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The lack of accurate transferable local pseudopotentials represents one of the remaining barriers to the
general application of orbital-free density functional the@®F-DFT, a linear scaling techniqueHere we
report a method to generate high quakty initio local pseudopotentiald.PS’s) for use in condensed matter
DFT calculations. We exploit the first Hohenberg-Kohn theorem, which states that the external potential is
one-to-one mapped to the ground-state electron density. By employing a scheme for inverting the Kohn-Sham
(KS) equations due to Wang and Parr, we iteratively solve for the KS effective poter’jﬁ@i) until it
reproduces a target density. Fr@rﬁﬁ(r) we derive a global LPS for the entire system. This global LPS is then
further decomposed to obtain an atom-centered LPS. We show that LPS’s derived from bulk environments are
substantially more transferable than those derived from atoms alone. In KS-DFT tests on Si, we show that this
bulk-derived LPS can reproduce accurately phase orderings predicted by nonlocal pseudopotentials for both
metallic and semiconducting phases. We then tested this LPS in OF-DFT calculations on Si crystals, where we
demonstrate that this bulk-derived LPBLPS), combined with a linear-response-based kinetic energy density
functional with a density-dependent kernel, correctly predicts a diamond structure ground state for Si in an
OF-DFT calculation. Other bulk properties, such as defect formation energies and transition pressures are also
presented as tests of this BLPS. This approach for deriving LPS’s isolates much of the remaining error in
OF-DFT to the kinetic energy density functional, providing means to test new functionals as they become
available.
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I. INTRODUCTION >50-100 atoms or savill these orbital-based linear-scaling
methods become cheaper than the conventional canonical
The original Hohenberg-Koh(HK) theorems of density methods’ Furthermore, these orbital-based linear-scaling
functional theory(DFT) do not rely on the existence of a strategies are not linear for metallic systems, since the orbit-
wave function to describe the physical systefihe density, s in metals cannot be exponentially localized.

a function of 3 instead of N coordinates, is the only physi-  Ap ajternative is to completely avoid introducing KS
cal variable. Kohn and Sham introduced a set of orbitals iny pitals and instead solve directly for the density, as
order to represent the noninteracting kinetic energy as thﬁ] the original Thomas-Fermi-Dirac-Weizdeer (TFDW),

expectation value of the LaplacifnAs a result, in the o711 Then if one employs three-dimensional periodic-
orbital-based Kohn-Shanfks) scheme, a set of coupled ity, it is possible to calculate the kinetic energy, external

nonlinear one-particle Schdmger-like equations must be . . ;
4 energy, and Hartree terms in reciprocal space using fast Fou-
solved and one now has agaiiN 3degrees of freedom to ) : ;
rier transforms, leading to effectively linegO(NInN)]

account for. By contrast, in the orbital-fré®F) DFT, one A1 : ) .
only needs to solve a single Thomas-Fermi-Hohenberg-Kohﬁcal'ng" [Calculation of the exchange-correlation term is

(TFHK) equatior _already(_)(N) because it is short-ranged in real sp§1_d'dﬂus,
in practice one can solve for the electron densities, struc-
OE[p] OT[p] OE dp] OJEdp] tures, and properties of hundreds and even thousands of at-

Sp(r) - Sp(r) 5p(r) Sp(n) e @ oms with an OF-DFT:+3-%7
The main advantage of OF-DFT is that it completely
The traditional KS-DFT method has a cost scaling cubi-avoids the bottlenecks present in the orbital-based linear-
cally with the size of the system, due to the need to orthogoscaling methods, such as the cost to localize and orthogonal-
nalize the KS orbitals. Over the past decade, there has beerize the orbitals and, with only a density to solve for, there is
blossoming of so-called linear-scaling technigéiéswhose  no need for Brillouin-zone integration in periodic systems.
objective is to reduce this cubic scaling. The orbital-based\s a result, unlike the localized orbital methods, no cross-
linear-scaling methodsall depend on the “nearsightedness” over point exists in terms of system size at which the method
principle’ and the concept of “locality” in quantum becomes cheaper than the conventional canonical method.
chemistry? which allows orbital localization into regional From the smallest system upward, the OF-DFT approach is
domains to be achieved. However, the localized orbitalsalways effectively linear scaling.
within each regional domain still must be orthogonalized, On the other hand, as a consequence of giving up the KS
which again is @D(N®) procedure, albeit with smallét. As  orbitals, the entire energy functional must be expressed
a result, only for large numbers of atomsge.g., solely in terms of the density, not only for the exchange and
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correlation energy, but also for the kinetic energy. Develop+the all-electron wave function beyond a chosen core cutoff
ment of kinetic energy density functionglsEDF) has seen radiusr.. With an appropriately chosen core radii for edch

a resurgence of interest, with significant progress made espehannel, calculations using an NLPS generally can reproduce
cially in the last decad®121415181%igh quality KEDF's  the results of all-electron calculations very well. The success
based on the weighted density approximati®DA) and  of the NLPS’s can be attributed to the fact that the NLPS’s
the average density approximati®hDA) have been applied are constructed to reproduce the valence eigenvalues and to
with encouraging results to atomic species and jelliumpreserve the scattering properties of the all-electron atom.
surfaces?* However, general, effective implementations of Since an LPS acts on each angular momentum channel with
these complicated but more universal KEDF’'s based on theame potential, there is no way to have such a potential re-
nonlocal density approximatiofNLDA), for realistic mo-  produce all the valence eigenvalues. Therefore, the demand-
lecular and periodic systems, have not been reported yeing requirements made of a NLPS must be altered when
Linear-response-based KEDF's, which rely on the so-calle¢onstructing an LPS.

simplified nonlocal density approximatiofSNDA), have A natural alternative is to devise a scheme which requires
been shown to be accurat® the meV/atom rangefor sp-  the LPS to reproduce a given valence pseudodetfsify?®
bonded nearly free-electron-like metafalkalis, alkaline This idea is consistent with the basic tenet of DFT: only the
earths, group Ill meta)s-1214-1%However, SNDA KEDF's electron density is of fundamental importariédn the ap-

do not achieve meV accuracy for systems with localizedoroach we describe below, no constraints are placed on the
electron densities such as in molecules and covalent or ioniuinctional form of the LPS other than that it should retain a
solids. For those systems, no simple yet accurate KEDF’'s anpure Coulombic tail asymptotically, so that the usual match-
available and the representation of the kinetic energy posaag conditions between pseudo-wave-functions and all-
difficulties. This limits the accuracy of OF-DFT and hence electron wave functions will hold. Thus, unlike other earlier
its widespread application. Developing accurate KEDF’s formodel LPS's> there are no empirically fit parameters in-
these systems remains at the frontiers of reserch. volved at all.

The other technical challenge associated with general ap- The firstab initio LPS’s based on this density-reproducing
plicability of OF-DFT is the electron-nuclear interaction en- concept were devised by Watsenal?* In their approach,
ergy. In KS-DFT, this is often treated by nonlocal pseudopothe LPS’s were required to reproduce a KS density within an
tentials (NLPS’s) that contain orbital-based projection OF-DFT calculation on a bulk crystal. To achieve this, the
operators’~?? Although transferable accurate NLPS's are KS density was inserted into the TFHK equat{dy. (1)] in
available, they cannot be used in OF-DFT, since the projecOF-DFT, and then the TFHK equation was inverted in recip-
tors cannot act on a density instead of a wave function. Thisocal space to obtain the reciprocal space pseudopotential
limits the form of the ion-electron interaction to be of the vq,(g) as
LPS variety[v(r)], for which it is difficult to provide trans-

ferability, i.e., LPS’s may work well in one environment but _OEndpl|  [dT[p]  OEedp] 2

not another. In this paper, we address this second issue, i.e., Vex(9)= Sp(g) |Prs N 5p(Q) 5p(0Q) @
how to develop transferable first-principles-based LPS’s for Prs

the OF-DFT method. The LPS's resulting from this approach have certain draw-

backs. First, any defect in the KEDF potential will be re-
tained in the resulting LPS, as seen in Eg). Second, these
LPS’s do not have a strict Coulombic tail in real space as-
Pseudopotentials are used ubiquitously in solid state DFymptotically. Finally, current KEDF's are only accurate for
calculations in order to reduce the expense associated witimain group metals; therefore this precludes generalizing this
representing the core electraffsinstead of explicitly con- approach to produce accurate LPS’s for all elements.
sidering all electrons in the system, one can often get away In order to avoid the errors associated with incorporating
with explicitly considering only the valence electrons, sincethe KEDF potential into the pseudopotential via E2), we
they are largely responsible for most physical and chemicahstead construct LPS’s using the ex&eoninteracting ki-
properties of interest. The effect of the inner shell core elecnetic energyT calculated within KS theory. We first imple-
trons and the nuclei on the valence electrons can instead lmeented this idea for atoms, i.e., producing LPS’s based on a
described by a pseudopotential. There are two kinds oKS valence electron density for an atéMmThe resulting
pseudopotentials: nonloc8\NLPS) (Refs. 20—22 and local atomic LPS’s(denoted here as ALR@re good, but still lack
(LPS).2*~%An LPS is a simple function of electron position, transferability and sufficient accuracy when applied to crys-
while an NLPS depends not only on the electron position butals. The motivation of the present work is to move beyond
also utilizes a different potential for each angular momenturran ALPS to achieve the desired accuracy for condensed mat-
channel. Mathematically, this is realized by means of projecter calculations. To accomplish this, we choose bulk crystal-
tion operators that act on the system’s wave function, in orline KS densities as target densities that our pseudopotentials
der to project out the potential appropriate for various typesieed to reproduce, as in the approach of Watstoasl. How-
of electrons(e.g.,s,p, or d).?* Generally,ab initio NLPS’s  ever, here errors in the KEDF potential do not appear, since
have been designed by requiring that the pseudopotential réhe exactT potential is employed. We term the resulting
produce the atomic valence eigenvalues from all-electrompotential the bulk LPSBLPS). We will see that the BLPS
calculations and that the pseudoatomic wave function matctiields results significantly superior to those using the ALPS.

Il. THEORY OF ab initio LOCAL PSEUDOPOTENTIALS
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Ill. ab initio LOCAL PSEUDOPOTENTIAL DERIVED _ |¢i k(r)|2
FROM BULK CRYSTALS p(r):Ek w(k) X, fie—s (4)
| ik

According to the first HK theorerha unique LPS exists
one-to-one mapped to a given ground-state density. Therédere,w(k) is the weight associated with eakhpoint and
fore, given a high-quality density, we simply require a pathf; y is the occupation number of the orbit@| . This leads
between the density and the potential. However, there is nto an exact expression for the local KS effective potential
unique path—this is an example of the “inverse problem” in (which implicitly contains the desired LBP$iven by
mathematics. Many paths have been suggestétiye have
found that an approach suggested by Wang and*farthe 1
most stable numerically and therefore we employ it here. p(r)+ 2> w(k) X fi,k¢i*,k(r)<§V2) i k(1) € x

In order to start construction of the LPS, we must have a,, ()= K L
high quality target density that we wish to reproduce—the ° p(r)
extent to which the LPS we create is able to achieve this will (5)
be the figure of merit by which we judge the quality of the
LPS. Here, we employ the Troullier-MartingM) NLPS While p(r), the target density, is @nput from aseparate
(Ref. 22 in order to generate the target density from a KS-self-consistent field calculatiafin our case, KS-DFT using a
DFT Ca|Cu|atI0n Of a bulk Crystal. Then the g|0ba| KS poten'TM NLPS on the same bulk Crys)athe Occupation numbers
tial for the entire crystal is determined from the target densityfi ., the eigenvalues; , and the orbitalsp;  in Eq. (5) are
following Wang-Parr's approach. After this, the Hartree andynknown initially for the LPS case; they must be obtained

exchange-correlation potentials are subtracted to obtain a Igy, the case of KS-DFT with an LPS. Therefore E6). can-

cal, global external potential. Finally, we extract an atoM-not he used directly and an iterative solution must be em-

centered local pseudopotential from the global external pop|oyed. This was designed by Wang and Parr as the follow-

tential, as explained beIO\g% , , ing: at thenth iteration, the KS equations are solved with the
In the Wang-Parr method,the KS equations are inverted |aqt jteration’s version of the KS potentialiy X(r) which

to solve fqr th_e potential cprrespondmg to a given denSItyt:ontains theif—1)th’s LPS, to obtain orbitals and eigenval-

The following is an adaptation of the Wang-Parr method forueS for the next iteration

a bulk environment. We start from the KS equations

1
(_%VZ"_Ueff(r))¢i,k:€i,k¢i,kv 3 (_§V2+Ugffl(r))‘ﬁin,k(r)zein,k‘ﬁin,k(r)' (6)

wherei is the band index andt is the index ofk points.  Multiplying by ¢ (r) and rearranging Eq6) yields
Specifically, our goal is to find the LPS contained within the ’

local KS effective potentiad.¢(r) in Eq. (3) that reproduces 1

a target density. We do so by multiplying both sides of Eq. ﬂ’,ﬁ(r)(zvz) (D =[veg ‘(=& Jl (D% (7)
(3) by (¢"\/€i ), then summing over all the bands and

k points, and then dividing by(r), the energy-weighted Inserting Eq.(7) into Eq.(5) produces an approximation for
density the next iteration of the KS potential

PN+ 2 W) Z vl (1) = el i) el

p"(r)

®

ver(r) =

We may further simplify Eq(8) by noticing that the first Special attention must be paid to this quantiy"(r),
term in the summation appearing in the numerator iswhich is the difference between the current iteration’s poten-
v (r)- p"(r) and the second term is the current iteration'stial and the next iteration’s potential. First, the potential is
densityp"(r). We can pull out the first term in the summa- improved in the right direction only when the energy-
tion to obtain weighted densityp"(r) is negative everywhere; otherwise
the next iteration’s potential will be worse. In order to see
this, suppose the potentialggl(r) of (n—1)th step pro-

N et +P(f)—Pn(f) duces a densityp"(r) atr, which is smaller thamp(r), the
Vei(F)=veg (1) —F(r) target density at the same point. From E9), it is obvious
N1 . that if the energy-weighted densit(r) is positive atr then

=ve (1) +Av(r). (9 Avp"(r) will also be positive, which means the next itera-
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tion’s potentialvgg(r) will be more repulsive. This will lead bal bulk ionic pseudopotential%gba'(r), which is a superpo-
to an even smaller densip/"1(r) at the next step, which is sition of the contributions from all the ions in the simulation
worse than the previous step. cell.

We also observe that as"(r) approaches closer and  We extract the atom-centered local pseudopotential
closer to the target densipy(r), Av"(r) will get smaller and  v3°™r) from v%%r) as follows. v%%(r) is Fourier-
smaller. To achieve fast convergence, the energy-weightedlansformed into reciprocal space

density?*(r) should be controlled to be small enough that n
Av"(r) still has significant magnitude so that the Wang-Parr global yy _ f global igr

=— r)-e'9'dr, 12
scheme remains numerically sensitive. v9*g) Q) Ve (N (12

_In grder 0 guargntee that the energy-weighted d_enSI%hereQ is the periodic unit cell volume. Due to the period-
p"(r) is both negative and small everywhere, we shift all

) 2 ' A icity of the system, the reciprocal space external potential
eigenvaluese; by —¢€,. This is equivalent to calculating v993{ ) obtained by fast Fourier transfoffnat each itera-

p"(r) from the following, instead of from Ed4): tion step should always vanish where the structure factor
S(g) (Ref. 30 is zero. Numerically, we found that some-
o | P (1)]2 times this is not true, though the deviation is small. To avoid
p"(N=2 w(k) X f——r. (100  these spurious values, we set°?(g) to zero, wherever
k I S(g) is zero. Next we divide 9°°3{(g) by the structure factor

_ o . S(g) to get the form facton°"(g),* which contains all the
If we use Eq.(10) in Eq. (9), this is basically the same jnformation of the atom-centered potential
approximation as using E¢4). The subtle difference is that

now the approximation is weighted by &/(+ €,) instead of o p9opal g)

1/e; . We do not need to worry about any artifact caused by v g)= S(—g) ' (13

the shift, as long as the final global effective potemziéi(r)

can reproduce our target density, since we know from the For an ordered bulk crystal, the Bragg vectaysare

first HK theorem that the local potential will be determined discontinuous® Consequently, information is only available

only to within an additive constant. at the Bragg vectors of that specific bulk structure. In order
The value of— €, can be chosen in an optimal manner asto gain as much data as possible to define the BLPS, we

follows. Notice that in the summation of E(LO), different  perform the Wang-Parr iterative scheme for multiple bulk

terms make differently sized contributions p¥(r). The  structures so as to definé®"(g) at as manyg vectors as

term with the smallest denominator will dominate. Based orpossible. We then spherically averag&’™(g) to get a one-

this observation, we designed a scheme to determine the ogimensional isotropic pseudopotentig),(g)

timal value of the shift— e, at each iteration step. We first

check the spacing between the eigenvaleggs of all the 1 ato

occupied orbitals and find the pair of adjacent energy levels vbur9)= ng ‘gi%g L C (14)

with the largest gap. By carefully choosing an appropriate

— € in this gap, we can guarantee that the energy-weightewhere ng is the total number ofy vectors which have the

densityp(r) is negative and small everywhere due to cancel>aMe lengtg. In order to most sensitively process tig)

lation between oppositely-signed contributions from the Seg_ataéespeciallydfor _smalg,hsince the Coulo_lmbic contribhu-
lected pair of levels. We found that Wang-Parr’s method?'o" ecomes ominant therewe tempopayy remove the
Coulombic part ofvp,(g) to get a modified form factor

works very well in a bulk environment after we control the :

energy-weighted density in this way, where we update th& bu(9):

global bulk external potentiad%°(r) in real space for a -
a

primitive cell. We note that for isolated atoms/(r) is al- v put9) = Vpurd 9) +—5—, (15)

ways negative since the eigenvalues are always negative.

Moreover, convergence in the atomic case was found to beh Zis th d ionic ch | h |

more robust than in the bulk case, so for both reasons ngcre < 1S the screened lonic ¢ argauclear charge plus
re electron charge

X . . o}
shift of the eigenvalues was needed for construction of a To build in the maximum transferability into the BLPS,

ALPS? g ) ;

After the global KS effective potential is converged, the /& r€dulre it to match the,,,(g) data from multiple bulk
terms due to electron-electron interactions are removed @;uatsuere; grrn%%tiségliiii? stzgﬁrliso Fi)r?tseSrIScl:leétz obaectc\;g\éﬁ ttm:’
obtain the unscreened ionic pseudopotential v’ pu(9) data in order to obtain a smooth curve that best fits
the raw data.

polobal ), dlobal ) 8Jp] _ oE,d p] (11) Special emphasis should be placed on the value’ (f
loc eff Sp(r)  Sp(r) ° =0), which is not uniquely defined. Although the value
there will not affect either the orbitals or the density, it does
Here J[p] and E,J p] are the usual Hartree repulsion and affect the total energy. Its contribution to the total energy is

exchange-correlation energies. Equatith provides a glo- given by
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AU(g):Urougl‘(g)_UALPS(g)- (17)

We found thatAv(g) dies off wheng becomes large, so we
take Av(g) =0 for largeg.

whereNg, is the total number of electrons in the syste, (i) We numerically Bessel-Fourier transform the short
is the number of ions of species, v,(g=0) is the non- rangeAv(g) to real space to geiv(r)

Coulombic part of the pseudopotential due to the ion of spe-

ciesa, andQ is the volume of the simulation cell. Thus, the 1 (=

value ofv’(g=0) is of extreme importance for our BLPS. Av(r)= —zf Av(9)g
After guessing a value far’ (g=0), we interpolate and ob- 2mJo

tain a smooth cubic spline. Restoration of the CoulombiGy, found thatAu(r) also dies off wherr becomes large,
part of v'(g) produces a rough reciprocal space BLPShich js reasonable since both the ALR ps(r) and the
Vroug(9), Which then can be used to carry out KS calcula-fing| BLPS vy p4(r) should have a strict Coulombic tail in
tions. - real space asymptotically. However, the numerical inaccu-
We find that the results are very sensitive to the value O?acy N 0,0u(g) causes some random noiseAw (r). We
Vroug(9) at smallg, especially at the first several Bragg vec- c4efyly choose an optimal radial cutaff [by balancing
tors g of different bulk structures. Since the pseUd°p°te”tialtransferabiIity, which tends to reduces, against the value
is completely undefined & values less than the smallest of vg p<(g=0), which tends to increase] and assume that
Bragg vector, we are free to choose those values (d) for Av(r) vanishes beyond, .

g’s below the first Bragg vector however we like. We there- (i) We add the short rangkv (r) to the real space ALPS
fore tune the arbitrary value af'(g) atg=0 and at some vaps(r)-

small g values[leaving the rawvp,(g) data untouched Now a real-space pseudopotential is obtained and it has a
until the BLPS reproduces to the best extent possible theyict coulombic tail (our first requirement mentioned

bulk properties of several phases calculated with the NLPSabove. We denote this intermediate level BLPS@g.(r).

"We transform it to reciprocal space to fome(g). How-

etal,”™ where instead of using multiple bulk structures, ag\er thjs js still not the final BLPS we desire, because some
single bulk structure is employed. For the arbitrary values o iscrepancies still exist between its reciprocal space form

v'(g) at smallg, they assumed an analytic Gaussian formvimer(g) andv o, g) Which violates our second requirement

Ae 9" for the reciprocal space pseudopotential at Igw  stated above. However, compared to the ALBSe(r) is
including g=0. The parameterd and b were obtained by closer to the desired final BLP8g pg(r). We repeat the
matching the value ob®°"(g) at the lowest Bragg vector ahove procedure by replacing the ALPS with the intermedi-
and matching the total energies from OF-DFT and KS-DFTate level LP&)inter(g) in Eq. (17) and iterate further. At the
calculations. We did not adopt this approach for several reaend, we obtain another real space LPS, which not only has a
sons. First, the shape of the reciprocal space pseudopotent@bulombic tail but also is nearly identical td°“9(g) when

at low g is not necessarily Gaussian. Second, there is nNgransformed to reciprocal space. We take this as our final

special reason to require the total energy from OF-DFT withg| pS. We denote its real space form agp<(r) and its
a LPS to be the same as that from KS-DFT USing a NLPSFeciproca| space form a%LPS(g)! given by

Finally, even if we could determine the value of*°"(g

=0) following the same approach, it is not guaranteed to be o

the optimal valugas defined in the Wang-Parr sense UBLPS(g):4Wf vaLpd1)r
Since it is not enforced, this BLP8,4{g) does not 0

have a strict Coulombic tail asymptotically when trans-The above procedure works because the difference between
formed into real space, even though it should contain onethe BLPS and the ALPS is small, essentially a perturbation.
Unfortunately, it is almost impossible to exactly transform However, in the next section, we will see that this small

the one-dimensional BLP&,q{9) from reciprocal space 1o change to the original Wang-Parr-derived ALPS leads to a
real space directly because it is a long-range function withougignificant improvement in accuracy.

an analytical form. There is also numerical error or random
noise in thev 44 g) data. Before we explain how to circum-
vent this problem, we emphasize our requirements for the
final BLPS. First, the real space BLRg, pr) should have Our first application of the above scheme to generate
an exact Coulombic tail. Second, the numerical Fourietransferable local pseudopotentials focuses on silicon. It is a
transform ofvg pg(r) should be almost the same as theparticularly challenging case for a LPS, due to directional
Uroug @) We obtained before, especially for smgllin order  covalent bonding present in its ground-state structure. If we
to achieve these, the ALPS is needed in the real space conan successfully derive a transferable LPS for Si with this
struction. The following is the strategy we employ to obtainapproach, it suggests other elements with directional bonding
the final BLPS: may be treatable with similar success.

(i) We calculateAv (g), which is the difference between In all our calculations(KS- and OF-DFJ, we use the
the rough BLPS and the Wang-Parr-derived ALIR&f. 25  local density approximatiofLDA) for electron exchange
in reciprocal space as and correlation, based on the quantum Monte Carlo results of

Ne2 1> Noul(g=0), (16)

sin(gr)

r

dg. (18)

sin(gr)

dr. (19

IV. CALCULATIONAL DETAILS
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TABLE |. KS-DFT-LDA optimized structures of hexagonal diamo¢dD), complex bcc(cbeg, B-tin,
body-centered tetragonébct5), and hcp Si.

Space group Lattice vectors Fractional coordinates
HD P63/mmc_Dgh 221.656 t(%,%,z);i(%,%,%-i—z)
a=p=90°,y=120° z=0.0631
chcc IaS-TZ E —10 (0'0’0;%’%1%)
a=p=y=90° +(%,X,%X) (3 +X,3—X,X)
(X3 %5 =X) (G XX, 3+X)
x=0.1003+0.0008
p-tin 14, /amdD3 € 05516 (0.003,3,3)+ (043
a=pB=y=90°
bcts | 4immmDy/ 18276 (0,0,0%,3.%)
a2 B=y=090° +(0,02),(0,02)
z=0.19169
hep P63mmeDsg, S 16 (000).3.5.3)

a=B=90°,y=120°

Ceperleg and Aldet’ as parametrized by Perdew and theFHI98PPDFT atomic cod€® The TM NLPS was built for
Zunger’ the 35?3p? ground state of Si atom. The core cutoff radii
used fors-, p-, and d- angular momentum channels were
A. Bulk structures 1.704, 1.878, and 2.02 Bohr, respectively. The same code
Many different bulk structures of Si have been proposedvas modified to build the ALPS, by forcing the ALPS to
and examined previously. Here we study the following struc+eproduce the atomic valence density obtained from the TM
tures: cubic diamondCD), hexagonal diamon(HD), com-  NLPSZ according to the Wang-Parr iterative scheme.
plex bcc (cbcg, B-tin, body-centered tetragonabct5),>* The BLPS was built using theAsTEP (Ref. 37 code,
simple cubic (s, simple bcc(sbcg, face-centered cubic which was modified to apply the Wang-Parr method to bulk
(fcc), and hexagonal-close-packeédcp).3>% The first four  crystals. The Monkhorst-Pack schethevas employed to
structures are observed experimentdilywith CD Si the  generate specid points for Brillouin-zone sampling. Fermi
most stable. We find two are semiconduct@@® and HD, surface smearingwidth of 0.1 e\j and a large number d&f
and the rest are metals, consistent with other experimental goints are required for metallic phases, in order to properly
theoretical studie¥'~36Here we apply the Wang-Parr inver- describe the Fermi surface. In order to obtain converged en-
sion method to the structures mentioned above, except fargies and densities in KS-DFT, we needed to use the fol-
the cbcc and bct5 structures, which will be used to providdowing number ofk points in the irreducible Brillouin-zone
subsequent tests of the LPS. (IBZ): 72, 56, 68, 84, and 48 for primitive unit cells Bttin,
Since the value ot/a and the fractional coordinates of sc, shcc, fcc, and hep structures, respectively. For the semi-
HD, cbcc,B-tin, and hcp Si are not completely fixed by their conducting phases, CD and HD Si, ldspoints are needed
symmetry, we obtained them by structural optimization inin the IBZ: 28 for the former and 24 for the latter, in primi-
cAsTEP (Ref. 37 using the LDA and the TM NLPSdis- tive unit cells. A high kinetic energy cutoff for the plane
cussed beloy The resulting structures are used to constructvave basis of 960 eV is used to ensure convergence of the
and test our BLPS$Table ). The LDA-NLPS structures de- density, especially for the semiconducting phases of Si. We
viate only slightly from experimeri As for the other four ~chose the ALPS from our previous wérkas the initial guess
phases of bulk Si, the ratio between different lattice vectordor the bulk local pseudopotential.
and the fractional coordinates are fixed and need not be op-
timized. To reduce the computational cost in KS-DFT calcu-
lations, primitive cells are used, containing 2, 4, 8, 2, 4, 1, 1, C. Testing the pseudopotential in bulk environments
1, 2 atoms for CD, HD, cbcgg-tin, bct5, sc, sbec, fee, and with KS-DFT

hcp Si, respectively. In OF-DFT calculations, orthorhombic \ve then tested the ALPS and the resulting BLPS within
unit cells of 8, 8, 16, 4, 4, 8, 2, 4, 4 atoms are used for th&«s-| DA for various bulk phases of Si, including some
above structures, respectively. phases and defect structures outside the set used to build the
BLPS. ThecAsTEP (Ref. 37 code was used again for these
KS-LDA calculations. The number d€ points used in the

In our work, three PS’s are involved: the TM NLPS, the IBZ here are 28, 36, 60, 120, 112, 84, 120, 84, and 64 for
ALPS, and the BLPS. The TM NLPS was generated usingrimitive cells of the CD, HD, cbcgs-tin, bct5, sc, sbec, fcc,

B. Building the pseudopotential
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TABLE II. Deviations of the KS-BLPS density from the target KS-NLPS density for CD and fcc Si at the
beginning and end of the Wang-Parr iterations, as checked by the four energy diffe(er@émton)
described in the text.

AJ JAp] AE, Avydp)
initial final initial final initial final initial final
CD —200.00 —3.56 5.45 0.14 41.60 2.17 54.50 2.75
fcc -1.30 —-0.55 0.14 0.0025 —-4.01 -0.17 —-5.29 —-0.24

and hcp structures, respectively. Here, mérgooints are  whereX\, ;=1. Up to now, the only SNDA KEDF that has
needed to converge the total energy of these phageen  a DD kernel was designed by Wareg al. in 1999!° The
building the BLPS, we only need to ensure that the density igernel has the following structure:
well converged Using a kinetic energy cutoff of 760 eV, we
found that the total energy is converged to within 0.004 eV/ Wo g(r, 1 r=r")=wg gL {r,r"),r=r'], (22
atom and 0.014 eV/atom for semiconducting and metallic
phases of Si, respectively.

For the calculations of vacancy and interstitial defects, we Lrr')= (
employed a cubic supercell containing 64 atoms, constructed
by putting together eight cubic unit cells of CD Si. The va-
cancy was created by removing an atom at the center of the ke(r)=[372p(r)]*3, (24
supercell, while the self-interstitial defect was generated by
putting an extra atom at the tetrahedral &t&he cell and wherekg(r) and {,(r,r") are local one-body and nonlocal
ionic coordinates of both systems were not allowed to relaxtwo-body Fermi wave vectors. In the following, we will call
A kinetic energy cutoff of 760 eV was employed. Ax2  this WGC KEDF with a DD kernel simply the WGC KEDF.
X2 mesh was used for the BZ sampling, as in other firstWe use the WGC KEDF, with optimizéd parameters

kg(r)+ké(r’))”y' -

2

principles studies” {a,B},={2=\/5/6},7. In our OF-DFT calculations, a ki-
netic energy cutoff of 1520 eV is employed to converge the
D. Application of the pseudopotential in bulk environments density for all phases. As is typical, wave vectors up to twice
with OF-DFT as large as that used to represent the wave function are re-

As mentioned earlier, the main reason to develop thes8Uired for convergence. In our OF-DFT calculations, a sec-
LPS's is for use in linear-scaling OF-DFT calculations. ©Nd order damped dynamics methdtf is employed to
Therefore, our final “acid test” is to use the ALPS and the Minimize the total energy. We set the convergence criterion
BLPS in OF-DFET. in order to see if these LPS’s. combinedi©® Pe 0.125 meV/atom for all OF-DFT calculations except

with linear-response-based SNDA KEDF's, can yield reasonfor HD Si, in which an even less strict convergence criterion

able results for various phases of Si. of 0.5 meV/atom was used. If a more strict convergence

These SNDA KEDF's have the following structure: criterion is used, the total energy of the semiconducting
phases of Si sometimes diverges. This has been traced to

TENOA P =Tonl p]+ TENPA 1. (200  humerical instabilities that sometimes arise in the WGC

KEDF, as will be reported in detail elsewhéfeFor com-
The second term can be decomposed further into two termsarison, we also present results using the WT KEBF.
as

V. RESULTS AND DISCUSSION
SND —
T A[p]_TTF[p]+aZB Na,pCTF A. Building the pseudopotential
a , / When we apply the Wang-Parr method, four criteria are
X (p(r)w, z(r—=r")|pP(r"). 21 )
(P Wa o NeAr) @D used to check the convergence of the global KS effective
Here, the kernelv, 5(r—r") in the nonlocal term of Eq21) potentialvg'f?ba r) [Eq. (9)].
can be either density independébt) or density dependent (i) The difference between Hartree energies of the target
(DD). For both casesy and B are adjustable exponents and density p(r) and the current iteration’s densigy(r), AJ
different options are available. If the kernel is DI, then we =J[p"(r)]—J[p(r)].

have the Wang-Tete(WT) KEDF (Ref. 18§ when a=p (i) The Hartree energy of the density difference
=2, the Perrot KEDF (Ref. 14 when a=p8=1, the J[Ap(r)], whereAp(r)=p"(r)—p(r).
Smargiassi-MaddefSM) KEDF (Ref. 19 when a= =1, (i) The difference between exchange-correlation ener-

and the Wang-Govind-CartéWGC) KEDF (Ref. 19 witha  giesSAE.=E,Jp"(r)]—E.J p(r)].

DI kernel for other choices ot and. In the last case, up to (iv) The difference between exchange-correlation
three terms were included in the summation, whege; is  potential energies  A(vylp(r))={(p"(r)|v,dp"(r)])

the corresponding weight associated with each term ane-(p(r)|v,dp(r)]), wherev [ p(r)]=SE. [ p(r)]/ dp(r).
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FIG. 1. Comparison of the non-Coulombic part of the ALPS pseudopotential for Si: the ALP@alid ling anq the BLES{dashed
(solid line) 10 o'y (q) data(symbol3 for (a) cubic and hexagonal Ilne)._The ful! remproca_l space pseudopotential _con_talnlng the Cou-
diamond Si(solid squares and open circlegb) B-tin and sc Si lombic part is p_Iotted_ n Fhe |nset:_ the ALP(SOIId. ling an_d the
(solid triangles and open triangesand (c) sbee, fec, and hep Si BLPS (dashed ling Significant deviations are evident at interme-

(open triangles, solid diamonds, and solid triangles diateg vectars.

As an example, the value of these quantities at the begirrepulsive. We believe this is due to the need to force the
ning and the end of the iterations for CD and fcc Si arehigher angular momentum electrons out from the core re-
shown in Table Il. In both cases, all four quantities decreasgion. This is accomplished mathematically in an NLPS by
by one or two orders of magnitude. Note that unlike inhaving electrons of different angular momentum experience
(spherically symmetricatomic cases, the target density can-different potentials. The LPS’s compensate for this lack of
not be exactly reproduced by our spherically symmetricflexibility by becoming more repulsive near the nucleus.
BLPS, since the bulk crystal density is, of course, not spheri-
cally symmetric. ) o ]

The Wang-Parr method applied to seven bulk phases of Si B. Testing the pseud.opotentlal in bulk environments
yields our v, (g) and v’,u(g) data(see Sec. Il The with KS-DFT
corresponding non-Coulombic part of the ALPS and the We now apply our BLPS within KS-DFT to bulk crystals,
v'puk(g) data from these seven bulk phases of Si are showgomparing the results to those employing a standard TM
in Fig. 1. The ALPS matches',,,,(g) of the sbcc, fcc, and  NLPS, as well as the Wang-Parr-derived ALPS.
hcp phases very welFig. 1(c)]. However, the ALPS over-
estimate® ', (g) of the 8-tin and sc phasd$-ig. 1(b)], and 4 . ! . I . I . !
severely overestimates ,,,(g) of the CD and HD phases at
several Bragg vectorid=ig. 1(a)]. The comparison here dis-
closes the defects in the ALPS and convinces us that con
structing a BLPS that further improves upon the ALPS is
worth pursuing.

By following the procedures of Sec. Ill, we constructed
the BLPS, both in real space and in reciprocal space. Thes .
reciprocal space and real space ALPS and BLPS are plottelX
in Figs. 2 and 3, respectively. For comparison, we also plot¥
the real space TM NLPS in Fig. 3. The ALPS, BLPS, and
TM NLPS (all three channejsare enforced to be Coulombic-
like beyond 3.5, 4.86, and 3.457 Bohr, respectively. The
BLPS radial cutoffr . of 4.86 Bohr was chosen by varyimg
to be as small as possible to enhance transferability, but i
could not be chosen too small or the valuevgf p(g=0)
would deteriorate. The local pseudopotentials match she
channel of the nonlocal pseudopotential beyond 1.2 Bohr. F|G. 3. Comparison of real space pseudopotentials for Si: TM
For shorter distances, the LPS’s strike a compromise beNLPS (solid lineg, the ALPS(dashed ling and the BLPSdashed-
tween thes andp channels of the NLPS, though ultimately at dotted ling. The Coulombic tails appear beyond 3.457, 3.5, and
distances within 0.5 Bohr, the LPS’s become much moret.86 Bohr for the TM NLPS, ALPS, and BLPS, respectively.

Hmrtree)

2 3
r (bohr)
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TABLE lII. Deviations of the LPS KS-LDA densities from the in between two Si atoms reaches 0.08685 a.u. Figdoe 4
NLPS KS-LDA density for CD, bct5, and fcc Si, as characterizedshows KS densities along the diagonal direction of (tHD)
by the four energy differencesneV/atom described in the text. plane. Within KS-LDA, the BLPS densitymaximum:
0.08616 a.y.is a bit closer to the NLPS density than is the

AJ JAp] AEy Avxdp) ALPS density(maximum: 0.08570 a.y.both reproduce the
ALPS NLPS density very well.
CD —202.45 5.45 41.58 54.70 . )
bets —113.89 279 28.33 37.25 2. Static structural properties
fcc —5.45 0.21 -1.24 -1.63 The quality of the LPS’s also can be judged by calculating

the potential energy surfad®ES for various phases. The

BLPS total energy versus volume curves for bulk phases of Si using
cD 20.34 2.04 —23098 31.41 the NLPS, the ALPS, and the BLPS are plotted in Fig. 5. The
bets 34.35 0.84 —20.66 —27.12 insets show scaled results, where we scale the volumes by
fee 14.11 1.01 —16.64 —21.89 the appropriate 1, and shift the total energies by the ap-

propriate— E i, in order to directly compare the shapes of
the PES’s. In KS-LDA, the PESs from the ALPS and the
BLPS are almost parallel to those from the TM NLPS. The
corresponding insets show that the PES’s from the BLPS are
By construction, the BLPS produces a more accurate dersjightly closer to those from the NLPS in both cases.

sity than the ALPS for various phases of Si in KS-LDA  Then the results are least-squares-fitted to Murnaghan’s
calculations. We first examine the density-related quantitiegquation of stafé

outlined above, namelyAJ,J[Ap],AE,., and A(v,Jp) as

1. The density

measures of how close the densities from the LPS’s compare BV | (V /V)Bé
to that from the NLPS. Better reproduction of the NLPS KS E(V)= ——| 2" 41| +const. (25)
density by the LPS KS densities will result in smaller values By | Bp—1

of those quantities. Results are shown for CD, bct5, and fcc
Siin Table lIl. In KS-LDA, the quality of the density for CD Here, By and B are the bulk modulus and its pressure de-
and fcc phases obtained from the BLPS is more balancetdvative at the equilibrium volum#&,. Table 1V displays the
than that from the ALPS; nevertheless, the density of fcc Svalues forVg, By, Enin, and AE,;, derived from the fits,
is better described than that of CD Si, which is not surpriswhereE,;, is the equilibrium total energy for the CD struc-
ing, given that the more isotropic nature of the density in fccture and AE,,, is the energy differenceE,,(phase)
Si is easier to reproduce with a LPS. Unlike the CD and fcc— E,,;,(CD) between the other eight structures of Si and
phases, the bct5 structure was not used to construct tlground state CD Si.
BLPS, but its density using the BLPS is still significantly =~ Use of the ALPS in KS-LDA calculations yields accurate
closer to that from the NLPS than the ALPS. This convincesequilibrium volumes and a phase ordering that is correct,
us that the BLPS generally produces better densities than thexcept for thes-tin phase. However, the ALPS severely un-
ALPS for all bulk structures within KS-LDA. derestimategby about a factor of Rthe energy difference
We also directly compared the densities in (h&0 plane  between the semiconducting and most metallic phases. This
of CD Si obtained using KS-LDA with the NLPS, the ALPS, is not surprising, since the values of the ALPS are too high at
and the BLPS. Figure (4) displays the density using the all Bragg vectors of the semiconducting phases of Si, while
NLPS; the directional bonding between the Si atom and itshe corresponding ALPS values for the metallic phases are
nearest neighbors is evident in the highly localized regionsery good(see Fig. 1L The semiconducting phases are dis-
(dark areasof high density. The maximum valence density favored as a result. We can understand this by recalling that

(a) > i ‘ (b)"

0.081
25

FIG. 4. LDA densities in the
(110 plane of cubic diamond Si.
(a) Contour plot of the density
from a NLPS KS calculation.
Dark areas represent high density,
light areas low density(b) Den-
sity slices along the diagonal of
the (110 plane. The solid line is

20 5

15

— NLPSKS-LDA

-- ALPSKS-LDA NLPS KS; dashed line is ALPS
002 AT oenA I KS; dashed dotted line is BLPS
o KS; dotted line is ALPS OF;
dashed-double-dotted line is

10

BLPS OF.
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for CD [(a)] and fcc[(b)] Si. Both
(@ and (b) are KS calculations
comparing NLPS(solid squares
vs ALPS (open circley vs BLPS
(opaque trianglesInsets: the total
energy is shifted by the equilib-
rium total energy per atom and the
atomic volume is scaled, dividing
by the equilibrium atomic volume.
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the ALPS is derived from a spherically symmetric atomicable agreement with those from the NLPS; however, com-
configuration. In semiconducting Si, the bonding is direc-pared to those from the ALPS, the bulk moduli in particular
tional, while in metallic Si, the bonding is more isotropic and are often worse. It is the relative energies of various struc-
hence more closely resembles the atomic case. Thus, theres that leads us to conclude that the BLPS improves upon
ALPS describes the metallic phases much better than théhe ALPS.
semiconducting phases, leading to energies too high for CD It seems a bit contradictory that the ALPS could produce
and HD Si and therefore too small a gap between the metaks accurate PES’s as the BLPS, but make severe errors in
lic and semiconducting phases. Despite the errors in relativenergetics. We can understand this by recognizing that the
energies, the bulk moduli obtained using the ALPS are geneverall shape of the PES depends on the first derivative of
erally in very good agreement with those from the NLPSthe reciprocal space LP& p5g)/dg and on the value of
(aside from the fcc Si phase, which is slightly too Iarge v p(g=0). By contrast, the relative energy ordering of
Use of the BLPS in KS-LDA improves the relative ener- various phases relies on the valuevghgg) at the distinc-
gies markedly. The phase ordering with the BLPS is corrective Bragg vectors of different structures andyat0. In the
almost for all structurega slight error exists between sbcc case of Si, the BLPS has lower values at snga(Fig. 2),
and fcc energigs though the B-tin relative energy is which will stabilize systems with large volume; on the other
~0.05 eV too high. The qualitative energy differences be-hand, lowering the p(g=0) value will stabilize systems
tween semiconducting Si and metallic Si phaseSE(  with small volume. By carefully balancing these competing
~0.4 eV) are now well reproduced. Since the BLPS con-actors, the BLPS can be constructed to minimize the error
tains information of seven phases of bulk Si, it now treatsengendered by the ALPS in energetics, while maintaining the
them on more of an equal footing. The equilibrium volumesaccurate shape of the PES produced by the ALPS.
and bulk moduli predicted by the BLPS are also in reason- When constructing the BLPS, no information from the

TABLE IV. Comparison of KS-LDA predictions of Si bulk properties for three different pseudopotentials:
equilibrium volume ¥,), bulk modulus By), equilibrium total energy for CD SiK,,,), and equilibrium
total energy relative to CD SIAE,in=Emin— E%%) for other bulk phases.

CD HD cbcc  B-tin bcts sc hcp sbcec fcc
NLPS
VO(A3) 19.532 19.579 17.735 14.796 16.871 15.499 13.765 14.057 13.850
By(GPa) 92.5 89.2 90.8 1147  98.2 105.0 89.0 96.6 86.7

(A)Epn(eViatom) —108.059 0.014 0.137 0.228 0.246 0.293 0.435 0.446 0.461

ALPS
Vo(A3) 19.643  19.692 17.812 14.754 16.846 15.440 13.852 13.993 14.025
Bo(GPa) 93.0 89.4 89.2 113.2 98.7 106.6 91.8 99.7 95.6

(A)En(eViatom) —109.477 0.017 0.122 0108 0.166 0.170 0.227 0.237 0.241

BLPS
V(A3 19.432  19.492 17.850 14.880 16.838 15.537 13.858 14.058 14.022
Bo(GPa) 95.5 915 90.0 1065 975 103.0 830 886  87.8

(A)Epn(eViatom) —110.234 0.020 0.165 0275 0.249 0.303 0.447 0.462 0.457
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TABLE V. Transition pressure€GP3g calculated from KS-LDA TABLE VI. Defect formation energy(eV/defeci calculated
using the TM NLPS, the ALPS and the BLPS. Values in parenthesefom KS-LDA for CD Si.
are the corresponding OF-LDA results using the WGC KEDF.

NLPS ALPS BLPS other estimates

NLPS ALPS BLPS Expt

vacancy 3.67 3.21 3.17 3%
CD— B-tin 8.2 3.6(6.4) 10.2(12.0 12.5% self-interstitial 3.99 3.14 3.46 3.7
CD—bct5 16.3 10.117.0 16.6(23.0

3From Ref. 44—experimental estimate.
3 rom Ref. 43. bFrom Ref. 45—KS-LDA, larger supercell, relaxed structure.

cbcc (Ref. 36 and bct5(Ref. 39 phases were used. There- N—1 N—1

fore, calculation of their properties provides a good test of EUfEE< |\|—1,1,—Q) - ——E(N,00), (29
the transferability of the BLPS. KS-LDA results for those N N

phases are also shown in Table IV. The relative equilibrium

total energy, equilibrium volume, and bulk modulus of the N-+1 N+1

cbce phase obtained from the NLPS are reasonably well re- EifEE( N+l’1’TQ) - ENOQ), (29
produced by both the ALPS and the BLPS. For the bct5

structure, again the NLPS equilibrium volume and the bulk )

modulus are reproduced well by both the ALPS and theVhereE(n,m,Q) is the total energy of the system of volume
BLPS. The marked improvement again appears in the rela, with n Si atoms andn defects. T_he results are shown in
tive energy, when the BLPS yields almost exactly the NLpsTable VI. F_or comparison, we also list the \_/acancy_formanon
result, while the ALPS relative energy is too loas in all ~ €nergy estimated by Watkiret al. from their experimental

the metallic cases calculated with the ADPS work,** and a KS-LDA self-interstitial formation energy by
Needs?® Since we do not allow the defective crystals to re-
3. Pressure-induced phase transitions lax, the results obtained here are only rough approximations

to the true defect formation energy. For the vacancy forma-

Up to now, we have only considered structural propertiestion energy, our approximate result from KS-NLPS is very

at zero temperature and pressure. At nonzero temperatufg,qe 15 the experimental result, while results from both the

and pressure, the stability of a system depends on the Gib%_PS and the BLPS are too small by0.5 eV. For the
free energy self-interstitial formation energy, the NLPS prediction is only
G=E..+PV—TS 26 slightly Iarger_ tha_n tha@ obtained from a more refined KS-
total 26 LDA calculation in which a larger relaxed supercell was
5 . .
At zero temperature, pressure can cause the Gibbs frédnployed™®Again, the ALPS and the BLPS yield values that
induced phase transitions. Table V displays transition presdere over the ALPS.
sures at zero K calculated with KS-LDA and OF-LDA using
the NLPS, the ALPS, and the BLPS, and employing the com- ¢ appjication of the pseudopotential in bulk environments

mon tangent rule with OF-DFT
dE dE As stated earlier, the ultimate goal is to create high quality
av LY =~ Ptrans: (27 local pseudopotentials for use in OF-DFT calculations. Hav-
phasel phase2 ing established the accuracy of the BLPS in KS-DFT, we

Within KS-LDA, the phase transition from CD tg-tin Si  how apply the ALPS and the BLPS in OF-LDA.

occurs at 8.2, 3.6, and 10.2 GPa, using the NLPS, ALPS, and

BLPS, respectively, while the experimental value at room 1. The density

temperature is 12.5 GR&ef. 43 (see also Ref. 35 Here In OF-DFT, the variationally optimized density is the

again we see th_e s_uperiority of the BLPS over the ALPS_most important feature to measure the quality of the KEDF
with the BLPS vyielding the pressure cIoses_t to both eXperiung the LPS. In Table VII, we compare the OF-LPS density
ment and the NLPS value. For the transition from CD 10, the KS-NLPS density, again by calculating the four energy

betS, the corresponding values are 16.3, 10.1, and 16.6 GRgtterences established before. As expected, the deviations in
from the NLPS, ALPS, and BLPS, respectively. NO experi-yhage quantities are larger for OF-DFT than for KS-DFT
mental data are available for this transition, but the excellen{-l-ame Ill). In general, we see that the BLPS produces a

agreement between the BLPS and the NLPS is encouragingetier density than the ALPS in all three structures. It is very

encouraging that the OF-BLPS density for CD Si is remark-
ably accurate. The bct5 phase exhibits larger deviations in

We also tested the transferability of these local pseudopathe density. Given the accuracy of the KS-LPS density, it is
tentials by studying defects in CD Si. Here we consider botHikely that this error is caused by the WGC KEDF. An ex-
formation of a vacancy and a self-interstitial, whose forma-plicit comparison of KS and OF densities for CD Si is given
tion energies are calculated as in Fig. 4(b) for a density slice along the diagonal of .0

4. Vacancy and self-interstitial formation energies in Si
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TABLE VII. Deviations of the LPS OF densities from the NLPS 2. Static structural properties

KS-LDA density for CD, bct5, and fcc Si, as characterized by the
four energy differenceémeV/aton) described in the text. The OF- We now use the ALPS and the BLPS to calculate the PES

DET calculations used the WGC KEDE. in OF-DFT to_ fin_d out if forces can be_ calcu_lated _sufficiently
accurately(thinking ahead to dynamical simulationsThe
AJ JAp] AE,. Avydp) PES’s for CD and fcc S_i frqm OF-LD,Q_using the ALPS and
the BLPS are plotted in Fig. 6. The insets again show the
ALPS scaled results, as in Fig. 5. In these OF-DFT calculations,
CD —216.77 4.83 69.46 91.05 both the WGC and WT KEDF's were employed. We also
bets —558.64 46.84 243.60 32011 ot the PES from KS-LDAusing the ALPS and the BLBS
fcc —9.97 0.84 2.93 3.85 for comparison. The PES’s of CD Si from both KEDF’s are
not satisfactorysee Figs. @) and Gc)], although the im-
BLPS provement of the WGC KEDF over the WT KEDF is evi-
CD 86.59 4.49 —26.58 —35.08 dent. First, the PES from the WGC KEDF has a distinct
bets —413.50 35.93 196.18 257.80 minimum, unlike the WT KEDF. Second, the WGC KEDF
fec 21.36 0.48 —-1081 —14.21 brings the total energy at different volumes much closer to

the KS total energy for both the ALPS and the BLPS. At the
equilibrium volume predicted in KS theory, the total energy
plane. Both the ALPS and the BLPS put a bit too muchobtained from OF-DFT is very close to that from KS-DFT
density in the bonding regionl.5<r=<3.2 a.u], but every- for both the ALPS and the BLPS. However, for smaller vol-
where else the OF-LPS densities are quite close to the KSimes, the total energies are overestimated and for large vol-

NLPS density. umes they are considerably underestimated. The PES’s of fcc
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FIG. 6. LDA total energiegeV/atorm vs atomic volume (A) for CD [(a), (c)] and fcc[(b), (d)] Si. Insets: the total energy is shifted by
the equilibrium total energy per atom and the atomic volume is scaled, dividing by the equilibrium atomic v@uamel(b) use the ALPS
to compare KSsolid squaresvs OF/WGC KEDFopen circlesvs OF/WT KEDF(opaque triangles(c) and(d) use the BLPS to compare
KS (solid squaresvs OF/WGC KEDF(open circles vs OF/WT KEDF(opaque triangles
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TABLE VIII. Comparison of OF-LDA predictions of Si bulk properties using the WGC KEDF.

CD HD chcc  B-tin bcts sc hcp shcc fcc
ALPS
Vo(A3) 23.987 19.036 17.772 14545 16.943 15.653 13.715 13.902 13.766
By(GPa) 27.2 92.6 93.9 124.3 89.7 108.2 116.1 1139 1064

(A)Epn(eV/iatom) —109.562 0.302 0.458 0.314 0448 0349 0321 0.361 0.323

BLPS
Vo(A3) 23.966 18.788 17.802 14.638 16.963 15.749 13.689 13.938 13.738
Bo(GPa) 25.8 92.6 93.2 120.7 88.6 107.7 1116 107.2 101.6

(A)Enn(eViatom) —110.345 0.324 0537 0515 0602 0506 0569 0617 0571

Si in the OF scheme are much betfsee Figs. @) and density in the defect area in CD Si is beyond the range that
6(d)], although small deviations from the KS results still ex-the present KEDF’s can handle, leading to unacceptably
ist. From the insets, we see that the ALPS and the BLP%arge errors in relative energies. However, we still found that

work roughly equally well. the electron densities in these defective systems are better

To obtain structural properties, the OF-DFT results areeproduced by the BLPS than by the ALPS.
again least-squares-fitted to Murnaghan’s equation of state

for all nine phases of SiTable VIII). Both the ALPS and the
BLPS predict CD Si to be the ground state within OF-LDA.
However, the energy ordering and magnitude of the energy
differences QAE,,, for the phases are wron¢compare We proposed a scheme for generatial initio local
Tables IV and VII). For the ALPSAE,,, are too high for all  pseudopotentials suitable for use in condensed matter simu-
structures when compared against KS-LDA using the ALPSlations, with the particular goal of eventually using them in
Compared to KS-LDA using the NLPS, the ALPS-QIE,;, linear-scaling OF-DFT calculations. The strategy exploits the
are too high for the first five structures and too low for theexternal-potential-density connection established by Hohen-
last three. For the BLPS, again thé& ,;, are too high for all  berg and Kohn and utilizes densities from bulk crystals. In
phases. We also see substantial errors for CD Si in the equparticular, we have shown that fairly accurate, transferable
librium volume (~20%), the bulk modulus70%), and local pseudopotentials for an element that is not at all spheri-
the equilibrium energy 0.1 eV/atom). On the other hand, cal nor nearly free-electron-likée.g., S} can be developed
the equilibrium volume and the bulk modulus obtained fromby inversion of the KS equations solved for bulk phases.
OF-DFT for other phases are much more accurate. The erroiccurate phase orderings, equilibrium volumes, bulk moduli,
are within 4% for the former and 20% for the latter. Given densities, and good potential energy surfaces for bulk Si
the encouraging results obtained with KS-LDA and thewithin KS-LDA are obtained with this bulk-derived local
BLPS, the errors in Table VIII must be due primarily to pseudopotentialBLPS). This BLPS produces transition
shortcomings in the KEDF. The WGC KEDF is a good com-pressures and defect formation energies that are qualitatively,
promise between accuracy and cost; however, it is still nothough not quantitatively, correct. A major achievement is
universal enough, given that it is based on a perturbatiothat the combination of the LPS’s and the WGC KEDF in
away from the uniform electron gas. The demanding case dPF-DFT predicts the correct diamond structure ground state
covalent Si is far from a mere perturbation; large errors ardor bulk Si. However, other properties produced within OF-
to be expected. How to constrain future KEDF's to treat sucHDFT with the BLPS still have significant errors, which can
localized electron densities remains an outstanding issue ipe rather confidently ascribed to error primarily in the
OF-DFT. KEDF’s themselves. These results provide the impetus to
now move forward in improving KEDF's for nonmetals,
which is the next stage of our wof#.

VI. CONCLUSIONS

3. Other applications

We also calculated the transition pressure using the OF-
DFT data; the results are shown in Table V. Within OF-LDA
using the WGC KEDF, the transition pressures are consis-
tently higher than from KS-LDA. Since the OF-DFT predic- We thank Drs. Derek C. Walter, Stuart C. Watson, Emily
tions of the bulk modulus and equilibrium volume of CD Si A. Jarvis, Mr. Vincent Cocula, Ms. Robin L. Hayes, and Mr.
have large errors, we do not expect the transition pressures fde-en Jiang for helpful discussions. Financial support for
be reliable. We believe the agreement between the OF-ALP#is project was provided by a DOD-MURI grant. Y.A.W.
and the KS-NLPS transition pressures is fortuitous. gratefully acknowledges financial support from the Natural

We attempted to calculate defect formation energiesSciences and Engineering Research CoufNBERQ of
within OF-DFT. We find that the dramatic variation of the Canada.
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