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Nonlinear screening and percolative transition in a two-dimensional electron liquid
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A variational method is proposed for calculating the percolation threshold, the real-space structure, and the
ground-state energy of a disordered two-dimensional electron liquid. Its high accuracy is verified against exact
asymptotics and prior numerical results. The inverse thermodynamical density of states is shown to have a
strongly asymmetric minimum at a density that is approximately the triple of the percolation threshold. This
implies that the experimentally observed metal-insulator transition takes place well before the percolation point
is reached.
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The discovery that a two-dimensional~2D! electron liquid
can be a metal at moderate electron densityne and an insu-
lator at smallne was a major surprise that questioned o
fundamental understanding of the role of disorder in su
systems. Today, almost a decade later, it remains a subje
an intense debate.1 One important reason why the conve
tional theory fails could be its flawed basic premise of t
‘‘good’’ metal, i.e., a uniform electron liquid slightly per
turbed by impurities and defects. Indeed, modern nanos
imaging techniques2–5 unambiguously showed that low
density 2D electron systems are strongly inhomogene
‘‘bad’’ metals, where effects of disorder are nonperturb
tively strong. In particular, depletion regions~DRs!, i.e., re-
gions wheren(r ) is effectively zero, exist. They appea
when ne is too small to adequately compensate fluctuat
charge density of randomly positioned impurities. Asne is
reduced in the experiment, e.g., in order to approach
vicinity of the metal-insulator transition~MIT !, the DRs are
expected to grow in size and concentration and eventu
merge below some percolation thresholdne5np . An impor-
tant and controversial issue is whether or not this percola
transition plays any role in the observed MIT.1 To resolve it
one needs to have a theory that is able to calculatenp and
that can describe the inhomogeneous structure of the
metal atne;np . Great progress in this direction has be
achieved by Efros, Pikus, and Burnett,6 whose paper is intel-
lectually tied to earlier work on nonlinear screening by Efr
and Shklovskii.7 Still, analytical results remained scanty an
numerical simulations6,8 were the only known way to quan
titatively study thene;np regime. These simulations ar
very time consuming and redoing them in order to get a
information beyond what is published6,8 or to study novel
experimental setups seems impracticable. Below I will sh
that a variational approach to the problem can be a via
alternative. Comparing it with the available numerical resu
for a typical model of the experimental geometry~Fig. 1!, I
establish that it correctly predicts the value ofnp and accu-
rately reproduces the energetics of the ground state, in
ticular, the density dependence of the electrochemical po
tial m and of the inverse thermodynamical density of sta
~ITDOS!, x215dm/dne , over a broad range ofne . The
most striking feature of the resultant functionx21(ne) is a
strongly asymmetric minimum, which is observed in re
experiments.9–12 I will elaborate on the origin of this featur
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and show that it occurs atne'3np largely independently of
the parameters of the system. Recently, this minimum
tracted much interest when Dultz and Jiang10 reported that in
some samples it virtually coincides with the apparent M
The proposed theory indicates that, at least for these sam
any connection between the MIT and the percolation of
DRs can be ruled out. Thus, the explanation of the MIT l
elsewhere.

The Hamiltonian of the model is adopted from Efro
Pikus, and Burnett6 ~EPB! ~see also Fig. 1!,

H5E d2r H 1

2
@n~r !2ne#F~r !1H0~n!J , ~1!

whereF(r ) is the electrostatic potential,

F5E d2r 8
e2

k Fn~r 8!2ne

ur 82r u
2

nd~r 8!2ni

A~r 82r !21s2G , ~2!

k is the dielectric constant, andH0(n) is the energy density
of the uniform liquid of densityn,

H0~n!52~e2/k!n3/2h0~n!. ~3!

FIG. 1. The geometry of the theoretical model. The 2D layer
interest is sandwiched between the top and the bottom met
gates. The dopants reside in the plane with the dashed border
depletion regions~shown as holes in the probed layer! enhance the
penetrating electric fieldEp .
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At low densities,h0(n);1 is a slow function13 of n. The
negative sign in Eq.~3! reflects the prevalence of th
exchange-correlation energy over the kinetic one in this
gime. The potential created by the random concentration
dopantsnd(r ) can be expressed in terms of the effecti
in-plane background charges̃(q)5ñd(q)exp(2qs) ~the til-
des denote the Fourier transforms!. With these definitions,
F(r ) coincides with the potential created by the charge d
sity s(r )5n(r )2ne2s(r ). I will assume that the dopant
have the average concentration^nd&[ni@s22 and are un-
correlated in space. In this case the one- and two-point
tribution functions ofs(r ) have the Gaussian form,

P1~s!5~2pK0!21/2exp~2s2/2K0!, ~4!

P25
1

2pAK0
22Kr 8

2 expF2Kr 8ss82K0~s21s82!

2~K0
22Kr 8

2
!

G , ~5!

wheres85s(r1r 8) andKr is given by

Kr[^s~r !s~0!&5nis/p~r 214s2!3/2. ~6!

The characteristic scales in the problem are as follows.6 The
typical amplitude of fluctuations ins is Ani /s @see Eqs.~4!
and~6!#. Their characteristic spatial scale is the spacer wi
s @cf. Eqs. ~4!–~6! and Fig. 1#. In the cases studied below
ne*np and ne@np , s exceeds the average interelectr
separationa05ne

21/2. As usual in Coulomb problems, th
energy is dominated by the longest scales, in this cases. The
fluctuations H0(n)2H0(ne) of the local energy density
come from the interactions on the much shorter scale oa0
!s and can be treated as a perturbation.6 For the purpose of
calculating the ground-state density profilen(r ) I neglect
H0. Once such a ground state is known, I correct the to
energyH by adding to itH0 averaged overn(r ).

To find n(r ) one needs to solve the electrostatic probl
with the following dual boundary conditions: ifn(r ).0,
then F(r )5m5const; otherwise, ifn50 ~DR!, then6,7,14

F.m. I start with the analysis of the large-ne case, which
clarifies why thex21(ne) dependence is nonmonotonic an
which provides a formula for the densitynm wherex21 has
the minimum.

In the limit ne@Ani /s, the asymptotically exact treatmen
is possible because the DRs appear only in rare places w
s(r ) dips below 2ne . ~In practice, this limit is realized
when ne.K0

1/2'0.2Ani /s.! The corresponding electrostat
problem is analogous to that of the metallic sheet perfora
by small holes~see Fig. 1!. The most elegant way to deriv
x21 in this regime is to calculate the fractionEp /E0 of the
electric field that reaches the bottom layer in the geometr
Fig. 1. Indeed,Ep /E0 is nonzero only if the probe layer i
not a perfect metal,x21Þ0. In the simplest case, wher
distancess1 and s2 are large, the following formula holds
x2154p(e2s2 /k)(dEp /dE0) ~cf. Ref. 9!. This is essen-
tially the formula used to deducex21 in the experiment.9–12

It is immediately obvious that holes in the metallic she
enhance the penetrated fieldEp . For example, the field leak
ing through a round hole of radiusa is the field of a dipole15

p5(a3/3p)E0. If there is a finite but small concentrationNh
12140
-
of

-

s-

h

l

ere

d

f

t

of such holes, their fields are additive, leading tox21

5(8pe2/3k)Nha3. From here the exact large-ne asymptot-
ics of x21 andm can be obtained by substituting the prop
Nh and averaging over the distribution ofa. This can be done
by noting that these holes appear around the minima ofs(r )
whose statistics is fixed by Eqs.~4!–~6!. It is easy to see tha
the most probable holes are nearly perfect circles with ra6

a;sAK0/ne . The charge distribution around a single hole
distancesr .a is given by the formula

n~r !5
sxxa

2

p FAr 2

a2
212S r 2

a2
1

2

3D arccos
a

r G , ~7!

where the hole is assumed to be centered atr 50 and a2

523@ne1s(0)#/sxx . Equation~7! can be obtained, e.g.
by generalizing the textbook solution15 for the hole in the
metallic sheet16 and is also the limiting form of Eq.~11! in
Ref. 17. Previously, Eq.~7! was used for study of quantum
dots in Ref. 18.

In the current problem the main factor that determines
net contributionxDR

21 of the depletion holes tox21 is their
exponentially small concentration, proportional toP1(2ne)
}exp(2ne

2/2K0). The final result,

xDR
21.~3A2/8p!~e2ni /ksne

2!exp~24ps2ne
2/ni !, ~8!

agrees with that of EPB but has no numerical coefficients
undetermined. To finalize the calculation, one needs to a
ment xDR

21 by the local termx0
215d2^H0(n)&/dne

2 . In the
present case, fluctuations around the average density
small. Hence,̂ H0(n)&.H0(ne) and

x0
21~ne!.2~e2/k!h1~ne!/Ane, ne@Ani /s, ~9!

whereh1(ne)5(3/4)h0(ne)13h08ne1h09ne
2;1.

Formula ~8! implies a sharp upturn of the ITDOS asne
→0 caused by the exponential growth of the DRs. At t
boundary of its validity, ne;Ani /s, Eq. ~8! gives xDR

21

;e2s/k, which is large andpositive. On the other hand, the
local termx0

21 @Eq. ~9!# shows a weak dependence onne ,
remaining small andnegative. Combined, they produce
strongly asymmetric minimum inx21(ne)5xDR

211x0
21 at

the density

nm5
1

4Ap

Ani

s
ln1/2S 4096

ph1
4

nis
2D . ~10!

The logarithmic factor in Eq.~10! is rather insensitive tonis
2

andh1. For nis
25h151, one getsnm'0.38Ani /s. In com-

parison~see Ref. 6 and below! the percolation threshold is

np'0.12Ani /s, ~11!

so thatnm'3np . In accord with EPB’s heuristic argumen
at such density a very small area fraction is depleted@see
inset in Fig. 2~a!#, and so the use of the asymptotic formu
~8! is justified.

Let us now proceed to the casene;np . Again, I start with
the electrostatic problem (H0[0). One expects DRs to b
abundant and irregularly shaped. For a givenne , the ground-
9-2
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staten(r ) is some nonlocal functional ofs and there is no
hope to find it exactly. What I wish to report here is tha
variational solution sought within the class of purely loc
functionals, n(r )5n@s(r )# remarkably accurately repro
duces them(ne) andx21(ne) dependencies found in numer
cal work.6,8 More interestingly, it predicts the correct valu
of np @Eq. ~11!#.

The system of equation that defines such a variatio
staten(s) follows from the fact that for a Gaussian rando
function the averages over the total areaL2 of the system and
over the distribution function are the same. This yields@cf.
Eqs.~1!–~5!#

Hv

L2
5

1

2E E dsds8r~s!G~s,s8!r~s8!, ~12!

G~s,s8!5E d2r 8V~r 8!@P2~s,s8!2P1~s!P1~s8!#,

~13!

wherer(s)5n(s)2ne2s andV(r 8)5e2/kr 8. The energy
Hv needs to be minimized with respect to all functionsn(s)
that obey the constraintsn(s)>0 and

E dsP1~s!n~s!5ne . ~14!

FIG. 2. ~a! Electrochemical potential vs electron density for t
electrostatic problem,H0[0, according to the present theory~solid
line! and EPB’s numerical simulations~dots!. Inset: Fraction of the
depleted area vs density.~b! x21 vs density according to the nu
merical simulations of Shi and Xie~Ref. 8! ~squares!, the present
theory~solid line!, and for the uniform electron liquid~dashed line!.
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The latter ensures that the average density is equal tone .
Introducing the Lagrange multipliermv ~variational estimate
of the electrochemical potential!, one obtains thatHv is mini-
mized if, for all s. f , r(s8) satisfies

E ds8G~s,s8!r~s8!5mv~ne!P1~s!. ~15!

Here f is such thatn( f )50. @I found thatn(s) is always a
monotonically increasing function, so thatn.0 corresponds
to s. f ]. The kernelG(s,s8) @Eq. ~13!# is logarithmically
divergent,G}2 lnus2s8u at s→s8, and decays exponen
tially at larges ands8. There is a certain analogy betwee
Eq. ~15! and the integral equations of 1D electrostatic
which also have logarithmically divergent kernels.15,18 This
analogy entails thatn(s);As2 f at s close tof. Note that
s(r )2 f is proportional to the distance in the real space
tween the given pointr and the boundary of the nearby DR
Thus, the variational principle renders correctly the squa
root singularity inn(r ) at the edge of the DRs@cf., e.g., Eq.
~7!#. I was not able to establish the analytical form of t
solution beyond this property and resorted to findingn(s)
numerically. To do so the integral in Eq.~15! was converted
into a discrete sum over 101 points on the intervalusu
,1.5Ani /s and the resultant system of 101 linear equatio
was solved on the computer. The solution can be appr
mated by a simple analytical ansatz

na~s!5@~ne1s!22~ne1 f !2#1/2u~s2 f !, ~16!

whereu(z) is the step function. For example, the energyHv
is nearly the same whether it is calculated usingna or using
the actual solution of Eq.~15!. So, in principle, Eq.~16!
obviates the need to solve Eq.~15!. The only equation that
needs to be solved is Eq.~14! for f.

At this point one can compare the predictions of the var
tional method formv(ne) with EPB’s numerical results tha
were also obtained for theH050 problem. As Fig. 2~a! il-
lustrates, they are in a good agreement.19

To test the theory further I compare it next with the n
merical data of Shi and Xie.8 To this end, one needs to ca
culatex21 including the effect of a finiteH0. The first step is
to take the derivativexDR

215dmv /dne , which is easily done
numerically. An accurate fit to the result is provided by t
interpolation formula

xDR
21'

e2s

k

3A2

8ph

0.301h

0.03610.12h1h2
exp~24ph2!,

~17!

whereh[nes/Ani . This particular form is devised to matc
Eq. ~8! at largene and is consistent up to logarithmic corre
tions with the behavior expected7,20 at very smallne . The
next step is to evaluate the quantity

x0
215

d2

dne
2 ^H0&52

d2

dne
2Ef

`

dsP1~s!H0@n~s!#, ~18!

which is also easily done on the computer. The total ITDO
x21(ne)5xDR

211x0
21 , calculated from Eqs.~17! and ~18!,
9-3
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and the theoretical value ofnm;0.731023aB
22 @per Eq.

~10!# compare very well with the simulations@see Fig. 2~b!#.
The parameters I used areni56.2531024aB

22 and s
510aB , whereaB is the effective Bohr radius.21 In agree-
ment with the exact results presented above,x0

21!xDR
21 at

ne,nm , and so the upturn ofx21 at low ne is driven the
growth of DRs.

Within the variational method the boundaries of the D
coincide with the level liness(r )5 f of the zero-mean ran
dom functions. Consequently, the DRs percolate atf >0.
Solving Eq.~15! with f 50, one arrives at Eq.~11!, which is
in excellent agreement with EPB’s resultnp'0.11Ani /s.
One important quantity not reported in the published num
cal works6,8 is the area fraction of the DR. Within the varia
tional method, it is equal to erfc(2 f /A2K0)/2, where
erfc(z) is the complementary error function. It is exactly 1
at ne5np and increases asne→0 as shown in Fig. 2~a! ~in-
set!.

Let us now compare our results with the experimen
data. Taking a rough numberni5331011 cm22 and a typi-
cal spacer widths540 nm in Eq. ~10!, one getsnm'5.2
31010 cm22, in agreement with observed values.10 The es-
timate for the percolation point isnp'nm/3'1.7
31010 cm22. Despite some small uncertainty in the la
number~due to the uncertainties inni and h1), np and nm
differ substantially, and so they can be easily distinguish
Sa
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n

v

ie-

gs
u
ie
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experimentally. Therefore, the observed apparent MIT10 at
n5nm has nothing to do with the percolation of the DRs a
moreover with breaking of the electron liquid into drople
~the latter occurs atne!np). From Fig. 2~a!, one can esti-
mate that the DRs occupy a mere 6% of the total area an
5nm .

One qualitative prediction that follows from Eqs.~9! and
~17! is that the upturn ofx21(ne) should be sharper in
samples with largers, which seems to be the case if the da
of Ref. 9 (s514 nm) are compared with those of Ref
10–12 (s<4 nm). Detailed fits are left for future.

I conclude with mentioning some other theoretical wo
on the subject. It was suggested22 that near the MIT, function
x21(ne) may contain both regular and singular parts. M
theory can be considered the calculation of the former.
detailed comparison with experiment may furnish an e
mate of the putative singular term. The effect of disorder
x21 was also studied in Refs. 23 and 24 but the elect
density inhomogeneity was not accounted for. Finally, a n
monotonic x21(ne) dependence was found in a mode25

without disorder.
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indispensable comments and insights, and also to H.
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