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Clauser-Horne inequality for electron-counting statistics in multiterminal mesoscopic conductors
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In this paper we derive the Clauser-Horne~CH! inequality for the full electron-counting statistics in a
mesoscopic multiterminal conductor and discuss its properties. We first consider the idealized situation in
which a flux of entangled electrons is generated by anentangler. Given a certain average number of incoming
entangled electrons, the CH inequality can be evaluated for different numbers of transmitted particles. Strong
violations occur when the number of transmitted charges on the two terminals is the same (Q15Q2), whereas
no violation is found forQ1ÞQ2. We then consider two actual setups that can be realized experimentally. The
first one consists of a three terminal normal beam splitter and the second one of a hybrid superconducting
structure. Interestingly, we find that the CH inequality is violated for the three terminal normal device. The
maximum violation scales as 1/M and 1/M2 for the entangler and normal beam splitter, respectively, 2M being
the average number of injected electrons. As expected, we find full violation of the CH inequality in the case
of the superconducting system.
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I. INTRODUCTION

Entanglement1 denotes the nonlocal correlations that e
ist, even in the absence of direct interaction, between
~spatially separated! parts of a given quantum system. E
tanglement is believed to be the main ingredient of com
tational speed-up in quantum information protocols. Beca
of its fundamental importance, a great deal of interest
been brought forth by its role in quantum information.2

Most of the work on entanglement has been performed
optical systems with photons,3 cavity QED systems,4 and ion
traps.5 Only recently attention has been devoted to the m
nipulation of entangled states in a solid-state environm
This interest, originally motivated by the idea to realize
solid-state quantum computer,6–8 has been rapidly growing
and by now several works discuss how to generate, man
late, and detect entangled states in solid-state systems.
probably worth to emphasize already at this point that, d
ferently from the situation encountered in quantum optics
solid-state systems entanglement is rather common. Wh
not trivial is its control and detection~especially if the inter-
action between the different subsystems forming the
tangled state is switched off!.

Despite the large body of knowledge developed in
study of optical systems, new strategies have to be desig
to reveal the signatures of nonlocal correlations in the cas
electronic states. For mesoscopic conductors, the proto
scheme was discussed in Ref. 9. In this work it has b
shown that the presence of spatially separated pairs of
tangled electrons, created by someentangler, can be revealed
by using a beam splitter and by measuring the correlation
the current fluctuations in the leads. Provided that the e
trons injected are in an entangled state, bunching and a
bunching behaviors for the cross-correlations of current fl
tuations are found depending on whether the state is a
singlet or a spin triplet. Not only the noise, but the full coun
ing statistics is sensitive to the presence of entanglemen
0163-1829/2004/69~12!/125326~13!/$22.50 69 1253
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the incoming beam.10 The distribution of transmitted elec
trons is binomial and symmetric with respect to the avera
number of transmitted charges. Moreover, this is import
for the problem studied in the present work, the joint pro
ability for counting electrons at different leads unambig
ously characterizes the state of the incident electrons if
uses spin-sensitive electron counters. In this case the
probability cannot be expressed as a product of sing
terminal probabilities.

Given the general setup to detect entanglement, an im
tant issue is to understand how to generate it. This has b
discussed in several papers. Most of the existing propo
are based on the generation of Bell states by means
electron-electron interaction. This can be achieved thro
superconducting correlations11 in hybrid normal-
superconducting12–15 and superconductor–carbon nanotub
systems,16–18 quantum dots in the Coulomb blockad
regime,19 or Kondo-like impurities.20 Then, by using energy
or spin filters, the two electrons forming the Bell state a
separated. The entanglement can be created in the spin
the orbital15 degrees of freedom. Very recently, as is al
discussed in Sec. III C, it was shown that in a mesosco
multiterminal conductor entanglement can be produced a
in the absence of electron interaction.21 Besides electrons, i
is possible to produce entangled states with Cooper pair
superconducting nanocircuits22 or by coupling a mesoscopi
Josephson junctions with superconducting resonators.23–26

Since Bell’s work,27 it is known that a classical theor
formulated in terms of a hidden variable satisfying reas
able condition of locality, yields predictions which are di
ferent from those of quantum mechanics. These predicti
were casted into the form of inequalities which any realis
local theory must obey. Bell inequalities have been form
lated for mesoscopic multiterminal conductors in Refs.
21, and 28–31 in terms of electrical noise correlations
different terminals.32 A test of quantum mechanics throug
Bell inequalities in mesoscopic physics is very challeng
and most probably it would be rather difficult, if not impo
sible, to get around all possible loopholes. Although sol
©2004 The American Physical Society26-1
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state systems are not the natural arena where to test the
dations of quantum mechanics, it is nevertheless v
interesting to access, manipulate, and quantify these non
correlations.

In this work we derive a Bell inequality for the ful
electron-counting statistics and discuss its properties.
formulation we follow is based on what is known as t
Clauser-Horne~CH! inequality.33,34 We shall show that the
joint probabilities for a given number of electrons to pa
through a mesoscopic conductor~in a given time! should
satisfy, for a classical local theory, an inequality.

The paper is organized as follows: In the following se
tion we motivate our approach to the problem, derive the
inequality, and express the joint probabilities needed in
CH inequality in terms of the scattering properties of t
mesoscopic conductor. Section III is devoted to the disc
sion of the results. We first consider the idealized situat
where an incoming flux of fully entangled electrons is i
jected into the mesoscopic region. Then we move on to a
lyze actual setups. We consider the case where entangle
is produced by Andreev reflection. However, interacti
electrons are not necessary to have an entangled state. In
we show that a three terminal normal device is enough
lead to violation of the CH inequality. In the last section w
present the conclusions and a brief summary of this wor

II. CH INEQUALITY FOR THE FULL COUNTING
STATISTICS

As mentioned in the Introduction, during the last fe
years Bell-like inequalities have been proposed to study
tanglement in solid-state devices. Very recently, in Ref. 1
has been shown that zero-frequency current cross cor
tions, in the tunneling limit, can be used to formulate a B
inequality. The same authors, in Ref. 30, have shown
such a result can be extended to arbitrary tunneling ra
since a pair of orbitally entangled electrons is postselected
the measurement. In this paper we take a different route
resorting to electron full counting statistics~FCS! for analyz-
ing electronic entanglement. FCS refers to the probab
that a given number of electrons has traversed, in a timet, a
mesoscopic conductor. In the long time limit the first and
second moment of the probability distribution are related
the average current and noise, respectively.

In its original version,27 the Bell inequality was derived
for dichotomic variables. Here we consider the more gen
formulation proposed by Clauser and Horne.33 To this aim,
we consider the idealized setup, illustrated in Fig. 1, wh
consists of the following parts. On the left we place an e
tangler that produces pairs of electrons in a spin-entan
state. Each electron propagates, respectively, into leads 3
4 in a superposition of spin states↑ and↓. ~In Sec. III two
different situations for the implementation of the entang
are discussed.! Two conductors, characterized by some sc
tering matrix, connect the terminals 3 and 4 of the entang
with the exit leads 1 and 2 so as to carry the two partic
belonging to each pair into two different spatially separa
reservoirs. The electron counting is performed in leads 1
2 for electrons with spin aligned along the local sp
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quantization axis at anglesu1 and u2. Detection is realized
by means of spin selective counters, i.e., by counting e
trons with the projection of the spin along a given loc
quantization axis. In analogy with the optical case we s
that the analyzer is not present when the electron countin
spin insensitive~electrons are counted irrespective of the
spin direction!. Since we assume no backscattering fro
counters to the entangler, the particles which are not coun
are lost and hence there is no communication between
two detectors. In the case where only two entangled electr
are injected, we find a situation similar to that with photon
More generally, we discuss the case where a large numbe
electrons are injected, finding that the CH inequality is v
lated only when a ‘‘coincidence measurement’’ is performe
In Sec. II A we present the derivation of the CH inequal
for the FCS and in Sec. II B we resume, for completene
the relation between FCS and the scattering matrixS.

A. Derivation of the CH inequality

The basic object for the formulation of the CH inequali
is the joint probabilityP(Q1 ,Q2) for transferring a number
of Q1 andQ2 electronic charges into leads 1 and 2 over
observation timet. We follow closely the derivation given in
Ref. 34. Our starting point is the following algebraic inequ
ity

21<xy2xy81x8y1x8y82x82y<0, ~1!

which holds for any variable 0<x,y,x8,y8<1. Let us now
introduce explicitly a set of hidden variablest which take
values in a spaceT. We assume that the incoming entangl
electron states are described byt in all the details necessar
to determine the probability distributionsP(Qa ,t) for trans-
ferring a number ofQa electronic charges into leada
51,2. By imposing that the hidden variable theory is local
follows that the joint probability can be expressed in t
following form:

P~Q1 ,Q2!5E
T
M~t!P~Q1 ,t!P~Q2 ,t!dt, ~2!

FIG. 1. ~Color online! Idealized setup for testing the CH in
equality for electrons in a solid-state environment. It consists of t
parts: an entangler~shaded block! that produces pairs of spin
entangled
electrons exiting from terminals 3 and 4. These terminals are c
nected to leads 1 and 2 through two conductors described by
tering matricesS13 andS24. Electron counting is performed in lead
1 and 2 along the local spin-quantization axis oriented at angleu1

andu2.
6-2
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whereM(t)dt defines a probability measure on the spa
T. The physical meaning of Eq.~2! is straightforward: it
states that the probability distribution on leada does not
depend on the probability distribution on the leadb.

We now introducePu1 ,u2(Q1 ,Q2) as the joint probability
for transferringQ1 and Q2 electronic charges when bot
analyzers are present, whilePu1 ,2(Q1 ,Q2) and
P2,u2(Q1 ,Q2) are the corresponding joint probabilitie
when one of the two analyzers is removed. If the conditi

Pua~Qa ,t!<P~Qa ,t! ~3!

~known asno-enhancement assumption! is verified, it is pos-
sible to identify the variables appearing in Eq.~1! as follows:

x5
Pu1~Q1 ,t!

P~Q1 ,t!
, y5

Pu2~Q2 ,t!

P~Q2 ,t!
,

x85
Pu18~Q1 ,t!

P~Q1 ,t!
, y85

Pu28~Q2 ,t!

P~Q2 ,t!
, ~4!

Pu(Qa ,t) being the single terminal probability distributio
in the presence of an analyzer. Equation~1! can then be
rewritten in terms of probabilities by multiplying each sid
of the equation byP(Q1 ,t)P(Q2 ,t)M(t)dt and integrat-
ing over the spaceT. Finally the following inequality is ob-
tained:

SCH5Pu1 ,u2~Q1 ,Q2!2Pu1 ,u28~Q1 ,Q2!1Pu18 ,u2~Q1 ,Q2!

1Pu18 ,u28~Q1 ,Q2!2Pu18 ,2~Q1 ,Q2!

2P2,u2~Q1 ,Q2!<0. ~5!

Equation ~5! is the CH inequality for the full counting
statistics,35 holding for all values ofQ1 andQ2 which satisfy
the no-enhancement assumption. We stress that the
enhancement assumption, upon which Eq.~5! is based, is not
satisfied, in general, like its optical version. The quantit
that we have to compare are probability distributions, so t
Eq. ~3! must be checked over the whole range ofQ. For a
fixed time t and a given mesoscopic system, hence fo
given scattering matrix and incident particle state, the
enhancement assumption is valid only in some range of
ues ofQ. In particular, different sets of system paramet
correspond to different such ranges. The quantitySCH in Eq.
~5! depends onQ1 andQ2 so that the possible violation, o
the extent of it, also depends onQ1 andQ2. Given a certain
average numberM of entangled pairs that have being i
jected in the timet, one can look for the maximum violatio
as a function of the transmitted chargesQ1 andQ2.

B. Scattering approach to the full counting statistics

The joint probabilities appearing in Eq.~5! can be deter-
mined once the scattering matrixS of the mesoscopic con
ductor is known. The FCS in electronic systems was fi
introduced by Levitovet al. in Refs. 36 and 37 in the contex
of the scattering theory and later on the Keldysh Green fu
tion method38 to FCS was developed in Ref. 39~for a review
see Ref. 40!. In this paragraph we briefly describe how th
12532
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FCS is formulated for a mesoscopic conductor in the scat
ing approach. Within this framework, the transport propert
of a metallic phase-coherent structure attached ton reservoirs
are determined by the matrixS of scattering amplitudes.41

Such amplitudes are defined through the scattering state
scribing particles propagating through the leads. For o
dimensional conductors, for example, the scattering s
arising from a unitary flux of particles at energyE originat-
ing in the i th reservoir reads

w i~x!5
eiki (E)x1r i~E!e2 iki (E)x

Ahv i~E!
~6!

for the i th lead, and

w j~x!5
t j i ~E!e2 ik j (E)x

Ahv j~E!
, ~7!

for the j th lead, with j Þ i . Here r i(E) is the reflection am-
plitude for particles at energyE, wave vectorki(E), and
group velocityv i(E) and t j i (E) is the transmission ampli
tude from leadi to leadj. Note thatur i u2 is the probability for
a particle to reflect back into thei th lead andut j i u2 is the
probability for the transmission of a particle from leadi to
lead j. In the second quantization formalism, the field ope
tor ĉ j s(x,t) for spin s particles in leadj is built from scat-
tering states and it is defined as

ĉ j s~x,t !5E dE
e2 iEt/\

Ahv j~E!
@ â j s~E!eik jx1f̂ j s~E!e2 ik j x#,

~8!

where â j s(E)@f̂ j s(E)# is the destruction operator for in
coming~outgoing! particles at energyE with spins in leadj.
These operators are linked by the equation

S f̂1↑

f̂1↓

f̂2↑
A

D 5S S â1↑

â1↓

â2↑
A

D ~9!

and obey anticommutation relations

$âis
† ~E!, â j s8~E8!%5d i , jds,s8d~E2E8!. ~10!

In the case of two- and three-dimensional leads one can s
rate longitudinal and transverse particle motion. Since
transverse motion is quantized, the wave function relative
the plane perpendicular to the direction of transport is ch
acterized by a set of quantum numbers which identifies
channels of the lead. Such channels are referred to as
when the corresponding longitudinal wave vectors are r
since they correspond to propagating modes. Note that
case of a single open channel corresponds to a o
dimensional lead.

Let us now turn our attention to the probability distrib
tion for the transfer of charges. Following Ref. 42, within th
scattering approach the characteristic function of the pr
6-3
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ability distribution for the transfer of particles in a structu
attached ton leads at a given energyE can be written as

xE~lW ↑ ,lW ↓!5K )
j 51,n

eil j↑N̂I
j↑

el j↓N̂I
j↓
)

j 51,n
e2 il j↑N̂O

j↑
e2 il j↓N̂O

j↓L ,

~11!

where the bracketŝ•••& stand for the quantum statistica
average over the thermal distributions in the leads. Assum
a single channel per lead,N̂I (O)

j s is the number operator fo

incoming ~outgoing! particles with spins in lead j andlW ↑ ,
lW ↓ are vectors ofn real numbers, one for each open chann
In terms of incoming~outgoing! creation operator the num
ber operators can be expressed as follows:

N̂I
j s5â j s

† â j s , N̂O
j s5f̂ j s

† f̂ j s . ~12!

Equation~11! can also be recasted in the form36

xE~lW ↑ ,lW ↓!5det~I2nE1nE S†L† S L!, ~13!

whereI is the unit matrix,nE is the diagonal matrix of Ferm
distribution functionsf j (E) for particles in the reservoirj
and defined as (nE) j s, j s5 f j (E), whereasL is a diagonal
matrix defined as: (L) j s, j s5exp(iljs). For long measure-
ment timest the total characteristic functionx is the product
of contributions from different energies, so that

x~lW ↑ ,lW ↓!5expS t

hE dE ln xE~lW ↑ ,lW ↓! D . ~14!

At zero temperature, the statistical average over the Fe
distribution function in Eq.~11! simplifies to the expectation
value calculated on the stateuc& containing two electrons o
both spin species for each channel of a given lead up to
energy corresponding to the chemical potential of such le
Furthermore, in the limit of a small bias voltageV applied
between the reservoirs, the argument of the integral is en
independent so that Eq.~14! can be approximated to

x~lW ↑ ,lW ↓!.@x0~lW ↑ ,lW ↓!#M, ~15!

where only the zero-energy characteristic function appe
and M5eVt/h is the average number of injected particle
The joint probability distribution for transferringQ1s spin-s
electrons in lead 1,Q2s spin-s electrons in lead 2, etc., i
related to the characteristic function by the relation~we as-
sume that no polarizers are present!

P~Q1↑ ,Q1↓ ,Q2↑ , . . . !

5
1

~2p!2nE2p

1p

dl1↑dl1↓dl2↑•••x~lW ↑ ,lW ↓!

3eilW ↑•Q↑WeilW ↓•Q↓W . ~16!

In the rest of the paper we will consider systems wh
only two counting terminals are present. In particular, wh
the counting terminals are kept at the lowest chemical po
tial, all other terminals are biased at chemical potentialeV.
For later convenience, we write down the most general
12532
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pression for the characteristic function when spin-s electrons
are counted in lead 1 and spin-s8 electrons are counted in
lead 2:

xE~l1s ,l2s8!511~e2 il1s21!^N̂O
1s&1~e2 il2s821!

3^N̂O
2s8&1~e2 il1s21!~e2 il2s821!

3^N̂O
1sN̂O

2s8&, ~17!

in the relevant energy range 0,E,eV. The parametersl
corresponding to all others terminals are set to zero.

Using Eqs.~15!, ~16!, and~17!, at zero temperature, on
can calculate the single terminal probability distribution

P~Q1s!5S M

Q1s
D @12^cuN̂O

1suc&#M2Q1s^cuN̂O
1suc&Q1s

~18!

and the joint probability distribution

P~Q1s ,Q2s8!5 (
k5max[M2Q1s ,M2Q2s8]

(M2Q1s)1(M2Q2s8)

A2M2Q1s2Q2s82k

3BQ1s2M1k C2s8
k2M1Q^cuN̂O

1sN̂O
2s8uc&M2k

3 f ~M ,Q1s ,Q2s8 ,k!, ~19!

where A512^cuN̂O
1suc&2^cuN̂O

2s8uc&1^cuN̂O
1sN̂O

2s8uc&,

B5^cuN̂O
1s(12N̂O

2s8)uc&, C5^cu(12N̂O
1s)N̂O

2s8uc&, and
f (M , Q1s , Q2s8 , k! 5 M ! / @(k2M 1 Q2s8)!(2M 2k2 Q1s

2Q2s8)!]. In doing so we have written the expressions f
the probability distributions in terms of the expectation v
ues of ‘‘outgoing’’ number operators. ForQ1s5Q2s85M ,
Eq. ~19! reduces to

P~Q1s5M ,Q2s85M !5^cuN̂O
1sN̂O

2s8uc&M. ~20!

When both spin species are counted in one of the ter
nals the characteristic function is different from the o
given in Eq.~17!. In particular, the characteristic function fo
counting both spins in terminal 1 reads

xE~l1 ,l2s8!511~e2 il121!^~N̂O
1↑1N̂O

1↓!&1~e2 il2s821!

3^N̂O
2s8&1~e2 il121!~e2 il2s821!

3^~N̂O
1↑1N̂O

1↓!N̂O
2s8&1~e2 il121!2^N̂O

1↑N̂O
1↓&

1~e2 il121!2~e2 il2s821!^N̂O
1↑N̂O

1↓N̂O
2s8&,

~21!

where we have setl1↑5l1↓[l1. The expression for the
joint probability distribution is, in general, complicated, a
one can see in the Appendix where such expressions for
ferent systems are reported.

III. RESULTS

The inequality presented in Eq.~5! can be tested in vari-
ous multiterminal mesoscopic conductors. In this section
6-4
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present several geometries that can be experimentally
ized. In order to get acquainted with the informations th
can be retrieved from Eq.~5! we start from an ideal case i
which the entangled pair is generated by someentanglerin
the same spirit as in the works of Refs. 9 and 10. In S
III B we analyze the role of superconductivity in creatin
spin singlets. In Sec. III C we shall demonstrate that a n
mal beam splitter in the absence of interaction is enoug
generate entangled pairs of electrons, therefore constituti
simple realization of an entangler.

A. Entangled electrons

In the setup depicted in Fig. 1 we assume the existenc
an entangler that produces electron pairs in the Bell stat

uc&5
1

A2
@a3↑

† ~E!a4↓
† ~E!6a3↓

† ~E!a4↑
† ~E!#u0&, ~22!

of spin triplet~upper sign! or spin singlet~lower sign! in the
energy range 0,E,eV. These electrons propagate throu
the conductors which connect terminals 3 and 4 with lead
and 2, as though terminals 3 and 4 were kept at a pote
eV with respect to 1 and 2. Our aim is to test the violation
the CH inequality given in Eq.~5! for such maximally en-
tangled states.

When the anglesu1 andu2 are parallel to each other, th
scattering matrix of the two conductors, in the absence
spin mixing processes, can be written as

S5S Ŝ13 0

0 Ŝ24
D , ~23!

where

Ŝ135S ř 3 ť31

ť13 ř 1
D 5S r 3↑ 0 t31↑ 0

0 r 3↓ 0 t31↓
t13↑ 0 r 1↑ 0

0 t13↓ 0 r 1↓

D . ~24!

Here r j s (t i j s) is the probability amplitude for an incomin
particle with spins from leadj to be reflected~transmitted in
lead i ). For a normal-metallic wire we sett i j ↑5t i j ↓5AT,
t j i ↑5t j i ↓52AT, and r j↑5r j↓5A12T, where T is the
transmission probability. The expression forŜ24 is written
analogously. For simplicity we will assume thatŜ13 and Ŝ24
are equal. The general scattering matrix relative to non
linear angles is obtained fromS by rotating the spin quanti
zation axis independently in the two conductors~note that
this is possible because the two wires are decoupled!. The
‘‘rotated’’ S matrix is obtained43 by the transformation
Su1 ,u2

5USU †, whereU is the rotation matrix given by

U5S Uu1 0 0 0

0 I 0 0

0 0 Uu2 0

0 0 0 I

D , ~25!
12532
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where

Uu5S cos
u

2
sin

u

2

2sin
u

2
cos

u

2

D . ~26!

The probability distributions are now given by the expre
sions in Eq.~18! and Eq.~19! where the stateuc& is given by
Eq. ~22!. In the case where both analyzers are present we
s5s85↑. The probability distribution when one of the an
lyzers is removed also possesses the structure of Eq.~19!

since, in this case, the correlatorŝN̂O
1↑N̂O

1↓& and

^N̂O
1↑N̂O

1↓N̂O
2↑& appearing in Eq.~21! vanish. In particular

when, for example, the upper analyzer in Fig. 1 is remov

we need to replaceN̂O
1s with N̂O

1↑1N̂O
1↑ andN̂O

2s8 with N̂O
2↑ .

For the other correlators one gets

^cuN̂O
1↑uc&5^cuN̂O

2↑uc&5
T

2
, ~27!

^cuN̂O
1↓uc&5

T

2
, ~28!

^cuN̂O
1↑N̂O

2↑uc&5
T2

2
sin2S u16u2

2 D , ~29!

and

^cuN̂O
1↓N̂O

2↑uc&5
T2

2
cos2S u16u2

2 D . ~30!

For the single terminal probability distributions in lead
i 51,2 we get, in the presence and in the absence of an
lyzer, respectively,

Pu i~Qi !5S M

Qi
D S T

2D QiS 12
T

2D M2Qi

, ~31!

P~Qi !5S M

Qi
D ~T!Qi~12T!M2Qi, ~32!

so that the no-enhancement assumption reads

S 12
T

2D (M2Qi )S 1

2D Qi

<~12T!(M2Qi ), i 51,2. ~33!

Note that the probabilities in Eqs.~31! and ~32! do not de-
pend on the anglesu1 andu2 because the expectation valu
in Eqs.~27! and ~28! are invariant under spin rotation. As
consequence, the effect of the analyzer is equivalent t
reduction of the transmission probabilityT by a factor of 2,
resulting in a shift of the maximum of the distribution. Fro
Eq. ~33! it follows that, for a given numberM5eVt/h of
entangled pairs generated by the entangler, the no enha
ment assumption holds only for certain values ofT and of
Qi . Thus the CH inequality of Eq.~5! can be tested for
violation only for appropriate values ofM, T andQ1 or Q2.
For example, for a given observation timet ~i.e., a givenM )
6-5
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and a given value ofQ, CH inequality can be tested only fo
transmissionT less than a maximum value given by the e
pression

Tmax5
2Qi /(M2Qi )21

2Qi /(M2Qi )2 1
2

. ~34!

At the edge of the distribution (Qi5M ) the no-enhancemen
assumption is satisfied for everyT. The window of allowed
Qi values where the no-enhancement assumption is sati
gets wider on approaching the tunneling limit. For largeM,
Tmax.2(ln 2)Qi /M. The previous inequality can be also in
terpreted as a limit for the allowed measuring time given
setup at disposal. Alternatively, given a certain transmiss
the no-enhancement assumption is verified for points of
distribution such that

Qi

M
>

ln
12T/2

12T

ln 21 ln
12T/2

12T

. ~35!

The various probabilities needed to defineSCH are col-
lected in the Appendix. However, it is useful to note here t
the joint probabilities with a single analyzer are factorize

Pu1 ,2~Q1 ,Q2!5Pu1~Q1!P~Q2!,

P2,u2~Q1 ,Q2!5P~Q1!Pu2~Q2!, ~36!

while joint probabilities with two analyzers are not facto
ized. Furthermore, all such probabilities have a common
tor, TQ11Q2/2M, which leads to an exponential suppressi
for large M and Q11Q2. We shall address the question
whether this also produces a suppression ofSCH in case of
violation.

Let us now analyze the possibility of violation of the C
inequality for different values ofQ1 andQ2. First consider
the situation where the entangler emits a single entan
pair of electrons in which case Pu1 ,u2(1,1)
5^cuN̂O

1↑N̂O
2↑uc&, P2,u2(1,1)5^cu(N̂O

1↑1N̂O
1↓)N̂O

2↑uc&, and

Pu1 ,2(1,1)5^cuN̂O
1↑(N̂O

2↑1N̂O
2↑)uc&. We find that the CH in-

equality is maximally violated for the following choice o
angles:u22u15u282u1853p/4. More precisely, we obtain

SCH5T2
A221

2
, ~37!

which is equal to the result obtain for an entangled pair
photons,34 whereT plays the role of the quantum efficienc
of the photon detectors. In the more general case ofQ1
5Q25M , for M@1, we have

Pu1 ,u2~M ,M !5
T2M

2M Fsin2S u16u2

2 D GM

,

Pu1 ,2~M ,M !5P2,u2~M ,M !5
T2M

2M
~38!
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so that the no-enhancement assumption is always sati
and the quantitySCH can be easily evaluated:

SCH5
T2M

2M Fsin2M
u16u2

2
2sin2M

u16u28

2

1sin2M
u186u2

2
1sin2M

u186u28

2
22G . ~39!

The rotational invariance makesPu1 ,2 and P2,u2 indepen-
dent of angles, andPu1 ,u2 dependent on the angles throug
(u16u2)/2. This allows us, without loss of generality, t
define an angleQ such that 2Q5u16u25u186u25u18
6u285(u16u28)/3. As a result Eq.~5! takes the form

SCH53P1,2
Q ~Q1 ,Q2!2P1,2

3Q~Q1 ,Q2!2P1,2~Q1 ,Q2!

2P2,2~Q1 ,Q2!<0, ~40!

whereP1,2
Q 5Pu1 ,u2 and P1,25Pu1 ,2. It is useful to define

the reduced quantityS̄CH5SCH /(T2M/2M) which is plotted
in Fig. 2 as a function ofQ for different values ofM @note
that since Pu1 ,2(M ,M )5(T2M/2M), S̄CH is nothing but
SCH /Pu1 ,2(M ,M )]. The violation occurs for every value o
M in a range of angles aroundQ5p/2 ~note thatSCH is
symmetric with respect top/2). The range of angles fo
which S̄CH is positive shrinks with increasingM, while the
maximum value ofS̄CH decreases very weakly withM ~more
precisely,S̄CH

max}1/M ). This means that the effect of the fac
tor T2M/2M on the value ofSCH is exponentially strong, mak
ing the violation of the CH inequality exponentially difficu
to detect for largeM andQ15Q25M . The weakening of the
violation is mainly due to the suppression of the joint pro
abilities. As we shall show later, by optimizing all the param
eters it is yet possible to eliminate this exponential suppr
sion.

FIG. 2. The quantityS̄CH5SCH /(T2M/2M) is plotted as a func-
tion of the angleQ for different numbersM of injected entangled
pairs by the entangler. The range of angles relative to positive
ues shrinks with increasingM, while the value of the maximum
slightly decreases.
6-6
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Let us now consider the violation of the CH inequality
a function of the transmitted charges. We notice that the
inequality is not violated for the off-diagonal terms of th
distributions~whenQ1ÞQ2), meaning that one really need
to look at ‘‘coincidences.’’ Therefore we discuss the ca
Q15Q2[Q,M @remember that the no-enhancement
sumption is satisfied only forT<Tmax(Q)]. In Fig. 3 we plot
the quantitySCH for M520 as a function ofQ and different
values ofQ. The transmissionT is fixed at the highest al
lowed value by the no-enhancement assumption, which
responds to the smallestQ considered Tmax(Q51)
50.069 17. Figure 3 shows that the largest positive value
SCH and the widest range of angles corresponding to posi
SCH occur for Q51, i.e., for a joint probability relative to
the detection of a single pair. One should not conclude t
in order to detect the violation of the CH inequality, on
very small values of the transmitted charge should be tak
We have, in fact, consideredT5Tmax relative toQ51 and
the maximum violation, for givenM andQ, always occurs at
T5Tmax. In order to get the largest violation of the CH in
equality at a givenM andQ one could, in principle, choos
the highest allowed value ofT for each value ofQ@T
5Tmax(Q)#. We show in Fig. 4 the corresponding plo
to be compared with Fig. 3. For everyQ,M the violation
occurs in the same range of angles, namelyp/4<Q<p/2,
because of the following properties of the joint probabil
distributions: P1,2

Q (Q1 ,Q2)5P1,2
3Q(Q1 ,Q2)5P1,2(Q1 ,Q2)

for Q5p/4. This implies that SCH(Q5p/4)50, and
P1,2

Q (Q1,Q2)>P1,2
3Q(Q1,Q2),P1,2

Q (Q1,Q2),P2,2
Q (Q1,Q2) for p/4

<Q<p/2. Furthermore, in this specific case ofM520, we
find that the maximum values ofS occurs atQ58.

In Fig. 5 we plot the maximum value ofS, with respect to
Q andT, as a function ofQ for different values ofM. Several
observations are in order. For increasingM, the position of
the maximum,Qmax, is very weakly dependent onM. Re-
markably, the value of the maximum of the curves does

FIG. 3. The quantitySCH is plotted as a function of the angleQ
for M520 and T50.069 17, which corresponds to the highe
value allowed by the no-enhancement assumption forQ51. The
curves are relative to different values ofQ5@1,4#. Note that for
Q>4 the variation ofSCH over the whole range ofQ is small on
the scale of the plot. Violations are found only forQ51 and Q
520.
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decrease exponentially, but rather as 1/M2. Despite the ex-
ponential suppression of the joint probability withM, the
extent of the maximal violation scales withM much slowly
~polynomially!.

It may be useful to look at the same situation from
different perspective. Given a certain transmissionT ~i.e.,
fixing the transport properties of the conductors! we want to
find when the CH inequality is maximally violated. For
given observation timet, the no-enhancement assumptio
Eq. ~34!, imposes a minimum value forQ. In Fig. 6 we plot
the quantitySCH , maximized over the angleQ andQ, as a
function of T for different M. The curves are a piecewis
increasing function ofT, where the discontinuities corre
spond to an increase of the value ofQ by one imposed by the
no-enhancement assumption. More precisely, whenT is in-

t
FIG. 4. The quantitySCH is plotted as a function of the angleQ

for M520 and T set to the highest value allowed by the n
enhancement assumption, different from eachQ. The curves are
relative to different values ofQ5@1,20#. The maximum ofSCH

increases withQ reaching its largest value forQ58 and decreasing
for Q.8. Note that the variation ofSCH with Q for Q520 it is not
appreciable on this scale.

FIG. 5. The maximum value of the quantitySCH , evaluated
over anglesQ and transmission probabilitiesT, is plotted as a func-
tion of Q. The curves are relative to different values ofM ranging
from 10 to 30. For points corresponding to the maximum of t
curves we indicate the corresponding value of transmissionT.
6-7
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LARA FAORO, FABIO TADDEI, AND ROSARIO FAZIO PHYSICAL REVIEW B69, 125326 ~2004!
creased above a threshold for which Eq.~34! is not satisfied,
one needs to increaseQ by one unit in order for this condi
tion to be recovered. The result of this is a jump in the valu
of the probabilities that leads to a discontinuity ofSCH . Fig-
ure 6 allows to choose the best values ofM andQ to get the
maximum violation.

If the entangler is substituted with a source that em
factorized states, the CH inequality given in Eq.~5! is never
violated. In this case, in contrast to Eq.~22!, the state emitted
by the source readsuc&5a3↑

† a4↑
† u0&. All the previous calcu-

lations can be repeated and we find, as expected, tha
characteristic functions factorizes, so that the two termi
joint probability distributions are given by the product of th
single terminal probability distributions. To conclude, w
wish to mention that the CH inequality, Eq.~5!, holds for
joint probabilities relative to arbitrary observation time, a
though the FCS requires long observation time, so thatM
@1.

We are now ready to analyze realistic structures by rep
ing the shaded block in Fig. 1~which represents the entan
gler! with a certain system, and discuss the CH inequa
along the lines of Sec. III A.

B. Superconducting beam splitter

In many proposals superconductivity has been identi
as a key ingredient for the creation of entangled pairs
electrons. The idea is to extract the two electrons which co
pose a Cooper pair~a! pair of spin-entangled electrons! from
two spatially separated terminals. We analyze the case
superconducting beam splitter44,45 depicted in Fig. 7, which
consists of a superconducting lead~with condensate chemi
cal potential equal tom) in contact with two normal wires
The wires are then connected to two leads attached to re
voirs kept at zero potential. This is basically what is obtain
by replacing the entangler of Fig. 1 by a superconduct
lead with two terminals.

FIG. 6. ~Color online! The maximum value of the quantitySCH ,
evaluated over anglesQ and number of counted electronsQ, is
plotted as a function ofT. Both curves, relative toM510 andM
520, exhibit discontinuities which correspond to an increase of
value ofQ by 1. This increase is imposed by the no-enhancem
assumption, Eq.~35!, which depends on the value ofT. We indicate
the value ofQ which corresponds to the largest violation.
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The system can be decomposed into two subsystems
the left-hand side of Fig. 7 we place the superconducting s
attached to two normal terminals~5 and 6! characterized by a
reflection amplitudes matrixRs8 defined, in terms of the par
ticle operators, by

f̂ j as~E!5 (
k55,6

(
b5e,h

(
s85↑,↓

@Rs8~E!# j as,kbs8 âkbs8~E!.

~41!

Here j 55,6 and the additional indicesa andb refer to the
particle-hole degree of freedom, in particular,a5e for par-
ticles anda5h for holes and@•••# j as,kbs8 represents the
specified element of the matrix. Note thatRs8 is block diag-
onal in spin indices so that

Rs85S R8 0

0 R8
D ~42!

with

S f̂5e↑

f̂5h↓

f̂6e↑

f̂6h↓

D 5R8S â5e↑

â5h↓

â6e↑

â6h↓
D ,

R85S ree rph tee teh

rhe rhh the thh

tee8 teh8 rpp8 reh8

the8 thh8 rhp8 rhh8

D , ~43!

whereree (rhh) is the normal reflection amplitude for pa
ticles ~holes! in terminal 5,reh (rhe) is the Andreev reflec-
tion for a hole to evolve into a particle~particle to evolve
into a hole! in terminal 5.tee (thh) is the normal transmis-
sion amplitude for particles~holes! to be transmitted from
terminal 5 to terminal 6,teh (the) is the Andreev transmis
sion amplitude for holes~particles! in terminal 5 to be trans-
mitted in terminal 6 as particles~holes!. Primed amplitudes
refer to reflections occurring in lead 6 and transmissio
from lead 6 to lead 5.

On the right-hand side of Fig. 7 we have the subsyst
composed of two identical decoupled conductors charac
ized by the 16316 scattering matrix

e
nt

FIG. 7. ~Color online! Setup of a realistic system consisting of
superconducting beam splitter~shaded region! for testing the CH
inequality. Bold lines represent two conductors of transmiss
probability T. The superconducting condensate electrochemical
tential is set tom, while terminals 1 and 2 are grounded.
6-8
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Sc5S Rc Tc8

Tc Rc8
D . ~44!

The four submatrices in Eq.~44! are block diagonal in spin
space, for example,Rc can be written as

Rc5S Rc
↑ 0

0 Rc
↓ ,

D , ~45!

whereRc
↑ is a diagonal matrix defined by

S f̂3e↑

f̂3h↓

f̂4e↑

f̂4h↓

D 5Rc
↑S â3e↑

â3h↓

â4e↑

â4h↓
D ,

Rc
↑5S r 3e↑ 0 0 0

0 r 3h↓ 0 0

0 0 r 4e↑ 0

0 0 0 r 4h↓

D . ~46!

Rc
↓ is defined likeRc

↑ exchanging↑ with ↓, whereasTc
s is

defined similarly toRc
s replacingr 3as with t1as and r 4as

with t2as . The matricesRc8
s and Tc8

s are defined analo
gously using the amplitudesr 1as , r 2as , t1as8 , and t2as8 .
The spin quantization axis of the two wires can be rota
independently as in Sec. III A by applying the transformati
Su1 ,u2

5UScU †, whereU is defined in Eq.~25!, obtaining the
scattering matrix

Su1 ,u2
5S R̃c T̃c8

T̃c R̃c8
D . ~47!

The overall matrix of reflection amplitudes is calculated
composing the scattering matrices relative to the t
subsystems,46

Rtot8 5R̃c81T̃c@I2Rs8R̃c#
21Rs8T̃c8 , ~48!

whereRtot8 is defined by

f̂ j as~E!5 (
k51,2

(
b5e,h

(
t5↑,↓

@Rtot8 ~E!# j as,kbt âkbt~E!

~49!

with j running from 1 to 2. The characteristic function ca
now be calculated through Eq.~13! takingRtot8 (E) as scatter-
ing matrix. In the present case, where superconductivity
present, the diagonal matrix of Fermi distribution functio
is defined as @nE# j as, j as5 f j a(E), f j a(E)5$11exp@(E
1am)/kBT#%21 and @L# j as, j as5exp(ialjs) with j 51,2. By
choosingl1↓5l2↓50 we achieve the goal of counting ex
citations with spin-up component. The case where one of
analyzers is removed, for example, in lead 1, is implemen
by settingl1↓5l1↑5l1 and u150, i.e., by counting elec-
trons in lead 1 regardless of their spin.
12532
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In the limit of zero temperature and small bias voltage,
only need the scattering amplitudes at the zero energy~Fermi
level! so that the overall characteristic function can be a
proximated like in Eq.~15!. We parametrize the matrixSc of
the wires as follows: r 3es5r 4es5A12T, r 1es5r 2es

5A12T, t1es5t1es5AT, and t1es8 5t2es8 52AT, whereT
is the wire transmission probability of the wires. The amp
tudes relative to hole degree of freedom are determined f
the ones above by making use of the particle-hole symme
The no-enhancement assumption can be calculated alon
lines of Eqs.~31!–~33! and it is easy to check that forQ2
5Q35M it is always satisfied.

Although Andreev processes are fundamental for the
jection of Cooper pairs, in the case where Andreev transm
sions only are nonzero andT51 the joint probabilities fac-
torize in a trivial way,

Pu1 ,u2~Q1 ,Q2!5dQ1,2MdQ2,2M ,

Pu1 ,2~Q1 ,Q2!5dQ1,2MdQ2,4M , ~50!

in such a way that the CH inequality is never violated. Th
apparent contradiction is due to the fact that in this situat
the scattering processes occur with unit probability, so t
the condition of locality is fulfilled. Nonlocality can be
achieved by imposingT,1. In the limit T!1 we obtain the
probabilities Pu1 ,u2(Q1 ,Q2) and P2,u2(Q1 ,Q2) reported,
respectively, in Eqs.~AA5! and ~AA6! of the Appendix,
which reduce to

Pu1 ,u2~M ,M !5F 2T2A6

@A2T~A21!#8GMFsin2S u11u2

2 D GM

~51!

and

P2,u2~M ,M !5F 2T2A6

@A2T~A21!#8GM

~52!

for Q25Q35M , with A511thethe8* . Equations~51! and
~52! are equal to Eqs.~38!, relative to the case of an entan
gler, once 2T2A6/@A2T(A21)#8 is replaced withT2/2.
From this follows that superconductivity leads to violation
the CH inequality ForA52, i.e., perfect Andreev transmis
sion, the quantity 2T2A6/@A2T(A21)#8 tends toT2/2 in
the limit T→0 so that the analysis of Sec. III C relative
the caseQ15Q25M applies also here.

C. Normal beam splitter

It is interesting to show that, even in the absence of
perconductivity, a normal beam splitter leads to violations
the CH inequality. To this aim, we consider a normal be
splitter ~shaded block in Fig. 8! in which lead 3 is kept at a
potentialeV and leads 1 and 2 are grounded so that the sa
bias voltage is established between 3 and 1, and 3 and 2.
two conductors, which connect the beam splitter to the le
1 and 2, are assumed to be normal-metallic and perfe
6-9
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LARA FAORO, FABIO TADDEI, AND ROSARIO FAZIO PHYSICAL REVIEW B69, 125326 ~2004!
transmissive, so that theS matrix of the system foru15u2
50 is equal to theS matrix of the beam splitter, which
reads47

S5S 2~a1b! Ae Ae

Ae a b

Ae b a
D . ~53!

In this parametrization of a symmetric beam splittera
56(11A122e)/2, b57(12A122e)/2, and 0,e,1/2.
For arbitrary anglesu1 andu2, the S matrix is obtained ro-
tating the quantization axis in the two conductors indep
dently by applying the transformationSu1 ,u2

5USU †, where

U is the rotation matrix given by

U5S I 0 0

0 Uu1 0

0 0 Uu2

D ~54!

andUu is defined in Eq.~26!. This procedure is valid as lon
as no back scattering is present in the conductors. The p
ability distributions are given by Eqs.~18! and ~19! where
the stateuc& is now factorizable:

uc&5a3↑
† ~E!a3↓

† ~E!u0& ~55!

in the energy range 0,E,eV. Analogously to what was
done in Sec. III A, when both analyzers are present we
s5s85↑. When only one analyzer is present, however, o
has to use the correct characteristic function of Eq.~21!,
since one of the two additional correlators does not van
Namely,^N̂O

1↑N̂O
1↓&5e2 and^N̂O

1↑N̂O
1↓N̂O

2↑&50, when the up-
per analyzer, for example, in Fig. 8, is removed. For
other expectation values we get

^cuN̂O
1↑uc&5^cuN̂O

2↑uc&5e, ~56!

^cuN̂O
1↓uc&5e, ~57!

^cuN̂O
1↑N̂O

2↑uc&5e2sin2S u12u2

2 D , ~58!

and

^cuN̂O
1↓N̂O

2↑uc&5e2cos2S u12u2

2 D , ~59!

FIG. 8. ~Color online! Setup of a realistic system consisting of
normal beam splitter~shaded region! for testing the CH inequality.
Bold lines represent two conductors of unit transmission proba
ity. A bias voltage equal toeV is set between terminals 3 and 1 an
terminals 3 and 2.
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obtaining the joint probability distributions reported in th
Appendix. The above number operator expectation val
are equal to the case of the entangler whene is replaced by
T/2, whereas the cross-terminal correlators are equal in
two cases ife is replaced withT/A2. From this the follows
that the characteristic functions for the beam splitter poss
the same dependence on the angle difference as the c
sponding characteristic functions for the entangler~Sec.
III A ! but have a different structure as far as scattering pr
abilities are concerned. In particular, as expected,36 the cross-
correlations vanish when the two angles are equal. On
contrary, when the angle difference isp cross-correlations
are maximized. Furthermore, when only one analyzer
present the characteristic function shows no dependenc
the angle, but it is not factorizable, in contrast to the case
the entangler. As a result, the single terminal probabiliti
given by Eq.~18!, are equal in the two cases provided thae
is replaced withT/2. The joint probabilities forQ15Q2

5M are equal in the two cases ife is replaced withT/A2
~however, this replacement is not valid, in general, for jo
probabilities withQ1 ,Q2ÞM ):

Pu1 ,u2~M ,M !5Fe2sin2S u12u2

2 D GM

, ~60!

Pu1 ,2~M ,M !5e2M. ~61!

The no-enhancement assumption is verified when

e<
1

2

2Q/(M2Q)21

2Q/(M2Q)2 1
2

, ~62!

which equals the condition of Eq.~34! once e is replaced
with T/2. Let us first consider the case for whichQ15Q2
5M . We obtain an important result: the CH inequality
violated for the same set of angles found for the case of
entangler, although to a lesser extent, since the prefacto
Eqs.~60! and~61! now vary in the range 0<e2M<1/4M. In
particular, in the simplest case ofM51, corresponding to
injecting a single pair of electrons, the maximum violatio
corresponds toSCH5(A221)/4, which is half of the value
for the entangler. Furthermore, the plot in Fig. 2 is also va
in the present case withS̄CH defined asS̄CH5SCH /e2M, i.e.,
by replacingT/A2 with e. This means that a geometry lik
that of the beam splitter enables to detect violation of C
inequality without any need to resort to interaction proces
to produce entanglement.

Also here we consider the case for whichQ15Q2[Q
,M , where interesting differences with respect to the c
of the entangler are found.

~i! We find that the violation of the CH inequality is i
general weaker, meaning that the absolute maximum valu
SCH is smaller than in the ideal case of the entangler.

~ii ! The weakening of the violation with increasingM is
determined by the suppression of the probability by the p
actor (e2)Q11Q2. Remarkably, the maximum value ofSmax
decreases like 1/M , therefore even slower than for the ide
case.

l-
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~iii ! Violations occur only for values ofQ close to 1, even
for large values ofM: to search for violations one has to loo
at single- or few-pair probabilities and therefore, because
the no-enhancement assumption, to small transmissionse.

~iv! Interestingly, forQ51 the quantitySCH is positive
for any angles, although the largest values correspond tQ
close top/2 ~see Fig. 9!. We do not find any relevant varia
tion, with respect to the discussion in paragraph Sec. III
for probabilities relative toQ1ÞQ2.

It is easy to convince oneself that, for an incident st
composed of a single pair of particles impinging from t
entering arm of the beam splitter~55!, we obtain a final state
uc&out that contains an entangled part:

uc&out5e~b1↑
† b2↓

† 2b1↓
† b2↑

† !u0&1e b1↑
† b1↓

† u0&1e b2↑
† b2↓

† u0&.
~63!

In Ref. 48 this fact was already noticed. For mesosco
conductors, entanglement without interaction for electro
injected from a Fermi sea has been also discussed
Beenakkeret al.21 In the limit of strongly asymmetric beam
splitter the state~63! is analogous to the one discussed
Ref. 21.

IV. CONCLUSIONS

In mesoscopic multiterminal conductors it is possible
observe violations of locality in the whole distribution of th
transmitted electrons. In this paper we have derived and
cussed the CH inequality for the full counting electron s
tistics. In an idealized situation in which one supposes
existence of anentangler, we have found that the CH in
equality is violated for joint probabilities relative to an equ
number of electrons that have passed in different termin
This is related to the intuition that any violation is lost
absence of coincidence measurements. The extent of the
lation is suppressed for increasingM ~average number o

FIG. 9. The quantitySCH for a normal beam splitter is plotted a
a function of the angleQ for three values of M5eVt/h
510,20,100 whenQ51. Interestingly,SCH is positive for every
angle and its maximum value decreases like 1/M .
12532
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injected pairs!; however, such a suppression does not sc
exponentially withM like the probability, but instead de
creases like 1/M2. This means that the detection of violatio
does not become exponentially difficult with increasingM.
For fixed transport properties we analyzed the conditions
terms ofM and number of counted electrons, for maximizin
the violation of the CH inequality.

The violation of the CH inequality could be achieved
an experiment. Indeed we tested the CH inequality for t
different realistic systems, namely, a normal beam spli
and a superconducting beam splitter. Interestingly we fin
violation even for the normal system, even though wea
with respect to the idealized case of the entangler. In
case the violation is again suppressed for increasing ob
vation time, but scales like 1/M . We analyzed the supercon
ducting case in the limit of small transmissivity and we al
find a violation of the CH inequality to the same extent w
respect to the case of the entangler.

It is important to notice that the analyzers should not
fect the scattering properties of the system as in the cas
ferromagnetic electrodes. In the latter case, in fact, the pr
ability density of the local hidden variables would also d
pend on the anglesu1 andu2.

We believe that the results derived in this work may be
interest for the understanding of the statistics of electron
mesoscopic conductors. It is, however, important to look
experimental tests of our claims. In this respect two poss
schemes for measuring the counting statistics have been
cently proposed in Ref. 49. Since solid-state devices are c
sidered promising implementations for quantum compu
tional protocols, this line of research does not se
interesting only from a fundamental point of view, but ma
be of clear relevance for the actual realization of solid-st
computers.
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APPENDIX: PROBABILITY DISTRIBUTIONS

In this appendix we give the general expressions for
joint probability distributions used in the paper to discuss
CH inequality.

1. Entangler

In the case of an entangler we find

Pu1 ,2~Q1 ,Q2!5
T(Q11Q2)

2M S M
Q1

D S M
Q2

D
3~22T!M2Q1~12T!M2Q2, ~A1a!
6-11
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P2,u2~Q1 ,Q2!5
T(Q11Q2)

2M S M
Q1

D S M
Q2

D
3~12T!M2Q1~22T!M2Q2, ~A1b!

and

Pu1 ,u2~Q1 ,Q2!5 (
k5max[Q1 ,Q2]

min[Q11Q2 ,M ] S M
k D S k

2k2Q12Q2
D

3S 2k2Q12Q2

k2Q2
D T(Q11Q2)

2M

3F2~12T!1T2sin2S u16u2

2 D GM2k

3F12T sin2S u16u2

2 D G2k2Q12Q2

3Fsin2S u16u2

2 D GQ11Q22k

. ~A2!

2. Normal beam splitter

The joint probabilityPu1 ,u2(Q1 ,Q2) used in Sec. III C is

Pu1 ,u2~Q1 ,Q2!5 (
k5max[M2Q1 ,M2Q2]

min[(M2Q1)1(M2Q2),M ] S M
k D S k

M2Q2
D

3S M2Q2

Q12M1kD e (Q11Q2)F122e

1e2sin2S u12u2

2 D G2M2Q12Q22k

3F12esin2S u12u2

2 D GQ11Q222M12k

3Fsin2S u12u2

2 D GM2k

. ~A3!

The single-analyzer joint probabilityP2,u2(Q1 ,Q2) reads
ic

m
n-

un

J.
d,

12532
P2,u2~Q1 ,Q2!5e (Q11Q2)(
k50

Q1

(
l 5max[0,(Q12k)1(Q22k)]

min[M2k,Q2] S M
k D

3S M2k
l D S k

k1 l 2Q2
D S k1 l 2Q2

Q12k D
3@123e12e2#M2k2 l@12e# l

3@223e#2k1 l 2Q12Q2 ~A4!

with 0<Q1<2M and 0<Q2<M ~note that the sum onl has
to be performed only when the lower limit is less than
equal to the upper limit!.

3. Superconducting beam splitter

The joint probabilityPu1 ,u2(Q1 ,Q2) used in Sec. III B is

Pu1 ,u2~Q1 ,Q2!5 (
k5max[Q1 ,Q2]

min[Q11Q2 ,M ] S M
k D S k

2k2Q12Q2
D

3S 2k2Q12Q2

k2Q2
D F A8

@A2T~A21!#8GM

3S 2T2

A2 D kF124T16T2

1
2T2

A2
sin2S u11u2

2 D GM2k

3Fsin2S u11u2

2 D GQ11Q22k

3Fcos2S u11u2

2 D G2k2Q12Q2

, ~A5!

whereA511thpthp8* .
The single-analyzer joint probabilityP2,u2(Q1 ,Q2) reads

P2,u2~Q1 ,Q2!5S M
Q1

D S Q1

Q2
D S A8

@A2T~A21!#8D MS 2T2

A2 D Q1

3@124T16T2#M2Q1 ~A6!

for Q1>Q2 andP2,u2(Q1 ,Q2)50 for Q1,Q2.
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