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Korringa-Kohn-Rostoker Green-function formalism for ballistic transport
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We develop a method for the calculation of ballistic transport from first principles. The multiple scattering
screened Korringa-Kohn-Rostoker~KKR! method is combined with a Green-function formulation of the Lan-
dauer approach for the ballistic transport. We obtain an efficient O(N) algorithm for the calculation of ballistic
conductance through a scattering region connected to semi-infinite crystalline leads. In particular we generalize
the results of Baranger and Stone in the case of Bloch wave boundary conditions and we discuss relevant
properties of theSmatrix. We consider the implications on the application of the formalism in conjunction with
a cellular multiple scattering description of the electronic structure, and demonstrate the convergence proper-
ties concerning the angular momentum expansions.
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I. INTRODUCTION

The study of transport properties of solids has alwa
been a challenge for experimental and theoretical conde
matter physics. The difficulty lies among other things in t
fact that the transport properties are by definition related
nonequilibrium situations, so that their modeling is not eas
based on standard techniques. Fortunately, in the regim
linear response to weak external fields, the study can
based on ground state properties, by treating the field
perturbation. That this approach is founded solidly is gu
anteed by the fluctuation-dissipation theorem; in particu
for the case of electrical conductivity this is expressed by
famous result of Kubo.1

In the past decades, the development of first-princip
methods for the calculation of the electronic structure of s
ids has been accompanied by corresponding advances i
formalism and methods for the calculation of transport pr
erties. Technological interest has given a push to the fi
and novel effects such as the giant and the tunneling ma
toresistance~GMR and TMR! have been investigated theo
retically and applied in technology. Furthermore, the size
today’s electronic devices is so small that the understand
of ballistic ~i.e., phase-coherent! transport has become im
portant not only for basic physics but also for applicatio
As a result of these developments, ideas and methods
initially were conceived for the understanding of electron
transport in simple cases have been combined with te
niques based on a realistic description of the electronic st
ture in order to give reliable and material-specific resul2

Without claiming to give a complete list, we mention that f
diffusive transport through disordered systems there e
methods and results based on the combination of the K
ringa, Kohn, and Rostoker~KKR! Green function method
with the Boltzmann formalism,3–5 on the coherent potentia
approximation ~CPA! combined with Kubo-Greenwood1,6

theory,7–9 or on the tight-binding method.10 For ballistic
transport there exist methods based, for example, on l
energy electron diffraction~LEED!11,12 and layer KKR13 or
similar layer-type14 techniques, on the tight-bindin
approach,15–17 and on the transfer matrix concept;18,19 these
0163-1829/2004/69~12!/125104~15!/$22.50 69 1251
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mostly combine the Landauer-Bu¨ttiker approach20,21 with
electronic structure methods, as will be done in the pres
paper. Moreover, due to potential applications in GMR a
TMR devices, spin-dependent transport has come to the
ter of interest with an emphasis on conduction in magne
multilayers2,5,9,15,22–25 and ferromagnet-semiconducto
hybrides.13,16,26–31In these systems the electronic spin d
grees of freedom are accounted for in order to achieve s
dependent resistance. In addition, novel systems such
nanowires or atomic-size contacts are created experimen
and demand interpretation of their transport properties.

In this paper we present a method for the calculation
ballistic transport from first principles, which combines th
KKR ab initio Green-function technique with the Barang
and Stone32 formulation of the ballistic transport. The
method is suitable for layered systems and interfaces w
two-dimensional periodicity, as well as for atomic size co
strictions connecting two leads or nanowires,33 and supports
spin-dependent effects. Since the KKR technique in
screened formalism offers linear scaling of the computatio
effort with the number of layers,34 our method can handle
large systems. Additionally we present the proof of so
theorems concerning the transmission probability of wa
packets in crystalline, rather than free-electron, envir
ments.

The paper is organized as follows. In Sec. II we give
description of the setup of the physical systems that
method can be used for. In Sec. III we briefly address
approximations and assumptions made, also in connectio
the Kubo-Greenwood and the Baranger-Stone formali
Sections IV and V are devoted to making the connection
the Landauer-Bu¨ttiker formalism, and some elements of sca
tering theory are given there. The conductance formalism
the KKR method is developed in Sec. VI. Some examp
illustrating the convergence properties of the method
given in Sec. VII. Finally, we conclude in Sec. VIII. Th
appendixes contain parts where lengthy mathematical
nipulations were needed.

II. SETUP OF THE PROBLEM

The systems that we study consist of two half infin
perfect crystalline leads, left~L! and right~R!, attached to a
©2004 The American Physical Society04-1
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slab that is considered as the ‘‘interaction’’ region~I!; sche-
matically this is represented in Fig. 1. The surfacesSL and
SR should be chosen far enough within the leads so that
localized interface states have decayed and only Bloch s
are present there. The direction of growth is taken to be thz
direction. We consider systems with a two-dimensional~2D!
periodicity in the xy plane where the scattering region
embedded between two semi-infinite crystalline leads. Mo
over, summing up current contributions in real space we
calculate the conductance in the presence of defect
nanowires43,44 and we can even treat atomic sized constr
tions between infinite leads if the current flow is localized
the constriction region, which is usually the case.45 Thus we
can simulate transport through small molecules or a br
junction geometry.

III. KUBO FORMALISM

The connection between the ballistic dc conductance
conductivity and the one-electron Green function in t
linear-response regime has been given in the past.32,35–37In
short, one uses first-order perturbation theory to calculate
effect of a weak, time-oscillating electric field on the dens
matrix of the system; then, the frequency of the oscillat
field is taken to zero, and the dissipative term of the exp
tation value of the current gives the dc linear response of
system. The result is just an expression for the Kubo cond
tivity of the system at the limit of zero temperature. Integ
tion by parts of the conductivity expression gives the relat
among current, conductance, and voltage. Baranger
Stone32 have proven that the conductance is a Fermi-le
property, although the two-point conductivity within th
sample can also have contributions from other energy le
when magnetic fields are present. Here we briefly desc
the relevant formalism, in connection to the rest of the pa

The general relation between the current density at so
point, j (r ), and the electric field at all other points of
material,E(r 8), in first-order perturbation theory for a sta
tionary state, is given by

j ~r !5E d3r 8s~r ,r 8!E~r 8!. ~1!

FIG. 1. Setup of the problem. The regions L and R corresp
to perfect semi-infinite crystalline leads~not necessarily of the sam
material!, attached to an ‘‘interaction region’’ I. This includes th
interface or other structures sandwiched between L and R, pl
few monolayers of the leads at each side so that the evane
interface states can decay. The conductance is evaluated be
the surfacesSL andSR , where only bulk Bloch states should exis
12510
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The nonlocal conductivity tensors(r ,r 8) is connected to the
retarded one-electron Green functionG1(r ,r 8;E) of the sys-
tem via the famous Kubo-Greenwood result. Its frequen
used form is7

s~r ,r 8!52
\

pE dE@2 f 8~E!#S e\

m
“ Im G1~r ,r 8;E! D

3S e\

m
“8 Im G1~r 8,r ;E! D . ~2!

Here, f 8(E) is the Fermi function derivative and Im denote
the imaginary part. In terms of the difference between
retarded and advanced Green functionG2,

DG~r ,r 8;E!ªG1~r ,r 8;E!2G2~r ,r 8;E! ~3!

522p i E daca~r !ca* ~r 8!d~E2Ea!, ~4!

the conductivity can be written

s~r ,r 8!52
e2\3

16pm2E dE@2 f 8~E!#

3DG~r ,r 8;E!“J“J 8DG~r 8,r ;E!, ~5!

where the symbol“J is defined asf (r )“J g(r )5 f (r )“g(r )
2@“ f (r )#g(r ). Here only thed-function part of the Green
function has been kept; the principal-value part gives rise
the reactive term, which is zero for dc conductance.32 Upon
taking the limit of zero temperature, the derivative of t
Fermi-Dirac function becomes ad function according to
2 f 8(E)→d(E2EF) and contributions to the conductivit
only arise from the Fermi level.

In the absence of a magnetic field, as assumed in
work, the nonlocal conductivity tensor is symmetric und
the interchange ofr and r 8, and divergenceless:

s~r ,r 8!5s~r 8,r !, ~6!

“•s~r ,r 8!5s~r ,r 8!•“Q 850, ~7!

where“Q means that the operator acts to the function on
left. The former relation is a consequence of the symme
G(r ,r 8)5G(r 8,r ) of the Green function for local potentials
The latter is a result of current conservation in the absenc
magnetic field; if a magnetic field is present, one has mer
“•s(r ,r 8)•“J 850 instead.32

In Eq. ~1!, of course,E(r 8) is the total field, i.e., the
external field plus the field being induced by charge rel
ations; the electronic gas and nuclei must be also fully ta
into account. This is not easy to handle; however, this
pression can be integrated over the whole sample lea
only the current in relation to the applied voltage by explo
ing the fact thatE(r )5“V(r ), whereV(r ) is the electro-
static potential. Inserting this into Eq.~1! one gets for the
total currentJ throughSR
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JªE
SR

dSẑj ~r !5DVE
SR

dSE
SL

dS8ẑs~r ,r 8!ẑ8, ~8!

after an integration by parts and use of Eq.~7! ~both ẑ andẑ8
are pointing outwards!. HereDV is the external bias voltage
The ‘‘zero-current theorem’’ stating that the ground-sta
electrostatic potential gives always zero current density38 has
been used, so only the externally applied voltageDV re-
mains. Thus one can recognize the conductance as the fl
the conductivity tensor through the surfacesSL andSR:

g5E
SL

dSE
SR

dS8ẑs~r ,r 8!ẑ8. ~9!

Substituting Eq.~5! one obtains for the conductivity:

g52
e2\3

8pm2ESL

dSE
SR

dS8G1~r ,r 8;EF!“J z“
J

z8

3G2~r 8,r ;EF!, ~10!

where the terms involvingG1
“
J

z“
J

z8G
1 and G2

“
J

z“
J

z8G
2

vanish.32

IV. LANDAUER FORMALISM

In the Landauer approach, the conductance problem
viewed from the aspect of scattering theory. In this way,
causal relation between voltage and current is conceptu
reversed.39 Instead of applying a voltage and examining t
current as the response, a current is forced to flow thro
the sample and the voltage is viewed as the result of
pileup of carriers at the various obstacles, forming resid
resistivity dipoles. The result is, of course, again the us
current-voltage relation. In a multilead experiment, if ea
leadn is held in potentialVn , then the currentJn going out
through this lead is

Jn5 (
mÞn

gnmVm . ~11!

The coefficientsgnm describe the conductance of the syste
and in the case of only two leads there is only one cond
tance coefficientg.

The concept of incoming and outgoingscattering chan-
nels is introduced, which play the same role as in and
states in scattering theory; in the cases of our interest
are Bloch states in the leads. We need to describe the
tering process of one-electron Bloch states incident fr
lead L as incoming waves and scattered into lead L or R
outgoing waves; thus anS-matrix formulation is appropriate
One has waveguide or crystalline geometry in the lea
rather than the free-space geometry of usual scatte
theory, and in addition the leads can consist of different m
terials. In this respect, the usual scattering theory needs a
modifications to be applicable.

Once theS-matrix elements are available, one can read
calculate the transmission probabilityTn f ;mi from each in-
coming channeli in leadm to each outgoingf in leadn, and
12510
of

is
e
lly

h
e

al
al

,
c-

t
ey
at-

s

s,
g
-
w

y

use the Landauer-Bu¨ttiker formula to calculate the conduc
tancegnm from leadm to leadn:21

gnm5
e2

h (
f i

Tn f ;mi5
e2

h (
f i

uSn f ;miu2. ~12!

Stone and Szafer35 and Baranger and Stone32 showed the
connection between the Landauer-Bu¨ttiker formula with the
Kubo result starting from perturbation theory, consideri
free-electron leads. In Sec. V we shall follow their analy
closely, but prove some of the theorems needed for crys
line leads taking into account the Bloch character of the
coming and outgoing channels.

The S-matrix formulation in such problems and the que
tion of unitarity will be shortly addressed now. First of a
the in states and out states, which in a usual formulation
plane or spherical waves, are here propagating Bloch st
in the leads. Whether such a stateCk is incoming or outgo-
ing is determined not by the Bloch wave vectork, but by the
group velocityvk5“kEk . Suppose that a particular lead
grown in thez direction, with the unit vectorẑ pointing away
from the sample. Then, the Bloch state is outgoing if (vk)z
.0, and incoming if (vk)z,0. Evidently the set of in state
can be different from the set of out states. Consider, for
ample, the case of only two leads of different materials,
L in the left with wave functionsCL and R in the right with
wave functionsCR, sandwiching the interaction region
The set of in states for this problem will consist of righ
traveling wavesC in

L and left-travelingC in
R , while the set of

out states will consist of left-traveling wavesCout
L and right-

traveling wavesCout
R .

The total wave function in the system will be asympto
cally a linear combination of in and out states; in particul
if we choose incidence from lead L as a boundary conditi
we have the form

Cka
tot~r !55 Cka

L in1 (
k8a8

r kak8a8Ck8a8
L out , z→2`

(
k8a8

tkak8a8Ck8a8
R out, z→1`.

~13!

For finitez values also evanescent states have to be inclu
in the summations; however, they die out forz→6`. Here,
band indicesa and a8 and Bloch wave vectorsk and k8,
have been introduced; elastic scattering is implied. The t
wave functionCka

tot(r ) is characterized byka in the sense of
the boundary condition, i.e., it originates from an in state t
has this wave vector. The transmission amplitudetkak8a8 and
the reflection amplituder kak8a8 are related to the elements o
the S matrix of the system.

The normalization of the in and out states determin
whether these amplitudest and r are identical with the
S-matrix elements or not, since theS matrix must always be
unitary. If one normalizes the in and out states to unit flux~as
C→C/Av), then the transmission probability from sta
Cka in

L to state Ck8a8 out
R is just TR k8a8;L ka5utkak8a8u

2

5uSkak8a8u
2. But with the usual normalization to unit prob
4-3
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ability in space, the transmission probability must invoke
group velocities to account for the different flux of in and o
states:40

T R k8a8;L ka5uSkak8a8u
25utkak8a8u

2
u~vk8a8

out
!zu

u~vka
in !zu

. ~14!

This point will be addressed in detail in the following se
tion.

V. CONNECTION BETWEEN KUBO AND LANDAUER
APPROACHES

The connection of the Landauer approach involving thS
matrix to the Kubo-Greenwood conductivity formula invol
ing the Green functions has been given by Fisher and Le36

Stone and Szafer,35 and Baranger and Stone32 in the case of
free electrons in the leads. However, for crystalline leads
must account for the relevant band structure. Here we pre
some proofs needed to extend the above results to crysta
leads. In particular we shall pursue theS-matrix elements
between in states from L leads and out states in R leads
see how these connect to the Green function of the sys
and to the conductance. In this way the connection of
Kubo to the Landauer formalism will be made. We proce
in three steps:~i! we find an expression for the transmissi
amplitude tka;k8a8 ; ~ii ! we express the asymptotic Gree
function in terms of theS matrix; and~iii ! we express theS
matrix in terms oftka;k8a8 .

~i! We start with the calculation of current matrix el
ments between Bloch states. In particular, letCka

in andCka
out

be incoming and outgoing Bloch states~in the sense de
scribed before, i.e., right and left traveling! of the same en-
ergy (Eka5Ek8a8) in the same lead; the states are normaliz
to unit probability rather than unit flux. Also, letSbe the lead
cross section, normal to thez direction. Then the following
orthogonality relations hold for the current matr
elements:41

E
S
dSCka

in *“J zCk8a8
in

5E
S
dSCka

out*“J zCk8a8
out

5 i
2m

\
~vka!zdkk8daa8 , ~15!

E
S
dSCka

in *“J zCk8a8
out

50 ~ for Ek8a85Eka! ~16!

(Cka
in and Ck8a8

out here are supposed to be left- and righ
traveling states in the same lead!. These have been prove
before32 for free electrons; we present a proof for Bloc
states in Appendix A.

Equations~15! and~16! can be used to project a scatterin
wave function onto a particular channel; using them in c
nection with Eq.~13! we can extract the transmission amp
tude out ofCka

tot :

tka;k8a8i
2m

\
~vk8a8

out
!z5E

S
dSCka

tot* ~r !“J zCk8a8
R out

~r !. ~17!
12510
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~ii ! Next we consider the asymptotic expression for t
retarded Green functionG1(r ,r 8;E), with r and r 8 in dif-
ferent leads and going to infinity. This can be found32 by
using the boundary condition thatG1(r ,r 8;E) should repre-
sent an outgoing wave atr , G2(r ,r 8;E) should represent an
incoming wave atr , and

G1~r ,r 8;E!5G2* ~r 8,r ;E!. ~18!

The Green function then, expanded in in and out states,
the asymptotic form

G1~r ,r 8;E!5(
ka

(
k8a8

Aka;k8a8Cka
R out~r !Ck8a8

L in* ~r 8!

~ for z→`, z8→2`!. ~19!

We are now seeking a relation between the coefficie
Aka;k8a8 and the transmission amplitudestka;k8a8 . Equation
~17! was used together with the Lippmann-Schwinger eq
tion and Eq.~10! in Ref. 32 to prove this for free-electro
leads. However, the Lippmann-Schwinger equation is di
cult to handle when we have different materials in the lea
because it connects the Bloch wave functions of differ
materials in the infinite leads, thus there is no localized p
turbation. Alternatively, one can start directly from th
definition42 of the S matrix in terms of the time-dependen
retarded Green function~propagator!, looking at the trans-
mission amplitude from an initial wave packetF i

L in(r ,t)
5*dEi e2 iEi tai(Ei)C i

L in(r ;Ei), incident from the left, to a
final one F f

R out(r ,t)5*dEf e2 iE f taf(Ef)C f
R out(r ;Ef), out-

going to the right. HereC i and C f denote itinerant Bloch
states and we have propagated the initial and final statest
and t8 by their corresponding bulk Hamiltonians, giving th
exponential factors. At the endai and af will be taken as
extremely peaked distributions around the same energyEi ; i
andf represent then definitek8a8 andka. ~Atomic units with
\51 are implied.! One gets

Sf iª lim
t→`

t8→2`

E d3r E d3r 8F f
R out* ~r ,t !

3G1~r ,t;r 8,t8!F i
L in~r 8,t8!

5 lim
t→`

t8→2`

E d3r E d3r 8F f
R out* ~r ,t !E dEe2 iE(t2t8)

3G1~r ,r 8;E!F i
L in~r 8,t8!

5 lim
t→`

t8→2`

E dE e2 iE(t2t8)(
f 8 i 8

Af 8 i 8~E!E dEfe
iE f taf* ~Ef !

3„C f
R out~Ef !,C f 8

R out
~E!…E dEie

2 iEi t8ai~Ei !

3„C i 8
L in

~E!,C i
L in~Ei !…

5E dE af* ~E!ai~E!v iv fAf i~E! ~20!

5Af i~Ei !Av iv f ~on shell!. ~21!
4-4
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The velocities appearing represent thez component of the
group velocity, since in waveguide geometry theki’s form in
reality a very dense discrete set so that the wave pack
constructed for a definiteki from the continuouskz spec-
trum. Having this in mind, we have used in the derivation
Eq. ~20! the orthonormality condition for Bloch waves

„Cka~Ef !,Ck8a8~E!…ªE d3r Cka* ~r ,Ef !Ck8a8~r ;E!

5dkiki8
daa8d~kz2kz8!

5dkiki8
daa8vzd~E2Ef !. ~22!

In addition we have used the normalization of wave pack
to unit probability

15E dE a* ~E!E dE8a~E8!„C~E!,C~E8!…

5E dEua~E!u2vE , ~23!

which for a very peaked distributiona(E) around some en
ergy Ei gives

E dEua~E!u251/vEi
, ~24!

implying that in the limiting caseua(E)u→Ad(E2Ei)/vEi
.

Finally, in the last step we have assumed thataf(E) and
ai(E) are both peaked around the same energyEi so that the
wave packet goes to a single Bloch function, when
af* (E)ai(E)→d(E2Ei)/Av f(Ei)v i(Ei). Thus, the final re-
sult ~21! is valid for on-energy-shell scattering of Bloc
waves; otherwise, for general wave packets, Eq.~20! must be
applied. Working with wave packets has guaranteed the
rect normalization.

From Eq.~21! we see that the coefficients in the Gre
function asymptotic expansion are justS-matrix elements
~normalized to the group velocities!. In this form, theS ma-
trix is unitary, i.e., the scattering probability is

Tf i5uSf i u2. ~25!

~iii ! Finally we show that the relation of theS matrix to
the previously defined transmission amplitude of Eq.~13! is

Sf i5t f i

Av f

Av i

5Af iAv fv i , ~26!

i.e., a normalization involving the group velocities is need
This can be seen by noting that an incoming wave pac
F in5*dEa(E)C in(E), normalized to unit probability as in
Eq. ~23!, evolves partly into the wave packetFout
5*dEt(E)a(E)Cout(E) according to Eq.~13!. Assuming
that a(E) is so much peaked aroundE0 that t and v are
constant in this energy range, the scattering probability
given by the normalization factor of the outgoing wa
packet:
12510
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Tf i5uuFoutuu2

5utu2E dEE dE8ua~E!u2~Cout~E!,Cout~E8!!

5utu2E dEua~E!u2E dE8d~E2E8!vout5utu2vout/v in ,

where the normalizations~22! and ~24! have been utilized.
Comparing this to Eq.~25! proves Eq.~26! up to a phase
factor, which can be seen to be just unity by creating a w
packet out ofC tot in Eq. ~13! and constructing theS-matrix
element. Furthermore the expression~14! results from Eqs.
~25! and ~26!.

Combining all the above, we may rewrite Eq.~19! as

G1~r ,r 8;E!5(
ka

(
k8a8

Ska;k8a8

A~vk8a8!z(vka)z

Ck8a8
L in* ~r 8!Cka

R out~r !

5(
ka

(
k8a8

tka;k8a8

~vk8a8!z

Ck8a8
L in* ~r 8!Cka

R out~r !, ~27!

which gives us for the advanced Green function

G2~r ,r 8;E!5(
ka

(
k8a8

tka;k8a8
*

~vk8a8!z

Ck8a8
R out* ~r 8!Cka

L in~r !.

~28!

We can extract theS-matrix elements from the Green func
tion:

Ska;k8a85
\3

4m2

1

A~vk8a8!z(vka)z
E

SL

dS8

3E
SR

dSCk8a8
L in

~r 8!“J z8G
1~r ,r 8;E!“J zCka

R out* ~r !,

~29!

whereSL andSR have to be sufficiently far apart so that th
asymptotic formula~20! without evanescent states can
used~the evanescent states are always included in the G
function!.

As a final result, we combine the above steps~i!–~iii ! to
arrive at the Landauer formula. We start from the Barang
Stone expression~10!, expand the Green functions accordin
to Eqs.~27! and~28!, and use the orthogonality relations~15!
to get rid of some terms:

g52
e2\3

8pm2ESL

dSE
SR

dS8G1~r ,r 8;EF!“J z“
J

z8G
2~r 8,r ;EF!

5
e2

h (
ka in

(
k8a8 out

utka;k8a8u
2

u~vk8a8!zu
u~vka!zu

5
e2

h (
ka in

(
k8a8 out

Tk8a8;ka . ~30!
4-5
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VI. THE CONDUCTANCE FORMULA IN THE KKR
METHOD

A. The Green function in the KKR formalism

In the KKR method one divides the crystal in atom
cells, with the atoms positioned at the sitesRn , so that the
crystal potential V is expressed in each cell asVn(r )
5V(Rn1r ). Then the one-electron retarded Green funct
is expanded in terms of local orbitals centered at the ato
sitesRn as

G1~Rn1r ,Rn81r 8;E!

52 iAE(
L

RL
n~r, ;E!HL

n~r. ;E!dnn8

1(
LL8

RL
n~r ;E!GLL8

nn8 ~E!RL
n8~r 8;E!. ~31!

Here, RL
n(r ;E) and HL

n(r ;E) are, respectively, the regula
and irregular solutions of the Schro¨dinger equation for the
single potentialVn(r ) of the nth cell in free space. Atomic
units are used (e52A2, \51, m51/2). The index L
5( l ,m) represents the angular momentum quantum num
The position vectorr is confined in the atomic celln; r. and
r, are the longer and shorter, respectively, ofr and r 8. In
Eq. ~31! the first term gives the on-site contribution to th
Green function, while the second is the so-called backsca
ing term, where the information on the intersite electr

propagation is contained in the structure constantsGLL8
nn8 (E).

These are related to the known structure constants of a
erence system, e.g., vacuum, via an algebraic Dyson e
tion that includes the localt matrix of each single-site poten
tial. For further details we refer to Refs. 34.

The layered systems that shall be considered with
KKR formalism consist of two half-infinite crystalline lead
assumed to have perfect periodicity otherwise. Sandwic
between these leads is an ‘‘interaction’’ region where a d
ferent material can be placed and where the scattering o
Bloch waves takes place. Three cases can be handled in
respect:~i! systems with in-plane periodicity;30 ~ii ! wirelike
structures embedded in vacuum~or in some other noncon
ducting medium!;43,44 and ~iii ! atomic constrictions betwee
semi-infinite leads.

Concerning case~i!, when we consider systems with two
dimensional in-plane (x-y) periodicity ~perpendicular to the
direction of growthz), the interaction region and the tw
leads have common in-plane Bravais vectors. If need
larger~nonprimitive! two-dimensional unit cells are taken t
match the lattice constants of both materials; this is the c
for example, in an Fe/GaAs contact.30 The two-dimensional
periodicity of the layered systems allows to Fourier tra
form the Green function in thex andy directions, obtaining a
two-dimensional Bloch vectorki5(kx ,ky) as a good quan
tum number, and retaining an indexi to characterize the laye
in the direction of growthz. The Green function connectin
the layersi in the left lead andi 8 in the right lead is then
written
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G1~Ri1xn1r ,Ri 81xn81r 8;E!

5
1

SSBZ
E

SBZ
d2kie

iki(xn2xn8)

3(
LL8

RL
i ~r ;E!GLL8

i i 8 ~ki ;E!RL8
i 8 ~r 8;E! ~32!

with

GLL8
i i 8 ~ki ;E!5(

n8
e2 iki(xn2xn8)GLL8

in; i 8n8~E!,

wherexn andxn8 are in-plane lattice vectors,Ri is the inter-
layer lattice vector, and SBZ is the surface Brillouin zone

the system andSSBZ its area. GLL8
i i 8 (ki ;E) are the

ki-dependent structure constants. In this equation each l
i is assumed to have a unique atom type, hence only
index i suffices to characterize the local wave function. In t
case of more inequivalent atoms per layer, an extra indem
can be introduced to account for the propagation betw
different kinds of atoms. In the case of spin magnetism,
Green function is different for each spin directions5↑ or ↓.
The formalism can be generalized for fully relativistic calc
lations, where the spin-orbit coupling results in a mixing
the two spin channels.

Once Eq.~31! or Eq. ~32! is substituted into the expres
sion ~10!, with r andr 8 in different leads, the on-site term o
the Green function does not contribute, and only the inter
term survives; moreover, the spacial derivative affects o

the local orbital functionsRL
n(r ) and RL

n8(r ), leaving the
structure constants untouched. Finally, if Eq.~32! is used, the
conductance appears at firstki-resolved,g(ki), which is
most convenient in structures with two-dimensional perio
icity. A ki integration then gives the result

g5
1

SSBZ
E

SBZ
d2kig~ki!. ~33!

In Eq. ~10!, both the retarded and the advanced Gre
functions are needed; however, they are related through
identity ~18! for real E. This is used in our formulation; the
energyE is identified in the calculations with the Fermi lev
EF plus an ~in principle infinitesimal! imaginary parte,
which we take very small.

The case~ii ! of wirelike structures is completely analo
gous, but the Fourier transform of Eq.~32! is not performed.
More specifically, consider a wire embedded in vacuum~see
also Fig. 2!; the vacuum region will be also divided artifi
cially in volume-filling cells. One can also consider defec
within the wire, or even two wires attached to some clus
of atoms~as indicated in Fig. 2!, and solve self-consistently
for the electronic structure. Due to electronic states at
surface of the wire, the first one or two vacuum layers abo
the wire surface can contribute to the conductance, but a
that the cross section can be truncated. The cross section
and right, where the conductivity tensor must be evalua
4-6
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FIG. 2. Left: Setup for the calculation of conductance in a nanowire configuration. The filled circles represent the wire atoms~leads!,
including defects or an atomic cluster~shaded circles!. The white circles represent the vacuum region. The conductance calculati
truncated at the dashed lines, assuming that the states of the nanowire have decayed beyond this region. The arrows labelez and z8
represent the directions of growth of the two leads. Right: Similar setup for the calculation in the case of nanosize constrictions
infinite leads. Again a truncation at the dashed lines is taken, assuming that outside this region there is insignificant tunneling be
leads.
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consist always of more than one atomic cell, since one m
include the vacuum region. In this way the Green funct
must be considered for all combinations between cells on
left and the right, and the expression~10! for the conduc-
tance splits up in partial contributions corresponding to th
combinations:

g5 (
m8(left)

(
m(right)

gmm8 ~34!

with gmm8 given by Eq.~10! but integrated over the cros
section of single atomic cellsm8 ~left! andm ~right!.

Analogously, in case~iii ! a similar setup can be used if w
consider semi-infinite 2D leads but current flow localized
space, as in the case of transport through a constriction
this case we consider two planes as shown in Fig. 2~right!,
while convergence must be checked with respect to the
of the regions considered in the summations of Eq.~34!.

In the next subsections we will consider the calculation
the spatial derivative of the local radial functions and t
Green function.

B. Plane integration

First we consider a direct evaluation of the conducta
by use of Eq.~10! and calculation of the spacial derivative
the Green function at exactly the plane surfaces left (SL) and
right (SR). Both SL and SR are assumed to be in th
asymptotic region where the potential is stabilized to
bulk one and the evanescent states have decayed; in pra
one has to perform the calculations for several positions
SL andSR at finite distances to verify that the results rema
unchanged.

The set of atomic cells is volume filling, and the pla
surface cutting through them inherits the cellular struct
used in the KKR method; thus it is split in two-dimension
tesselating cells. Each one of them is a convex polygon
responding to the section of the plane that belongs to a c
vex Voronoi polyhedron46 ~or just a Wigner-Seitz cell in the
monatomic case!. In this way, a two-dimensional cellula
Voronoi construction is defined in the plane, each cell
12510
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which is completely within some three-dimensional ce
Therefore the representation of the Green function in te
of local radial functions can be readily used. In fact, in sy
tems with two-dimensional periodicity, a two-dimension
unit cell consisting of some convex Voronoi polygonsSm is
constructed and the calculations can be confined in those
example of the construction for bcc~001! surface cells is
given in Fig. 3.

Using such a construction, theki-resolved conductance i
written as

g~ki!52
1

4p3 (
mm8

(
LL8

(
L9L-

~JLL9
m

2JL9L
m* !~JL8L-

m8 2JL-L8
m8* !

3GLL8
mm8~ki ;E!GL9L-

mm8* ~ki ;E!, ~35!

FIG. 3. Two-dimensional geometrical construction for the b
~001! surface cut. The cutting plane goes through the lattice site
an atomic layer~full circles!, but must include also part of the
Wigner-Seitz cell of the next layer~open circles!. The shaded area
shows the two-dimensional unit cell formed, consisting of tw
smaller convex Voronoi polygons.
4-7
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where we have introduced the KKR current matrix eleme
JLL8

m ~in a similar fashion as has been done in the past7,8! in a
cell as

JLL8
m

5E
Sm

d2rRL~r ;EF!]zRL8
* ~r ;EF!. ~36!

The summation(mm8 is over the Voronoi polygons of the
inequivalent atomic sites of the 2D unit cells in the lea
The calculation ofJLL8

m is described in Appendix B. In the
case of a finite system, where a two-dimensional Fou
transform is not necessary, the summation is over all ato
in the planesSL andSR, and theki dependence drops.

The Green-function matrix elementsGLL8
mm8 , containing

the information for the propagation from sitem8 at a layer
within the left lead to a sitem at a layer in the right lead, ar
off-diagonal, while for the charge density one needs only
diagonal~on-site! elements. Nevertheless, an efficient O(N)
algorithm exists47 for their calculation within the screene
KKR formalism, i.e., the time needed for the calculati
scales linearly with the distance between the two laye
Thus it is possible to calculate the conductance in juncti
of more than 100 monolayers with present-d
computers.29,30

We note that a formula for the direct calculation of t
reflection probability via the Green function can be deriv
along similar lines@see, for example, Ref. 32, Eq.~76!#.
However, this formula uses the on-site Green function, i
the termn5n8 in Eq. ~31!. Then the irregular solution of the
Schrödinger equation is included@denoted asHL in Eq.
~31!#, which is divergent at the origin. For the evaluation
the current one has to calculate numerically the derivative
this divergent function, and this leads to numerical insta
ity. This is avoided when calculating directly the transm
sion coefficient, since then we have alwaysnÞn8.

C. Volume integration: Atomic sphere approximation
and full cell

In this section we provide an alternative to the calculat
of the surface-integrated current matrix elements of Eqs.~36!
and~B4!. We prove that the calculation can involve a volum
integration over the unit cell, instead of a surface integrati
in principle, the results must be equivalent, but this meth
has advantages when one wishes to use the atomic sp
approximation. Most important is, however, that thel con-
vergence is much better~see Sec. VII!.

First we observe that the value of the conductance is
deed independent of the position of the planesSL and SR.
This can be proven using the fact that the conductivity ten
is divergenceless@Eq. ~7!#. Say thatr is on SR; if we con-
sider a second plane surfaceSR8 close toSR, we can utilize
Gauss’s theorem in the volumeV enclosed by the two plane
to convert a volume integral of Eq.~7! in V into a surface
integral overSR, SR8 , plus side areas. The construction
analogous to that described in Appendix A, as shown in F
4. The contribution from the side areas vanishes beca
there we have either totally confining boundary conditions
Born–von Kármán boundary conditions leading to cancell
12510
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tion from opposite side areas due to the opposite surface
vector orientation; then we are left with*SR

dSsi j (r ,r 8)• ẑ

5*S
R8
dSsi j (r ,r 8)• ẑ. The same applies forSL , wherez8 var-

ies; thus the flux ofsi j (r ,r 8), i.e., the conductance, is inde
pendent of the exact position ofSL and SR, QED. In fact,
following these arguments, we see thatSL and SR do not
even have to be planes; for instance, they can follow
pattern of the Wigner-Seitz or Voronoi cells, as long as th
meet the requirement that they satisfy the Born–von Ka´rmán
periodic boundary condition inx andy. In the case that they
are not planar surfaces, one must of course take the flu
the conductivity tensor really along the normaln̂ pointing
outward at each point of the surfaces, i.e.,

g5E
SR

dSE
SL

dS8n̂•s~r ,r 8!•n̂8. ~37!

Since the exact choice ofSR or SL does not affect the
result, one can average over the volumeV included between,
say,SR andSR8 instead of integrating overSR. In particular,V
can be chosen to have a thicknessd equivalent to a unit cell
in the z direction, so that one has to average over lay
adapted unit cells. In this respect, the conductance form
has the same form as Eq.~35!, but with an extra prefactor o
1/d2 to account for the volume averaging in the two leadsd
here is the distance between two consecutive lattice mo
layers!; the current matrix elementsJLL9 , volume-averaged
here in the atomic cells, have the form of Eq.~36! but with
the integral being three-dimensional over the atomic c
This can be done both in the atomic sphere approxima
~ASA! and in the full-potential~and full-cell! formalism. De-
tails about their calculation are given again in Appendix B

A word of caution is due here: it is essential that t
volume averaging leaves no ‘‘holes’’ in the structure. To

FIG. 4. Construction for the conversion of volume to surfa
integrals over the lead cross section.
4-8
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specific, assume a bcc-like structure. Then, as is evident f
Fig. 3, the Voronoi cells of the first layer~open circles! can
touch via the ‘‘holes’’~corresponding to the squares! to the
cells of the third layer. In this way, the current can par
bypass one monolayer traveling directly to the next one
one just takes the current averaged over the Voronoi cell
the ASA spheres of the middle monolayer, one forgets
calculate this part of the current; this is why the full man
atom unit cell must be taken, so that no such holes are

If one uses the usual Wigner-Seitz cells~or atomic
spheres!, Eq. ~B5! can induce a small inaccuracy. The reas
is that the volume constructed by such cells is in general
included between planar surfaces, as in Fig. 4, but ra
between corrugated surfaces, in accordance to the form
the Wigner-Seitz cells. In such a case, the full conductiv
tensors(r ,r 8) ~not just theszz component! and Eq.~37!
should be used in principle. To avoid such a more com
cated calculation, two ways can be followed, as dem
strated in Fig. 5. First, one can persist in using layer-adap
unit cells ~parellelepipeds!, which give no corrugation. This
has the disadvantage that such cells can be too flat so tha
l expansion of the cell-centered KKR Green function a
wave function converges poorly. Second, one can ave
over more than one monolayers; in this example they wo
be A andB ~Fig. 4, right panel! taken on both the right and
left leads. Then the corrugated region is a smaller fraction
the total averaging volume, so that the error becom
smaller. Test calculations on this will be given in the Sec. V
for bulk Al.

D. Current matrix elements and selection rules

Which method, volume or plane integration, is most co
venient and accurate depends on each specific problem;
ever one can have ‘‘rules of thumb’’ on the difficulty an
convergence of each one. In many systems the atomic sp
approximation is used, where the potential around each
is assumed to be spherically symmetric, but still a full m

FIG. 5. Two possibilities for cell-averaging of the conductivi
tensor flux in an . . .ABAB . . . stacking sequence. Left, using
cellular division without corrugation of the surfaces, and right,
ing the Wigner-Seitz construction with corrugation. The latter
preferable in the KKR method.
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tipole expansion of the charge density is taken. This has
advantage of greater simplicity and less computational ef
than a full potential and full cell description. In such cas
the plane integration is not applicable, since a plane
through volume-conserving spheres cannot give an accu
surface area; the volume integration is then the only way
the case of a full-cell treatment, when one has the cor
Wigner-Seitz or Voronoi volume tesselation, one must co
sider that the plane method has a drawback, namely, tha
plane might go through regions only at the edge of cert
cells, where thel max cutoff seriously affects the accuracy o
the results; on the other hand the volume integration av
ages out such inaccuracies.

One has also ‘‘selection rules’’ that make certainJLL8 el-
ements vanish. This is most easily seen if one uses sphe
potentials. To be specific, say that the plane goes through
atomic site atz50; then, in the plane integration one ca
easily see that the elementsJLL8 are nonvanishing forl 8
51,3,5, . . . when l is even and forl 852,4,6, . . . when l is
odd. On the other hand, in the case of volume integration
JLL8 are nonvanishing only forl 85 l ,l 61, i.e.,JLL8 is band
diagonal inl and l 8. This can be viewed as an advantage
the volume-averaging method, since it means that, if o
describes the electronic structure with orbitals truncated
l max, for the accuracy ofJLL8 one has to consider wav
functions only up tol 85 l max11. A full-cell treatment adds
more nonzero elements, but the main contribution still com
from the ones mentioned.

VII. EXAMPLES

In recent papers we have applied the method prese
here to spin-dependent transport in ferromagn
semiconductor systems,29,30tunneling through vacuum,48 and
atomic-sized contacts.45 In this section we confine the calcu
lations to the simplest examples, in order to demonstrate
convergence properties of the method.

A. Band counting in bulk conductance

When the Landauer formula is applied to a perfectly p
riodic material, e.g., the bulk of a crystal, it gives a fini
conductance that physically represents the conductance
long wire placed between two phase-randomizi
electrodes.39 Resolved inki , the value of the conductanc
equals the number of right-propagating~or equivalently left-
propagating! states atEF for this ki . In other words, one has
to count the Fermi surface bands for thatki , which propa-
gate in the directionkz'ki with vz.0. This is demonstrated
in Fig. 6, where part of the Fermi surface of Al is presente
in the kx-kz plane, together with the conductance in thez
direction as a function ofkx ~with ky50). Actually, some of
the bands shown havevz,0, but their equivalents withvz
.0 exist symmetrically forkz,0. Clearly the conductance
~in units ofe2/h) equals the number of bands atEF for each
kx , giving a stepwise picture.

Also in Fig. 6 we can compare the results for angu
momentum truncation atl max52, 3, and 4. Increasingl max
results in a more accurate description of the wave funct

-
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derivative. Basically the slower convergence here arises f
the relatively high Fermi energy of Al, and is also present
a free-electron approach for highEF .49 As noted in the pre-
ceding section, if the wave function is accurate for so
l max, for the derivative one has to takel max11. For most
practical purposes,l max53 is enough, considering also th
the calculation time forl max54 is more than three times th
one of l max53 @due to matrix inversion, the calculation tim
scales roughly as (l max11)6].

When the conductance is analyzed in the various in
layer contributions, these can exhibit fluctuations inki , or as
a function of the interlayer distance. The origin of these flu
tuations is the Wigner-Seitz construction for the unit ce
resulting in corrugation of the surfaces where the curren
calculated. Due to the fact that we account only for thezz
component of the conductivity tensor, when we have cor
gation the matrix elements in Eq.~15! are not integrated
correctly and the nondiagonal current matrix elements do
vanish; thus, beating effects of the conductance appear
the conductance is averaged over more than one monola
the corrugation-free region in the middle increases, the r
tive error due to the corrugation decreases and the step
the conductance become flat as they should.

Finally, we have made a test calculation for the same s
tem, but employing the in-plane integration, rather than
volume averaging. Here the convergence withl max is poor
for the reasons explained in the preceding section; even
l max54 the deviations from integer conductance values
large.

FIG. 6. Fermi surface in thekx-kz plane~bottom! and conduc-
tance~in units ofe2/h) as a function ofkx ~top! for bulk Al and for
l max52, 3, and 4.
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As a test on the transmission coefficient when scatter
is present, we show in Fig. 7 the transmission throu
a barrier of constant potentialV051 eV, sitting on an fcc
lattice with lattice constanta54.032 Å ~Al ! and having a
thicknessd56a @twelve ~001! monolayers#. Two cases are
shown: one withEF50.5 eV ~tunneling! and one withEF
51.5 eV ~transmission over the barrier!. The analytical re-
sult concerning a square barrier is also shown, with the tra
mission probability given by

T5F11S kz

Kz
2

Kz

kz
D 2sin2~Kzd!

4 G21

, EF.V01
2mki

2

\2

T5F11S kz

k
1

k

kz
D 2sinh2~kd!

4 G21

, EF,V01
2mki

2

\2

with kz
252mEF /\22ki

2 , Kz
252m(EF2V0)/\22ki

2 , and
k252m(V02EF)/\21ki

2 . The agreement is good. Not
that a full agreement cannot be expected, since in the la
model the two interfaces of the barrier are corrugated du
the Wigner-Seitz construction, while the analytical model
sumes planar interfaces. However, at small energies or
wavelengths this corrugation does not play a major role.

B. The effect of the nonzero imaginary part of the energy

Although the conductance should be calculated at a
energyE, the Green function in the KKR method is alway

FIG. 7. Transmission through a barrier of constant poten
V051 eV, sitting on an fcc lattice with lattice constanta
54.032 Å ~Al ! and having a thicknessd56a @twelve ~001! mono-
layers#. Top: Tunneling (EF50.5 eV); bottom: transmission ove
the barrier (EF51.5 eV), where the transmission resonances
also seen. The full line represents the analytical result for a sq
barrier.
4-10
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KORRINGA-KOHN-ROSTOKER GREEN-FUNCTION . . . PHYSICAL REVIEW B69, 125104 ~2004!
calculated at a complex energyE1 i e, and the realE is
approximated by taking very small, but nonzero,e. This can
have an artificial damping effect to the conductance, si
waves within a small energy range aroundE are effectively
superimposed and finally the phase is randomized, espec
if the leads are seperated by a large distance. In Fig. 8
show an example of how smalle should be in a realistic
calculation. The system here consists of two Fe leads w
parallel magnetic moment seperated by a ZnSe spacer. E
trons are injected from the first lead into the ZnSe cond
tion band, and are detected by the second Fe lead. The s
thickness is varied from 9 to 97 monolayers, and due to
multiple reflections at the two interfaces transmission re
nances appear at certain thicknesses. For more informa
we refer to Ref. 30. The conductance of the majority el
trons forki50, i.e., at theḠ point, is presented in Fig. 8 fo
a choice of e50.02 mRy, 0.2 mRy, and 1 mRy. Fore
51 mRy there is strong artificial damping, whilee
50.02 mRy is adequate even for the large thickness of
monolayers. Note that this damping cannot model an ef
of temperature, because when we depart from the real a
the spectral density of a state transforms from ad function to
a Lorenzian distribution and not to the derivative of t
Fermi function. Due to the long tails of the Lorenzian t
damping is much stronger than for a Fermi distribution of
same half-width.

VIII. SUMMARY AND CONCLUSIONS

We have presented a formalism for the calculation of b
listic conductance in solids, based on the KKR Gree
function method for the ground-state electronic struct
combined with the Landauer-Bu¨ttiker approach. It makes us
of the result of Baranger and Stone32 connecting the deriva
tive of the one-electron Green function to the conductan
For the foundation of the formalism, we have discussed
relation of theS matrix between Bloch in and out states
the conductance. We have given an expression connec
the S matrix to the Green function of the system, genera

FIG. 8. The effect of the nonzero imaginary parte of the energy.
Conductance~in units ofe2/h) as a function of spacer thickness fo
spin injection through the conduction band in a Fe/ZnSe/Fe~001!
junction. The oscillations are due to multiple reflections. Fore
51 mRy there is strong artificial damping, whilee50.02 mRy is
adequate even for the thickness of 97 monolayers.
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ing the theory of Baranger and Stone to include the reali
band structure of the leads.

The convergence of the method with angular moment
cutoff (l max) was studied and found to be comparable to t
of KKR. It can be applied to systems with two-dimension
periodicity as well as nanowires. Our results show that
volume integration and averaging of the current matrix e
ments, applicable both in ASA and full-cell or full-potentia
approaches, gives well-converged results for the calcula
of ballistic transport. Owing to the linear scaling of the ca
culational effort with the number of layers of the screen
KKR formalism @O(N) scaling#, our method is suitable for
large systems.
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APPENDIX A: CURRENT MATRIX ORTHOGONALITY
RELATIONS

Let Cka and Ck8a8 be two Bloch wave functions of the
same Hamiltonian at the same energy. Then we shall pr
that the following relation holds:

E
S
dS~Wka;k8a8!zªE

S
dS~Cka* “

J

zCk8a8!

5 i
2m

\
~vka!zdkk8daa8 , ~A1!

whereS is an~infinite! cross-sectional area inx andy direc-
tions.

The proof has as follows: First we note that, as a con
quence of the single-particle Schro¨dinger equation for a rea
potential,

“Wka;k8a85“~Cka* “
JCk8a8!

52
2m

\
~Ek8a82Eka!Cka* Ck8a8

50 for Ek8a85Eka , ~A2!

where the band indicesa and b are used explicitly. This is
just an expression for current conservation of Hamilton
eigenstates. Then, for each volumeV enclosed by a geo
metrical surfaceS, Gauss’s theorem gives

R
S
dS n̂•Wka;k8a85E

V
d3r “Wka;k8a850, ~A3!

wheren̂ is a unit vector at the surfaceSpointing outward. In
particular,V can be chosen as a prismatic normal cross s
tion of the lead, extending fromz to z1d. Then its surfaceS
can be decomposed in two plane cross sectionsS1 at z andS2
at z1d, as the bases of the prism, plus side areasSside at the
4-11
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lead surface, as shown in Fig. 4. At these side areas we e
have confining boundary conditions, i.e.,Ckauside50,
whence Wka;k8a8uside50 or Born–von Karman periodic
boundary conditions, whence for each prism side there is
opposite one with thesame value of Ckauside and
Wka;k8a8usidebut with oppositeorientation unit vectorn̂; then
the sum of their contributions to the surface integral will
again zero. In this way, we are left with the two bases of
prism; they have opposite unit vector orientations, thus

E
S1

dS1~2 ẑ!•Wka;k8a81E
S2

dS2ẑ•Wka;k8a850 ~A4!

or

E
S1

dS1~Wka;k8a8!z5E
S2

dS2~Wka;k8a8!z , ~A5!

i.e., *SdS(Wka;k8a8)z is independent of the positionz of the
cross sectionS. This means that one can average it over
whole Born–von Ka´rmán supercell~in z) of length L and
volumeVBvK5SL:

E
S
dS~Wka;k8a8!z5

1

LE0

L

dzE dS~Wka;k8a8!z~x,y,z!

5
1

LEVBvK

d3r ~Wka;k8a8!z~x,y,z!. ~A6!

We now convert the volume integral in a sum over unit-c
integrals( i*V0

d3r and employ the Bloch property

Wka;k8a8~Ri1r !5ei (k82k)•RiWka;k8a8~r ! ~A7!

to get

E
S
dS~Wka;k8a8!z~x,y,z!5

1

L (
i
E

V0

d3r ~Wka;k8a8!z~Ri1r !

~A8!

5
N

L
dkk8E

V0

d3r ~Wka;k8a8!z~r !,

~A9!

whereN is the total number of lattice sites inVBvK , and

(
i

ei (k82k)•Ri5Ndkk8 ~A10!

has been used;V0 is the unit-cell volume. Note thatNV0
5VBvK5SL, thusN/L5S/V0, and we get

E
S
dS~Wka;k8a8!z~x,y,z!5

S

V0
dkk8E

V0

d3r ~Wka;k8a8!z~r !.

~A11!
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For kÞk8 this gives zero, while fork5k8 and a5a8 we
have

E
V0

d3r ~Wka;ka!z~r !

5
im

\ E
V0

d3r S Cka*
\

im
“Cka2Cka

\

im
“Cka* D

z

5 i
2m

\
~vka!z . ~A12!

Equations~A12! and ~A11! verify Eq. ~A1! except in the
case of band crossing, whenk5k8 but aÞa8. In this case
we may use the identity connecting the momentum oper
pop to the HamiltonianH and the position operatorrop:

pop5
im

\
@H,rop#. ~A13!

For the evaluation of Eq.~A6! we need the matrix element o
popª(\/ i )“. Using Eq.~A13! we get

\

imE
VBvK

d3rCka* popCk8a8

5~Eka2Ek8a8!E
VBvK

d3r Cka* rCk8a8 . ~A14!

In the case of band crossing,Eka2Ek8a850, but this does
not mean that the whole expression vanishes, since the
gral might diverge. It can be calculated in a standard way
utilizing Bloch’s theorem and reducing it to the unit cell. W
have

E
VBvK

d3r Cka* ~r !rCk8a8~r !

5(
i
E

V0

d3r Cka* ~Ri1r !~Ri1r !Ck8a8~Ri1r !. ~A15!

Using the Bloch properties ofCka and Ck8a8 and the rela-
tions

(
i

ei (k82k)•Ri5
~2p!3

V0
d~k82k!, ~A16!

(
i

ei (k82k)•RiRi5(
i

“k8e
i (k82k)•Ri5

~2p!3

V0
“k8d~k82k!,

~A17!

we obtain after some manipulations
4-12
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\

imE
VBvK

d3r Cka* popCk8a8

5
~2p!3

V0
d~k82k!H ~Eka2Ek8a8!E

V0

d3r Cka* rCk8a8

2\vkadaa82~Eka2Ek8a8!“kE
V0

d3r Cka* Ck8a8J .

~A18!

In all terms,k5k8 can be directly substituted due to thed
function, except in the last one, where one must first perfo
the integration and the derivation. In the second term,
orthogonality relation *V0

d3r Ck8a
* Ck8a85daa8 after the

substitutionk5k8 has been used. From this expression
immediately see that in the case of band crossing, i.ek
5k8, Eka5Ek8a8 , but aÞa8, the expression vanishes, s
the proof is complete. In passing we note that, ifa5a8, the
expression gives the group velocity as expected.

APPENDIX B: CURRENT MATRIX ELEMENTS IN THE
KKR METHOD

In the plane-integration formalism the KKR current m
trix elements read

JLL8
i

5E
Si

d2rRL~r ;EF!]zRL8
* ~r ;EF!, ~B1!

whereSi is the surface cut of the atomic celli with the plane
passing through it. In the full-potential KKR formalism, th
wave functions are expanded in terms of real spherical
monics as

RL~r !5(
L1

1

r
RL1L~r !YL1

~u,f!. ~B2!

The real spherical harmonics are of the form

YL~u,f!5aLPl
umu~cosu!trg~mf!, ~B3!

where

aL5A2l 11

2p

~ l 2umu!!
~ l 1umu!!

, mÞ0

aL5A2l 11

4p
, m50

Pl
umu(cosu) are the Legendre functions, and trg(mf)

5cosmf if m>0 or sinumuf if m,0. Thus one has to de
compose]z into ] r , ]u , and]f . The first affects only the
radial partRL1L(r ) and is calculated numerically; the oth

two affect onlyYL1
(u,f) and are calculated analytically. Af

ter some algebra one arrives at the result
12510
e

e

r-

JLL85E
r min

r max
dr

1

r 2 (
L2

aL2
$@r ] rRL2L8

* ~r !2~ l 211!RL2L8
* ~r !#

3uPl 2

um2u
~cosu!1~ l 21um2u!Pl 221

um2u
~cosu!RL2L8

* ~r !%

3(
L1

aL1
Pl 1

um1u
~cosu!RL1L~r !

3(
j
E

fentry
j

fexit
j

trg~m1f!trg~m2f!df. ~B4!

Here,r min andr max are the radii of the inscribed and circum
scribed circles, respectively, of the convex polygon,
which thef integration is performed, with center thez pro-
jection of the atomic site on the plane;fentry

j and fexit
j are

respectively angles of entry into and exit from the conv
polygon as thef integration is performed.

In the volume-averaging formalism, the KKR current m
trix elements have the form

JLL8
i

5E
cell

d3r RL
i ~r !]zRL8

i* ~r !. ~B5!

These can be computed within the full-cell or ASA forma
ism; here we shall present both results.

In the full-cell approach, the potential is truncated at t
boundary of the Voronoi atomic cell. This is achieved
introducing the characteristic, or ‘‘shape,’’ functionsQ(r ),
being equal to unity in the cell and vanishing outside.50 Their
expansion in spherical harmonics,

Q~r !5(
L

QL~r !YL~u,f! ~B6!

is used in the calculation of the current matrix elemen
After some manipulations we obtain

JLL85E
WS

d3rQ~r !RL~r !]zRL8
* ~r ! ~B7!

5(
L1

(
L2

(
L3

F E drS RL1L~r !] rRL2L8
* ~r !

2
l 211

r
RL1L~r !RL2L8

* ~r ! DQL3
~r !

1

a1,0

3(
L4

CL1L2L4
C1,0L3L4

1E dr
1

r
RL1L~r !RL2L8

* ~r !QL3
~r !

3
a l 2m2

a l 221,m2

~ l 21um2u!CL1L3l 221,m2G , ~B8!
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where CL1L2L3
5*dV YL1

( r̂)YL2
( r̂)YL3

( r̂) are the Gaunt

coefficients and the identity *dV YL0
YL1

YL2
YL3

5(L4
CL1L2L4

CL0L3L4
has been used.

The ASA result is simpler since it does not involve t
shape functions. The local orbitals have only a spherical p

RL~r !5
1

r
Rl~r !YL~V!, ~B9!

whence the current matrix elements become
ys

U

-

is-

s

n

12510
rt,

JLL85
1

a1,0
CLL8;1,0E drRl~r !] rRl 8

* ~r !

2
l 811

a1,0
CLL8;1,0E dr

1

r
Rl~r !Rl 8

* ~r !

1
~ l 81um8u!a l 8m8

a l 821,m8

d l l 821dmm8E dr
1

r
Rl~r !Rl 8

* ~r !.

~B10!

It is implied that the integrals are within the atomic spher
int-
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17P.S. Krstić, X.-G. Zhang, and W.H. Butler, Phys. Rev. B66,
205319~2002!.

18D. Wortmann, H. Ishida, and S. Blu¨gel, Phys. Rev. B65, 165103
~2002!.

19D. Wortmann, H. Ishida, and S. Blu¨gel, Phys. Rev. B66, 075113
~2002!.

20R. Landauer, IBM J. Res. Dev.1, 223 ~1957!; 32, 306 ~1988!.
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