies also here.
with j running from 1 to 2. The characteristic function can 01=Q P

now be calculated through E(L3) taking R/,(E) as scatter-
ing matrix. In the present case, where superconductivity is
present, the diagonal matrix of Fermi distribution functions It is interesting to show that, even in the absence of su-
is defined as[Ngljae,jac="Tfjo(E), fjo(E)={1+exd(E  perconductivity, a normal beam splitter leads to violations of
+au)lkgT] 1 and[AJj e jac=€XPlarj,) with j=1,2. By  the CH inequality. To this aim, we consider a normal beam
choosing\;; =\, =0 we achieve the goal of counting ex- splitter (shaded block in Fig.)8in which lead 3 is kept at a
citations with spin-up component. The case where one of thpotentialeV and leads 1 and 2 are grounded so that the same
analyzers is removed, for example, in lead 1, is implementethias voltage is established between 3 and 1, and 3 and 2. The
by settingh;;=\;;=\; and 6,=0, i.e., by counting elec- two conductors, which connect the beam splitter to the leads
trons in lead 1 regardless of their spin. 1 and 2, are assumed to be normal-metallic and perfectly

C. Normal beam splitter
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1 obtaining the joint probability distributions reported in the
V,=0 Appendix. The above number operator expectation values
are equal to the case of the entangler wles replaced by
V,=0 T/2, whereas the cross-terminal correlators are equal in the
. 5 two cases ife is replaced withHT/\/2. From this the follows

that the characteristic functions for the beam splitter possess
FIG. 8. (Color online Setup of a realistic system consisting of a the same dependence on the ang|e difference as the corre-
Bold lines represent two conductors of unit transmission probabily) A) but have a different structure as far as scattering prob-
ity. A_bias voltage equal teV is set between terminals 3 and 1 and abilities are concerned. In particular, as expeé‘?&de Cross-
terminals 3 and 2. correlations vanish when the two angles are equal. On the
contrary, when the angle difference 1is cross-correlations
are maximized. Furthermore, when only one analyzer is
present the characteristic function shows no dependence on

transmissive, so that th® matrix of the system fow,= 6,
=0 is equal to theS matrix of the beam splitter, which

7
read$ the angle, but it is not factorizable, in contrast to the case of
B the entangler. As a result, the single terminal probabilities,
(atb) Ve Ve given by Eq.(18), are equal in the two cases provided that
S= Je a b, (53) is replaced withT/2. The joint probabilities forQ,;=Q,
Je b a =M are equal in the two cases éfis replaced withT/+/2

(however, this replacement is not valid, in general, for joint
In this parametrization of a symmetric beam split@er probabilities withQ,,Q,# M):

=+ (1+V1-2€)/2, b=F(1—J1—2€)/2, and O<e<1/2.

. N . M

For arbitrary angle®); and 6,, the S matrix is obtained ro- 016 | om0

tating the quantization axis in the two conductors indepen- P1:%2(M,M) =/ e”sir? 2 ’ (60)

dently by applying the transformatit&,ly ,,ZzusuT, where

U is the rotation matrix given by P (M,M)= &M, (61
I 0 0 The no-enhancement assumption is verified when

u=|0 Yo 0O (54) 1 2QUM-Q_q

0 0 Uy, S2m o 1 62

andU, is defined in Eq(26). This procedure is valid as long . . _
as no back scattering is present in the conductors. The proﬁf‘fh":h equals the condition of Eq34) oncee is replaced

bility distributi - by Ea€18) and (19) wh with T/2. Let us first consider the case for whigh=Q,
{ahel Is){atésdfr)l ilsj Ir?gv?/ gc?togrli\ggley G¢18) and (19) where =M. We obtain an important result: the CH inequality is

violated for the same set of angles found for the case of the
_ ot i entangler, although to a lesser extent, since the prefactors in
=ay (E)as (E)|0 (55) gler, g ; p

. ¥)=2s (®10) Egs.(60) and(61) now vary in the range € 2M<1/4". In

in the energy range OE<eV. Analogously to what was particular, in the simplest case 8 =1, corresponding to

done in Sec. Il A, when both analyzers are present we sdhjecting a single pair of electrons, the maximum violation

o=c'=1. When only one analyzer is present, however, oneorresponds t&.,= (12— 1)/4, which is half of the value

has to use the correct characteristic function of Ef),  for the entangler. Furthermore, the plot in Fig. 2 is also valid
since one of the two additional correlators does not vanishy, e present case WitECH defined aSS_CH=$<:H/€2M ie.

Namely, (N3 Ng') = €2 and(NG/N'NE') =0, when the up- by replacingT/\2 with e. This means that a geometry like
per analyzer, for example, in Fig. 8, is removed. For thethat of the beam splitter enables to detect violation of CH
other expectation values we get inequality without any need to resort to interaction processes
. . to produce entanglement.
(YING )= (YING ) =€, (56) Also here we consider the case for whi€h=Q,=Q
<M, where interesting differences with respect to the case
(YINY )=, (57)  of the entangler are found.
(i) We find that the violation of the CH inequality is in
0,— 02) general weaker, meaning that the absolute maximum value of
> |

(58)  Scy is smaller than in the ideal case of the entangler.
(i) The weakening of the violation with increasihg is
and determined by the suppression of the probability by the pref-
actor (€2)9179?, Remarkably, the maximum value &,
01— 6, decreases like M, therefore even slower than for the ideal
2 ) (59 case.

<wINéTNéT|w>=ezsin2(

(YING'NE | 9) = e2cog
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injected pairg however, such a suppression does not scale
exponentially withM like the probability, but instead de-
creases like M?2. This means that the detection of violation
does not become exponentially difficult with increasivig

For fixed transport properties we analyzed the conditions, in
terms ofM and number of counted electrons, for maximizing
the violation of the CH inequality.

The violation of the CH inequality could be achieved in
an experiment. Indeed we tested the CH inequality for two
0001 L _ different realistic systems, namely, a normal beam splitter
-7 and a superconducting beam splitter. Interestingly we find a
___________________________________ ] violation even for the normal system, even though weaker
ez . . . with respect to the idealized case of the entangler. In this

0 0.1 0.2 0.3 04 0.5 case the violation is again suppressed for increasing obser-
O/n vation time, but scales like /. We analyzed the supercon-
ducting case in the limit of small transmissivity and we also

FIG. 9. The quantityscy, for a normal beam splitter is plotted as find a violation of the CH inequality to the same extent with
a function of the angle@ fOr three V.alues OfM =eVth respect to the case Of the entangler
=10,20,100 wherQ=1. Interestingly,Scy is positive for every It is important to notice that the analyzers should not af-
angle and its maximum value decreases likel 1/ fect the scattering properties of the system as in the case of

e ferromagnetic electrodes. In the latter case, in fact, the prob-

(i) Violations oceur only for values d@ close to 1, even  gpjjity density of the local hidden variables would also de-
for Igrge values oM..to search_f_or violations one has to look pend on the angleg, and 6,.
at single- or few-pair probabilities and therefore, because of \yg pelieve that the results derived in this work may be of
the no-enhancement assumption, to small ransmis®ons  jnterest for the understanding of the statistics of electrons in

(iv) Interestingly, forQ=1 the quantityScy is positive  mesoscopic conductors. It is, however, important to look for
for any angles, although the largest values correspord 10 eyxnerimental tests of our claims. In this respect two possible
close tom/2 (see Fig. 9. We do not find any relevant varia- gchemes for measuring the counting statistics have been re-
tion, with respect to the discussion in paragraph Sec. Ill Acently proposed in Ref. 49. Since solid-state devices are con-
for probabilities relative t@Q; # Q. o sidered promising implementations for quantum computa-

It is easy to convince oneself that, for an incident statgjgng) protocols, this line of research does not seem
composed of a single pair of particles impinging from thejnteresting only from a fundamental point of view, but may

entering arm of the beam splittésS), we obtain a final state  pe of clear relevance for the actual realization of solid-state
| #)out that contains an entangled part: computers.

| ) our= €(b] ;b3 —bl bl)|0)+ebl,b] [0)+eb],b] |0). ACKNOWLEDGMENTS
63

The authors would like to thank M. Bliker, P. Samuels-

son, and E. Sukhorukov for helpful discussions and C.W.J.
In Ref. 48 this fact was already noticed. For mesoscopi®eenakker for comments on the manuscript. This work was
conductors, entanglement without interaction for electrongupported by the EUIST-FET-SQUBIT, RTN-Spintronics,
injected from a Fermi sea has been also discussed bRTN-Nanoscale Dynamigs
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Ref. 21. APPENDIX: PROBABILITY DISTRIBUTIONS

In this appendix we give the general expressions for the
joint probability distributions used in the paper to discuss the

In mesoscopic multiterminal conductors it is possible toCH inequality.
observe violations of locality in the whole distribution of the
transmitted electrons. In this paper we have derived and dis-
cussed the CH inequality for the full counting electron sta-
tistics. In an idealized situation in which one supposes the In the case of an entangler we find
existence of arentangler we have found that the CH in-
equality is violated for joint probabilities relative to an equal

IV. CONCLUSIONS

1. Entangler

number of electrons that have passed in different terminals. oy, _ Tr) (M| (M

This is related to the intuition that any violation is lost in PT(Q1,Q2)= oM Q./1Q,

absence of coincidence measurements. The extent of the vio-

lation is suppressed for increasimg (average number of X(2-T)MQu1-T)M~ Q2 (Ala)
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TQ1+Q2) [ M M Q1 min[M —k,Q5] M
P02 , - ( )( ) p—02 , = (Q11Q2) ( )
(Q1.Q2) oM 1Q1/1Q; (Q1.Q2)=e¢ I(ZO | =max(0,Q k) + (k)] | K
X(1-T)M Qu2-T)M~Q2, (A1b) MK k k+1-Q,
I k+1-0Q,/| Q,—k
and
X[1—3e+2e2 MK [1— €]
min[Q1+ Q2 ,M] M K
P%:%2(Q1,Qz) = k)(ZK_Q 0 ) X[2-BeHrimum (A4)
k= maxQu.Q2l o with 0<Q;=<2M and 0<Q,=<M (note that the sum ohhas
2k—Q;—Q,| T(Qu+Q2 to be performed only when the lower limit is less than or
—_— equal to the er limit
( k—Q, ) oM qu upper limi
r 0.+ 0, M-k 3. Superconducting beam splitter
X 2(1—T)+T23|n2( > ) The joint probabilityP?:-%2(Q,,Q.) used in Sec. IlI B is
r —0,— min[Q; +Q2,M]
013 6| |2 Q@ 0.0 (M)( k )
—Tsj po1.02 , =
X_l T sir? > ” (Q1,Q2) ke ey, 0,] k/\2k-Q;—Q,
[ 0.+ 60, Q1T QK A 8 M
x sinz( = 2) . (A2) X(Zk Q1 Qz) A
. k=Qz J[[A-T(A-1)]8
o2\ ,
2. Normal beam splitter X e 1-4T+6T
The joint probabilityP’1:%2(Q,,Q,) used in Sec. Il C is
2 M—k
_ 2T [0+ 6,
min{(M = Qq) +(M~Qy),M] + —sir?
0. 0 M k A2 2
P Z(QliQZ): B k M—Q2
kfmax[M_erM_QZ] nz( 01+62 Q1+Q2_k
_ X | si
X M= Qe QR 1-2¢ 2
Ql_ M + k
01+ 05 ]2 A
0, — 6, ]2M~Q1-Qzk x| cos’| — , (A5)
+62$ir12( )
whereA=1+ 7,75 .
L 'n2< 6,— 02) QuFQz—2M+2k The single-analyzer joint probability ~?2(Q;,Q,) reads
X|1l—esl
2 8 M 2\ Q
vk P~2(Q1,00= & )(Ql) B L
" sz( 0.— 0, } (A3) Qi\Q/\[a-T(A-1)18) | A2
2
X[1—4T+6T2 M~ (AB)

The single-analyzer joint probability ~+?2(Q;,Q,) reads  for Q;=Q, andP ~%2(Q;,Q,)=0 for Q;<Q,.
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