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Effect of semicore orbitals on the electronic band gaps of Si, Ge, and GaAs
within the GW approximation
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We study the effect of semicore states on the self-energy corrections and electronic energy gaps of Si, Ge,
and GaAs. Self-energy effects are computed within the GW approach, and electronic states are expanded in a
plane-wave basis. For these materials, we generateab initio pseudopotentials treating as valence states the
outermost two shells of atomic orbitals, rather than only the outermost valence shell as in traditional pseudo-
potential calculations. The resulting direct and indirect energy gaps are compared with experimental measure-
ments and with previous calculations based on pseudopotential and ‘‘all-electron’’ approaches. Our results
show that, contrary to recent claims, self-energy effects due to semicore states on the band gaps can be well
accounted for in the standard valence-only pseudopotential formalism.
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I. INTRODUCTION

Since the early applications of the GW method to r
materials~see Refs. 1–3 and references therein!, the pseudo-
potential plane-wave approach has been the method
choice due to its accuracy and technical simplicity. Rec
advances in LAPW and linear muffin-tin orbital methodol
gies have allowed the implementation of ‘‘all-electron’’ a
plications of the GW method.4–8 One common feature o
such calculations, using standard level of approximation
the self-energy, is an underestimation of the electronic
ergy gap compared to experimental measurements, whe
pseudopotential-based calculations show very good ag
ment with experiment.1,2,9 To explain this inconsistency, i
was proposed that the pseudopotential approach does
correctly describe the effect of core orbitals in the se
energy corrections to the energy gaps, resulting in overe
mated corrections.6–8

It is thus desirable to elucidate the effect of core orbit
in the quasiparticle band structure, and the preferred pro
dure is to perform a well converged all-electron calculat
and compare its results with similarly converg
pseudopotential-based calculations. Obviously, numer
precision should not be neglected. In this work, we explic
include semicore orbitals in the pseudopotential plane-w
approach and calculate the quasiparticle energy gap for t
semiconductors of technical importance: Si, Ge, and Ga
The underlying description of the ground-state electro
structure is based on density-functional theory in the lo
density approximation~DFT/LDA!.10,11 Throughout this
work, we are careful to converge all results systematica
and the final results are compared to previous pseudopo
tial results and to recent all-electron calculations. The pa
is organized as follows. We outline the theoretical method
Sec. II. Results are presented in Sec. III and discussed in
IV.

II. THEORETICAL METHOD

The pseudopotential formalism has two advantages
make it convenient for practicalab initio calculations. First,
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degrees of freedom due to core electrons are removed f
the system, resulting in a description that contains only
lence electrons. Second, valence electronic pseudow
functions are smooth in the vicinity of atomic sites as well
in the interstitial region. Such valence wave functions can
expanded to convergence easily in a relatively small basis
such as a plane-wave basis. On the other hand, one pos
problem with this formalism is that using pseudopotentia
instead of the true electron-ion potential, may not fully d
scribe all effects produced by interactions between the
lence and core electrons. In order to address this issue in
calculations, we include in the present study electrons fr
the outermost valence shell as well as those from the sec
outermost~‘‘semicore’’! atomic shell as active ‘‘valence’
electrons in the pseudopotential formalism. Only interactio
between these valence electrons and electrons from
deeper core shells are described by pseudopotentials. Ta
Si as an example, its core now contains only 1s electrons.
Electrons from the 2s, 2p, 3s, 3p, and 3d shells are all
treated on equal footing in the subsequent calculations.

Apart from the atomic configuration, we follow the sta
dard prescription for generatingab initio pseudo-
potentials.12,13 Since the deeper core electrons have
tremely large binding energy~e.g., 130 Ry for the 1s elec-
trons in atomic Si!, their interaction with valence electrons
expected to be much weaker than the already small inte
tion between the outermost valence and the semic
electrons.14

The Kohn-Sham DFT formalism within the LDA is use
to solve for the ground-state electronic structure and to p
vide a starting point for the calculation of the electron se
energy. We follow closely the GW method as developed
Hybertsen and Louie.1 In this method, the self-energy i
given by the standard GW approximation,

S~r ,r 8;E!5 i E dE8

2p
e2 iE801

G0~r ,r 8;E2E8!W0~r ,r 8;E8!,

~1!
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where G0 is the one-electron Green’s function, calculat
from LDA energy eigenvalues and eigenstates (d501 for
occupied states,d502 for unoccupied states!,

G0~r ,r 8;E!5(
nk

wnk~r !wnk
! ~r 8!

E2«nk
DFT2 id

. ~2!

The screened Coulomb interactionW0 is calculated within
the random-phase approximation~RPA! as W05@1
2VP0#21V, with V being the bare Coulomb interaction an
the polarizabilityP052 iG0G0.15 This is the commonly em-
ployed level of approximation for GW calculations~i.e., ne-
glecting self-consistency and vertex corrections!,2,3 and we
specifically compare results from both pseudopotential
all-electron calculations at this particular level of approxim
tion to help untangle the effects of core states.

The convolution integral in Eq.~1! is performed using the
generalized plasmon-pole~GPP! model,1 which enables one
to distinguish two contributions to the self-energy:
screened exchange part (Ssx) arising from the poles ofG0
and a dynamical Coulomb interaction between an elec
and the holelike charge distribution around it (Sch) stem-
ming from the poles ofW0. The former tends to increase th
quasiparticle energy, after the bare exchange is exclu
The latter tends to decrease the quasiparticle energy. In
ticular, the dynamical contributionSch is highly sensitive to
the number of bandsn included in the calculation of the
Green’s function in Eq.~2!. The final quasiparticle energy o
a statewnk is given by (Vxc is the LDA exchange-correlation
potential!

Enk
qp5«nk

DFT1^wnkuS~r ,r 8;Enk
qp!2Vxc~r !uwnk&. ~3!

III. RESULTS

A semicore, nonrelativistic pseudopotential was genera
for Si, using the Troullier-Martins scheme.12 For Ga, Ge, and
As, we constructed semirelativistic pseudopotentials us
the Kerker scheme.13 These choices resulted in stable, tran
ferable pseudopotentials in the Kleinman-Bylander for
without ghost states.16 A summary of atomic parameters
presented in Table I. A good expansion of electronic wa
functions in a plane-wave basis was obtained using a cu
energy of 700 Ry~600 Ry for Si!, and the first Brillouin zone
was sampled using a 43434 Monkhorst-Pack grid.17 These

TABLE I. Atomic parameters used to generate semicore pseu
potentials. Pseudowave functions were defined from the orbital w
lowest principal quantum number at each angular momentum c
nel. Cutoff radii are given in units of Bohr radius.

Reference configuration r cut Local channel
s p d

Si 2s22p63s23p1.953d0.05 0.40 0.35 0.40 d
Ge 3s23p63d104s24p1.54d0.1 0.50 0.50 0.50 s
Ga 3s23p63d104s24p14d0 0.50 0.50 0.50 s
As 3s23p63d104s24p24d0 0.50 0.50 0.45 p
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numerical parameters ensure convergence in LDA energy
genvalues to 0.01 eV or better. The Ceperley-Ald
exchange-correlation potential is used.11 For the lattice pa-
rameter, we used the experimental values: 5.43 Å, 5.65
and 5.66 Å for Si, Ge, and GaAs, respectively. The polar
ability was expanded in a plane-wave basis with an ene
cutoff of 45 Ry ~50 Ry for Si! and numerically inverted for
the calculation of the screened Coulomb interactionW0. Nu-
merical precision in the calculation of the self-energy is 0.
eV or better.

Table II shows some of the energy gaps obtained in
present approach for Si, compared with previous valen
only pseudopotential and all-electron calculations. Ove
agreement between the present results~which explicitly in-
clude the effect of the semicore states! and experimental
measurements is at the level of 0.1 eV, and discrepan
between our results and previous pseudopotential-based
culations of Ref. 9 are equally small. Recent all-electron c
culations carried out at the same level of the GW appro
mation, however, systematically underestimate the minim
gap and the directG-G gaps.6,7 We find that the convergenc
of the self-energy with respect to the number of unoccup
bands included inG0 in Eq. ~2! is an important factor. In Fig.
1, we show the behavior of the calculated energy gap
function of the number of unoccupied bands,nc , included in
G0. Convergence is typically very slow, and well-converg
results requirenc>120. Other energy transitions (G-X and
G-G) show similar behavior and also approach the co
verged value from below. In contrast, the results of Ref
were obtained with onlync524 and are closer to our resul
at approximately the same value ofnc than to the converged
results, as shown in Fig. 1. We see two possible explanat
for this fact: lack of numerical convergence in the evaluat
of the self-energy corrections in Ref. 7, or coincidence.

The energy gaps obtained for Ge are presented in T
III. Spin-orbit interactions are included as first-ord
perturbations.18 A common feature of LDA-based calcula
tions is the overlapping of the valence and conduction ba

o-
th
n-

TABLE II. Band gaps of Si. All quantities in eV.

Egap Gv2Gc Gv2Xc

LDA present work
0.46 2.52 0.60

GW valence pseudopotential1 CPP
Shirley et al.a 1.13 3.28 1.31

GW present work
1.04 3.24 1.18

GW all-electron
Hamadaet al.b 1.01 3.30 1.14
Kotani and van Schilfgaardec 0.89 3.12
Ku and Eguiluzd 0.85 3.12

Experimente 1.17 3.35 1.3

aReference 9.
bReference 5.
cReference 6.
dNon-self-consistent result from Ref. 7.
eReference 23.
2-2
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EFFECT OF SEMICORE ORBITALS ON THE . . . PHYSICAL REVIEW B 69, 125212 ~2004!
at theG point. The inclusion of 3d electrons moves the con
duction bands further down resulting in a sizable nega
direct gap.6,7,9,14,19This feature is verified in our LDA calcu
lation. As shown in Table III, self-energy corrections are
sponsible for an opening of the gap and the correct posit
ing of the minimum, indirect gap between pointsG andL in
the Brillouin zone. Our GW results compare well with e
periment, although theG-X gap still shows a large discrep
ancy. On the other hand, there are significant differences

TABLE III. Band gaps of Ge. All quantities in eV.

Gv2Lc Gv2Gc Gv2Xc

LDA present work
20.04 20.26 0.56

GW valence pseudopotential1 CPP
Shirley et al.a 0.73 0.85 1.09

GW present work
0.65 0.85 0.98

GW all-electron
Kotani and van Schilfgaardeb 0.47 0.79
Ku and Eguiluzc 0.51 1.11 0.49
Experimentd 0.74 0.90 1.3

aReference 9.
bReference 6 after inclusion of spin-orbit effects.
cNon-self-consistent results from Ref. 7.
dReference 23.

FIG. 1. Convergence of the minimum gap in Si as function
the number of unoccupied bands included in the calculation of
Green’s function, Eq.~2! ~open triangles!. The solid line is a guide
to the eye. Results obtained by Ku and Eguiluz~Ref. 7! are shown
as black diamonds.
12521
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tween the pseudopotential and all-electron gaps at this l
of the GW approximation, in particular, regarding theG-X
gap. As found in previous studies, the self-energy correcti
are needed to give the correct band topology.

Figure 2 shows direct and indirect energy gaps in Ge
function of the number of unoccupied bands included in
calculation ofG0. Whereas the indirect gapsG-L and G-X
approach the converged value from below, the direct g
G-G approaches it from above. This particular convergen
behavior arises from the fact that we are plotting differen
of quasiparticle energies: taken individually, all quasiparti
energiesEn,k

qp converge monotonically from above, reflectin
the attractive nature of the Coulomb-holeSch term.1,2 Addi-
tionally, we note that in Ref. 7 the direct gap atG is strongly
overestimated and the indirect gapG-X is underestimated by
'0.8 eV. As expected, the same pattern of overestimat
underestimation is evident in Fig. 2 when we reduce
number of unoccupied bands from 170 to 24, which was
value used in Ref. 7.

GaAs shows behavior similar to Ge. Table IV summariz
our results. Agreement with experimental data is now with
0.15 eV, and all-electron calculations again underestimate
energy gaps. Regarding the convergence withnc , Fig. 3
shows that the indirect gaps converge slowly from below.
the other hand, the directG-G gap converges more quickly

In all systems studied, we applied the GPP model1 in two
ways:~1! using only the valence charge density in thef-sum
rule and~2! using a total charge density from both the v

f
e

FIG. 2. Similar to Fig. 1 for Ge. Numerical values for the ga
G-G ~lower panel!, G-L ~middle panel!, andG-X ~upper panel! are
shown in open triangles. The full line is a guide to the eye. Res
obtained by Ku and Eguiluz~Ref. 7! are shown in black diamonds
2-3
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TIAGO, ISMAIL-BEIGI, AND LOUIE PHYSICAL REVIEW B 69, 125212 ~2004!
lence and semicore bands. Method~1! is physically more
realistic, and predicts an energy dependence of the inv
dielectric function that is consistent with the RPA. Meth
~2! implies that semicore electrons are able to screen ele
fields as efficiently as valence electrons, which is not phy
cal. Nevertheless, we find agreement between the
schemes to better than 0.1 eV in the converged energy
for all systems studied. This is a consequence of cancella
of errors: in method~2!, the plasma frequency is overes
mated, and therefore the contributionsSsx andSch are over-
estimated in absolute value. Since they have opposite s
the final quasiparticle energies are weakly affected. We a
observe that method~2! shows slower convergence of ener

TABLE IV. Band gaps of GaAs. All quantities in eV.

Gv2Gc Gv2Lc Gv2Xc

LDA present work
0.13 0.70 1.21

GW valence pseudopotential1 CPP
Shirley et al.a 1.42 1.75 1.95

GW present work
1.38 1.65 1.83

GW all-electron
Kotani and van Schilfgaardeb 1.20 1.40 1.46

Experimentc 1.52 1.815 1.98

aReference 9.
bReference 6 after inclusion of spin-orbit effects.
cReferences 23,24.

FIG. 3. Similar to Fig. 2 for GaAs. The thick horizontal lin
represents results obtained by Kotani and van Schilfgaarde~Ref. 6!
~the number of bands used was not reported in this reference!.
12521
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gaps with respect tonc , which is expected since theSch
term is enhanced. All results presented in this article w
obtained using the physically more appropriate method~1!.

IV. DISCUSSION

As shown in Figs. 1–3, energy gaps in the GW appro
mation have a significant dependence on the number of
occupied bands that is slow to converge in many cases.
fact was already reported in calculations using stand
pseudopotential techniques.2,20 We can analyze the physic
of this convergence by examining the GW approximation
the static limit, the so-called COHSEX approximation.1,2,15

Band gaps can be calculated more easily within
COHSEX approximation and show convergence behav
similar to the full dynamic calculation. Under this approx
mation, the Coulomb-hole term has a simple form in terms
the polarization potential,Wpol(r ,r 8)[W(r ,r 8,v50)2V(r
2r 8),

SCOH~r ,r 8!5
1

2
d~r2r 8!Wpol~r ,r 8!

5
1

2 (
nk

wnk~r !wnk
! ~r 8!Wpol~r ,r 8!, ~4!

where the second equality follows from completeness of
basis of eigenvectors. In actual calculations, this sum o
bandsn is always truncated, and the equality is violated. T
Coulomb-hole energy evaluated at a given electronic stat
calculated according to the expression

^mkuSCOHumk&5
1

2 (
GG8q

WGG8~q!

3(
n

@M G
nm~k,q!#!M G8

nm
~k,q!, ~5!

whereWGG8(q) are the coefficients in the plane-wave expa
sion of the polarization potential,1,2 and we define

M G
nm~k,q!5^nk2que2 i (q1G)•rumk&. ~6!

Physically, the summation in Eq.~4! describes virtual
transitions produced when the quasiparticle induces a ch
fluctuation around itself.SCOH is the energy associated t
the interaction between the quasiparticle and the indu
charge fluctuation. The matrix elements, Eq.~6!, decay
slowly as the energy difference between bandsm and n in-
creases. Monitoring the convergence of these matrix
ments provides a good estimate of the relative error in
SCOH , but gauging the absolute convergence of the s
energy requires knowingWpol , which depends on the phys
cal system. From Eqs.~4!–~6!, we see that matrix element
involving unoccupied bands are crucial in the calculation
the S operator. Therefore, the choice of basis set must
done carefully so that all occupied bandsand the lowest
unoccupied bands are accurately described. In this respe
plane-wave basis set is expected to be more efficient t
basis sets optimized for occupied bands.
2-4
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EFFECT OF SEMICORE ORBITALS ON THE . . . PHYSICAL REVIEW B 69, 125212 ~2004!
Although we have not directly investigated the impo
tance of imposing self-consistency in the calculation of
self-energy, this is an unsettled issue and we addres
briefly below. Von Barth and Holm have investigated t
effect of self-consistency in the electron-gas,21 and con-
cluded that restricted self-consistency has small but sig
cant effect on the full bandwidth and in the satellite struct
of the electron gas. On the other hand, full self-consiste
gives a poor description of the satellite structure and
bandwidth is drastically increased. Inclusion of vertex c
rections are expected to recover the good, non-self-consis
results, but calculation of vertex corrections is not a sim
task even for the electron gas system.2,21 Self-consistency
has been recently applied to real materials,7,22 and the va-
lence bandwidth is also shown to increase when s
consistency is imposed. It appears that one must there
include self-consistency and vertex corrections togethe
order to obtain a meaningful picture. Inclusion of vertex c
rections and self-consistency is tangential for the purpos
our work, which is to compare pseudopotential-based
all-electron GW calculations and understand the role
semicore electrons.

V. CONCLUSION

We conclude that for the systems considered, the vale
only pseudopotential method does not suffer from large
rors from the neglect of core states, as claimed in some
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New Haven, CT 06520.
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8S. Lebègue, B. Arnaud, M. Alouani, and P.E. Blo¨chl, Phys. Rev. B

67, 155208~2003!.
9E.L. Shirley, X. Zhu, and S.G. Louie, Phys. Rev. B56, 6648

~1997!.
10R.M. Dreizler and E.K.U Gross,Density Functional Theory: An

Approach to the Quantum Many-body Problem~Springer-
Verlag, Berlin, 1990!.

11J.P. Perdew and A. Zunger, Phys. Rev. B23, 5048~1981!.
12521
e
it

-
e
y
e
-
nt

e

f-
re
in
-
of
d
f

e-
r-
ll-

electron calculations.6,7 While semicore effects are negligibl
in Si, they are important if one aims at good quantitati
agreement with experiment in Ge and GaAs.2,3,14,19 How-
ever, discrepancies between pseudopotential and all-elec
based GW calculations reported in recent works6,7 may be
explained by a lack of numerical convergence in the lat
Specifically, the self-energy calculated within the G
method has slow convergence with respect to the numbe
energy bands included in the calculation of the Green’s fu
tion, as is demonstrated in this work and has been poin
out in the past.2,20 This convergence behavior is present
the static limit to GW, the COHSEX approximation, and c
be analyzed by comparing the COHSEX Coulomb-hole
ergy, Eq.~4!, obtained with and without explicit summatio
over energy bands.

ACKNOWLEDGMENTS

We thank Andrew Canning and David Clatterbuck f
fruitful discussions regarding the FLAPW method. Th
work was supported by National Science Foundation Gr
No. DMR00-87088 and by the Director, Office of Scienc
Office of Basic Energy Sciences, Division of Materials S
ences and Engineering, U.S. Department of Energy un
Contract No. DE-AC03-76SF00098. Computational
sources have been provided by NSF at the National Part
ship for Advanced Computational Infrastructure, and DOE
the National Energy Research Scientific Computing Cen

y,12N. Troullier and J.L. Martins, Phys. Rev. B43, 1993~1990!.
13G.P. Kerker, J. Phys. C13, L189 ~1980!.
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