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Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations
in a bulk environment
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The lack of accurate transferable local pseudopotentials represents one of the remaining barriers to the
general application of orbital-free density functional theory~OF-DFT, a linear scaling technique!. Here we
report a method to generate high qualityab initio local pseudopotentials~LPS’s! for use in condensed matter
DFT calculations. We exploit the first Hohenberg-Kohn theorem, which states that the external potential is
one-to-one mapped to the ground-state electron density. By employing a scheme for inverting the Kohn-Sham
~KS! equations due to Wang and Parr, we iteratively solve for the KS effective potentialveff

KS(r ) until it
reproduces a target density. Fromveff

KS(r ) we derive a global LPS for the entire system. This global LPS is then
further decomposed to obtain an atom-centered LPS. We show that LPS’s derived from bulk environments are
substantially more transferable than those derived from atoms alone. In KS-DFT tests on Si, we show that this
bulk-derived LPS can reproduce accurately phase orderings predicted by nonlocal pseudopotentials for both
metallic and semiconducting phases. We then tested this LPS in OF-DFT calculations on Si crystals, where we
demonstrate that this bulk-derived LPS~BLPS!, combined with a linear-response-based kinetic energy density
functional with a density-dependent kernel, correctly predicts a diamond structure ground state for Si in an
OF-DFT calculation. Other bulk properties, such as defect formation energies and transition pressures are also
presented as tests of this BLPS. This approach for deriving LPS’s isolates much of the remaining error in
OF-DFT to the kinetic energy density functional, providing means to test new functionals as they become
available.

DOI: 10.1103/PhysRevB.69.125109 PACS number~s!: 71.15.Dx, 71.15.Mb, 31.15.Ar
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I. INTRODUCTION

The original Hohenberg-Kohn~HK! theorems of density
functional theory~DFT! do not rely on the existence of
wave function to describe the physical system.1 The density,
a function of 3 instead of 3N coordinates, is the only physi
cal variable. Kohn and Sham introduced a set of orbitals
order to represent the noninteracting kinetic energy as
expectation value of the Laplacian.2 As a result, in the
orbital-based Kohn-Sham~KS! scheme, a set of couple
nonlinear one-particle Schro¨dinger-like equations must b
solved and one now has again 3N degrees of freedom to
account for. By contrast, in the orbital-free~OF! DFT, one
only needs to solve a single Thomas-Fermi-Hohenberg-K
~TFHK! equation1

dE@r#

dr~r !
5

dT@r#

dr~r !
1

dEne@r#

dr~r !
1

dEee@r#

dr~r !
5m. ~1!

The traditional KS-DFT method has a cost scaling cu
cally with the size of the system, due to the need to ortho
nalize the KS orbitals. Over the past decade, there has be
blossoming of so-called linear-scaling techniques,3–5 whose
objective is to reduce this cubic scaling. The orbital-bas
linear-scaling methods3 all depend on the ‘‘nearsightedness
principle5 and the concept of ‘‘locality’’ in quantum
chemistry,6 which allows orbital localization into regiona
domains to be achieved. However, the localized orbi
within each regional domain still must be orthogonalize
which again is aO(N3) procedure, albeit with smallerN. As
a result, only for large numbers of atoms~e.g.,
0163-1829/2004/69~12!/125109~15!/$22.50 69 1251
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.50–100 atoms or so! will these orbital-based linear-scalin
methods become cheaper than the conventional cano
methods.5 Furthermore, these orbital-based linear-scal
strategies are not linear for metallic systems, since the or
als in metals cannot be exponentially localized.

An alternative is to completely avoid introducing K
orbitals and instead solve directly for the density,
in the original Thomas-Fermi-Dirac-Weizsa¨cker ~TFDW!
model.7–11 Then if one employs three-dimensional period
ity, it is possible to calculate the kinetic energy, extern
energy, and Hartree terms in reciprocal space using fast F
rier transforms, leading to effectively linear@O(N ln N)#
scaling.4,12 @Calculation of the exchange-correlation term
alreadyO(N) because it is short-ranged in real space.# Thus,
in practice one can solve for the electron densities, str
tures, and properties of hundreds and even thousands o
oms with an OF-DFT.4,13–17

The main advantage of OF-DFT is that it complete
avoids the bottlenecks present in the orbital-based line
scaling methods, such as the cost to localize and orthogo
ize the orbitals and, with only a density to solve for, there
no need for Brillouin-zone integration in periodic system
As a result, unlike the localized orbital methods, no cro
over point exists in terms of system size at which the meth
becomes cheaper than the conventional canonical met
From the smallest system upward, the OF-DFT approac
always effectively linear scaling.

On the other hand, as a consequence of giving up the
orbitals, the entire energy functional must be expres
solely in terms of the density, not only for the exchange a
©2004 The American Physical Society09-1
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correlation energy, but also for the kinetic energy. Devel
ment of kinetic energy density functionals~KEDF! has seen
a resurgence of interest, with significant progress made e
cially in the last decade.10–12,14,15,18,19High quality KEDF’s
based on the weighted density approximation~WDA! and
the average density approximation~ADA ! have been applied
with encouraging results to atomic species and jelli
surfaces.10,11 However, general, effective implementations
these complicated but more universal KEDF’s based on
nonlocal density approximation~NLDA !, for realistic mo-
lecular and periodic systems, have not been reported
Linear-response-based KEDF’s, which rely on the so-ca
simplified nonlocal density approximation~SNDA!, have
been shown to be accurate~to the meV/atom range! for sp-
bonded nearly free-electron-like metals~alkalis, alkaline
earths, group III metals!.4,12,14–19However, SNDA KEDF’s
do not achieve meV accuracy for systems with localiz
electron densities such as in molecules and covalent or i
solids. For those systems, no simple yet accurate KEDF’s
available and the representation of the kinetic energy po
difficulties. This limits the accuracy of OF-DFT and hen
its widespread application. Developing accurate KEDF’s
these systems remains at the frontiers of research.12

The other technical challenge associated with general
plicability of OF-DFT is the electron-nuclear interaction e
ergy. In KS-DFT, this is often treated by nonlocal pseudo
tentials ~NLPS’s! that contain orbital-based projectio
operators.20–22 Although transferable accurate NLPS’s a
available, they cannot be used in OF-DFT, since the pro
tors cannot act on a density instead of a wave function. T
limits the form of the ion-electron interaction to be of th
LPS variety@v(r )#, for which it is difficult to provide trans-
ferability, i.e., LPS’s may work well in one environment b
not another. In this paper, we address this second issue
how to develop transferable first-principles-based LPS’s
the OF-DFT method.

II. THEORY OF ab initio LOCAL PSEUDOPOTENTIALS

Pseudopotentials are used ubiquitously in solid state D
calculations in order to reduce the expense associated
representing the core electrons.20 Instead of explicitly con-
sidering all electrons in the system, one can often get a
with explicitly considering only the valence electrons, sin
they are largely responsible for most physical and chem
properties of interest. The effect of the inner shell core el
trons and the nuclei on the valence electrons can instea
described by a pseudopotential. There are two kinds
pseudopotentials: nonlocal~NLPS! ~Refs. 20–22! and local
~LPS!.23–25An LPS is a simple function of electron position
while an NLPS depends not only on the electron position
also utilizes a different potential for each angular moment
channel. Mathematically, this is realized by means of proj
tion operators that act on the system’s wave function, in
der to project out the potential appropriate for various typ
of electrons~e.g.,s,p, or d).21 Generally,ab initio NLPS’s
have been designed by requiring that the pseudopotentia
produce the atomic valence eigenvalues from all-elect
calculations and that the pseudoatomic wave function ma
12510
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the all-electron wave function beyond a chosen core cu
radiusr c . With an appropriately chosen core radii for eacl
channel, calculations using an NLPS generally can reprod
the results of all-electron calculations very well. The succ
of the NLPS’s can be attributed to the fact that the NLP
are constructed to reproduce the valence eigenvalues an
preserve the scattering properties of the all-electron at
Since an LPS acts on each angular momentum channel
same potential, there is no way to have such a potentia
produce all the valence eigenvalues. Therefore, the dem
ing requirements made of a NLPS must be altered w
constructing an LPS.

A natural alternative is to devise a scheme which requ
the LPS to reproduce a given valence pseudodensity.12,24,25

This idea is consistent with the basic tenet of DFT: only t
electron density is of fundamental importance.26 In the ap-
proach we describe below, no constraints are placed on
functional form of the LPS other than that it should retain
pure Coulombic tail asymptotically, so that the usual mat
ing conditions between pseudo-wave-functions and
electron wave functions will hold. Thus, unlike other earli
model LPS’s,23 there are no empirically fit parameters in
volved at all.

The firstab initio LPS’s based on this density-reproducin
concept were devised by Watsonet al.24 In their approach,
the LPS’s were required to reproduce a KS density within
OF-DFT calculation on a bulk crystal. To achieve this, t
KS density was inserted into the TFHK equation@Eq. ~1!# in
OF-DFT, and then the TFHK equation was inverted in rec
rocal space to obtain the reciprocal space pseudopote
vext(g) as

vext~g!5
dEne@r#

dr~g!
UrKS

52H dT@r#

dr~g!
1

dEee@r#

dr~g! J U
rKS

. ~2!

The LPS’s resulting from this approach have certain dra
backs. First, any defect in the KEDF potential will be r
tained in the resulting LPS, as seen in Eq.~2!. Second, these
LPS’s do not have a strict Coulombic tail in real space
ymptotically. Finally, current KEDF’s are only accurate fo
main group metals; therefore this precludes generalizing
approach to produce accurate LPS’s for all elements.

In order to avoid the errors associated with incorporat
the KEDF potential into the pseudopotential via Eq.~2!, we
instead construct LPS’s using the exact~noninteracting! ki-
netic energyTs calculated within KS theory. We first imple
mented this idea for atoms, i.e., producing LPS’s based o
KS valence electron density for an atom.25 The resulting
atomic LPS’s~denoted here as ALPS! are good, but still lack
transferability and sufficient accuracy when applied to cr
tals. The motivation of the present work is to move beyo
an ALPS to achieve the desired accuracy for condensed
ter calculations. To accomplish this, we choose bulk crys
line KS densities as target densities that our pseudopoten
need to reproduce, as in the approach of Watsonet al. How-
ever, here errors in the KEDF potential do not appear, si
the exactTs potential is employed. We term the resultin
potential the bulk LPS~BLPS!. We will see that the BLPS
yields results significantly superior to those using the ALP
9-2
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III. ab initio LOCAL PSEUDOPOTENTIAL DERIVED
FROM BULK CRYSTALS

According to the first HK theorem,1 a unique LPS exists
one-to-one mapped to a given ground-state density. Th
fore, given a high-quality density, we simply require a pa
between the density and the potential. However, there is
unique path—this is an example of the ‘‘inverse problem’’
mathematics. Many paths have been suggested;27,28 we have
found that an approach suggested by Wang and Parr27 is the
most stable numerically and therefore we employ it here

In order to start construction of the LPS, we must hav
high quality target density that we wish to reproduce—
extent to which the LPS we create is able to achieve this
be the figure of merit by which we judge the quality of th
LPS. Here, we employ the Troullier-Martins~TM! NLPS
~Ref. 22! in order to generate the target density from a K
DFT calculation of a bulk crystal. Then the global KS pote
tial for the entire crystal is determined from the target dens
following Wang-Parr’s approach. After this, the Hartree a
exchange-correlation potentials are subtracted to obtain
cal, global external potential. Finally, we extract an ato
centered local pseudopotential from the global external
tential, as explained below.

In the Wang-Parr method,27 the KS equations are inverte
to solve for the potential corresponding to a given dens
The following is an adaptation of the Wang-Parr method
a bulk environment. We start from the KS equations

S 2
1

2
“

21veff~r ! Df i ,k5e i ,kf i ,k , ~3!

where i is the band index andk is the index ofk points.
Specifically, our goal is to find the LPS contained within t
local KS effective potentialveff(r ) in Eq. ~3! that reproduces
a target density. We do so by multiplying both sides of E
~3! by (f i ,k* /e i ,k), then summing over all the bands an

k points, and then dividing byr̄(r ), the energy-weighted
density
i
n’s
a-

12510
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r̄~r !5(
k

w~k!(
i

f i ,k

uf i ,k~r !u2

e i ,k
. ~4!

Here, w(k) is the weight associated with eachk point and
f i ,k is the occupation number of the orbitalf i ,k . This leads
to an exact expression for the local KS effective poten
~which implicitly contains the desired LPS! given by

veff~r !5

r~r !1(
k

w~k!(
i

f i ,kf i ,k* ~r !S 1

2
“

2Df i ,k~r !/e i ,k

r̄~r !
.

~5!

While r(r ), the target density, is aninput from aseparate
self-consistent field calculation~in our case, KS-DFT using a
TM NLPS on the same bulk crystal!, the occupation number
f i ,k , the eigenvaluese i ,k and the orbitalsf i ,k in Eq. ~5! are
unknown initially for the LPS case; they must be obtain
for the case of KS-DFT with an LPS. Therefore Eq.~5! can-
not be used directly and an iterative solution must be e
ployed. This was designed by Wang and Parr as the follo
ing: at thenth iteration, the KS equations are solved with t
last iteration’s version of the KS potentialveff

n21(r ) which
contains the (n21)th’s LPS, to obtain orbitals and eigenva
ues for the next iteration

S 2
1

2
“

21veff
n21~r ! Df i ,k

n ~r !5e i ,k
n f i ,k

n ~r !. ~6!

Multiplying by f i ,k
n* (r ) and rearranging Eq.~6! yields

f i ,k
n* ~r !S 1

2
“

2Df i ,k
n ~r !5@veff

n21~r !2e i ,k
n #uf i ,k

n ~r !u2. ~7!

Inserting Eq.~7! into Eq. ~5! produces an approximation fo
the next iteration of the KS potential
veff
n ~r !5

r~r !1(
k

w~k!(
i

f i ,k@veff
n21~r !2e i ,k

n #uf i ,k
n ~r !u2/e i ,k

n

r̄n~r !
. ~8!
en-
is

y-

e
ee

a-
We may further simplify Eq.~8! by noticing that the first
term in the summation appearing in the numerator

veff
n21(r )• r̄n(r ) and the second term is the current iteratio

densityrn(r ). We can pull out the first term in the summ
tion to obtain

veff
n ~r !5veff

n21~r !1
r~r !2rn~r !

r̄n~r !

5veff
n21~r !1Dvn~r !. ~9!
s
Special attention must be paid to this quantityDvn(r ),

which is the difference between the current iteration’s pot
tial and the next iteration’s potential. First, the potential
improved in the right direction only when the energ

weighted densityr̄n(r ) is negative everywhere; otherwis
the next iteration’s potential will be worse. In order to s
this, suppose the potentialveff

n21(r ) of (n21)th step pro-
duces a densityrn(r ) at r , which is smaller thanr(r ), the
target density at the same point. From Eq.~9!, it is obvious
that if the energy-weighted densityr̄n(r ) is positive atr then
Dvn(r ) will also be positive, which means the next iter
9-3
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tion’s potentialveff
n (r ) will be more repulsive. This will lead

to an even smaller densityrn11(r ) at the next step, which is
worse than the previous step.

We also observe that asrn(r ) approaches closer an
closer to the target densityr(r ), Dvn(r ) will get smaller and
smaller. To achieve fast convergence, the energy-weig
density r̄n(r ) should be controlled to be small enough th
Dvn(r ) still has significant magnitude so that the Wang-P
scheme remains numerically sensitive.

In order to guarantee that the energy-weighted den
r̄n(r ) is both negative and small everywhere, we shift
eigenvaluese i ,k by 2e0. This is equivalent to calculating
r̄n(r ) from the following, instead of from Eq.~4!:

r̄n~r !5(
k

w~k!(
i

f i ,k
n

uf i ,k
n ~r !u2

e i ,k
n 1e0

n
. ~10!

If we use Eq.~10! in Eq. ~9!, this is basically the same
approximation as using Eq.~4!. The subtle difference is tha
now the approximation is weighted by 1/(e i ,k1e0) instead of
1/e i ,k . We do not need to worry about any artifact caused
the shift, as long as the final global effective potentialveff

KS(r )
can reproduce our target density, since we know from
first HK theorem that the local potential will be determin
only to within an additive constant.

The value of2e0 can be chosen in an optimal manner
follows. Notice that in the summation of Eq.~10!, different
terms make differently sized contributions tor̄n(r ). The
term with the smallest denominator will dominate. Based
this observation, we designed a scheme to determine the
timal value of the shift2e0 at each iteration step. We firs
check the spacing between the eigenvaluese i ,k of all the
occupied orbitals and find the pair of adjacent energy lev
with the largest gap. By carefully choosing an appropria
2e0 in this gap, we can guarantee that the energy-weigh
densityr̄(r ) is negative and small everywhere due to canc
lation between oppositely-signed contributions from the
lected pair of levels. We found that Wang-Parr’s meth
works very well in a bulk environment after we control th
energy-weighted density in this way, where we update
global bulk external potentialv loc

global(r ) in real space for a

primitive cell. We note that for isolated atoms,r̄n(r ) is al-
ways negative since the eigenvalues are always nega
Moreover, convergence in the atomic case was found to
more robust than in the bulk case, so for both reasons
shift of the eigenvalues was needed for construction of
ALPS.25

After the global KS effective potential is converged, t
terms due to electron-electron interactions are remove
obtain the unscreened ionic pseudopotential

v loc
global~r !5veff

global~r !2
dJ@r#

dr~r !
2

dExc@r#

dr„r )
. ~11!

Here J@r# and Exc@r# are the usual Hartree repulsion an
exchange-correlation energies. Equation~11! provides a glo-
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bal bulk ionic pseudopotentialv loc
global(r ), which is a superpo-

sition of the contributions from all the ions in the simulatio
cell.

We extract the atom-centered local pseudopoten
v loc

atom(r ) from v loc
global(r ) as follows. v loc

global(r ) is Fourier-
transformed into reciprocal space

vglobal~g!5
1

V E Vv loc
global~r !•eig•rdr , ~12!

whereV is the periodic unit cell volume. Due to the period
icity of the system, the reciprocal space external poten
vglobal(g) obtained by fast Fourier transform29 at each itera-
tion step should always vanish where the structure fac
S(g) ~Ref. 30! is zero. Numerically, we found that some
times this is not true, though the deviation is small. To av
these spurious values, we setvglobal(g) to zero, wherever
S(g) is zero. Next we dividevglobal(g) by the structure factor
S(g) to get the form factorvatom(g),30 which contains all the
information of the atom-centered potential

vatom~g!5
vglobal~g!

S~g!
. ~13!

For an ordered bulk crystal, the Bragg vectorsg are
discontinuous.31 Consequently, information is only availabl
at the Bragg vectors of that specific bulk structure. In ord
to gain as much data as possible to define the BLPS,
perform the Wang-Parr iterative scheme for multiple bu
structures so as to definevatom(g) at as manyg vectors as
possible. We then spherically averagevatom(g) to get a one-
dimensional isotropic pseudopotentialvbulk(g)

vbulk~g!5
1

ng
(

ugi u5g
vatom~gi !, ~14!

where ng is the total number ofg vectors which have the
same lengthg. In order to most sensitively process thev(g)
data ~especially for smallg, since the Coulombic contribu
tion becomes dominant there!, we temporarily remove the
Coulombic part ofvbulk(g) to get a modified form factor
v8bulk(g):

v8bulk~g!5vbulk~g!1
4pZ

g2
, ~15!

where Z is the screened ionic charge~nuclear charge plus
core electron charge!.

To build in the maximum transferability into the BLPS
we require it to match thev8bulk(g) data from multiple bulk
structures or be as close to them as possible. To achieve
we use a smoothed cubic spline to interpolate between
v8bulk(g) data in order to obtain a smooth curve that best
the raw data.

Special emphasis should be placed on the value ofv8(g
50), which is not uniquely defined. Although the valu
there will not affect either the orbitals or the density, it do
affect the total energy. Its contribution to the total energy
given by
9-4
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NelV
21(

a
Nava8 ~g50!, ~16!

whereNel is the total number of electrons in the system,Na

is the number of ions of speciesa, va8 (g50) is the non-
Coulombic part of the pseudopotential due to the ion of s
ciesa, andV is the volume of the simulation cell. Thus, th
value of v8(g50) is of extreme importance for our BLPS
After guessing a value forv8(g50), we interpolate and ob
tain a smooth cubic spline. Restoration of the Coulom
part of v8(g) produces a rough reciprocal space BLP
v rough(g), which then can be used to carry out KS calcu
tions.

We find that the results are very sensitive to the value
v rough(g) at smallg, especially at the first several Bragg ve
tors g of different bulk structures. Since the pseudopoten
is completely undefined atg values less than the smalle
Bragg vector, we are free to choose those values ofv8(g) for
g’s below the first Bragg vector however we like. We ther
fore tune the arbitrary value ofv8(g) at g50 and at some
small g values@leaving the rawv8bulk(g) data untouched#,
until the BLPS reproduces to the best extent possible
bulk properties of several phases calculated with the NL

We contrast our approach with the earlier work of Wats
et al.,24 where instead of using multiple bulk structures,
single bulk structure is employed. For the arbitrary values
v8(g) at smallg, they assumed an analytic Gaussian fo
Ae2bg2

for the reciprocal space pseudopotential at lowg
including g50. The parametersA and b were obtained by
matching the value ofvatom(g) at the lowest Bragg vecto
and matching the total energies from OF-DFT and KS-D
calculations. We did not adopt this approach for several r
sons. First, the shape of the reciprocal space pseudopote
at low g is not necessarily Gaussian. Second, there is
special reason to require the total energy from OF-DFT w
a LPS to be the same as that from KS-DFT using a NL
Finally, even if we could determine the value ofvatom(g
50) following the same approach, it is not guaranteed to
the optimal value~as defined in the Wang-Parr sense!.

Since it is not enforced, this BLPSv rough(g) does not
have a strict Coulombic tail asymptotically when tran
formed into real space, even though it should contain o
Unfortunately, it is almost impossible to exactly transfor
the one-dimensional BLPSv rough(g) from reciprocal space to
real space directly because it is a long-range function with
an analytical form. There is also numerical error or rand
noise in thev rough(g) data. Before we explain how to circum
vent this problem, we emphasize our requirements for
final BLPS. First, the real space BLPSvBLPS(r ) should have
an exact Coulombic tail. Second, the numerical Fou
transform of vBLPS(r ) should be almost the same as t
v rough(g) we obtained before, especially for smallg. In order
to achieve these, the ALPS is needed in the real space
struction. The following is the strategy we employ to obta
the final BLPS:

~i! We calculateDv(g), which is the difference betwee
the rough BLPS and the Wang-Parr-derived ALPS~Ref. 25!
in reciprocal space as
12510
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Dv~g!5v rough~g!2vALPS~g!. ~17!

We found thatDv(g) dies off wheng becomes large, so we
takeDv(g)50 for largeg.

~ii ! We numerically Bessel-Fourier transform the sh
rangeDv(g) to real space to getDv(r )

Dv~r !5
1

2p2E0

`

Dv~g!g
sin~gr !

r
dg. ~18!

We found thatDv(r ) also dies off whenr becomes large,
which is reasonable since both the ALPSvALPS(r ) and the
final BLPS vBLPS(r ) should have a strict Coulombic tail in
real space asymptotically. However, the numerical inac
racy in v rough(g) causes some random noise inDv(r ). We
carefully choose an optimal radial cutoffr c @by balancing
transferability, which tends to reducesr c , against the value
of vBLPS(g50), which tends to increaser c] and assume tha
Dv(r ) vanishes beyondr c .

~iii ! We add the short rangeDv(r ) to the real space ALPS
vALPS(r ).

Now a real-space pseudopotential is obtained and it h
strict Coulombic tail ~our first requirement mentione
above!. We denote this intermediate level BLPS asv inter(r ).
We transform it to reciprocal space to formv inter(g). How-
ever, this is still not the final BLPS we desire, because so
discrepancies still exist between its reciprocal space fo
v inter(g) andv rough(g) which violates our second requireme
stated above. However, compared to the ALPS,v inter(r ) is
closer to the desired final BLPSvBLPS(r ). We repeat the
above procedure by replacing the ALPS with the interme
ate level LPSv inter(g) in Eq. ~17! and iterate further. At the
end, we obtain another real space LPS, which not only ha
Coulombic tail but also is nearly identical tov rough(g) when
transformed to reciprocal space. We take this as our fi
BLPS. We denote its real space form asvBLPS(r ) and its
reciprocal space form asvBLPS(g), given by

vBLPS~g!54pE
0

`

vBLPS~r !r
sin~gr !

g
dr. ~19!

The above procedure works because the difference betw
the BLPS and the ALPS is small, essentially a perturbati
However, in the next section, we will see that this sm
change to the original Wang-Parr-derived ALPS leads t
significant improvement in accuracy.

IV. CALCULATIONAL DETAILS

Our first application of the above scheme to gener
transferable local pseudopotentials focuses on silicon. It
particularly challenging case for a LPS, due to direction
covalent bonding present in its ground-state structure. If
can successfully derive a transferable LPS for Si with t
approach, it suggests other elements with directional bond
may be treatable with similar success.

In all our calculations~KS- and OF-DFT!, we use the
local density approximation~LDA ! for electron exchange
and correlation, based on the quantum Monte Carlo result
9-5



B. ZHOU, Y. A. WANG, AND E. A. CARTER PHYSICAL REVIEW B69, 125109 ~2004!
TABLE I. KS-DFT-LDA optimized structures of hexagonal diamond~HD!, complex bcc~cbcc!, b-tin,
body-centered tetragonal~bct5!, and hcp Si.

Space group Lattice vectors Fractional coordinates

HD P63 /mmc-D6h
4 c

a
51.656 6( 1

3 , 2
3 ,z);6( 2

3 , 1
3 , 1

2 1z)

a5b590°,g5120° z50.0631
cbcc Ia3-Th

7 c

a
51.0 (0,0,0;12 , 1

2 , 1
2 )

a5b5g590° 6(x,x,x)( 1
2 1x, 1

2 2x,x̄)

( x̄, 1
2 1x, 1

2 2x)( 1
2 2x,x̄, 1

2 1x)
x50.100360.0008

b-tin I41 /amd-D4h
19 c

a
50.5516 (0,0,0;12 , 1

2 , 1
2 )6(0,1

4
3
8 )

a5b5g590°
bct5 I4/mmm-D4h

17 c

a
51.8276 (0,0,0;12 , 1

2 , 1
2 )

a5b5g590° 1(0,0,z),(0,0,z̄)
z50.19169

hcp P63/mmc-D6h
4 c

a
51.6 (0,0,0),( 2

3 , 1
3 , 1

2 )

a5b590°,g5120°
d
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Ceperley and Alder,32 as parametrized by Perdew an
Zunger.33

A. Bulk structures

Many different bulk structures of Si have been propos
and examined previously. Here we study the following str
tures: cubic diamond~CD!, hexagonal diamond~HD!, com-
plex bcc ~cbcc!, b-tin, body-centered tetragonal~bct5!,34

simple cubic ~sc!, simple bcc ~sbcc!, face-centered cubic
~fcc!, and hexagonal-close-packed~hcp!.35,36 The first four
structures are observed experimentally,36 with CD Si the
most stable. We find two are semiconductors~CD and HD!,
and the rest are metals, consistent with other experiment
theoretical studies.34–36 Here we apply the Wang-Parr inve
sion method to the structures mentioned above, excep
the cbcc and bct5 structures, which will be used to prov
subsequent tests of the LPS.

Since the value ofc/a and the fractional coordinates o
HD, cbcc,b-tin, and hcp Si are not completely fixed by the
symmetry, we obtained them by structural optimization
CASTEP ~Ref. 37! using the LDA and the TM NLPS~dis-
cussed below!. The resulting structures are used to constr
and test our BLPS~Table I!. The LDA-NLPS structures de
viate only slightly from experiment.36 As for the other four
phases of bulk Si, the ratio between different lattice vect
and the fractional coordinates are fixed and need not be
timized. To reduce the computational cost in KS-DFT calc
lations, primitive cells are used, containing 2, 4, 8, 2, 4, 1
1, 2 atoms for CD, HD, cbcc,b-tin, bct5, sc, sbcc, fcc, and
hcp Si, respectively. In OF-DFT calculations, orthorhomb
unit cells of 8, 8, 16, 4, 4, 8, 2, 4, 4 atoms are used for
above structures, respectively.

B. Building the pseudopotential

In our work, three PS’s are involved: the TM NLPS, th
ALPS, and the BLPS. The TM NLPS was generated us
12510
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the FHI98PPDFT atomic code.38 The TM NLPS was built for
the 3s23p2 ground state of Si atom. The core cutoff rad
used fors-, p-, and d- angular momentum channels we
1.704, 1.878, and 2.02 Bohr, respectively. The same c
was modified to build the ALPS, by forcing the ALPS t
reproduce the atomic valence density obtained from the
NLPS,25 according to the Wang-Parr iterative scheme.

The BLPS was built using theCASTEP ~Ref. 37! code,
which was modified to apply the Wang-Parr method to b
crystals. The Monkhorst-Pack scheme39 was employed to
generate specialk points for Brillouin-zone sampling. Ferm
surface smearing~width of 0.1 eV! and a large number ofk
points are required for metallic phases, in order to prope
describe the Fermi surface. In order to obtain converged
ergies and densities in KS-DFT, we needed to use the
lowing number ofk points in the irreducible Brillouin-zone
~IBZ!: 72, 56, 68, 84, and 48 for primitive unit cells ofb-tin,
sc, sbcc, fcc, and hcp structures, respectively. For the se
conducting phases, CD and HD Si, lessk points are needed
in the IBZ: 28 for the former and 24 for the latter, in prim
tive unit cells. A high kinetic energy cutoff for the plan
wave basis of 960 eV is used to ensure convergence of
density, especially for the semiconducting phases of Si.
chose the ALPS from our previous work25 as the initial guess
for the bulk local pseudopotential.

C. Testing the pseudopotential in bulk environments
with KS-DFT

We then tested the ALPS and the resulting BLPS with
KS-LDA for various bulk phases of Si, including som
phases and defect structures outside the set used to buil
BLPS. TheCASTEP ~Ref. 37! code was used again for thes
KS-LDA calculations. The number ofk points used in the
IBZ here are 28, 36, 60, 120, 112, 84, 120, 84, and 64
primitive cells of the CD, HD, cbcc,b-tin, bct5, sc, sbcc, fcc,
9-6
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TABLE II. Deviations of the KS-BLPS density from the target KS-NLPS density for CD and fcc Si a
beginning and end of the Wang-Parr iterations, as checked by the four energy differences~meV/atom!
described in the text.

DJ J@Dr# DExc D^vxcur&
initial final initial final initial final initial final

CD 2200.00 23.56 5.45 0.14 41.60 2.17 54.50 2.75
fcc 21.30 20.55 0.14 0.0025 24.01 20.17 25.29 20.24
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and hcp structures, respectively. Here, morek points are
needed to converge the total energy of these phases~when
building the BLPS, we only need to ensure that the densit
well converged!. Using a kinetic energy cutoff of 760 eV, w
found that the total energy is converged to within 0.004 e
atom and 0.014 eV/atom for semiconducting and meta
phases of Si, respectively.

For the calculations of vacancy and interstitial defects,
employed a cubic supercell containing 64 atoms, constru
by putting together eight cubic unit cells of CD Si. The v
cancy was created by removing an atom at the center of
supercell, while the self-interstitial defect was generated
putting an extra atom at the tetrahedral site.40 The cell and
ionic coordinates of both systems were not allowed to re
A kinetic energy cutoff of 760 eV was employed. A 232
32 mesh was used for the BZ sampling, as in other fi
principles studies.40

D. Application of the pseudopotential in bulk environments
with OF-DFT

As mentioned earlier, the main reason to develop th
LPS’s is for use in linear-scaling OF-DFT calculation
Therefore, our final ‘‘acid test’’ is to use the ALPS and th
BLPS in OF-DFT, in order to see if these LPS’s, combin
with linear-response-based SNDA KEDF’s, can yield reas
able results for various phases of Si.

These SNDA KEDF’s have the following structure:

Ts
SNDA@r#5TvW@r#1Tx

SNDA@r#. ~20!

The second term can be decomposed further into two te
as

Tx
SNDA@r#5TTF@r#1(

a,b
la,bCTF

3^ra~r !uwa,b~r2r 8!urb~r 8!&. ~21!

Here, the kernelwa,b(r2r 8) in the nonlocal term of Eq.~21!
can be either density independent~DI! or density dependen
~DD!. For both cases,a andb are adjustable exponents an
different options are available. If the kernel is DI, then w
have the Wang-Teter~WT! KEDF ~Ref. 18! when a5b
5 5

6 , the Perrot KEDF ~Ref. 14! when a5b51, the
Smargiassi-Madden~SM! KEDF ~Ref. 15! when a5b5 1

2 ,
and the Wang-Govind-Carter~WGC! KEDF ~Ref. 19! with a
DI kernel for other choices ofa andb. In the last case, up to
three terms were included in the summation, wherela,b is
the corresponding weight associated with each term
12510
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where(la,b51. Up to now, the only SNDA KEDF that ha
a DD kernel was designed by Wanget al. in 1999.19 The
kernel has the following structure:

wa,b
g ~r ,r 8,r2r 8!5wa,b@zg~r ,r 8!,r2r 8#, ~22!

zg~r ,r 8!5S kF
g~r !1kF

g~r 8!

2 D 1/g

, ~23!

kF~r !5@3p2r~r !#1/3, ~24!

wherekF(r ) and zg(r ,r 8) are local one-body and nonloca
two-body Fermi wave vectors. In the following, we will ca
this WGC KEDF with a DD kernel simply the WGC KEDF
We use the WGC KEDF, with optimized19 parameters

$a,b%g5$ 5
6 6A5/6%2.7. In our OF-DFT calculations, a ki-

netic energy cutoff of 1520 eV is employed to converge
density for all phases. As is typical, wave vectors up to tw
as large as that used to represent the wave function are
quired for convergence. In our OF-DFT calculations, a s
ond order damped dynamics method12,19 is employed to
minimize the total energy. We set the convergence criter
to be 0.125 meV/atom for all OF-DFT calculations exce
for HD Si, in which an even less strict convergence criteri
of 0.5 meV/atom was used. If a more strict convergen
criterion is used, the total energy of the semiconduct
phases of Si sometimes diverges. This has been trace
numerical instabilities that sometimes arise in the WG
KEDF, as will be reported in detail elsewhere.41 For com-
parison, we also present results using the WT KEDF.18

V. RESULTS AND DISCUSSION

A. Building the pseudopotential

When we apply the Wang-Parr method, four criteria a
used to check the convergence of the global KS effec
potentialveff

global(r ) @Eq. ~9!#.
~i! The difference between Hartree energies of the tar

density r(r ) and the current iteration’s densityrn(r ), DJ
5J@rn(r )#2J@r(r )#.

~ii ! The Hartree energy of the density differen
J@Dr(r )#, whereDr(r )5rn(r )2r(r ).

~iii ! The difference between exchange-correlation en
giesDExc5Exc@rn(r )#2Exc@r(r )#.

~iv! The difference between exchange-correlati
potential energies D^vxcur(r )&5^rn(r )un xc@rn(r )#&
2^r(r )un xc@r(r )#&, wheren xc@r(r )#5dExc@r(r )#/dr(r ).
9-7
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B. ZHOU, Y. A. WANG, AND E. A. CARTER PHYSICAL REVIEW B69, 125109 ~2004!
As an example, the value of these quantities at the be
ning and the end of the iterations for CD and fcc Si a
shown in Table II. In both cases, all four quantities decre
by one or two orders of magnitude. Note that unlike
~spherically symmetric! atomic cases, the target density ca
not be exactly reproduced by our spherically symme
BLPS, since the bulk crystal density is, of course, not sph
cally symmetric.

The Wang-Parr method applied to seven bulk phases o
yields our vbulk(g) and v8bulk(g) data ~see Sec. III!. The
corresponding non-Coulombic part of the ALPS and
v8bulk(g) data from these seven bulk phases of Si are sho
in Fig. 1. The ALPS matchesv8bulk(g) of the sbcc, fcc, and
hcp phases very well@Fig. 1~c!#. However, the ALPS over-
estimatesv8bulk(g) of theb-tin and sc phases@Fig. 1~b!#, and
severely overestimatesv8bulk(g) of the CD and HD phases a
several Bragg vectors@Fig. 1~a!#. The comparison here dis
closes the defects in the ALPS and convinces us that c
structing a BLPS that further improves upon the ALPS
worth pursuing.

By following the procedures of Sec. III, we construct
the BLPS, both in real space and in reciprocal space.
reciprocal space and real space ALPS and BLPS are plo
in Figs. 2 and 3, respectively. For comparison, we also p
the real space TM NLPS in Fig. 3. The ALPS, BLPS, a
TM NLPS ~all three channels! are enforced to be Coulombic
like beyond 3.5, 4.86, and 3.457 Bohr, respectively. T
BLPS radial cutoffr c of 4.86 Bohr was chosen by varyingr c
to be as small as possible to enhance transferability, b
could not be chosen too small or the value ofvBLPS(g50)
would deteriorate. The local pseudopotentials match ths
channel of the nonlocal pseudopotential beyond 1.2 B
For shorter distances, the LPS’s strike a compromise
tween thes andp channels of the NLPS, though ultimately
distances within 0.5 Bohr, the LPS’s become much m

FIG. 1. Comparison of the non-Coulombic part of the ALP
~solid line! to v8bulk(g) data~symbols! for ~a! cubic and hexagona
diamond Si~solid squares and open circles!, ~b! b-tin and sc Si
~solid triangles and open triangles!, and ~c! sbcc, fcc, and hcp S
~open triangles, solid diamonds, and solid triangles!.
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repulsive. We believe this is due to the need to force
higher angular momentum electrons out from the core
gion. This is accomplished mathematically in an NLPS
having electrons of different angular momentum experie
different potentials. The LPS’s compensate for this lack
flexibility by becoming more repulsive near the nucleus.

B. Testing the pseudopotential in bulk environments
with KS-DFT

We now apply our BLPS within KS-DFT to bulk crystals
comparing the results to those employing a standard
NLPS, as well as the Wang-Parr-derived ALPS.25

FIG. 2. Non-Coulombic part of the reciprocal space loc
pseudopotential for Si: the ALPS~solid line! and the BLPS~dashed
line!. The full reciprocal space pseudopotential containing the C
lombic part is plotted in the inset: the ALPS~solid line! and the
BLPS ~dashed line!. Significant deviations are evident at interm
diateg vectors.

FIG. 3. Comparison of real space pseudopotentials for Si:
NLPS ~solid lines!, the ALPS~dashed line!, and the BLPS~dashed-
dotted line!. The Coulombic tails appear beyond 3.457, 3.5, a
4.86 Bohr for the TM NLPS, ALPS, and BLPS, respectively.
9-8
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TRANSFERABLE LOCAL PSEUDOPOTENTIALS . . . PHYSICAL REVIEW B 69, 125109 ~2004!
1. The density

By construction, the BLPS produces a more accurate d
sity than the ALPS for various phases of Si in KS-LD
calculations. We first examine the density-related quanti
outlined above, namely,DJ,J@Dr#,DExc , and D^vxcur& as
measures of how close the densities from the LPS’s com
to that from the NLPS. Better reproduction of the NLPS K
density by the LPS KS densities will result in smaller valu
of those quantities. Results are shown for CD, bct5, and
Si in Table III. In KS-LDA, the quality of the density for CD
and fcc phases obtained from the BLPS is more balan
than that from the ALPS; nevertheless, the density of fcc
is better described than that of CD Si, which is not surp
ing, given that the more isotropic nature of the density in
Si is easier to reproduce with a LPS. Unlike the CD and
phases, the bct5 structure was not used to construct
BLPS, but its density using the BLPS is still significant
closer to that from the NLPS than the ALPS. This convinc
us that the BLPS generally produces better densities than
ALPS for all bulk structures within KS-LDA.

We also directly compared the densities in the~110! plane
of CD Si obtained using KS-LDA with the NLPS, the ALPS
and the BLPS. Figure 4~a! displays the density using th
NLPS; the directional bonding between the Si atom and
nearest neighbors is evident in the highly localized regi
~dark areas! of high density. The maximum valence dens

TABLE III. Deviations of the LPS KS-LDA densities from the
NLPS KS-LDA density for CD, bct5, and fcc Si, as characteriz
by the four energy differences~meV/atom! described in the text.

DJ J@Dr# DExc D^vxcur&

ALPS
CD 2202.45 5.45 41.58 54.70
bct5 2113.89 2.79 28.33 37.25
fcc 25.45 0.21 21.24 21.63

BLPS
CD 20.34 2.04 223.98 31.41
bct5 34.35 0.84 220.66 227.12
fcc 14.11 1.01 216.64 221.89
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in between two Si atoms reaches 0.08685 a.u. Figure~b!
shows KS densities along the diagonal direction of the~110!
plane. Within KS-LDA, the BLPS density~maximum:
0.08616 a.u.! is a bit closer to the NLPS density than is th
ALPS density~maximum: 0.08570 a.u.!; both reproduce the
NLPS density very well.

2. Static structural properties

The quality of the LPS’s also can be judged by calculat
the potential energy surface~PES! for various phases. The
total energy versus volume curves for bulk phases of Si us
the NLPS, the ALPS, and the BLPS are plotted in Fig. 5. T
insets show scaled results, where we scale the volume
the appropriate 1/V0 and shift the total energies by the a
propriate2Emin , in order to directly compare the shapes
the PES’s. In KS-LDA, the PESs from the ALPS and t
BLPS are almost parallel to those from the TM NLPS. T
corresponding insets show that the PES’s from the BLPS
slightly closer to those from the NLPS in both cases.

Then the results are least-squares-fitted to Murnagh
equation of state42

Etot~V!5
B0V

B08
S ~V0 /V!B08

B0821
11D 1const. ~25!

Here,B0 and B08 are the bulk modulus and its pressure d
rivative at the equilibrium volumeV0. Table IV displays the
values forV0 , B0 , Emin , and DEmin derived from the fits,
whereEmin is the equilibrium total energy for the CD struc
ture and DEmin is the energy differenceEmin(phase)
2Emin(CD) between the other eight structures of Si a
ground state CD Si.

Use of the ALPS in KS-LDA calculations yields accura
equilibrium volumes and a phase ordering that is corre
except for theb-tin phase. However, the ALPS severely u
derestimates~by about a factor of 2! the energy difference
between the semiconducting and most metallic phases.
is not surprising, since the values of the ALPS are too high
all Bragg vectors of the semiconducting phases of Si, wh
the corresponding ALPS values for the metallic phases
very good~see Fig. 1!. The semiconducting phases are d
favored as a result. We can understand this by recalling
y,

f

s

FIG. 4. LDA densities in the
~110! plane of cubic diamond Si.
~a! Contour plot of the density
from a NLPS KS calculation.
Dark areas represent high densit
light areas low density.~b! Den-
sity slices along the diagonal o
the ~110! plane. The solid line is
NLPS KS; dashed line is ALPS
KS; dashed dotted line is BLPS
KS; dotted line is ALPS OF;
dashed-double-dotted line i
BLPS OF.
9-9
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FIG. 5. LDA total energies
~eV/atom! vs atomic volume (Å3)
for CD @~a!# and fcc@~b!# Si. Both
~a! and ~b! are KS calculations
comparing NLPS~solid squares!
vs ALPS ~open circles! vs BLPS
~opaque triangles!. Insets: the total
energy is shifted by the equilib
rium total energy per atom and th
atomic volume is scaled, dividing
by the equilibrium atomic volume.
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the ALPS is derived from a spherically symmetric atom
configuration. In semiconducting Si, the bonding is dire
tional, while in metallic Si, the bonding is more isotropic a
hence more closely resembles the atomic case. Thus
ALPS describes the metallic phases much better than
semiconducting phases, leading to energies too high for
and HD Si and therefore too small a gap between the me
lic and semiconducting phases. Despite the errors in rela
energies, the bulk moduli obtained using the ALPS are g
erally in very good agreement with those from the NLP
~aside from the fcc Si phase, which is slightly too large!.

Use of the BLPS in KS-LDA improves the relative ene
gies markedly. The phase ordering with the BLPS is corr
almost for all structures~a slight error exists between sbc
and fcc energies!, though the b-tin relative energy is
;0.05 eV too high. The qualitative energy differences b
tween semiconducting Si and metallic Si phases (nE
'0.4 eV) are now well reproduced. Since the BLPS co
tains information of seven phases of bulk Si, it now tre
them on more of an equal footing. The equilibrium volum
and bulk moduli predicted by the BLPS are also in reas
12510
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he
D
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ct
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able agreement with those from the NLPS; however, co
pared to those from the ALPS, the bulk moduli in particu
are often worse. It is the relative energies of various str
tures that leads us to conclude that the BLPS improves u
the ALPS.

It seems a bit contradictory that the ALPS could produ
as accurate PES’s as the BLPS, but make severe erro
energetics. We can understand this by recognizing that
overall shape of the PES depends on the first derivative
the reciprocal space LPSdvLPS(g)/dg and on the value of
vLPS(g50). By contrast, the relative energy ordering
various phases relies on the value ofvLPS(g) at the distinc-
tive Bragg vectors of different structures and atg50. In the
case of Si, the BLPS has lower values at smallg ~Fig. 2!,
which will stabilize systems with large volume; on the oth
hand, lowering thevLPS(g50) value will stabilize systems
with small volume. By carefully balancing these competi
factors, the BLPS can be constructed to minimize the e
engendered by the ALPS in energetics, while maintaining
accurate shape of the PES produced by the ALPS.

When constructing the BLPS, no information from th
ials:

.850

.7
61

.025

.6
41

.022

.8
57
TABLE IV. Comparison of KS-LDA predictions of Si bulk properties for three different pseudopotent
equilibrium volume (V0), bulk modulus (B0), equilibrium total energy for CD Si (Emin), and equilibrium
total energy relative to CD Si (DEmin5Emin2Emin

CD) for other bulk phases.

CD HD cbcc b-tin bct5 sc hcp sbcc fcc

NLPS
V0(Å3) 19.532 19.579 17.735 14.796 16.871 15.499 13.765 14.057 13
B0(GPa) 92.5 89.2 90.8 114.7 98.2 105.0 89.0 96.6 86
(D)Emin(eV/atom) 2108.059 0.014 0.137 0.228 0.246 0.293 0.435 0.446 0.4

ALPS
V0(Å3) 19.643 19.692 17.812 14.754 16.846 15.440 13.852 13.993 14
B0(GPa) 93.0 89.4 89.2 113.2 98.7 106.6 91.8 99.7 95
(D)Emin(eV/atom) 2109.477 0.017 0.122 0.108 0.166 0.170 0.227 0.237 0.2

BLPS
V0(Å3) 19.432 19.492 17.850 14.880 16.838 15.537 13.858 14.058 14
B0(GPa) 95.5 91.5 90.0 106.5 97.5 103.0 83.0 88.6 87
(D)Emin(eV/atom) 2110.234 0.020 0.165 0.275 0.249 0.303 0.447 0.462 0.4
9-10
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cbcc ~Ref. 36! and bct5~Ref. 34! phases were used. Ther
fore, calculation of their properties provides a good test
the transferability of the BLPS. KS-LDA results for thos
phases are also shown in Table IV. The relative equilibri
total energy, equilibrium volume, and bulk modulus of t
cbcc phase obtained from the NLPS are reasonably wel
produced by both the ALPS and the BLPS. For the b
structure, again the NLPS equilibrium volume and the b
modulus are reproduced well by both the ALPS and
BLPS. The marked improvement again appears in the r
tive energy, when the BLPS yields almost exactly the NL
result, while the ALPS relative energy is too low~as in all
the metallic cases calculated with the ALPS!.

3. Pressure-induced phase transitions

Up to now, we have only considered structural propert
at zero temperature and pressure. At nonzero tempera
and pressure, the stability of a system depends on the G
free energy

G[Etotal1PV2TS. ~26!

At zero temperature, pressure can cause the Gibbs
energy of different phases to change and lead to press
induced phase transitions. Table V displays transition p
sures at zero K calculated with KS-LDA and OF-LDA usin
the NLPS, the ALPS, and the BLPS, and employing the co
mon tangent rule

dE

dVU
phase1

5
dE

dVU
phase2

52Ptrans. ~27!

Within KS-LDA, the phase transition from CD tob-tin Si
occurs at 8.2, 3.6, and 10.2 GPa, using the NLPS, ALPS,
BLPS, respectively, while the experimental value at ro
temperature is 12.5 GPa~Ref. 43! ~see also Ref. 35!. Here
again we see the superiority of the BLPS over the ALP
with the BLPS yielding the pressure closest to both exp
ment and the NLPS value. For the transition from CD
bct5, the corresponding values are 16.3, 10.1, and 16.6
from the NLPS, ALPS, and BLPS, respectively. No expe
mental data are available for this transition, but the excel
agreement between the BLPS and the NLPS is encourag

4. Vacancy and self-interstitial formation energies in Si

We also tested the transferability of these local pseudo
tentials by studying defects in CD Si. Here we consider b
formation of a vacancy and a self-interstitial, whose form
tion energies are calculated as

TABLE V. Transition pressures~GPa! calculated from KS-LDA
using the TM NLPS, the ALPS and the BLPS. Values in parenthe
are the corresponding OF-LDA results using the WGC KEDF.

NLPS ALPS BLPS Expt

CD→b-tin 8.2 3.6~6.4! 10.2 ~12.0! 12.5a

CD→bct5 16.3 10.1~17.0! 16.6 ~23.0!

aFrom Ref. 43.
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N11

N
E~N,0,V!, ~29!

whereE(n,m,V) is the total energy of the system of volum
V, with n Si atoms andm defects. The results are shown
Table VI. For comparison, we also list the vacancy format
energy estimated by Watkinset al. from their experimental
work,44 and a KS-LDA self-interstitial formation energy b
Needs.45 Since we do not allow the defective crystals to r
lax, the results obtained here are only rough approximati
to the true defect formation energy. For the vacancy form
tion energy, our approximate result from KS-NLPS is ve
close to the experimental result, while results from both
ALPS and the BLPS are too small by;0.5 eV. For the
self-interstitial formation energy, the NLPS prediction is on
slightly larger than that obtained from a more refined K
LDA calculation in which a larger relaxed supercell w
employed.45 Again, the ALPS and the BLPS yield values th
are> 0.5 eV too small, but the BLPS is a clear improveme
here over the ALPS.

C. Application of the pseudopotential in bulk environments
with OF-DFT

As stated earlier, the ultimate goal is to create high qua
local pseudopotentials for use in OF-DFT calculations. H
ing established the accuracy of the BLPS in KS-DFT,
now apply the ALPS and the BLPS in OF-LDA.

1. The density

In OF-DFT, the variationally optimized density is th
most important feature to measure the quality of the KE
and the LPS. In Table VII, we compare the OF-LPS dens
to the KS-NLPS density, again by calculating the four ene
differences established before. As expected, the deviation
these quantities are larger for OF-DFT than for KS-DF
~Table III!. In general, we see that the BLPS produces
better density than the ALPS in all three structures. It is v
encouraging that the OF-BLPS density for CD Si is rema
ably accurate. The bct5 phase exhibits larger deviation
the density. Given the accuracy of the KS-LPS density, i
likely that this error is caused by the WGC KEDF. An e
plicit comparison of KS and OF densities for CD Si is give
in Fig. 4~b! for a density slice along the diagonal of the~110!

es
TABLE VI. Defect formation energy~eV/defect! calculated

from KS-LDA for CD Si.

NLPS ALPS BLPS other estimates

vacancy 3.67 3.21 3.17 3.6a

self-interstitial 3.99 3.14 3.46 3.76b

aFrom Ref. 44—experimental estimate.
bFrom Ref. 45—KS-LDA, larger supercell, relaxed structure.
9-11
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plane. Both the ALPS and the BLPS put a bit too mu
density in the bonding region@1.5&r &3.2 a.u.#, but every-
where else the OF-LPS densities are quite close to the
NLPS density.

TABLE VII. Deviations of the LPS OF densities from the NLP
KS-LDA density for CD, bct5, and fcc Si, as characterized by
four energy differences~meV/atom! described in the text. The OF
DFT calculations used the WGC KEDF.

DJ J@Dr# DExc D^vxcur&

ALPS
CD 2216.77 4.83 69.46 91.05
bct5 2558.64 46.84 243.60 320.11
fcc 29.97 0.84 2.93 3.85

BLPS
CD 86.59 4.49 226.58 235.08
bct5 2413.50 35.93 196.18 257.80
fcc 21.36 0.48 210.81 214.21
12510
S-

2. Static structural properties

We now use the ALPS and the BLPS to calculate the P
in OF-DFT to find out if forces can be calculated sufficien
accurately~thinking ahead to dynamical simulations!. The
PES’s for CD and fcc Si from OF-LDA~using the ALPS and
the BLPS! are plotted in Fig. 6. The insets again show t
scaled results, as in Fig. 5. In these OF-DFT calculatio
both the WGC and WT KEDF’s were employed. We al
plot the PES from KS-LDA~using the ALPS and the BLPS!
for comparison. The PES’s of CD Si from both KEDF’s a
not satisfactory@see Figs. 6~a! and 6~c!#, although the im-
provement of the WGC KEDF over the WT KEDF is ev
dent. First, the PES from the WGC KEDF has a distin
minimum, unlike the WT KEDF. Second, the WGC KED
brings the total energy at different volumes much closer
the KS total energy for both the ALPS and the BLPS. At t
equilibrium volume predicted in KS theory, the total ener
obtained from OF-DFT is very close to that from KS-DF
for both the ALPS and the BLPS. However, for smaller vo
umes, the total energies are overestimated and for large
umes they are considerably underestimated. The PES’s o
y
FIG. 6. LDA total energies~eV/atom! vs atomic volume (Å3) for CD @~a!, ~c!# and fcc@~b!, ~d!# Si. Insets: the total energy is shifted b
the equilibrium total energy per atom and the atomic volume is scaled, dividing by the equilibrium atomic volume.~a! and~b! use the ALPS
to compare KS~solid squares! vs OF/WGC KEDF~open circles! vs OF/WT KEDF~opaque triangles!. ~c! and~d! use the BLPS to compare
KS ~solid squares! vs OF/WGC KEDF~open circles! vs OF/WT KEDF~opaque triangles!.
9-12
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TABLE VIII. Comparison of OF-LDA predictions of Si bulk properties using the WGC KEDF.

CD HD cbcc b-tin bct5 sc hcp sbcc fcc

ALPS
V0(Å3) 23.987 19.036 17.772 14.545 16.943 15.653 13.715 13.902 13
B0(GPa) 27.2 92.6 93.9 124.3 89.7 108.2 116.1 113.9 10
(D)Emin(eV/atom) 2109.562 0.302 0.458 0.314 0.448 0.349 0.321 0.361 0.3

BLPS
V0(Å3) 23.966 18.788 17.802 14.638 16.963 15.749 13.689 13.938 13
B0(GPa) 25.8 92.6 93.2 120.7 88.6 107.7 111.6 107.2 10
(D)Emin(eV/atom) 2110.345 0.324 0.537 0.515 0.602 0.506 0.569 0.617 0.5
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Si in the OF scheme are much better@see Figs. 6~b! and
6~d!#, although small deviations from the KS results still e
ist. From the insets, we see that the ALPS and the BL
work roughly equally well.

To obtain structural properties, the OF-DFT results
again least-squares-fitted to Murnaghan’s equation of s
for all nine phases of Si~Table VIII!. Both the ALPS and the
BLPS predict CD Si to be the ground state within OF-LD
However, the energy ordering and magnitude of the ene
differences (DEmin) for the phases are wrong~compare
Tables IV and VIII!. For the ALPS,DEmin are too high for all
structures when compared against KS-LDA using the ALP
Compared to KS-LDA using the NLPS, the ALPS-OFDEmin
are too high for the first five structures and too low for t
last three. For the BLPS, again theDEmin are too high for all
phases. We also see substantial errors for CD Si in the e
librium volume (;20%), the bulk modulus (;70%), and
the equilibrium energy (;0.1 eV/atom). On the other hand
the equilibrium volume and the bulk modulus obtained fro
OF-DFT for other phases are much more accurate. The e
are within 4% for the former and 20% for the latter. Give
the encouraging results obtained with KS-LDA and t
BLPS, the errors in Table VIII must be due primarily
shortcomings in the KEDF. The WGC KEDF is a good co
promise between accuracy and cost; however, it is still
universal enough, given that it is based on a perturba
away from the uniform electron gas. The demanding cas
covalent Si is far from a mere perturbation; large errors
to be expected. How to constrain future KEDF’s to treat su
localized electron densities remains an outstanding issu
OF-DFT.

3. Other applications

We also calculated the transition pressure using the
DFT data; the results are shown in Table V. Within OF-LD
using the WGC KEDF, the transition pressures are con
tently higher than from KS-LDA. Since the OF-DFT predi
tions of the bulk modulus and equilibrium volume of CD
have large errors, we do not expect the transition pressur
be reliable. We believe the agreement between the OF-A
and the KS-NLPS transition pressures is fortuitous.

We attempted to calculate defect formation energ
within OF-DFT. We find that the dramatic variation of th
12510
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density in the defect area in CD Si is beyond the range
the present KEDF’s can handle, leading to unaccepta
large errors in relative energies. However, we still found t
the electron densities in these defective systems are b
reproduced by the BLPS than by the ALPS.

VI. CONCLUSIONS

We proposed a scheme for generatingab initio local
pseudopotentials suitable for use in condensed matter s
lations, with the particular goal of eventually using them
linear-scaling OF-DFT calculations. The strategy exploits
external-potential–density connection established by Hoh
berg and Kohn and utilizes densities from bulk crystals.
particular, we have shown that fairly accurate, transfera
local pseudopotentials for an element that is not at all sph
cal nor nearly free-electron-like~e.g., Si! can be developed
by inversion of the KS equations solved for bulk phas
Accurate phase orderings, equilibrium volumes, bulk mod
densities, and good potential energy surfaces for bulk
within KS-LDA are obtained with this bulk-derived loca
pseudopotential~BLPS!. This BLPS produces transition
pressures and defect formation energies that are qualitati
though not quantitatively, correct. A major achievement
that the combination of the LPS’s and the WGC KEDF
OF-DFT predicts the correct diamond structure ground s
for bulk Si. However, other properties produced within O
DFT with the BLPS still have significant errors, which ca
be rather confidently ascribed to error primarily in th
KEDF’s themselves. These results provide the impetus
now move forward in improving KEDF’s for nonmetals
which is the next stage of our work.41
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