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Roto-vibrational spectrum and Wigner crystallization in two-electron parabolic quantum dots
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We provide a quantitative determination of the crystallization onset for two electrons in a parabolic two-
dimensional confinement. This system is shown to be well described by a rotovibrational model, Wigner
crystallization occurring when the rotational motion gets decoupled from the vibrational one. The Wigner
molecule thus formed is characterized by its moment of inertia and by the corresponding sequence of rotational
excited states. The role of a vertical magnetic field is also considered. Additional support to the analysis is
given by the Hartree-Fock phase diagram for the ground state and by the random-phase approximation for the
moment of inertia and vibron excitations.
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I. INTRODUCTION

For a low enough electron density, Wigner1 predicted that
electrons should localize, creating an ordered spatial st
ture, thenceforth named a Wigner crystal, that breaks
complete translational symmetry of the homogeneous e
tron gas ~also see Ref. 2!. Indeed, the formation of the
Wigner crystal was observed in two-dimensional~2D! distri-
butions of electrons on the surface of liquid helium.3 A phase
transition, induced by the magnetic field, from an electr
liquid to a crystalline structure has also been reported fo
2D electron plasma at a GaAs/AlGaAs heterojunction.4

The existence of different phases in quantum dots, wh
a few electrons are confined into a small space, has bec
a topical subject in mesoscopic physics~see, for a recen
review, Ref. 5!. In fact, the high controllability of quantum
dots suggests that these systems could provide an attra
opportunity to achieve the appropriate conditions for loc
ized states. It is precisely to stress this controllability that
namesartificial atomsandquantum dotshave been coined.

There is a general persuasion that the Wigner crystall
tion in quantum dots, whose localized states are referre
as Wigner molecules, should occur at significantly larg
densities than in the 2D bulk. It is based on the argument
in quantum dots potential-energy contributions can easily
ceed the kinetic terms and, therefore, electronic motion
be effectively quenched by manipulating the external c
finement and/or an applied magnetic field. As for the hom
geneous gas, one would expect that in crystallized states
kinetic energy is solely that of the vibrational zero-point m
tion of the electrons around their mean positions, mu
smaller than the interaction~potential! energy. Various ap-
proaches includingab initio calculations within diffusion and
path integral Monte Carlo methods, Hartree-Fock and sp
density functional methods, etc. have been applied to ana
the onset of the crystallization.5 However, a nonambiguou
theoretical result that would justify the above conjecture
a zero magnetic field is lacking. The case with an inte
magnetic field is better understood since the magnetic fi
induces an edge reconstruction, beginning with the app
ance of localized vortices on the outer region, that ultimat
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propagates to all the dot for very highB’s.5,6

In the simpler case of a two-electron 2D quantum dot
zero magnetic field, Yannouleas and Landman7 pointed out
that the excited-state energies of this system closely fol
the rotor sequence when the repulsion-to-confinement ra
as given by the Wigner parameterRW , is large enough
(;200). This was shown to be a proof of the crystallizati
of the two electrons on fixed positions in a reference fra
which is rotating. Quite remarkably, the hypothesizedrotat-
ing Wigner moleculefulfills, at the same time, the strict sym
metry conditions of quantum mechanics—circularity in th
case—and the obvious preference for opposite positi
when repulsion is large enough. This is a major differen
from the above mentioned bulk case where a Hamilton
symmetry ~translation! is broken by the crystallized state
For Wigner molecules, symmetries are preserved in the la
ratory frame and one must consider an intrinsic~rotating!
frame to ‘‘see’’ the underlying deformation. A similar situa
tion is found for particular states of two-electron atoms th
have been much investigated in physical chemistry~we ad-
dress the reader to the review paper by Berry8!. For the two-
electron quantum dot, however, the crystallization condit
from Ref. 7, RW;200, looks disappointing since it seem
unrealistic to achieve such a value experimentally.

Although the exact ground-state wave function of t
two-electron artificial atom can be obtained, at least num
cally, it may seem paradoxical that one also needs exc
states in order to ascertain the existence of a crystallizat
In fact, this inability to disentangle the system’s intrins
structure from its full wave function in a clear way can b
taken as a weakness of theab initio, symmetry preserving
approaches. In general, even in cases when the exact gro
and excited-state wave functions and energies are known
intrinsic deformation can only be inferred by comparing w
the result of simpler models in which either symmetries
relaxed or the intrinsic structure is imposed. A clear exam
of the former approach is given by the unrestricted Hartr
Fock ~HF! method for the ground state9,10 followed by the
random-phase approximation~RPA! for excitations.11 Con-
versely, the contrary, the rotovibrational model of Wend
©2004 The American Physical Society15-1
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et al.12 for two electrons in a ring could be included in th
latter category.

One should be aware that when symmetries are rela
as in the Hartree-Fock approach, artifacts or unphys
properties may appear. In a recent contribution Reusch
Grabert13 discussed the validity of the latter, drawing spec
attention to the caution with which one must take Hartr
Fock predictions on symmetry breaking, in agreement w
the results presented below. Therefore, a complete phy
understanding requires both exact results and model s
tions. This way the system’s intrinsic deformations are phy
cally understood while, at the same time, artifacts can
safely discarded. A paradigmatic case where the propo
analysis can be performed is given by the two-electron
parabolic quantum dot. The separation of center-of-mass
relative coordinates along with the circular symmetry rest
tion allows the reduction of the multidimensional Schr¨-
dinger equation to just a radial one, easily solvable num
cally. On the other hand, the Hartree-Fock and RPA soluti
without any symmetry restriction can also be obtained
most convenient basis for this latter calculation is given
the Fock-Darwin orbitals, in terms of which one can analy
cally develop much of the required algebra. It is our aim
this work to determine the crystallization onset of tw
electron parabolic dots by recourse to the three different
proaches referred to above; namely,~a! an analytical rotovi-
brational model,~b! a numerical solution of the Schro¨dinger
equation, and~c! symmetry unrestricted Hartree-Fock an
random-phase approximations.

Hereafter, we refer to the solution of the Schro¨dinger
equation for the two-electron parabolic dot as theexactso-
lution. It should be pointed out that, as shown by Taut,14 this
Schrödinger equation is analytically solvable only for pa
ticular confinement/interaction strengths. For general val
of this quantity a numerical treatment is required. As me
tioned above, the most straightforward one is an integra
of the radial equation7,15 but, nevertheless, other metho
such as diagonalization in a basis16,17 and the Monte Carlo
method18,19 have also been applied. One of us has used
so-called oscillator representation method, perturbativ
treating the residual interaction, to derive analytical expr
sions for the energy levels.20

The paper is organized as follows. Section II introduc
the magnetoparabolic units that allow one to trace the e
lution of ground and excited states of artificial atoms at va
ous conditions. An analytical rotovibrational model for th
two-electron parabolic quantum dot is described in Sec.
Section IV provides details of our numerical calculation
exact solutions and compares these solutions with thos
the rotovibrational model. Section V analyzes the reliabil
of the HF and RPA results for the present system. A sh
summary is finally drawn in Sec. VI.

II. MAGNETOPARABOLIC UNIT SYSTEM

We consider two electrons with a Coulomb interacti
between them. The electrons move in thexy plane where a
circular parabolic confinement induces the formation of
electron island. The system is also subject to an exte
12531
d,
al
nd
l
-
h
al

lu-
i-
e
ed
D
nd
-

i-
s

y
-

p-

s
-
n

e
ly
-

s
o-
-

I.
f
of

rt

n
al

magnetic field applied in the vertical direction (z). The full
Hamiltonian thus reads

H5 (
i 51,2

F 1

2mS p1
e

c
AD 2

1
1

2
mv0

2r 2G
i

1
e2

kr 12
1g* mBBSz .

~1!

In Eq. ~1!, m, k, andg* are the electron’s effective mass, th
dielectric constant, and the effective gyromagnetic factor,
spectively, and we have used planar polar coordinatesr 2

5x21y2). The two contributions within the square bracke
are, respectively, the generalized kinetic energy in terms
the vector potentialA, and the external confinement. Withi
the so-called symmetric gauge one hasA(x,y)5B/2
(2y,x). The next contribution is the Coulomb repulsio
and, finally, the last term is the Zeeman energy involving
total spin operatorSz and the universal Bohr’s magneto
mB5e\/2mec.

It is well known that in the chosen gauge the magne
field contributions can be recast into the form of an effect
parabolic confinement of frequencyV5Av0

21vc
2/4, where

vc5eB/mc is the cyclotron frequency, and an addition
angular-momentum-dependent term (\vc/2),z ~cf. Refs. 21
and 22!. The magnetoparabolic units~MPUs! we shall use
consist of taking\V as the energy unit and,V[A\/(mV)
as the length unit. In addition, one also imposes\ as angular
momentum unit which, in turn, fixes the time unittV

51/V. Summarizing in the standard abuse of notation
may write\5V5,V51 MPU. This is a natural choice fo
magnetoparabolic confinements and it allows one to exp
the spatial part of the Hamiltonian in terms of only two ad
mensional parameters, namely,

Rmp5
e2/~k,V!

\V
, ~2!

Wmp5
vc

V
. ~3!

Note thatRmp andWmp give, respectively, the ratios of Cou
lomb interaction strength and cyclotron frequency to effe
tive confinement. In the absence of a magnetic fieldRmp
coincides with the so-called Wigner parameterRW of Ref. 7.
Also note thatWmp has a maximal valueWmp52 that cor-
responds to a zero confinementv050. We also mention tha
Reusch and Grabert used these parameters in their re
Hartree-Fock calculations.13

Within the MPU system the Hamiltonian reads

H5 (
i 51,2

F2
1

2
¹21

1

2
r 21

Wmp

2
,zG

i

1
Rmp

r 12
1

g* m*

2
WmpSz ,

~4!

wherem* is the adimensional ratio of effective to bare ele
tron mass, i.e.,m* 5m/me . The passage from the MPU sys
tem, with a givenRmp and Wmp , to physical units requires
the knowledge of the effective massm and the dielectric
constantk. More specifically, with fixedm and k one can
invert Eqs.~2! and ~3! for the effective confinementV and
5-2
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ROTO-VIBRATIONAL SPECTRUM AND WIGNER . . . PHYSICAL REVIEW B 69, 125315 ~2004!
cyclotron vc frequencies or, equivalently, for the extern
confinementv0 and the magnetic fieldB. In terms of these
results the physical values of the energy (\V) and length
(,V) units are readily found.

Figure 1 shows the equivalence between the adimensi
parameters (Rmp ,Wmp) of the MPU Hamiltonian and the
physical values of (\v0 ,B) for the case of a GaAs hos
semiconductor havingm50.067me andk512.4. The advan-
tage of working with the MPU system becomes obvio
when realizing that, with a unit redefinition, the same n
merical results can be equally applied to a variety of confi
ments, magnetic fields, and material parameters~effective
mass and dielectric constants!. Therefore, the model acquire
a certain degree of universality. We also expect that quan
dot properties such as scaling laws or phase diagrams wi
better displayed in terms of the adimensional MPU para
eters.

III. A ROTOVIBRATIONAL MODEL

Taking Eq.~4! as a starting point and introducing the sta
dard center of mass (R,Q) and relative (r ,u) coordinates, it
is well known that the Hamiltonian separates and, theref
that the wave function factorizes. The center of mass~CM!
problem is that of a single particle in a harmonic poten
and magnetic field, having an analytical solution in terms
Fock-Darwin orbitals and energies«NM

(CM)52N1uM u11
1MWmp/2, with (N,M ) the radial and angular momentu
center-of-mass quantum numbers. Focusing next on the
tive problem, one introduces the wave functio
eimuunm(r )/Ar having good,z angular momentum (m), and
an additional quantum numbern whose meaning will be
clarified below. The equation for the unknownunm(r ) reads

FIG. 1. Equivalence between the MPU pair of adimensio
parameters (Rmp ,Wmp) and the physical values of the extern
parabolic strength and magnetic field (\v0 ,B). The bulk GaAs
effective massm50.067me and dielectric constantk512.4 have
been assumed.
12531
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unm9 1F «̃nm
(rm)2S 1

4
r 21

Rmp

r
1

m221/4

r 2 D Gunm50, ~5!

where we have defined«̃nm
(rm)5«nm

(rm)2mWmp/2 in terms of
the relative-motion energy«nm

(rm) and the MPU paramete
Wmp .

Equation ~5! will be the basis of our rotovibrationa
model. Note that it resembles a Schro¨dinger one-dimensiona
equation with an effective potential

Ve f f~r !5
1

4
r 21

Rmp

r
1

m221/4

r 2 , ~6!

that includes the rotational motion term;m2/r 2 character-
ized by the angular momentum quantum numberm. We can
expect a rigid-rotor behavior ifVe f f(r ) has a deep minimum
at a particular valuer 5r 0. When this occurs the situatio
resembles that of diatomic molecules like H2, where the po-
tential well for nuclear motion is described by the Mor
potential~see Ref. 23!. In the present case the effective p
tential indeed has a minimum although it is in general rat
shallow. This property is responsible for the coupling b
tween rotation and vibration or, equivalently, for thefloppi-
nessof the rotating molecule mentioned in Ref. 7.

The minimum condition onVe f f(r ) yields the rotor radius
from

r 0

2
2

Rmp

r 0
2

2
2~m221/4!

r 0
3 50. ~7!

Neglecting the third contribution on the left-hand side,
assumption that will be valid for large enoughr 0, one finds
the asymptotic lawr 0'(2Rmp)

1/3. Now, expanding to sec
ond order aroundr 0 we approximate

Ve f f~r !'Ve f f~r 0!1
1

2 S 3

2
12

m221/4

r 0
4 D ~r 2r 0!2

5const1
1

2
k~r 2r 0!2, ~8!

a result that, when substituted into Eq.~5! for the round
parentheses, leads immediately to the analytical predictio24

«̃nm
(rm)5

1

4
r 0

21
Rmp

r 0
1

m221/4

r 0
2 1S n1

1

2DA314
m221/4

r 0
4 .

~9!

The result embodied by Eq.~9! has a clear physical inter
pretation. It contains a rotorlike contribution;m2/(2J),
with a moment of inertia given byJ5r 0

2/2 MPU, and a
vibrational one characterized by a quantum numbern. The
vibrational frequencyvv ib5Ak/m (m51/2) is given by the
last square-root factor. Similar to atomic molecules, there
rotovibrational coupling, since the vibration frequency d
pends onm and, in addition, centrifugal distortion sincer 0
also depends onm. For large enough values ofRmp , imply-
ing large r 0 and therefore small average densities, the c
trifugal distortion disappears and one hasr 0'(2Rmp)

1/3 for

l

5-3
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PUENTE, SERRA, AND NAZMITDINOV PHYSICAL REVIEW B69, 125315 ~2004!
all m’s. In this limit rotational terms become negligible, a
well as rotovibrational ones. Thus, Eq.~9! reduces to a
simplem-independent asymptotic expression

«̃n
(rm)5

3

24/3
Rmp

2/31A3S n1
1

2D . ~10!

When adding the magnetic field, the rotovibrational e
ergy becomes

«nm
(rm)5 «̃nm

(rm)1mWmp/2;
~m1Wmpr 0

2/4!2

r 0
2

1S n1
1

2Dvv ib ,

~11!

in agreement with the expectations from Ref. 12 for tw
interacting electrons in a quantum ring.25 It is worth stressing
that since theWmp dependence only amounts to an ener
shift of the Eq.~5! eigenvalue, the radial functionunm(r )
does not depend onWmp . Therefore, one may conclude th
the rotovibrational properties are not affected by magn
fields, for a fixed (n,m) state. Of course, since the ener
shift varies for different states, the magnetic field will modi
the ordering of energy levels. For instance, the level cro
ings as a function ofWmp will cause the ground state to hav
a nonvanishingm value. This actually explains the buildup o
increasing permanent currents in the dot’s ground state.

The results from this section will be validated by comp
ing with the exact ones below. The rotovibrational mod
presented here allows one to determine the crystalliza
onset from the criterion that rotation and vibration motio
decouple when intrinsic-frame electron localization sets
Conversely, when the coupling is strong the system could
represented by either a vibrating rotor or a rotating vibra
and, therefore, the situation cannot be clearly resolved.
also worth stressing that the rotovibrational model descri
all possible excitations of the relative-motion problem. F
this particular system, this amounts to a description of all
excitations since the center-of-mass and spin degrees of
dom can be analytically integrated out.

IV. ONSET OF WIGNER CRYSTALLIZATION

A. Exact solutions

We have solved the radial equation for the relative pr
lem @Eq. ~5!# numerically. Several standard approaches
eigenvalue problems with boundary conditions can be u
for this purpose. Specifically, we have applied the so-ca
matching method where one integrates with the Numerov
Runge-Kutta algorithms from the originr 50 outwards as-
suming anr umu11/2 behavior. Additionally, imposing an expo
nential decay law exp(2r2/4) for larger, an inwards integra-
tion is performed and the two solutions are required to ma
at an intermediater point. To ascertain the numerical resu
for the eigenvalue, as a control we also used the metho
‘‘node counting,’’ where only outwards integration is pe
formed and the eigenvalue is found from the condition t
unm(r ) increases by one the number of radial nodes from
required value when the energy exceeds the correct ei
value by an infinitesimal amount. In principle, the nod
12531
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counting method assures the correct boundary conditio
r→` automatically. However, in practice, there always r
mains a small difference between the numerical and ex
eigenvalues, responsible for a deviation from the exponen
decay from some~large! r onwards. In spite of this possibl
difference in the asymptotic behavior, the two metho
~matching and node counting! provide to a high accuracy th
same eigenvalue.

With the above numerical methods an exploration o
part of theRmp2Wmp plane has been performed. Figure
summarizes the results for ground state energy and ang
momentum. Note that the ground state always has (N,M )
5(0,0) for the CM quantum numbers and that, because
symmetry, even~odd! m states are associated with singl

FIG. 2. ~Color online! Upper panel: Ground state energy
MPUs for the two electron dot. Lower panel: Ground state relat
angular momentum. Note that sinceM50, relative and total angu-
lar momentum coincide. Even-m ~odd-m) regions correspond to
singlet ~triplet! ground states. Results for 1.9<Wmp<2 are not
shown due to the excessively large variations of the compu
quantities in this region. The dotted lines separate in each dom
with a given m the crystallized~above! from the noncrystallized
~below! phases using the criterion of rotovibrational coupling belo
3% ~See Sec. IV B!.
5-4
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~triplet! total spins. Clear singlet-triplet oscillations, as stu
ied in the literature~cf. Ref. 17!, are seen in the lower pane
of Fig. 2. It is also worth mentioning that the ground sta
energy contour lines are piecewise linear as a result of
simple dependence on theWmp parameter. Indeed, the energ
is totally Wmp independent form50 and a fixedRmp .

Figure 3 displays the radial wave functionsu00(r )/Ar for
two different values ofRmp as well as the correspondin
effective potentialsVe f f defined by Eq.~6!. We note that, in
agreement with the discussion of Sec. III, when increas
Rmp the effective-potential minimum moves outwards and
effectively binds the lower states to its neighborhood. Wh
this occurs the radial probability is strongly quenched
small r ~lower panel! and the scenario indeed resembles
familiar one from the physics of diatomic molecules. A mo
detailed comparison of the rotovibrational model with t
exact results will be done in Sec. IV B.

B. Crystallization criterion

The validity of the rotovibrational model presented
Sec. III is proved by the results of Fig. 4. As shown in t
upper panel, the error of the analytical prediction for«̃nm is
important only whenRmp is small. As a matter of fact, fo
Rmp.2 the discrepancy for«̃00 is always below 2%, even
with the asymptotic expression@Eq. ~10!#. Note that the rela-

FIG. 3. ~Color online! Upper panel: Effective potential define
by Eq. ~6! for m50 and two different values ofRmp . The relative-

motion eigenenergy«̃00 is given in each case by the horizontal lin
Lower panel: radial eigenfunctionu00(r )/Ar for the same two po-
tentials of the upper panel.
12531
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e

tive errors slightly increase with increasingn ~dashed
curves!, although the analytical approximation can still b
considered quite good. The analogous comparison form
.0 ~not shown! yields smaller relative errors than those f
m50. The lower panel of Fig. 4 analyzes the excitati
energies as measured from«̃00, again showing an excellen
agreement between the exact results and the ones obta
with the analytical model, with small deviations only
small Rmp . Based on the asymptotic expression@Eq. ~10!#,
we have chosen 1/Rmp

2/3 as an independent variable in order
better display the linear behavior associated with the ri
rotor at largeRmp .

We shall rely on the high accuracy of the rotovibration
model to provide a quantitative measure of the crystallizat
onset. Our criterion will be the following: the two-electro
parabolic system is assumed to be crystallized as a rota
Wigner molecule when the rotovibrational coupling falls b
low a given percentage~typically chosen as 2% or 3%!. The
rotovibrational coupling is defined as

FIG. 4. ~Color online! Upper panel:«̃nm exact energies and th
analytical prediction of the rotovibrational model~thin solid
curves!. The dashed lines give the relative error in percentage~right
scale! with bottom to top curves corresponding ton50,1, . . . ,4,
respectively. Lower panel: Excitation energies of the (0,m) states,

i.e, «̃0m2 «̃00 from the exact~data! and analytical model~curves!.
5-5



b
d
rd
e

fo
al

e
th
ti

as

a-
th

r
th
5
n
u
r
a

ion
is

for
red

tion
ty
ich
of

e-
c-

till
zed
e
ger,
n

the
nd

call
aly-
o a
ach
er
.
sis

that
in-
ag-

F
lue

,

the

n
th

-

e
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g~m!5100
vv ib~m;Rmp!2A3

A3
, ~12!

wherevv ib is the square-root factor in Eq.~9!, andA3 is the
limit of this quantity forRmp→`. Using a 3% condition the
crystallization onset for each angular momentum is given
theRmp value where eachm curve of Fig. 5 enters the shade
region. Note that the crystallization onset moves towa
higher values as the angular momentum is increased, refl
ing the property that rotovibrational coupling is stronger
high-m states. It is also worth mentioning that, since not
m states are simultaneously crystallized, in practice therota-
tional bandswill gradually degrade for increasingm’s as a
consequence of the rotovibrational coupling. In agreem
with the bulk gas situation, the crystallized states with
proposed criterion are characterized by having a poten
energy that largely exceeds the kinetic one, as can be e
checked from Eq.~9!.

The crystallization properties ofm and 2m states are
identical since one can easily check thatunm(r ;Rmp)
5un2m(r ;Rmp). Therefore, taking into account the vari
tions in ground state angular momentum we can draw
boundaries for Wigner crystallization in theRmp2Wmp
plane, i.e., the crystallization phase diagram~see the lower
panel of Fig. 2!. Of course, if instead of a 3% threshold fo
rotovibrational decoupling one chooses a different value
crystallization onset will vary, although as shown in Fig.
for low m’s the crystallization is not crucially dependent o
the precise percentage in the range 2–4 %. Actually, it sho
be more appropriate to speak of crystallization onset fo
given percentage of rotovibrational decoupling than of
absolute value.

It should be noted that the onset of Wigner crystallizat
may be studied by means of the conditional probability d

FIG. 5. ~Color online! Rotovibrational coupling as defined i
Eq. ~12!. The shaded region indicates the crystallized phase with
criterion g<3.
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tribution ~CPD; cf. Refs. 10 and 26! for finding one electron
at positionr1 given that the second electron is at positionr2.
As soon as the interaction is switched on, the CPD, which
a system with only two electrons is just the modulus squa
of the wave functionuC(r1 ,r2)u2, exhibits the formation of a
molecularlike state~see Fig. 6!. It is difficult, however, to use
this measure alone as a conclusive evidence of the forma
of the Wigner molecule in two-electron dots. The difficul
arises from the fact that even weak interactions, for wh
we should not expect a crystallization, yield the formation
a hole around the electron atr2 ~the correlation hole! and a
maximum atr152r2. Indeed, as seen from Fig. 6, the r
sults for Rmp51 hint at a molecular state even though a
cording to our analysis the rotovibrational coupling is s
strong and this state is not associated with a crystalli
phase~see Fig. 5!. WhenRmp increases the depletion of th
CPD around the fixed electron becomes much stron
which is in qualitative agreement with the crystallizatio
trend from our analysis.

V. HARTREE-FOCK AND RPA APPROACHES

In this section we discuss the results obtained within
symmetry unrestricted Hartree-Fock method for the grou
state and the corresponding RPA for excitations. We re
that the HF and RPA approaches were devised for the an
sis of many-body systems. Therefore, their application t
two-electron quantum dot is merely an exploratory appro
to the qualitative features of the Wigner crystallization rath
than a quantitative description of the above exact results

We have solved the HF problem in the Fock-Darwin ba
which diagonalizes the square bracket in Eq.~1!, namely,
$uah&; a51, . . .N; h5↑,↓%, wherea labels the orbital part
andh the spin. Our basis has been optimized such a way
we consider the 70 lowest Fock-Darwin states, of the non
teracting energy level scheme, for a chosen value of the m
netic field. An arbitrary single-particle orbitalu i & is then ex-
panded asu i &5(ahBah

( i ) uah&. In the chosen basis, the H
equations are written as a system of nonlinear eigenva
equations for the matrix ofB coefficients~see, for instance
details in Ref. 11!.

We have imposed goodsz HF orbitals leaving totally un-
specified the remaining spatial symmetries. Note that

e

FIG. 6. ~Color online! Contour plots of the ground state two
electron wave functionuC(r1 ,r2)u2 for the fixed value ofr2 shown
by a solid symbol. A value ofWmp50 and the displayedRmp have
been used for the different panels. ForRmp50, r2 has been arbi-
trarily fixed on thex axis, while forRmp.0 it has been placed at th
distance inferred from the asymptotic lawx25r 0/2 ~see text!.
5-6
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Slater determinant built with these single-particle orbit
will be an eigenstate of the totalSz operator but not, in gen
eral, ofS2. This, as we shall see in the results, is intimate
connected with the prediction of broken circular symmetr

In Fig. 7 we show the HF phase diagram in theRmp
2Wmp plane~lower panel! and the corresponding total ene
gies ~upper panel!. The total energies resemble those o
tained in the exact treatment, with approximate piecew
linear regions between orbital angular momentum transi

FIG. 7. ~Color online! Upper panel: HF ground state energy
MPUs for the two electron dot. Lower panel: Regions~I to V! of the
HF ground state phase diagram. The dotted curve separates
Sz50 ~below! and Sz51 ~above! configurations. The gray scal
denotes the space symmetry of the HF solution~Ref. 27! from
circular ~light gray! to strongly deformed~dark gray! configura-
tions. Labeled contour lines display^Lz&. Note that in the broken-
symmetry regions~II, IV, and V! this latter quantity varies continu
ously between the integer boundaries. Results forWmp.1.8 are not
shown due to the difficulty in determining the single-particle ba
when the Fock-Darwin states become quasi-degenerate.
12531
s

-
e
n

lines. As expected the actual values at a given point in
diagram lie slightly above the corresponding exact results
the lower panel different gray regions reflect a measure27 of
the deviation from circularity of the ground state densi
with the lightest intensity corresponding to a circular~non-
broken symmetry! solution and more intense gray levels
noncircular ~broken symmetry! results. The contour lines
show the total orbital angular momentumLz . Regions I and
III are of circular symmetry and for themLz has a good
quantum number, taking the values 0 and21, respectively.
For the rest of the diagram~regions II, IV, and V! the contour
lines only indicate the expectation value ofLz but, since the
mean field in not circularly symmetric, this is no longer
good quantum number. The dotted curve separates the s
having total spin projectionSz50 ~below! from Sz51
~above!.

For Sz50 configurations, the HF method predicts
broken-symmetry solution whenRmp exceeds a value.1,
somehow below the onset of crystallization obtained in S
IV ( Rmp.2.2). In this region~II ! the HF solution is indeed a
mixture of singlet and triplet states, as can be verified
computing the total spin dispersionDS2. The corresponding
spatial density is built from two opposite and localized sing
electron orbitals. It is instructive to compare the HF solutio
in region II with those obtained using a total-spin conserv
ansatz

Csng~r1 ,r2 ,h1 ,h2!5f~r1!f~r2!xsng~h1 ,h2!, ~13!

C trp~r1 ,r2 ,h1 ,h2!5A@f1~r1!,f2~r2!#x trp~h1 ,h2!
~14!

for singlet (Csng) and triplet (C trp) states, where
A@f1(r1),f2(r2)# denotes the antisymmetrized product
the two orbitalsf1 andf2 while thex ’s are the well known
singlet and triplet spin states.

As a sample result the total energies obtained
(Wmp ,Rmp)5(0,2) are Eexact53.720, EHF54.034, Esng
54.185, andEtrp54.168; i.e., by requiring a totalS2 con-
servation the mean field energy rises considerably. In a
tion, while the HF solution breaks circular symmetry, bo
Csng andC trp yield circular densities because of the spat
dependence of thef ’s in Eqs. ~13! and ~14!. We have also
checked that these results are equivalent to those obta
using the Lipkin-Nogami projection method28,29 for the ef-
fective HamiltonianHeff5H2lS2 in order to restoreS2

symmetry approximately. The above ansatz for states w
good total spin are examples of the use ofconstraints in
mean-field approaches, which necessarily raise the en
above the mean-field minimum. One could also project
symmetry-unrestricted HF orbitals as discussed in Ref. 30
the latter case, however, the wave function is no longe
single Slater determinant but rather a sum of few deter
nants of the corresponding symmetry operator. Therefore,
ground state energy with the restored symmetry is no lon
bound by the mean-field minimum and thus can be close
the absolute minimum imposed by the variational princip

With the above results, we conclude that the lowest
solution in region II requires a simultaneous breaking of
spin and space symmetries. Taking into account the resul

tal

s
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the preceding sections we can say that singlet-triplet mix
in region II is an artifact of the HF solution. However, spa
symmetry breaking in this region is a true physical mec
nism indicating an intrinsic structural change in the ex
wave function, as supported by the rotovibrational mo
discussed above. We believe this peculiar combination
artifact and physics is due to the smallness of the config
tion space for a two-electron system. We must also point
that at highRmp and/or Wmp ~regions IV and V! the HF
prediction fails to match the results of the analysis given
Sec. IV.

In contrast to the exact results of Fig. 2 where a reg
~although narrow! with m522 corresponding to a single
state appears at largeWmp , the HF approximation predict
only one (Sz50)→(Sz51) transition asWmp increases.
This can be understood as an overestimation of the exch
energy in the HF model which tends to favor spin alignm
whenever orbital overlapping occurs, as it does in region
with circular orbitals, as well as in regions IV and V wit
two-lobed orbitals.

We consider next the results obtained by solving the R
for excitations. As discussed in Ref. 11 the RPA determi
the moment of inertia associated with the collective rotat
of a deformed HF structure@see Eq.~18! in Ref. 11#. Figure
8 presents the evolution withRmp , at Wmp50, of the RPA
moment of inertiaJRPA ~circles!. For comparison, the value
computed through the solution of Eq.~7! of the rotovibra-
tional model,J5r 0

2/2, are also shown~solid lines!. EachJ
line starts at the crystallization onset for the correspond
angular momentum using the criterion of Sec. IV B. No
that JRPA remains null until the HF solution breaks rot
tional symmetry atRmp.1; from there on it reasonabl
agrees with the exact values, somehow averaging the e

FIG. 8. ~Color online! Moment of inertia computed in the RPA
~circles! at Wmp50 as a function of the adimensional parame
Rmp . Solid lines show the evolution of the corresponding values
the analytical model of Sec. III for differentm states. Each line
starts at the crytallization onset for the corresponding angular
mentum, according to the criterion of Sec. IV B. The dashed l
represents the asymptotic valueJ5r 0

2/2 taking r 0'(2Rmp)
1/3, to

which all solid lines converge at very high values ofRmp .
12531
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results for differentm’s. The molecule stretching, yielding
larger r 0’s (J’s! as m increases, is obviously outside th
RPA. All J values slowly converge to a common result wi
increasingRmp , i.e., to an exact rigid-rotor behavior. Fo
comparison, the dashed line represents the asymptotic v
corresponding tor 0'(2Rmp)

1/3. The nice qualitative agree
ment betweenJRPA andJ is giving additional support to the
above conclusion that space symmetry breaking in regio
of the HF phase diagram indicates a genuine physical ef
and, thus, it also supports the overall picture of a rotat
Wigner molecule.

Although the RPA restores circularity on the deformed H
mean field,11 associated with theLz operator, it is not able to
restore the symmetry related toS2, since the latter one is a
two-body operator which is beyond the RPA treatment
broken symmetries. A side effect of the HF spin artifact
region II is that when spin-flip bosonic pairs are included
the RPA, generalizing our previous calculation,11 the corre-
lation energy in this symmetry-broken phase is badly ov
estimated, i.e., it is between two and three times larger t
the exact value. This does not occur, however, in the cir
larly symmetric regions.

Focusing now on the RPA vibron states, we must a
distinguish excitations associated with spin and sp
~charge! degrees of freedom. While the RPA qualitative
describes all excitations in regions I and III, it fails for sp
excitations in phase II. Obviously, this is due to the HF sp
artifact in this region. It also fails for space excitations
phases IV and V. Finally, we end this section by pointing o
that, in spite of the spin artifact of phase II, in pure tripl
phases RPA reproduces the exact spin precession freque
known from the theory of magnetic resonance.31 That is, a
pure spin-flip state~precessional mode! is expected at the
Larmor energy\vL5g* mBB5 1

2 g* m* Wmp MPU. Indeed,
within the RPA, i.e., in the quasiboson approximation,11,32

one finds

@H,OL
1#5\vLOL

1 , ~15!

with the vibron operator for the Larmor mode:

OL
15

Sx1 iSy

A2^Sz&
. ~16!

In Eq. ~16! ^Sz& is the HF expectation value of theSz opera-
tor. In fact, the Larmor mode at\vL appears whenever th
ground state haŝSz&Þ0 and it is normally the lowest exci
tation of the system.

VI. SUMMARY

We performed a systematic study of the evolution
ground and excited states of two-electron quantum dots s
ject to an external magnetic field. The analysis has been d
in terms of magnetoparabolic units and the associated pa
eters (Rmp ,Wmp) that give, respectively, the ratios of Cou
lomb interaction strength and cyclotron frequency to effe
tive confinement. The ground state calculations
summarized in a phase diagram that can be equally app
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to a variety of confinements, magnetic fields and mate
parameters.

We suggested an analytical model for the interpretation
the exact results, including rotovibrational coupling and c
trifugal distortion ~molecule stretching!. Within this rotovi-
brational model we proposed a criterion to determine
onset of Wigner crystallization based on the decoupling
rotational and vibrational motions. For a 3% decoupli
threshold we found that Wigner crystallization appears,
zero-angular-momentum states, whenRmp exceeds a value
.2. States with largerm’s crystallize at higherRmp values.
In agreement with the homogeneous gas situation the po
tial energy of the crystallized states is much larger than
kinetic energy, the latter one being solely due to the vib
tional zero-point motion of the electrons.

The HF calculations predict that crystallization forSz
50 occurs whenRmp.1, the new phase~II ! being in an
artificial mixture of singlet and triplet spin states. The spa
symmetry breaking in phase II is a genuine physical eff
but the spin mixture is an artifact due to the smallness of
configuration space for a two-electron system. Other
,
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symmetry-broken phases~IV and V! do not agree with the
exact results. The RPA moment of inertia qualitatively agre
with the result from the rotovibrational model, although t
molecule centrifugal distortion is missed. On the other ha
the RPA produces reliable results for space~charge! excita-
tions in regions I, II and III, as well as for spin excitation
when the HF solutions possess goodS2 and Sz quantum
numbers~regions I and III!. We would expect a broader ap
plicability of the many-body theories~HF1RPA! for larger
systems. Work along this line is in progress. In conclusi
the combined use of exact and model calculations allowed
to ascertain the existence of a rotating Wigner molecule i
two-electron dot for relatively large electron densities
equivalently, smallRmp parameters.
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