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Nonlinear screening and percolative transition in a two-dimensional electron liquid
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A variational method is proposed for calculating the percolation threshold, the real-space structure, and the
ground-state energy of a disordered two-dimensional electron liquid. Its high accuracy is verified against exact
asymptotics and prior numerical results. The inverse thermodynamical density of states is shown to have a
strongly asymmetric minimum at a density that is approximately the triple of the percolation threshold. This
implies that the experimentally observed metal-insulator transition takes place well before the percolation point
is reached.
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The discovery that a two-dimensior(@D) electron liquid ~ and show that it occurs @~ 3n, largely independently of
can be a metal at moderate electron densjtynd an insu- the parameters of the system. Recently, this minimum at-
lator at smalln, was a major surprise that questioned ourtracted much interest when Dultz and Jithgported that in
fundamental understanding of the role of disorder in suclsome samples it virtually coincides with the apparent MIT.
systems. Today, almost a decade later, it remains a subject ®he proposed theory indicates that, at least for these samples,
an intense debafeOne important reason why the conven- any connection between the MIT and the percolation of the
tional theory fails could be its flawed basic premise of theDRs can be ruled out. Thus, the explanation of the MIT lies
“good” metal, i.e., a uniform electron liquid slightly per- elsewhere.
turbed by impurities and defects. Indeed, modern nanoscale The Hamiltonian of the model is adopted from Efros,
imaging techniqués® unambiguously showed that low- Pikus, and Burnett(EPB) (see also Fig. )L
density 2D electron systems are strongly inhomogeneous,
“bad” metals, where effects of disorder are nonperturba-
tively strong. In particular, depletion regioBRY), i.e., re-
gions wheren(r) is effectively zero, exist. They appear . ) _
whenn, is too small to adequately compensate fluctuatingVhere®(r) is the electrostatic potential,
charge density of randomly positioned impurities. Asis 5 ) )
reduced in the experiment, e.g., in order to approach the q):f dzr’e— n(r )_ne_ Ng(r’)—n;
vicinity of the metal-insulator transitiotMIT), the DRs are K| |r'—r| Jir'=nZ+«?
expected to grow in size and concentration and eventually _ . . _
merge below some percolation threshalg=n,. An impor-  « is the dielectric constant, artdy(n) is the energy density
tant and controversial issue is whether or not this percolatio®f the uniform liquid of densityn,
transition plays any role in the observed MiTo resolve it ) .
one needs to have a theory that is able to calcuigtand Ho(n)=—(&7x)n""ho(n). ©)
that can describe the inhomogeneous structure of the 2D
metal atn,~n,. Great progress in this direction has been
achieved by Efros, Pikus, and Burn@tihose paper is intel-
lectually tied tc; earlier work on nonlinear screening by Efros
and Shklovskii. Still, analytical results remained scanty and ot
numerical simulatiorfs® were the only known way to quan- L *},/H U ! Uf} * ' f«“f 2 {U} ” £ T
titatively study theng~n, regime. These simulations are LT E Y Lt o
very time consuming and redoing them in order to get any S o ;
information beyond what is publish&®or to study novel S1 —
experimental setups seems impracticable. Below | will show =
that a variational approach to the problem can be a viable
alternative. Comparing it with the available numerical results »
for a typical model of the experimental geome(Rig. 1), | ' | Vo '
establish that it correctly predicts the valuergf and accu- S> | Hﬁ Vo E, 'y
rately reproduces the energetics of the ground state, in par- [V ANRAN R LT A
ticular, the density dependence of the electrochemical poten- 7
tial  and of the inverse thermodynamical density of states fiG. 1. The geometry of the theoretical model. The 2D layer of
(ITDOS), x~'=du/dn,, over a broad range afi.. The interest is sandwiched between the top and the bottom metallic
most striking feature of the resultant functiqn *(n.) is @  gates. The dopants reside in the plane with the dashed border. The
strongly asymmetric minimum, which is observed in realdepletion regiongshown as holes in the probed layenhance the
experimentS=*?| will elaborate on the origin of this feature penetrating electric fielé, .

H—fdz ! ® H 1
= F 5NN =nel®(r)+Ho(n) (1)

. @
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At low densities,hy(n)~1 is a slow functio®® of n. The  of such holes, their fields are additive, leading 4o *
negative sign in Eq.(3) reflects the prevalence of the =(8we?/3x)N,a. From here the exact larges asymptot-
exchange-correlation energy over the kinetic one in this reics of y ! and u can be obtained by substituting the proper
gime. The potential created by the random concentration oN,, and averaging over the distribution @fThis can be done
dopantsny(r) can be expressed in terms of the effectiveby noting that these holes appear around the minima(of
in-plane background charge(q) =n4(q)exp(—q9 (the til-  whose statistics is fixed by Eq@l)—(6). It is easy to see that
des denote the Fourier transformyVith these definitions, the most probable holes are nearly perfect circles with Yadii
®(r) coincides with the potential created by the charge dena~syKo/ne. The charge distribution around a single hole at
sity o(r)=n(r)—ng—a(r). | will assume that the dopants distances >a is given by the formula

have the average concentratiomg)=n;>s"2 and are un-

correlated in space. In this case the one- and two-point dis- owa?|  [r? rz2 2 a
tribution functions ofo(r) have the Gaussian form, n(r)=—_ ;—1— ;“L zjarccos-|, (1)
Pi(0)=(27Kg) Yeexp — 0?/2K,), (4)  where the hole is assumed to be centered=ad anda?
=—3[n.+c(0)]/oy. Equation(7) can be obtained, e.g.,
1 2K, 00’ —Ko(a?+0'?) by generalizing the textbook solutibhfor the hole in the
PZZZW\/KZ_Kz ex 2(K2—K2) » ) metallic shedf and is also the limiting form of Eq11) in
o o Ref. 17. Previously, Eq(7) was used for study of quantum
wheres’'=o(r+r') andK, is given by dots in Ref. 18.
In the current problem the main factor that determines the
K =(o(r)o(0))=n;s/m(r?+4s%)3? (6)  net contributionypa of the depletion holes tq ™! is their

The characteristic scales in the problem are as folfbse expo”e”g‘a”y small concentration, proportionalRg(—ne)
typical amplitude of fluctuations ipr is Jn/s [see Eqs(4)  ~EXPN/2Ko). The final result,

and(6)]. Their characteristic spatial scale is the spacer width -1 2. 2 _ 2027
s [cf. Egs.(4)—(6) and Fig. 1. In the cases studied below, XDR (3\/5/877)((3 Ni/sng)exp —4mstne/m),  (8)
ne=n, and ng>n,, s exceeds the average interelectronagrees with that of EPB but has no numerical coefficients left
separationag=n_ 2. As usual in Coulomb problems, the undetermined. To finalize the calculation, one needs to aug-
energy is dominated by the longest scales, in this sathe mentxgé by the local termX51:d2<Ho(n))/dn§. In the
fluctuations Hy(n) —Hg(ne) of the local energy density present case, fluctuations around the average density are
come from the interactions on the much shorter scaleqof small. Hence{Hy(n))=Hy(ne) and

<s and can be treated as a perturbafidtor the purpose of . 5

calculating the ground-state density profitér) | neglect Xo '(ne)=—(e%/k)hy(ne)/\ne, ne>nils,  (9)

Ho. Once such a ground state is known, | correct the tOta\INherehl(ne)=(3/4)h0(ne)+3h(’)ne+hgn§~1.

energyH by adding to itH, averaged oven(r). Lo
To find n(r) one needs to solve the electrostatic problem_> (I):ocr;rsjuslgfz) m,:ﬁgezxa;:;:ga?ptgywﬁf;P?hggoRi aft the
with the following dual boundary conditions: ii(r)>0, Y eXp 9 . T
then ®(r)=u=const; otherwise, im=0 (DR), ther?"*4 bouzndary of its validity,ne~ /s, Eq. (8 gives xpg
. ' ] ! . ~e“s/k, which is large angbositive On the other hand, the
>u. -
o> . | start with the analysis of the larges case, which local termyg ® [Eq. (9)] shows a weak dependence ng,

clarifies why they ~1(n,) dependence is nonmonotonic and o . :
which provides a formula for the density, wherey ! has  emaining small anchegative Combined, they produce a

the minimum. strongly asymmetric minimum iy~ *(n) = xpr+ xo - at
In the limit n.> /s, the asymptotically exact treatment e density

is possible because the DRs appear only in rare places where 1 4096

o(r) dips below —n,. (In practice, this limit is realized n :__'ml/z(_n 2) (10)

when n.>K3}?~0.2yn;/s.) The corresponding electrostatic " oamw s wht "

problem is analogous to that of the metallic sheet perforate
by small holegsee Fig. 1. The most elegant way to derive
x Y in this regime is to calculate the fractidfy, /E, of the
electric field that reaches the bottom layer in the geometry o
Fig. 1. IndeedE,/E, is nonzero only if the probe layer is _
not a perfect mpetaIX‘laﬁO. In the simplest case, where np~0.12\/n—i/s, (D
distancess; ands, are large, the following formula holds: so thatn,~3n,. In accord with EPB’s heuristic argument,
x t=4m(e?s,/k)(d E,/dEp) (cf. Ref. 9. This is essen- at such density a very small area fraction is depldtazk
tially the formula used to deduge * in the experiment=1?  inset in Fig. Za)], and so the use of the asymptotic formula
It is immediately obvious that holes in the metallic sheet(8) is justified.

enhance the penetrated fidlg . For example, the field leak- Let us now proceed to the casg~n,. Again, | start with
ing through a round hole of radiusis the field of a dipol®  the electrostatic problemH,=0). One expects DRs to be
p=(a%/3m)E,. If there is a finite but small concentratidd, abundant and irregularly shaped. For a giwgn the ground-

q‘he logarithmic factor in Eq10) is rather insensitive to;s?
andh;. Forn;s?’=h,=1, one gets1,,~0.38/n;/s. In com-
parison(see Ref. 6 and belovthe percolation threshold is
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FIG. 2. (a) Electrochemical potential vs electron density for the
electrostatic problenti,=0, according to the present thedsolid
line) and EPB’s numerical simulatiordots. Inset: Fraction of the
depleted area vs densitfh) xy ! vs density according to the nu-
merical simulations of Shi and XiRef. 8 (squarep the present
theory(solid line), and for the uniform electron liquitashed ling

staten(r) is some nonlocal functional af and there is no
hope to find it exactly. What | wish to report here is that a
variational solution sought within the class of purely local
functionals, n(r)=n[o(r)] remarkably accurately repro-
duces theu(n,) andy (n,) dependencies found in numeri-
cal work®® More interestingly, it predicts the correct value
of n, [Eq. (11)].

The system of equation that defines such a variation
staten(o’) follows from the fact that for a Gaussian rando
function the averages over the total at&eof the system and
over the distribution function are the same. This yidlds
Egs.(1)-(5)]

m

H, 1
FZZJ f dodo’ p(0)G(0,0")p(o”),  (12)

G(o,o’)=f d’r'V(r")[Py(0,0")—Py(a)Py(a’)],
(13
wherep(a)=n(o)—ne— o andV(r')=e? kr'. The energy

H, needs to be minimized with respect to all functior{sr)
that obey the constraint(¢)=0 and

f doP,(o)n(o)=ne. (14
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The latter ensures that the average density is equal, to
Introducing the Lagrange multiplige, (variational estimate
of the electrochemical potentjabne obtains thatl,, is mini-
mized if, for allo>f, p(o') satisfies

f do'G(o,0")p(0")= p,(Ne) P1(0). (15
Heref is such thain(f)=0. [l found thatn(o) is always a
monotonically increasing function, so that0 corresponds

to o>f]. The kernelG(o,d') [Eq. (13)] is logarithmically
divergent,G= —In|o—o’| at o— o', and decays exponen-
tially at largeo ando’. There is a certain analogy between
Eq. (15 and the integral equations of 1D electrostatics,
which also have logarithmically divergent kern&tg® This
analogy entails that(o)~\o—f at o close tof. Note that
o(r)—f is proportional to the distance in the real space be-
tween the given point and the boundary of the nearby DR.
Thus, the variational principle renders correctly the square-
root singularity inn(r) at the edge of the DR<f., e.g., Eq.
(7)]. 1 was not able to establish the analytical form of the
solution beyond this property and resorted to findim(@r)
numerically. To do so the integral in E(GL5) was converted
into a discrete sum over 101 points on the intera|
<1.5/n/s and the resultant system of 101 linear equations
was solved on the computer. The solution can be approxi-
mated by a simple analytical ansatz

Na(0)=[(Net 0)?—(ne+1)?120(a—1), (16

where 6(z) is the step function. For example, the enekjy
is nearly the same whether it is calculated usmgr using
the actual solution of Eq(15). So, in principle, Eq.(16)
obviates the need to solve E@.5). The only equation that
needs to be solved is E¢L4) for f.

At this point one can compare the predictions of the varia-
tional method foru,(ne) with EPB’s numerical results that
were also obtained for they=0 problem. As Fig. &) il-
lustrates, they are in a good agreement.

To test the theory further | compare it next with the nu-
merical data of Shi and Xi&To this end, one needs to cal-

"j‘éulate)(‘1 including the effect of a finitél,. The first step is

to take the derivative(,gézd,uvld n., which is easily done
numerically. An accurate fit to the result is provided by the
interpolation formula
., €’s3y2 0.30+ 7
XOR™ " 871 0.036+0.127 + 72

exp(— 47 9?),
17)

where p=n.s//n;. This particular form is devised to match
Eqg. (8) at largen, and is consistent up to logarithmic correc-
tions with the behavior expectétf at very smalln,. The
next step is to evaluate the quantity

2 2 .
Xalzd—<Ho>:_d—f doPy(o)He[n(o)], (18)
dnZ dnZJs

which is also easily done on the computer. The total ITDOS,
x H(ne)=xpa+xo . calculated from Eqs(17) and (18),
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and the theoretical value af,,~0.7x10 %ag? [per Eq. experimentally. Therefore, the observed apparent ‘1t
(10)] compare very well with the simulatiosee Fig. 2b)]. n=n,, has nothing to do with the percolation of the DRs and
The parameters | used arp;=6.25X 10*4ag2 and s  moreover with breaking of the electron liquid into droplets
=10ag, Whereag is the effective Bohr radiug. In agree-  (the latter occurs ah< np). From Fig. 2a), one can esti-
ment with the exact results presented aboy@,l< Xgé at  mate that the DRs occupy a mere 6% of the total area at
Ne<Nm, and so the upturn of ! at low n, is driven the =n,.
growth of DRs. One qualitative prediction that follows from Eg®) and
Within the variational method the boundaries of the DRs(17) is that the upturn ofy~%(n.) should be sharper in
coincide with the level linesr(r)=" of the zero-mean ran- samples with larges, which seems to be the case if the data
dom functiono. Consequently, the DRs percolatefat0.  of Ref. 9 (s=14 nm) are compared with those of Refs.
Solving Eq.(15) with f=0, one arrives at Eq11), whichis  10-12 <4 nm). Detailed fits are left for future.
in excellent agreement with EPB’s resuit,~0.11yni/s. | conclude with mentioning some other theoretical work
One important quantity not reported in the published numeripn the subject. It was suggestthat near the MIT, function
cal work$8is the area fraction of the DR. Within the varia- vy 1(n,) may contain both regular and singular parts. My
tional method, it is equal to erfe(f/2Ko)/2, where theory can be considered the calculation of the former. its
erfc(z) is the c.omplementary error funct|on.. It is exac?ly 172 yetailed comparison with experiment may furnish an esti-
atne=n, and increases ax—0 as shown in Fig. @) (in-  mate of the putative singular term. The effect of disorder on
sel. IX_l was also studied in Refs. 23 and 24 but the electron
d

Let us now compare our results Vfith Er;e experimenta ensity inhomogeneity was not accounted for. Finally, a non-
data. Taking a rough numb_e;:3><101 cm “ and a typi- monotonic Y~ *(n,) dependence was found in a model
cal spacer widths=40 nm in Eq.(10), one getsn,~5.2 | uhout disorder.

x 10'% cm~2, in agreement with observed valu€sThe es-

timate for the percolation point isn,~n,/3~1.7 This work is supported by the C. & W. Hellman Fund and
x 10'% cm~2. Despite some small uncertainty in the lastA. P. Sloan Foundation. | am grateful to B. I. Shklovskii for
number(due to the uncertainties in; andh,), n, andn,,  indispensable comments and insights, and also to H. W.
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