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We develop a method for the calculation of ballistic transport from first principles. The multiple scattering
screened Korringa-Kohn-Rostok@¢KR) method is combined with a Green-function formulation of the Lan-
dauer approach for the ballistic transport. We obtain an efficieht)@{gorithm for the calculation of ballistic
conductance through a scattering region connected to semi-infinite crystalline leads. In particular we generalize
the results of Baranger and Stone in the case of Bloch wave boundary conditions and we discuss relevant
properties of th& matrix. We consider the implications on the application of the formalism in conjunction with
a cellular multiple scattering description of the electronic structure, and demonstrate the convergence proper-
ties concerning the angular momentum expansions.
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l. INTRODUCTION mostly combine the Landauer-Biker approacf?! with
electronic structure methods, as will be done in the present
The study of transport properties of solids has alwaygaper. Moreover, due to potential applications in GMR and
been a challenge for experimental and theoretical condensddVIR devices, spin-dependent transport has come to the cen-
matter physics. The difficulty lies among other things in the!®" Of '”teg?%l"g’,'ztg‘_%n emphasis on conduction in magnetic
fact that the transport properties are by definition related tQUIt[Iay62,16,26_3l and ferromagnet—semllcond'uctor
nonequilibrium situations, so that their modeling is not easily ybrides: In these systems 'ghe electronic spin de_-
. . : ees of freedom are accounted for in order to achieve spin-
based on standard techniques. Fortunately, in the regime

i ¢ K ext | fields. the stud b ependent resistance. In addition, novel systems such as
Inear response (o weak external 1Ields, the study can bfinawires or atomic-size contacts are created experimentally

based on ground state properties, by treating the field as g,q gemand interpretation of their transport properties.
perturbation. That this approach is founded solidly is guar- | this paper we present a method for the calculation of
anteed by the fluctuation-dissipation theorem; in particulapajjistic transport from first principles, which combines the
for the case of electrical conductivity this is expressed by th&KR ab initio Green-function technique with the Baranger
famous result of Kuba. and Ston& formulation of the ballistic transport. The
In the past decades, the development of first-principlesnethod is suitable for layered systems and interfaces with
methods for the calculation of the electronic structure of soltwo-dimensional periodicity, as well as for atomic size con-
ids has been accompanied by corresponding advances in tegrictions connecting two leads or nanowifésnd supports
formalism and methods for the calculation of transport prop-spin-dependent effects. Since the KKR technique in the
erties. Technological interest has given a push to the fieldscreened formalism offers linear scaling of the computational
and novel effects such as the giant and the tunneling magneffort with the number of layer¥, our method can handle
toresistancé GMR and TMR have been investigated theo- large systems. Additionally we present the proof of some
retically and applied in technology. Furthermore, the size otheorems concerning the transmission probability of wave
today’s electronic devices is so small that the understandingackets in crystalline, rather than free-electron, environ-
of ballistic (i.e., phase-coherentransport has become im- Ments. ) ) )
portant not only for basic physics but also for applications. 1he paper is organized as follows. In Sec. Il we give a
As a result of these developments, ideas and methods thgEScription of the setup of the physical systems that our
initially were conceived for the understanding of electronicMethod can be used for. In Sec. 1ll we briefly address the
transport in simple cases have been combined with tec approximations and assumptions made, also in connection to

nigues based on a realistic description of the electronic stru S_he tKubol-\?re%nv\yood gnd tthde tBararllger-t?]tone forn:_alls;n.
ture in order to give reliable and material-specific restilts. ections 1V an are devoted to making the connection 1o

Without claiming to give a complete list, we mention that for the Landauer-Bitiker formalism, and some elements of scat-

diffusive transport through disordered systems there existﬁ‘:rlng theory are given there. The conductance formalism for

methods and results based on the combination of the Ko'e KKR method is developed in Sep. VI. Some examples
illustrating the convergence properties of the method are

given in Sec. VII. Finally, we conclude in Sec. VIIl. The
appendixes contain parts where lengthy mathematical ma-
nipulations were needed.

ringa, Kohn, and RostokefKKR) Green function method
with the Boltzmann formalisri;® on the coherent potential
approximation (CPA) combined with Kubo-Greenwodd
theory/~° or on the tight-binding methotf. For ballistic
transport there exist methods based, for example, on low-

energy electron diffractiofLEED)**2 and layer KKR® or Il SETUP OF THE PROBLEM

similar layer-typé* techniques, on the tight-binding The systems that we study consist of two half infinite
approach?~1"and on the transfer matrix conceéft'®these perfect crystalline leads, left) and right(R), attached to a
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The nonlocal conductivity tensar(r,r’) is connected to the

L 1 R retarded one-electron Green functié (r,r’;E) of the sys-
j tem via the famous Kubo-Greenwood result. Its frequently
— g S used form i$

h eh .
a(r,r’):—;f dE[—f’(E)](HVIm G (r,r’;E))

FIG. 1. Setup of the problem. The regions L and R correspond
to perfect semi-infinite crystalline leadisot necessarily of the same X
materia), attached to an “interaction region” I. This includes the

interface or other structures sandwiched between L and R, plus Blere f'(E) is the Fermi function derivative and Im denotes

few monolayers of the leads at each side so that the evanescefio imaginary part. In terms of the difference between the

interface states can decay. The conductance is evaluated betwele&ard ed and advanced Green funct®n

eﬁ ’ + ! .
FV Im G (r ,r,E)). (2

the surface$, andSg, where only bulk Bloch states should exist.
AG(r,r";E)=G*(r,r';E)—G (r,r';E) (3
slab that is considered as the “interaction” regi@h sche-
matically this is represented in Fig. 1. The surfaSgsand
Sg should be chosen far enough within the leads so that any = —Zﬂif dayg,(r) i (r')S(E—Eyp), (4)
localized interface states have decayed and only Bloch states
are present there. The direction of growth is taken to bethe the conductivity can be written
direction. We consider systems with a two-dimensig2a))

periodicity in thexy plane where the scattering region is 0273

embedded between two semi-infinite crystalline leads. More- o(r,r')y=— f dE[—f'(E)]

over, summing up current contributions in real space we can 16mm?

calculate the conductance in the presence of defects in PR

nanowire&>**and we can even treat atomic sized constric- XAG(r,r';E)VV'AG(r',r;E), ®)

tions between infinite leads if the current flow is localized in o . ) -
the constriction region, which is usually the c43@hus we ~ Where the symboV is defined asf(r)Vg(r)=f(r)Vg(r)

can simulate transport through small molecules or a break [V (r)19(r). Here only thes-function part of the Green
junction geometry. function has been kept; the principal-value part gives rise to

the reactive term, which is zero for dc conductarfcelpon
taking the limit of zero temperature, the derivative of the
1. KUBO FORMALISM Fermi-Dirac function becomes & function according to
—f'(E)— 8(E—Eg) and contributions to the conductivity
The connection between the ballistic dc conductance opnly arise from the Fermi level.
conductivity and the one-electron Green function in the |n the absence of a magnetic field, as assumed in our

H H : H 37 g . .
linear-response regime has been given in the $aSt>'In  work, the nonlocal conductivity tensor is symmetric under
short, one uses first-order perturbation theory to calculate thge interchange of andr’, and divergenceless:

effect of a weak, time-oscillating electric field on the density
matrix of the system; then, the frequency of the oscillating a(r,r)=o(r',r), (6)
field is taken to zero, and the dissipative term of the expec-
tation value of the current gives the dc linear response of the
system. The result is just an expression for the Kubo conduc-
tivity of the system at the limit of zero temperature. Integra-
tion by parts of the conductivity expression gives the relatio
among current, conductance, and voltage. Baranger a
Stoné? have proven that the conductance is a Fermi-leve
property, although the two-point conductivity within the o
sample can also have contributions from other energy level@1agnetic field;
when magnetic fields are present. Here we briefly describ® - o(r,r')- V' =0 instead’
the relevant formalism, in connection to the rest of the paper. In Eq. (1), of course,E(r’) is the total field, i.e., the
The general relation between the current density at somexternal field plus the field being induced by charge relax-
point, j(r), and the electric field at all other points of a ations; the electronic gas and nuclei must be also fully taken

material, E(r'), in first-order perturbation theory for a sta- into account. This is not easy to handle; however, this ex-
tionary state, is given by pression can be integrated over the whole sample leaving

only the current in relation to the applied voltage by exploit-
ing the fact thatE(r)=VV(r), whereV(r) is the electro-

o 3, , , static potential. Inserting this into Eql) one gets for the
J(r)_f d*r"or(r,r)E(r). @ total current] throughSg

V-o(r,r')=o(r,r')-V'=0, (7)

whereV means that the operator acts to the function on its
ft. The former relation is a consequence of the symmetry
(r,r')=G(r’,r) of the Green function for local potentials.

The latter is a result of current conservation in the absence of

if a magnetic field is present, one has merely
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N ~ R use the Landauer-Btiker formula to calculate the conduc-
J==JS d&J(r):AVJstSJs dS'zo(r,r)z, (8  tanceg,, from leadm to leadn:*

R L

after an integration by parts and use of Eq.(bothz andZ’
are pointing outwardsHereAV is the external bias voltage.
The “zero-current theorem” stating that the ground-state
electrostatic potential gives always zero current deffsitgs ~ Stone and Szafét and Baranger and Stotfeshowed the
been used, so only the externally applied voltagé re- connection between the Landauerttiker formula with the
mains. Thus one can recognize the conductance as the flux Ktibo result starting from perturbation theory, considering
the conductivity tensor through the surfa&sand Sg: free-electron leads. In Sec. V we shall follow their analysis
closely, but prove some of the theorems needed for crystal-
line leads taking into account the Bloch character of the in-

e? e?
Onm= 1 Z Tnf;mi:_ 2 |Snf;mi|2- (12
h fi h fi

g:LLdSLRdS’Z(r(r,r’)Z’. )

Substituting Eq(5) one obtains for the conductivity:

e

g=— J dS| dS'G*(r,r';Ef)V,V,
S Sr

8mm?
XG(r',r;Eg), (10

where the terms involvings*V,V.G* and G~ V,V.G"~
vanish®?

IV. LANDAUER FORMALISM

coming and outgoing channels.

The Smatrix formulation in such problems and the ques-
tion of unitarity will be shortly addressed now. First of all,
the in states and out states, which in a usual formulation are
plane or spherical waves, are here propagating Bloch states
in the leads. Whether such a stélfg is incoming or outgo-
ing is determined not by the Bloch wave veckgrbut by the
group velocityv,=VE, . Suppose that a particular lead is

grown in thez direction, with the unit vectoz pointing away
from the sample. Then, the Bloch state is outgoingvif)
>0, and incoming if ¢,),<0. Evidently the set of in states
can be different from the set of out states. Consider, for ex-
ample, the case of only two leads of different materials, say

L in the left with wave functionsP" and R in the right with
In the Landauer approach, the conductance problem igave functions¥R, sandwiching the interaction region .
viewed from the aspect of scattering theory. In this way, theThe set of in states for this problem will consist of right-
causal relation between voltage and current is conceptuallifayeling waves¥- and left-traveling® R , while the set of

9 . ..
reversed”” Instead of applying a voltage and examining theqt states will consist of left-traveling wavas;,, and right-

current as the response, a current is forced to flow throuQﬂaveling wavespR
out-

the sample and the voltage is viewed as the result of the The total wave function in the system will be asymptoti-

pileup of carriers at the various obstacles, forming re&du:ﬁa"y a linear combination of in and out states; in particular,

resistivity dipoles. The result is, O.f course, again thg USU3t \ve choose incidence from lead L as a boundary condition
current-voltage relation. In a multilead experiment, if eachWe have the form '

leadn is held in potentiaV,,, then the currend, going out
through this lead is

Lin L out
\I,ka + E rkak’a’wk

rar
Wil(r)= (13
2 tkak’a’\PEfc;Llna
The coefficientg,,, describe the conductance of the system, k'a’
and in the case of only two leads there is only one conduc-. . . .
tance coefficient. _For f|n|tezvalu_es also evanescent ;tates have to be included
The concept of incoming and outgoirsgattering chan- " the summations; however, they die out for = . Here,

nelsis introduced, which play the same role as in and ougznd indicesa anda’ and Bloch wave vectork andk’,

states in scattering theory; in the cases of our interest the ve been introgtuced; elastic scattering is implied. The total

are Bloch states in the leads. We need to describe the scd¥2ve function;(r) is characterized bia in the sense of
tering process of one-electron Bloch states incident fronthe bo_undary condition, i.e., it originates from_ an in state that
lead L as incoming waves and scattered into lead L or R aas this wave vector. The transmission amplittdg . and
outgoing waves; thus aBmatrix formulation is appropriate. the reflect!on amplitudey 5 are related to the elements of
One has waveguide or crystalline geometry in the leadsthe S matrix of the system. _
rather than the free-space geometry of usual scattering The normallzatlon_ of the in and out states d_etermlnes
theory, and in addition the leads can consist of different maWhether these amplitudes and r are identical with the
terials. In this respect, the usual scattering theory needs a fewMatrix elements or not, since tf®matrix must always be
modifications to be applicable. unitary. If one normalizes the in and out states to unit &
Once theS'matrix elements are available, one can readily‘Piq’/\/;), then tRhe transmission probability from state
calculate the transmission probabilify,;.,; from each in-  Wi,i, to state ¥, ., . is just TryrarL ka=|tkakar|?
coming channel in leadm to each outgoing in leadn, and  =|S,,a/|?. But with the usual normalization to unit prob-

zZ——®

Jn:ngn InmVm - (11
Z— + o,
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ability in space, the transmission probability must invoke the (i) Next we consider the asymptotic expression for the
group velocities to account for the different flux of in and out retarded Green functio® " (r,r’;E), with r andr’ in dif-

states’” ferent leads and going to infinity. This can be fothdy
Out using the boundary condition th&" (r,r’;E) should repre-
) ) |(Vgra)al sent an outgoing wave at G (r,r’;E) should represent an
Tr k'a’;L ka™ |Skak’a’| = |tkak’a’| W (14 incoming wave at, and

G (r,r";E)=G *(r’,r;E). (18)

The Green function then, expanded in in and out states, has
the asymptotic form

kE E Aakra VR WET (1)

(for z—oo, 7' — —),

This point will be addressed in detail in the following sec-
tion.

V. CONNECTION BETWEEN KUBO AND LANDAUER
APPROACHES G*(r,r'";E)

The connection of the Landauer approach involving$he (19
matrix to the Kubo-Greenwood conductivity formula involv-
ing the Green functions has been given by Fisher and®f.ee, We are now seeking a relation between the coefficients
Stone and Szaféf,and Baranger and Stotfan the case of Aya.krar and the transmission amplitudgg, .- . Equation
free electrons in the leads. However, for crystalline leads onél7) was used together with the Lippmann-Schwinger equa-
must account for the relevant band structure. Here we presetion and Eq.(10) in Ref. 32 to prove this for free-electron
some proofs needed to extend the above results to crystallidleads. However, the Lippmann-Schwinger equation is diffi-
leads. In particular we shall pursue tigematrix elements cult to handle when we have different materials in the leads,
between in states from L leads and out states in R leads arlzecause it connects the Bloch wave functions of different
see how these connect to the Green function of the systematerials in the infinite leads, thus there is no localized per-
and to the conductance. In this way the connection of théurbation. Alternatively, one can start directly from the
Kubo to the Landauer formalism will be made. We proceeddefinitior”? of the S matrix in terms of the time-dependent
in three steps(i) we find an expression for the transmission retarded Green functiofpropagatoy, looking at the trans-
amplitude ty,..o 5 (i) we express the asymptotic Green mission amplitude from an initial wave packdt; N(r,t)
function in terms of theS matrix; and(iii) we express th& = [dE e"Ental(E )\I""“(r,E ), incident from the left, to a
matrix in terms oftya.y/a; - final one ®F°(r,t)=[dE; e "Eray(E))¥F(r;E/), out-

(i) We start with the calculation of current matrix ele- going to the right. Here?; and ¥, denote itinerant Bloch
ments between Bloch states. In particular,98f, and ¥¢2'  states and we have propagated the initial and final states to
be incoming and outgoing Bloch stat¢® the sense de- andt’ by their corresponding bulk Hamiltonians, giving the
scribed before, i.e., right and left travelingf the same en- exponential factors. At the ena, and a; will be taken as
ergy (Exa=Exa) in the same lead; the states are normalizecextremely peaked distributions around the same engrgy

to unit probability rather than unit flux. Also, I&be the lead  andf represent then definitea’ andka. (Atomic units with
cross section, normal to ttedirection. Then the following =1 are implied) One gets

orthogonality relations hold for the current matrix
1
elementst Si:= lim fd3rfd3r’<l>$°“'*(r,t)
t—o
f dS\I,In *V \P:(n/a/ f dS\IIOUt* VZ\PE&];I t'——ow .
XGT(r,t;r ) dF"(r' )
2m
=17 (Wka) 20 daar (15 = lim Jd3rJd3r’CI>$°m*(r,t)JdEe*iE(H')
t—ow
t/——co
in % out __ — )
de‘I’ V q’k’a’ 0 (for Ek’a’_Eka) (16) ><G+(r,r';E)(I>:"n(l",t')

(Wi, and WY here are supposed to be left- and right-
traveling states in the same lgad’hese have been proven
before? for free electrons; we present a proof for Bloch
states in Appendix A.

Equationg15) and(16) can be used to project a scattering
wave function onto a particular channel; using them in con-
nection with Eq.(13) we can extract the transmission ampli-
tude out of ¥t :

tkak,a,| u‘k",“, stqu‘*(r)v R, 1)

125104-4

= lim JdE g Bt Af,i,(E)defeiEffa?(Ef)
t—o fri’

t/ - —o
X (TROUE,), wm‘“(E))f dEe E'a(E,)

X (WE"(E), WE"(E;))

:f dE af (E)ai(E)vjvsAs(E) (20)
=Asi(Ej)Vvjvs (on shel). (21
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The velocities appearing represent theomponent of the T, =||®,{|?
group velocity, since in waveguide geometry & form in
reality a very dense discrete set so that the wave packet is
constructed for a definité from the continuousk, spec-
trum. Having this in mind, we have used in the derivation of

=|t|2f dEf dE'[a(E)[A(V ol E), Y oul E"))

Eq. (20) the orthonormality condition for Bloch waves - |t|2f dE|a(E)|2f dE' S(E—E")vou= t|%0 0wt/ Vin
(\Ifka(Ef),\Ifk,a,(E)):f d3r Wi (1 E)) Wy (r;E) where the normalization&2) and (24) have been utilized.
Comparing this to Eq(25) proves EQq.(26) up to a phase
= Sy k! Oaar O(K,— K2) factor, which can be seen to be just unity by creating a wave
" packet out of#'™® in Eq. (13) and constructing th&matrix
= 5ka”, SaarV,0(E—Ej). (220 element. Furthermore the expressid@) results from Egs.

(25) and (26).
In addition we have used the normalization of wave packets Combining all the above, we may rewrite HG9) as
to unit probability

GrrE)=Y X Yy R

=fdEa*(E)fdE’a(E’)(‘I’(E),‘l’(E’)) R R Y CARILL
ta ra’ in% ou
=de|a<E>|2vE, (23) =Y > e glins e ngRour),  (27)
ka /g (Uk’a )z

which for a very peaked distributioa(E) around some en-

. which gives us for the advanced Green function
ergy E; gives

o ar
| dela@ -1, ey G E=Y S K g i)
! ka k’a’ (Uk/a/ z
implying that in the limiting cas¢a(E)|— /§(E—E;)/ve,. 28)
Finally, in the last step we have assumed thgtE) and We can extract th&matrix elements from the Green func-
a;(E) are both peaked around the same ené&iggo that the tion:
wave packet goes to a single Bloch function, whence

a7 (E)ai(E)— 8(E—E;)/\v(E;)v;(E;). Thus, the final re- 53
sult (21) is valid for on-energy-shell scattering of Bloch Scaxar=—-
waves; otherwise, for general wave packets,(£6) must be 4m” V(virar) (vka) 2/ S
applied. Working with wave packets has guaranteed the cor-
rect normalization. xf dsq’trlgr(r’)ﬁ;GJ“(r,r’; )V WROU (1),
From Eq.(21) we see that the coefficients in the Green
function asymptotic expansion are juStmatrix elements (29)
(normalized to the group velocitipdn this form, theS ma-
trix is unitary, i.e., the scattering probability is whereS, andSg have to be sufficiently far apart so that the
asymptotic formula(20) without evanescent states can be
T=|Shl% (25  used(the evanescent states are always included in the Green
function).
(i) Finally we show that the relation of th® matrix to As a final result, we combine the above stépsiii) to

the previously defined transmission amplitude of B is  arrive at the Landauer formula. We start from the Baranger-
Stone expressiofl0), expand the Green functions according

\/v_ to Egs.(27) and(28), and use the orthogonality relatiofib)
Shi=thi = Jo; =AriVvi, @6 g get rid of some terms:
i.e., a normalization involving the group velocities is needed.
This can be seen by noting that an incoming wave packeig= 5 ds dS’G+(r,r’;EF)€ﬁ;G‘(r’,r;EF)
®,,=[dEa(E)¥;,(E), normalized to unit probability as in 8mmoJs.  Jsg
Eq. (23), evolves partly into the wave packe®,, (0rrar)]
= JdEY(E)a(E)¥o,(E) according to Eq(13. Assuming = — 2 2 larar |2t
that a(E) is so much peaked arourd, thatt andv are Kainyra out (Vi)
constant in this energy range, the scattering probability is 2
given by the normalization factor of the outgoing wave =_— > > T, . 1a. (30)
packet: h i@in 2 out '
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VI. THE CONDUCTANCE FORMULA IN THE KKR G*(Ri+x,+I. R +x, +r'";E)
METHOD
1 .
A. The Green function in the KKR formalism = _f deHe' K= x0r)
SspzJ sBz

In the KKR method one divides the crystal in atomic
cells, with the atoms positioned at the sif®s, so that the
crystal potential V is expressed in each cell ag,(r)
=V(R,+r). Then the one-electron retarded Green function
is expanded in terms of local orbitals centered at the atomigith
sitesR,, as

X X RU(E)G] |, (kj;E)RL(r';E) (32
LL'

i’ . _ —ik vy N~iviTy!
G (Ry+1,Ry +1";E) GLL’(kH’E)_§ e M XIG T (E),

=—iVEX RNr-;E)HNr- ;E) Sy wherey, andy, are in-plane lattice vector; is the inter-
L layer lattice vector, and SBZ is the surface Brillouin zone of
- o the system andSgg, its area. GEL,(kH ;E) are the
+2 RI(E)G | (E)RL (r';E). 3D k|-dependent structure constants. In this equation each layer
L i is assumed to have a unique atom type, hence only the
N N _ indexi suffices to characterize the local wave function. In the
Here, R (r;E) and H(r;E) are, respectively, the regular ;55e of more inequivalent atoms per layer, an extra index
and irregular solutions of the Sclufinger equation for the .51 pe introduced to account for the propagation between
single potentialy(r) of the nth cell in free space. Atomic gjtferent kinds of atoms. In the case of spin magnetism, the
units are used €=—\2,7i=1,m=1/2). The indexL  Green function is different for each spin directior= T or | .
= (I,m) represents the angular momentum quantum numbefrhe formalism can be generalized for fully relativistic calcu-
The position vector is confined in the atomic ceff; r-. and  |ations, where the spin-orbit coupling results in a mixing of
r. are the longer and shorter, respectivelyradndr’. In the two spin channels.
Eqg. (31) the first term gives the on-site contribution to the  Qpce Eq.(31) or Eq. (32) is substituted into the expres-
Green function, while the second is the so-called backscattegjgn (10), with r andr’ in different leads, the on-site term of
ing term, where the information on the intersite electronthe Green function does not contribute, and only the intersite
propagation is contained in the structure const@{%(E). term survives; moreover, the spacial derivative affects only
These are related to the known structure constants of a refne local orbital functionsR['(r) and RE'(r), leaving the
erence system, e.g., vacuum, via an algebraic Dyson equatructure constants untouched. Finally, if E8p) is used, the
tion that includes the locdlmatrix of each single-site poten- conductance appears at first-resolved, g(k;), which is
tial. For further details we refer to Refs. 34. most convenient in structures with two-dimensional period-
The layered systems that shall be considered with thecity. A k| integration then gives the result
KKR formalism consist of two half-infinite crystalline leads,
assumed to have perfect periodicity otherwise. Sandwiched 1
between these leads is an “interaction” region where a dif- g= —J d?kjg(k)). (33
ferent material can be placed and where the scattering of the Sssz) sez
Bloch waves takes place. Three cases can be handled in this
respect:(i) systems with in-plane periodicifi?, (i) wirelike In Eqg. (10), both the retarded and the advanced Green
structures embedded in vacuuier in some other noncon- functions are needed; however, they are related through the
ducting mediuny****and (iii ) atomic constrictions between identity (18) for real E. This is used in our formulation; the
semi-infinite leads. energyE is identified in the calculations with the Fermi level
Concerning casé), when we consider systems with two- Eg plus an (in principle infinitesimal imaginary parte,
dimensional in-planex-y) periodicity (perpendicular to the which we take very small.
direction of growthz), the interaction region and the two The case(ii) of wirelike structures is completely analo-
leads have common in-plane Bravais vectors. If neededjous, but the Fourier transform of E®2) is not performed.
larger (nonprimitive) two-dimensional unit cells are taken to More specifically, consider a wire embedded in vacusee
match the lattice constants of both materials; this is the cas@lso Fig. 2; the vacuum region will be also divided artifi-
for example, in an Fe/GaAs contattThe two-dimensional cially in volume-filling cells. One can also consider defects
periodicity of the layered systems allows to Fourier trans-within the wire, or even two wires attached to some cluster
form the Green function in theandy directions, obtaining a of atoms(as indicated in Fig. 2 and solve self-consistently
two-dimensional Bloch vectok = (k,,k,) as a good quan- for the electronic structure. Due to electronic states at the
tum number, and retaining an indeto characterize the layer surface of the wire, the first one or two vacuum layers above
in the direction of growtlz. The Green function connecting the wire surface can contribute to the conductance, but after
the layersi in the left lead and’ in the right lead is then that the cross section can be truncated. The cross sections left
written and right, where the conductivity tensor must be evaluated,
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FIG. 2. Left: Setup for the calculation of conductance in a nanowire configuration. The filled circles represent the wir@eaitgns
including defects or an atomic clustéshaded circles The white circles represent the vacuum region. The conductance calculation is
truncated at the dashed lines, assuming that the states of the nanowire have decayed beyond this region. The arravanidkzéled
represent the directions of growth of the two leads. Right: Similar setup for the calculation in the case of nanosize constrictions between
infinite leads. Again a truncation at the dashed lines is taken, assuming that outside this region there is insignificant tunneling between the
leads.

consist always of more than one atomic cell, since one musthich is completely within some three-dimensional cell.
include the vacuum region. In this way the Green functionTherefore the representation of the Green function in terms
must be considered for all combinations between cells on thef local radial functions can be readily used. In fact, in sys-
left and the right, and the expressi¢h0) for the conduc- tems with two-dimensional periodicity, a two-dimensional
tance splits up in partial contributions corresponding to thesenit cell consisting of some convex Voronoi polygoBs is

combinations: constructed and the calculations can be confined in those. An
example of the construction for bd@©01) surface cells is
B given in Fig. 3.
g_ﬂ'(zmﬁ) ,u(nght) Gpn’ (34 Using such a construction, the-resolved conductance is

written as
with g, given by Eq.(10) but integrated over the cross
section of single atomic cellg’ (left) and w (right). 1 ’ ’
Analogously, in caséii) a similar setup can be used ifwe  g(k)=———= > > > (I, =3I~ )
consider semi-infinite 2D leads but current flow localized in 473 ap! LLLL"
space, as in the case of transport through a constriction. In , ,
this case we consider two planes as shown in Figight), XGPL (ks E)G (KB, (35
while convergence must be checked with respect to the size
of the regions considered in the summations of B4).
In the next subsections we will consider the calculation of
the spatial derivative of the local radial functions and the
Green function.

B. Plane integration

First we consider a direct evaluation of the conductance
by use of Eq(10) and calculation of the spacial derivative of
the Green function at exactly the plane surfaces Igf) @nd
right (Sg). Both S, and Sz are assumed to be in the
asymptotic region where the potential is stabilized to the
bulk one and the evanescent states have decayed; in practice
one has to perform the calculations for several positions of
S, and Sy, at finite distances to verify that the results remain
unchanged.

The set of atomic cells is volume filling, and the plane
surface cutting through them inherits the cellular structure
used in the KKR method; thus it is split in two-dimensional |G 3. Two-dimensional geometrical construction for the bce
tesselating cells. Each one of them is a convex polygon coro1) surface cut. The cutting plane goes through the lattice sites of
responding to the section of the plane that belongs to a corm atomic layer(full circles), but must include also part of the
vex Voronoi polyhedroff (or just a Wigner-Seitz cell in the Wigner-Seitz cell of the next laydppen circles The shaded area
monatomic case In this way, a two-dimensional cellular shows the two-dimensional unit cell formed, consisting of two
Voronoi construction is defined in the plane, each cell ofsmaller convex Voronoi polygons.
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where we have introduced the KKR current matrix elements 4
J¥ .(in a similar fashion as has been done in the Tsh a 1 S(side)
cell as

= fs d?rR (r;ER)d,RY (15 Ep). (36)
"

S’

The summation> . is over the Voronoi polygons of the
inequivalent atomic sites of the 2D unit cells in the leads.
The calculation of){’ , is described in Appendix B. In the
case of a finite system, where a two-dimensional Fourier
transform is not necessary, the summation is over all atoms

in the planesS_ and Sg, and thek; dependence drops.

The Green-function matrix eIemenG’L‘[‘,’, containing
the information for the propagation from site’ at a layer
within the left lead to a site. at a layer in the right lead, are
off-diagonal, while for the charge density one needs only the -,
diagonal(on-site elements. Nevertheless, an efficientN)( A S(Slde)
algorithm exist&’ for their calculation within the screened -1l
KKR for.mallsm, |..e., the t_lme needed for the calculation FIG. 4. Construction for the conversion of volume to surface
scales linearly with the distance between the two Iayersimegr(,juS over the lead cross section.

Thus it is possible to calculate the conductance in junctions

of more than 100 monolayers with present-day

Cor\T/]vzuLeorf’:r:at A formula for the direct calculation of thetion from opposite side areas due to the opposite surface unit
u i ulati . . } N

reflection probability via the Green function can be derived”ct" or|entat|on,A then we are left witfs dSaj(r.r')-z

along similar lines[see, for example, Ref. 32, E76)]. ~ =JsdSoy(r,r')-z The same applies f@_, wherez’ var-

However, this formula uses the on-site Green function, i.e.jes; thus the flux of;;(r,r'), i.e., the conductance, is inde-

the t_garmnzn’ in Eq. (31). Then the irregular solution of the pendent of the exact position & and Sz, QED. In fact,

Schradinger equation is includefdenoted asH,_ in Eq.  following these arguments, we see ti&t and Sg do not

(3D], which is divergent at the origin. For the evaluation of even have to be planes; for instance, they can follow the

the current one has to calculate numerically the derivative Oi)attern of the Wigner-Seitz or Voronoi cells, as |0ng as they

this divergent function, and this leads to numerical instabil-meet the requirement that they satisfy the Born—vomiéa

ity. This is avoided when calculating directly the transmis-periodic boundary condition ir andy. In the case that they

«—1I ead cross section——
1
N>

sion coefficient, since then we have alwaysn’. are not planar surfaces, one must of course take the flux of
the conductivity tensor really along the norntalpointing
C. Volume integration: Atomic sphere approximation outward at each point of the surfaces, i.e.,
and full cell
In this section we provide an alternative to the calculation - | ds| dsn "n.Ar
X . = n-o(r,r')-n". 3
of the surface-integrated current matrix elements of E2§). g s Js () 37

and(B4). We prove that the calculation can involve a volume

integration over the unit cell, instead of a surface integration; Since the exact choice @& or S, does not affect the
in principle, the results must be equivalent, but this methodesult, one can average over the voluvhimcluded between,
has advantages when one wishes to use the atomic sphejgy,S, andS instead of integrating ovesg. In particular,V
approximation. Most important is, however, that theon-  can be chosen to have a thicknelssquivalent to a unit cell

vergence is much bett¢see Sec. VI ~_in the z direction, so that one has to average over layer-
First we observe that the value of the conductance is inadapted unit cells. In this respect, the conductance formula
deed independent of the position of the plaggsand Sz.  has the same form as E@®5), but with an extra prefactor of

This can be proven using the fact that the conductivity tensoi/d? to account for the volume averaging in the two leads (

is divergencelesfEq. (7)]. Say thatr is on Sg; if we con-  here is the distance between two consecutive lattice mono-
sider a second plane surfagg close toSg, we can utilize  ayers; the current matrix element | », volume-averaged
Gauss’s theorem in the volunweenclosed by the two planes here in the atomic cells, have the form of Eg6) but with

to convert a volume integral of Eq7) in V into a surface the integral being three-dimensional over the atomic cell.
integral overSg, Sg, plus side areas. The construction is This can be done both in the atomic sphere approximation
analogous to that described in Appendix A, as shown in Fig(ASA) and in the full-potentia{and full-cell) formalism. De-

4. The contribution from the side areas vanishes becaudails about their calculation are given again in Appendix B.
there we have either totally confining boundary conditions or A word of caution is due here: it is essential that the
Born—von Kaman boundary conditions leading to cancella- volume averaging leaves no “holes” in the structure. To be
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A B A B a A B A B A tipole expansion of the charge density is taken. This has the
advantage of greater simplicity and less computational effort
than a full potential and full cell description. In such cases,
the plane integration is not applicable, since a plane cut
through volume-conserving spheres cannot give an accurate
surface area; the volume integration is then the only way. In
the case of a full-cell treatment, when one has the correct
Wigner-Seitz or Voronoi volume tesselation, one must con-
sider that the plane method has a drawback, namely, that the
plane might go through regions only at the edge of certain
cells, where thé ., cutoff seriously affects the accuracy of
the results; on the other hand the volume integration aver-
ages out such inaccuracies.
One has also “selection rules” that make certdjn, el-
ements vanish. This is most easily seen if one uses spherical
FIG. 5. Two possibilities for cell-averaging of the conductivity Potentials. To be specific, say that the plane goes through the
tensor flux in an ..ABAB. .. stacking sequence. Left, using a atomic site atz=0; then, in the plane integration one can
cellular division without corrugation of the surfaces, and right, us-€asily see that the elemendg , are nonvanishing fot’
ing the Wigner-Seitz construction with corrugation. The latter is=1,3,5 ... whenl is even and fot'=2,4,6 ... whenl is
preferable in the KKR method. odd. On the other hand, in the case of volume integration the
J.L/ are nonvanishing only far' =1,1+1, i.e.,J .+ is band
specific, assume a bee-like structure. Then, as is evident froifiagonal inl andl’. This can be viewed as an advantage of
Fig. 3, the Voronoi cells of the first layeppen circlescan  the volume-averaging method, since it means that, if one
touch via the “holes”(corresponding to the squayes the  describes the electronic structure with orbitals truncated at
cells of the third layer. In this way, the current can partly max, for the accuracy of), . one has to consider wave
bypass one monolayer traveling directly to the next one. Ifunctions only up td’=lya+1. A full-cell treatment adds
one just takes the current averaged over the Voronoi cells dnore nonzero elements, but the main contribution still comes
the ASA spheres of the middle monolayer, one forgets tdfom the ones mentioned.
calculate this part of the current; this is why the full many-
atom unit cell must be taken, SO that no such holes are left. VII. EXAMPLES
If one uses the usual Wigner-Seitz cellsr atomic
spherek Eq.(B5) can induce a small inaccuracy. The reason In recent papers we have applied the method presented
is that the volume constructed by such cells is in general ndtere  to  spin-dependent transport in ferromagnet/
included between planar surfaces, as in Fig. 4, but rathesemiconductor systemi&°tunneling through vacuurff and
between corrugated surfaces, in accordance to the form @ftomic-sized contacfS.In this section we confine the calcu-
the Wigner-Seitz cells. In such a case, the full conductivitylations to the simplest examples, in order to demonstrate the
tensor o(r,r') (not just theo,, component and Eq.(37)  convergence properties of the method.
should be used in principle. To avoid such a more compli-
cated calculation, two ways can be followed, as demon-
strated in Fig. 5. First, one can persist in using layer-adapted
unit cells (parellelepipeds which give no corrugation. This ~ When the Landauer formula is applied to a perfectly pe-
has the disadvantage that such cells can be too flat so that thedic material, e.g., the bulk of a crystal, it gives a finite
| expansion of the cell-centered KKR Green function andconductance that physically represents the conductance of a
wave function converges poorly. Second, one can averagéng Wwire placed between two phase-randomizing
over more than one monolayers; in this example they woullectrodes?® Resolved ink, the value of the conductance
be A andB (Fig. 4, right paneltaken on both the right and equals the number of right-propagatit@ equivalently left-
left leads. Then the corrugated region is a smaller fraction opropagatingstates aE for thisk; . In other words, one has
the total averaging volume, so that the error become#0o count the Fermi surface bands for tkat which propa-
smaller. Test calculations on this will be given in the Sec. Vilgate in the directiork,L k| with v,>0. This is demonstrated
for bulk Al. in Fig. 6, where part of the Fermi surface of Al is presented,
in the k,-k, plane, together with the conductance in the
direction as a function dt, (with k,=0). Actually, some of
the bands shown hawe,<0, but their equivalents with,
Which method, volume or plane integration, is most con->0 exist symmetrically fok,<0. Clearly the conductance
venient and accurate depends on each specific problem; howin units ofe?/h) equals the number of bandsE¢ for each
ever one can have “rules of thumb” on the difficulty and k,, giving a stepwise picture.
convergence of each one. In many systems the atomic sphere Also in Fig. 6 we can compare the results for angular
approximation is used, where the potential around each sitmomentum truncation di,,=2, 3, and 4. Increasingay
is assumed to be spherically symmetric, but still a full mul-results in a more accurate description of the wave function

A. Band counting in bulk conductance

D. Current matrix elements and selection rules
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FIG. 7. Transmission through a barrier of constant potential
Ob— v 0 ] Vo=1 eV, sitting on an fcc lattice with lattice constart
0 02 04 06 08 1 =4.032 A(Al) and having a thickness= 6a [twelve (001) mono-

kx layerd. Top: Tunneling Er=0.5 eV); bottom: transmission over
the barrier Eg=1.5 eV), where the transmission resonances are

FIG. 6. _Fermizsurface in thie, -k, plane(bottom) and conduc- 554 seen. The full line represents the analytical result for a square
tance(in units ofe“/h) as a function ok, (top) for bulk Aland for . ier.

lmax=2, 3, and 4.

derivative. Basically the slower convergence here arises from As a test on the transmission coefficient when scattering
the relatively high Fermi energy of Al, and is also present iniS present, we show in Fig. 7 the transmission through
a free-electron approach for hidh: .*° As noted in the pre- a barrier of constant potentidl,=1 eV, sitting on an fcc
ceding section, if the wave function is accurate for somdattice with lattice constana=4.032 A (Al) and having a
| max, for the derivative one has to take.+1. For most thicknessd=6a [twelve (001) monolayers Two cases are
practical purposed, .= 3 is enough, considering also that shown: one withEr=0.5 eV (tunneling and one withEg
the calculation time fot,,,=4 is more than three times the =1.5 eV (transmission over the barrjerThe analytical re-
one ofl 5= 3 [due to matrix inversion, the calculation time sult concerning a square barrier is also shown, with the trans-
scales roughly asl {.,+1)%]. mission probability given by

When the conductance is analyzed in the various inter-

layer contributions, these can exhibit fluctuationg jn or as k, K,\2sirA(K,d)]* kaﬁ
a function of the interlayer distance. The origin of these fluc- T=|1+ (K—— o T} » EF>Vot+—5
tuations is the Wigner-Seitz construction for the unit cell, z z h
resulting in corrugation of the surfaces where the current is

calculated. Due to the fact that we account only for rze k, «\2sink(xd)] ! 2mkf
component of the conductivity tensor, when we have corru- T=|1+ ;4‘ k_z) —a | Er<Vo+ 72

gation the matrix elements in Eql5) are not integrated
correctly and the nondiagonal current matrix elements do NAjith k2=2mE:/#2— kﬁ . K2=2m(Eg— Vo) /h?— kﬁ . and
vanish; thus, begting effects of the conductance appear. A§2=2m(VO—EF)/ﬁ2+kﬁ. The agreement is good. Note
the conductance is averaged over more than one monolayefsa; 5 full agreement cannot be expected, since in the lattice
the corrugation-free region in the middle increases, the relas e the two interfaces of the barrier are corrugated due to
tive error due to the corrugation decreases and the steps e \wigner-Seitz construction, while the analytical model as-
the conductance become flat as they should. sumes planar interfaces. However, at small energies or long
Finally, we have made a test calculation for the same SySy 4y elengths this corrugation does not play a major role.
tem, but employing the in-plane integration, rather than the
volume averaging. Here the convergence with, is poor
for the reasons explained in the preceding section; even for
I max=4 the deviations from integer conductance values are Although the conductance should be calculated at a real
large. energyE, the Green function in the KKR method is always

B. The effect of the nonzero imaginary part of the energy
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' ' ing the theory of Baranger and Stone to include the realistic
0.61- band structure of the leads.
- 05k The convergence of the method with angular momentum
§ cutoff (I,,a9 Was studied and found to be comparable to that
509 of KKR. It can be applied to systems with two-dimensional
2 03f periodicity as well as nanowires. Our results show that the
S ool volume integration and averaging of the current matrix ele-
ments, applicable both in ASA and full-cell or full-potential
0’1_Fe/ZnSe/Fe spin injection ] approaches, gives well-converged results for the calculation

(=]

5 T30 5100 of ballistic transport. Owing to the linear scaling of the cal-
Spacer thickness (Monolayers) culational effort with the number of layers of the screened
KKR formalism[O(N) scaling, our method is suitable for

FIG. 8. The effect of the nonzero imaginary paf the energy. large systems

Conductancéin units ofe?/h) as a function of spacer thickness for
spin injection through the conduction band in a Fe/ZnS&Bd)

junction. The oscillations are due to multiple reflections. For ACKNOWLEDGMENTS
=1 mRy there is strong artificial damping, white=0.02 mRy is The authors are grateful to Professor N. Stefanou for help-
adequate even for the thickness of 97 monolayers. ful and motivating discussions. Moreover, financial support

from the RT Network ofComputational Magnetoelectronics
(Contract No. RTN1-1999-0014%f the European Commis-
calculated at a complex enerdy+ie, and the realE is  sion is gratefully acknowledged.
approximated by taking very small, but nonze¢o,This can
have an artificial damping effect to the conductance, since APPENDIX A: CURRENT MATRIX ORTHOGONALITY
waves within a small energy range arouadre effectively RELATIONS
superimposed and finally the phase is randomized, especially ,
if the leads are seperated by a large distance. In Fig. 8 we Let Wy, and ¥y, be wo Bloch wave functions of the
show an example of how smadl should be in a realistic same Hamlltonlan at t_he same energy. Then we shall prove
calculation. The system here consists of two Fe leads withhat the following relation holds:
parallel magnetic moment seperated by a ZnSe spacer. Elec-
trons are injected from the first lead into the ZnSe conduc- J ds(wka;k,a,)Z::J dS(VEV,Wyar)
tion band, and are detected by the second Fe lead. The spacer S S
thickness is varied from 9 to 97 monolayers, and due to the om
multiple reflections at the two interfaces transmission reso- =i —(Vka) 20k’ Oaa’ » (A1)
nances appear at certain thicknesses. For more information h
we refer to Ref. 30. The conductance of the majority elecyyhereSis an (infinite) cross-sectional area iandy direc-
trons fork =0, i.e., at the point, is presented in Fig. 8 for tions.
a choice of e=0.02 mRy, 0.2 mRy, and 1 mRy. For The proof has as follows: First we note that, as a conse-
=1 mRy there is strong artificial damping, while  quence of the single-particle Schiinger equation for a real
=0.02 mRy is adequate even for the large thickness of 9potential,
monolayers. Note that this damping cannot model an effect

of temperature, because when we depart from the real axis, VWka;k,a,=V(\If’k‘a‘V7\Ifk,a,)
the spectral density of a state transforms fro@mfanction to
a Lorenzian distribution and not to the derivative of the 2m

- _ _ *
Fermi function. Due to the long tails of the Lorenzian the =~ % Bea B ViaVea

damping is much stronger than for a Fermi distribution of the

same half-width. =0 for BEa=FEya, (A2)

where the band indiceas and b are used explicitly. This is

just an expression for current conservation of Hamiltonian

eigenstates. Then, for each volurieenclosed by a geo-
We have presented a formalism for the calculation of balimetrical surface5 Gauss’s theorem gives

listic conductance in solids, based on the KKR Green-

function method for the ground-state electronic structure - _ 3 _

combined with the Landaugr'—'ﬂiker approach. It makes use 3ng8 N Wiaa = Jvd r VWiawa =0, (A3)

of the result of Baranger and StdReonnecting the deriva- )

tive of the one-electron Green function to the conductancewheren is a unit vector at the surfac®pointing outward. In

For the foundation of the formalism, we have discussed thgarticular,V can be chosen as a prismatic normal cross sec-

relation of theS matrix between Bloch in and out states to tion of the lead, extending fromto z+d. Then its surfac&

the conductance. We have given an expression connectingan be decomposed in two plane cross sect@ret zandS,

the S matrix to the Green function of the system, generaliz-atz+d, as the bases of the prism, plus side ai®&ag at the

VIIl. SUMMARY AND CONCLUSIONS
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lead surface, as shown in Fig. 4. At these side areas we eith€or k#k’ this gives zero, while fok=k’ anda=a’ we
have confining boundary conditions, i.e¥,lsige=0., have

whence W, .krarlsigee=0 Or Born—von Karman periodic

boundary conditions, whence for each prism side there is the

opposite one VYIth thegam_e vaIL_le of_ ‘I’ka|siqe and f dgr(Wka;ka)z(r)

Wia:krar| sige PUt With oppositeorientation unit vecton; then Vo

the sum of their contributions to the surface integral will be

again zero. In this way, we are left with the two bases of the _im d3r(\lf’k‘ ivq’ka—‘l’kaiv‘l”k’
prism; they have opposite unit vector orientations, thus i Jv, &im Im é
2m
- - =i—(Vka)z- (A12)
S dSi(—2)- Wiaikrar + Szdszz'vvkr:l;k’a’:0 (A4) h
1

Equations(A12) and (Al11) verify Eq. (Al) except in the
case of band crossing, whér=k' buta#a’. In this case

we may use the identity connecting the momentum operator
Pop to the HamiltonianH and the position operatay,,:

or

| 48 Wianeao= [0S Wiaae,  (89)
S S

i.e., [sdS(Wyq.krar), is independent of the positianof the im

cross sectiors This means that one can average it over the Pop=7"[H.Fopl- (A13)
whole Born—von Keman supercell(in z) of length L and

volume Vg, =SL: For the evaluation of EqA6) we need the matrix element of

Pop:=(%/i)V. Using Eq.(A13) we get
1L
JSdS(Wka;k’a’)z:Efo dZJ dS(Wka;k’a')z(XaYvZ)

if ABrvEpos¥icar
M J Ve P

1
:EJ d3r(Wka;krar)Z(X,y,z)_ (AB)
VBuk

— 3 *
We now convert the volume integral in a sum over unit-cell (Baa Ek'a')vade Vi Wicar (AL4)
integraIsEifVOd3r and employ the Bloch property
In the case of band crossing,,—E, ., =0, but this does
K —K)-R, not mean that the whole expression vanishes, since the inte-
Wiakrar(Ri+1)=¢€ 'Wiaikar(r) (A7) gral might diverge. It can be calculated in a standard way by
utilizing Bloch’s theorem and reducing it to the unit cell. We

t t
09¢ have
1 3
jds(wka;k’a’)z(xayyz)z E 2 j d r(\/\Ika;k"a’)z(Ri"'r) 3 .
S b Vo A8) fv d3r WD r ¥y (r)
BvK
N f  (Weer (1) =2 L ETVGERADRAD W (Ri+1). (AL5)
_E Kk’ VO r ka:k’a’ Zr y 0
(A9)  uUsing the Bloch properties o¥,, and ¥, and the rela-
whereN is the total number of lattice sites Mg, and tions
- .y 2m)3
> €K TOR=NG,, (A10) > ek R (2T \7) (k" —k), (A16)
i i 0
has been usedy, is the unit-cell volume. Note thallV,
=Vgwk=SL, thusN/L=S/V,, and we get (21)3
Z e'<k’—k>'RiRi=Z Vel (K h-Riz Vg Virdlk' =k,

S
f dS(Wka;k’a’)z(Xasz):V_ 5kk’f dsr(Wka;k'a’)z(r)- (A17)
S 0 Vo

(A11) we obtain after some manipulations
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_ 3 *
e VBde r WeaPop¥ i ar
@m)° 3
Y, O(k"—k){ (Exa—Exrar) | A r Vi r¥oa
0 Vo

_ﬁvka5aa’_ (Eka_ Ek’a’)kav dsr qj;awk’a’] .
0

(A18)

In all terms,k=k’ can be directly substituted due to tide

PHYSICAL REVIEW B9, 125104 (2004

Tmax 1
JLL’ZJ dr_2

* _ *
L drg 2 e (IR (D= (2 DREL(D)]
Imy|

qul';2|(cose)+(I2+ |m2|)Plz_l(cose)szL,(r)}

X, aLlP!ml‘(cosa)RLlL(r)
& 1

X 2 f ng“trg(mlsb)trg( my¢)d¢. (B4)

entry

function, except in the last one, where one must first perform . ) , )
the integration and the derivation. In the second term, th&!€r€r min @ndr may are the radii of the inscribed and circum-

orthogonality relation [\, d Wy, Wyo=5,, after the
substitutionk=k’ has been used. From this expression w
immediately see that in the case of band crossing, ke.,
=k’, Exa=Ey o, buta#a’, the expression vanishes, so
the proof is complete. In passing we note thag#a’, the
expression gives the group velocity as expected.

APPENDIX B: CURRENT MATRIX ELEMENTS IN THE
KKR METHOD

In the plane-integration formalism the KKR current ma-
trix elements read

‘JiLL’=JSerRL(r;EF)O”thr(r;EF)y (B1)

whereS; is the surface cut of the atomic celvith the plane
passing through it. In the full-potential KKR formalism, the

scribed circles, respectively, of the convex polygon, on
which the ¢ integration is performed, with center tlagoro-

Section of the atomic site on the plang,,, and 4L are

respectively angles of entry into and exit from the convex
polygon as thep integration is performed.

In the volume-averaging formalism, the KKR current ma-
trix elements have the form

L= J g RL(N)d,R (). (B5)

These can be computed within the full-cell or ASA formal-
ism; here we shall present both results.

In the full-cell approach, the potential is truncated at the
boundary of the Voronoi atomic cell. This is achieved by
introducing the characteristic, or “shape,” functiofs(r),
being equal to unity in the cell and vanishing outsi@i@heir
expansion in spherical harmonics,

wave functions are expanded in terms of real spherical har-

monics as
RL<r>=LEl %RLlLumlw.@. (B2)
The real spherical harmonics are of the form
YL(6,4)=a P"(cosh)trg(me), (B3)

where

0

aL

[ (- [m

“N 727 axmpr ™
21+1

o= ?, m

P|m|(cos¢9) are the Legendre functions, and tmyp)
=cosme if m=0 or sifm|¢ if m<0. Thus one has to de-

composed, into d,, dy, andd,. The first affects only the
radial partRLlL(r) and is calculated numerically; the other

two affect onIyYLl(a, ¢) and are calculated analytically. Af-
ter some algebra one arrives at the result

0

@(r)=§ OL()YL(6,6) (B6)

is used in the calculation of the current matrix elements.
After some manipulations we obtain

JLLf=jwsd3r®(r)RL(r)<9zR’[,(r) (B7)

szl LEZ ng “ dr(RLlL(r)&rR’L‘ZL,(r)
|2+1 * 1
_TRLlL(r)RLZLf(r) ®L3(r)a_1’0

X |_24 CL,Cra,,

1 *
+f drFRLlL(r)RLZL’(r)®L3(r)

1,m,

a|2—1,m2(|2+|m2|)CL1L3|21'm21' (B8)
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where C__| | =[dQY_ ()Y, ()Y, (1) are the Gaunt
coefficients ~and the identity [dQY, Y, Y Y,
=EL4CL1L2L4CLOL3L4 has been used.

The ASA result is simpler since it does not involve the

shape functions. The local orbitals have only a spherical part,

1
Ru(r)=-Ri(NYL(Q), (B9)

whence the current matrix elements become

PHYSICAL REVIEW B59, 125104 (2004

1
‘]LL’:a_lOCLL’;l,Of drRi(r)a;R},(r)

I"+1

a10

1 *
CLL’;l,Of drFR|(r)R|,(r)

(|’+|m’|)a|/ ’ 1
+—m§II’—15mm’f drFR|(r)R|*,(r).

a|'*l,m’
(B10)
It is implied that the integrals are within the atomic sphere.

IR. Kubo, J. Phys. Soc. Jph2, 570 (1957).

2p, Weinberger, Phys. Rep77, 281 (2003.

3. Mertig, R. Zeller, and P.H. Dederichs, Phys. Rev4B 16 178
(1993; T. Vojta, |. Mertig, and R. Zeller,bid. 46, 15761
(1992.

1. Mertig, Rep. Prog. Phy$2, 237 (1999.

5p. zahn, J. Binder, I. Mertig, R. Zeller, and P.H. Dederichs, Phys
Rev. Lett.80, 4309(1998.

5D.A. Greenwood, Proc. Phys. Soc. Londdh 585 (1958.

"W.H. Butler, Phys. Rev. B1, 3260(1995.

83. Banhart, H. Ebert, P. Weinberger, and J. Voider, Phys. Rev.
B 50, 2104(1994. )

9P. Weinberger, P.M. Levy, J. Banhart, L. Szunyogh, and jp. U
falussy, J. Phys.: Condens. Mat&r7677(1996.

101 Turek, J. KudrnovskyV. Drchal, L. Szunyogh, and P. Wein-
berger, Phys. Rev. B5, 125101(2002.

113.B. PendryLow-Energy Electron Diffraction(Academic Press,
New York, 1974.

127, Modinos, Field, Thermionic, and Secondary Electron Emis-
sion SpectroscopgPlenum Press, New York, 1984

133.M. MacLaren, X.-G. Zhang, W.H. Butler, and X. Wang, Phys.
Rev. B59, 5470(1999.

M.D. stiles and D.R. Hamann, Phys. Rev3B, 2021(1988.

153, Mathon, A. Umerski, and M.A. Villeret, Phys. Rev. &5,
14 378(1997).

18E Y. Tsymbal and D.G. Pettifor, Phys. Rev.68, 212401(2001):

D. Kechrakos, E.Y. Tsymbal, and D.G. Pettifor, J. Magn. Magn.
Mater. 242-245 457 (2002.

pS. Krstic X.-G. Zhang, and W.H. Butler, Phys. Rev. &5,
205319(2002.

18D, Wortmann, H. Ishida, and S. Bjel, Phys. Rev. B55, 165103
(2002.

19p. Wortmann, H. Ishida, and S. Blel, Phys. Rev. B6, 075113
(2002.

2R, Landauer, IBM J. Res. Det, 223(1957); 32, 306 (1988.

2\, Blttiker, Phys. Rev. Lett57, 1761(1986; IBM J. Res. Dev.
32, 317(1988.

22H.E. Camblong, S. Zhang, and P.M. Levy, Phys. Re¥7B4735
(1993.

23X.-G. Zhang and W.H. Butler, Phys. Rev.®, 10 085(1995.

24H. Itoh, J. Inoue, and S. Maekawa, Phys. Re\6 1B 342 (1995.

25K M. Schep, P.J. Kelly, and G.E.W. Bauer, Phys. Re%7/B8907
(1998.

26C. caroli, R. Combescot, D. Lederer, P. Nizieres, and D. Saint-
James, J. Phys. @ 2598(1971).

27s. Zhang and P.M. Levy, Eur. Phys. J.1B, 599 (1999.

28p_ \Weinberger, V. Drchal, J. Kudrnovskly Turek, H. Herper, L.
Szunyogh, and C. Sommers, Philos. Mag8B 1027 (2002.

290. Wunnicke, Ph. Mavropoulos, R. Zeller, P.H. Dederichs, and D.

. Grundler, Phys. Rev. B5, 241306R) (2002; M. Freyss, N.
Papanikolaou, V. Bellini, R. Zeller, P.H. Dederichs, and I. Turek,
J. Magn. Magn. Mater240 117 (2002; O. Wunnicke, Ph.
Mavropoulos, and P.H. Dederichs, Phase Transitisfs511
(2003; O. Wunnicke, Ph. Mavropoulos, and P.H. Dederichs, J.
Supercond16, 171(2003.

30ph, Mavropoulos, O. Wunnicke, and P.H. Dederichs, Phys. Rev. B
66, 024416(2002.

3IM. zwierzycki, K. Xia, P.J. Kelly, G.E.W. Bauer, and I. Turek,
Phys. Rev. B67, 092401(2003.

32H.U. Baranger and A.D. Stone, Phys. Rev46 8169(1989.

33H. Ohnishi, Y. Kondo, and K. Takayanagi, Natutendon 395,
780(1998.

34K. wildberger, R. Zeller, and P.H. Dederichs, Phys. Re\65
10 074(1997; N. Papanikolaou, R. Zeller, and P.H. Dederichs,
J. Phys.: Condens. Mattéd, 2799(2002.

%A.D. Stone and A. Szafer, IBM J. Res. D&2, 384 (1989.

38D.S. Fisher and P.A. Lee, Phys. Rev2B, 6851(1981).

373. Rammer, Rev. Mod. Phy&3, 781 (1991).

38T.N. Todorov, G.A.D. Briggs, and A.P. Sutton, J. Phys.: Condens.
Matter 5, 2389(1993.

39Y. Imry and R. Landauer, Rev. Mod. Phy&l, S306(1999.

4This can be best understood in a simple one-dimensional model
of a free electron of wave numbds,=E encountering an
infinitely long step barrier of height,, where the wave number
is Kou= VE—Vg. The transmission amplitude its=2Kk;, /(Ko
+k;n), while the transmission probability i$=4KKi,/(Kout
+ kin)2: |t|2kin/kout-

41Use of these orthogonality relations has been made in many cases
in the past; see, for example, P.M. Marcus and D.W. Jepsen,
Phys. Rev. Lett20, 925(1968.

421, 1. Schiff, Quantum Mechani¢s3rd ed. (McGraw-Hill, New
York, 1968; R.G. Newton Scattering Theory of Waves and Par-
ticles 2nd ed.(Springer, New York, 1982 A. Bohm, Quantum
Mechanics: Foundations and Applicatign8nd ed.(Springer,
New York, 1986.

437, Opitz, P. Zahn, and I. Mertig, Phys. Rev6B, 245417(2002.

125104-14



KORRINGA-KOHN-ROSTOKER GREEN-FUNCTION . .. PHYSICAL REVIEW B9, 125104 (2004

4N. Papanikolaou, J. Opitz, P. Zahn, and I. Mertig, Phys. Rev. B**The connection betweeB; and| ,,, convergence can be under-

66, 165441(2002. stood if one considers thé expansion of the free electron
45A. Bagrets, N. Papanikolaou, and I. Mertig, cond-mat/0303480 Green’s function, which is a sum of products of Bessel and
(2003 (unpublished Hankel functions with spherical harmonics. The argument of the

46We remind the reader that Voronoi polyhedra are volume-filing  Bessel and Hankel functions {&r. So, smaller/Er or smaller
convex polyhedra around the atomic sites that correspond to &  means fastet convergence. Thus, as a rule of thunhizon-

Wigner-Seitz construction, but for arbitrafgot necessarily pe- vergence is better for smaller energies and smaller atomic
riodic) positions of the atomic sites; moreover, one can choose a

certain “weight” for each atom type in order to give it more or
less volume fraction.

4TE. Godfrin, J. Phys.: Condens. Matt®&r7843(1991); V. Bellini,
Ph.D. thesis, Forschungszentrumlichu (2000.

480. Wunnicke, N. Papanikolaou, R. Zeller, P.H. Dederichs, V. Dr-
chal, and J. KudrnovskyPhys. Rev. B35, 064425(2002.

spheres. The energy zero is identified with the average potential
in the interstitial region, i.e., in the space outside the touching
muffin-tin spheres. Usually, this is near the bottom of the band.
50N. Stefanou, H. Akai, and R. Zeller, Comput. Phys. Comn@;.
231(1990; N. Stefanou and R. Zeller, J. Phys.: Condens. Matter
3, 7599(199)).

125104-15



