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Effect of spin-orbit interaction and in-plane magnetic field on the conductance
of a quasi-one-dimensional system
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We study the effect of spin-orbit interaction and in-plane effective magnetic field on the conductance of a
quasi-one-dimensional ballistic electron system. The effective magnetic field includes the externally applied
field, as well as the field due to polarized nuclear spins. The interplay of the spin-orbit interaction with effective
magnetic field significantly modifies the band structure, producing additional subband extrema and energy
gaps, introducing the dependence of the subband energies on the field direction. We generalize the Landauer
formula at finite temperatures to incorporate these special features of the dispersion relation. The obtained
formula describes the conductance of a ballistic conductor with an arbitrary dispersion relation.
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Recently, there have been numerous studies of the p
erties of quasi-one-dimensional systems.1–8 The motivation
behind this interest has been the observation of conduct
quantization. Most quasi-one-dimensional systems, or qu
tum wires, are created by a split gate technique in a tw
dimensional electron gas~2DEG!.6,7 When a negative poten
tial is applied to the gates, the electrons are deple
underneath. Thus, a one-dimensional channel is created
tween two reservoirs. For ballistic transport to occur,1 this
constriction should be less than the electron mean free p
and have a width of the order of de Broglie wavelength.6–8

The explanation for conductance quantization is found
using a noninteracting electron model. With a small bias
plied across the channel, the electrons move from one re
voir to the other. Due to the transverse confinement in
channel, the electrons are distributed, according to
Fermi-Dirac distribution, among various subbands in
channel. The calculation of the conductance has been s
marized in the Landauer-Bu¨ttiker formalism.6–8 Each of the
subbands contributes 2e2/h to the conductance.

The spin-orbit ~SO! interaction is described by th
Hamiltonian9–12

HSO5
\

4m2c2 ~¹W V3pW !•sW , ~1!

wheresW represents a vector of the Pauli spin matrices,m is
the free electron mass,pW is the momentum operator, and¹W V
is the gradient of a potential, proportional to the electric fie
acting on the electron. When dealing with crystals, there
two main types of spin-orbit interaction. The Dresselha
spin-orbit interaction11 appears as a result of the asymme
present in certain crystal lattices. The Rashba spin-o
interaction13 arises due to the asymmetry associated with
confinement potential and is of interest because of the ab
to electrically control the strength of this interaction. T
latter is utilized, for instance, in the Datta-Das sp
transistor.14 The Hamiltonian for the Rashba interaction
written13 as
0163-1829/2004/69~12!/121306~4!/$22.50 69 1213
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]

]y
2sy

]

]xD , ~2!

wherea is the coupling constant. In this paper, we limit o
consideration to the systems with only the Rashba inte
tion. Incorporation of the Dresselhaus interaction into o
calculations is straightforward.

In the simplest case when the external magnetic field
applied in the plane of the heterostructure and the spin-o
coupling is neglected, each subband in the channel is
split. The effect this field has on conductance is that e
subband now contributese2/h to the conductance, as ob
served, e.g., in Ref. 3. Another possible source of sp
splitting are nuclear spins, which we incorporate into t
model within an effective-field approximation. We introduc

the total magnetic field asBW 5BW ext1BW N , whereBW ext is the

external magnetic field andBW N is the effective field~for spin
motion only! produced by the polarized nuclear spins via t
hyperfine interaction. The high level of nuclear spin pol
ization in GaAs, closed to the maximum of 5.3 T,15 has been
achieved experimentally.16,17 It is anticipated that the effec
of the nuclear spin polarization on the conductance is sim
to the effect of in-plane magnetic field.18 The characteristic
energy scale of the interaction between conduction electr
and polarized nuclear spins makes it possible to confine
electrons into low-dimensional electron structures us
modulation of the nuclear spin polarization.5,19–22We assume

that BW N is parallel to the external magnetic fieldBW ext.
16

Recent studies of 2DEG-based systems23–25have been fo-
cused on including the effects of the spin-orbit interaction
the conductance with perfect channel transmissionT(E)
51. Other studies8,26–28 have dealt with similar effects in
hybrid ferromagnetic-semiconductor systems but with tra
mission coefficients less than 1. In our calculations we
sume perfect transmission through the channel and focu
the effects of the interplay of spin-orbit interaction and
in-plane magnetic field on the conductance at finite tempe
tures. We show that the spin-orbit interaction breaks the s
©2004 The American Physical Society06-1
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metry of the subbands in certain cases and manifests itse
unique features in the conductance dependence on the
voltage.

Let us consider the energy spectrum of a quasi-o
dimensional system in which we take into account the effe
of spin-orbit interaction and an applied in-plane magne
field. The Hamiltonian inside the conductor will then be

H5
p2

2m*
1U~y!2 iasy

]

]x
1

g* mB

2
sW •BW . ~3!

Here p is the electron momentum in thex direction,m* is
the electron effective mass,U(y) is the electron confining
potential in they direction,g* is the effectiveg factor, and
mB is the Bohr magneton. The Rashba termHSO defined in
Eq. ~2!, was reduced for the motion alongx only. We assume
that the total magnetic field experienced by electrons is
plane,BW 5Bxx̂1Byŷ. It should be emphasized that the ma
netic field does not enter into Eq.~3! through the vector
potential in our approximation.

We consider solutions of the Schro¨dinger equation inside
the constriction that are separable, of the form

c5eikxf~y!S w↑
w↓

D , ~4!

wheref(y) is the wave function for the transverse mod
~due to the confinement potential! and w↑,↓ are the spinor
components for spin up and down, respectively. The eig
value problem can be solved to obtain

E6
(n)5

\2k2

2m*
1En

tr7@~g* mBB/2!21g* mBakB sinu

1~ak!2#1/2. ~5!

In this expression, the up and down spin states in the eig
basis are denoted by6, u is the angle of the magnetic fiel
relative to the electron transport through the wire,B sinu
represents they component of the total magnetic field, an
En

tr is the spectrum of transverse subbands. Assuming p
bolic confinement potential in they direction, we haveEn

tr

5\v(n11/2). The energy spectrum corresponding to E
~5! is illustrated in Figs. 1~a!–1~c! for various values ofu.
Recently, similar energy-spectrum calculations have been
ported in Ref. 29.

It is interesting to note some of the properties of the
sub-bands. In the case ofu equal to 0, Fig. 1~c!, or p/4, Fig.
1~b!, a gap appears atp50 between two spin-split bands
which is not observed whenu5p/2. The subbands in Figs
1~b! and 1~c! also contain local extrema, due to the Rash
term.

Our goal is to calculate the overall influence of the sp
dependent interactions in the Hamiltonian on the finite te
perature conductance. To do this, we make use of
Landauer-Bu¨ttiker formalism. We consider a model of
quantum wire, which consists of two electron reservo
with chemical potentialsmL andmR , separated by a conduc
tor. This conductor is assumed to be devoid of scatterer
that the transmission coefficientT(E) is unity. If a biaseV
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FIG. 1. Dispersion relations: energyE in units of \v, for dif-
ferent values ofu, ~a! u5p/2, ~b! u5p/4, and ~c! u50, as a
function of the momentump, where h is defined as h
5(2m* \v)1/2. These plots were obtained using the parameter v
uesg* mBB/(2\v)50.1 anda@2m* /(\3v)#1/251.
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5mL2mR is applied across the contacts, such thatmL
.mR , then the total currentI through the conductor can b
written as the difference between the currents flowing in
forward and reverse directions, see Ref. 7, p. 52,

I 5
e

2p (
n,s

E
2`

`

vns@q~vns! f ~E,mL!

1q~2vns! f ~E,mR!#dk. ~6!

Here f @E(k),mL,R# is the Fermi-Dirac distribution function
for electrons in the left and right reservoir,vns is the electron
velocity given by\21]Es

(n)/]k, with s56 denoting the spin
state,Es

(n) is given by Eq.~5!, andq(v) is the step function.
The summation overn ands includes contributions from al
the subbands in the channel.

The band structure of our system exhibits a number
local extrema which have to be taken into account in orde
calculate the conductance using Eq.~6!. For example, if we
consider a single subband with an arbitrary number of lo
extrema then the calculation of the conductance can be
complished by splitting up the integral in Eq.~6! between
extremal points in the subband. This gives the relation

I n,s5
e

h F ÈE0
(n,s)

f ~E,mR!dE1E
E0

(n,s)

E1
(n,s)

f ~E,mL!dE

1E
E1

(n,s)

E2
(n,s)

f ~E,mR!dE1¯G , ~7!

whereI n,s is the contribution from the subband labeled byn
and s, while Ei

(n,s) is the i th energy extremum in that sub
band. If we assume that the applied bias is small, then we
Taylor-expand the integrals in Eq.~7! in terms of eV. By
taking only the first-order terms, summing over differe
sub-bands and using the relation for conductanceG5I /V,
we obtain the result

G5
e2

h (
n,s

(
i

b i
(n,s) f ~Ei

(n,s)!. ~8!

Here, the sum is calculated over the extremal points of all
subbands, andb i

(n,s) is either11 for a minimum or21 for
a maximum. So, we see that maximum points in a subb
actually reduce the conductance.

Experimentally, the conductance plateaus are observe
changing the potential applied to the gates. This chang
potential can be viewed as a shift of the chemical poten
The calculated values forG, using Eq.~8!, and the corre-
sponding temperature dependences, are shown in Fig.
functions of the chemical potentialm. In Fig. 2~a!, we see
that asm increases, the zero-temperature conductance
creases in steps ofe2/h. This is half of the increment tha
would be obtained without the Zeeman splitting of the e
ergy subbands.8 As the temperature is increased we observ
smearing of the conductance plateaus, since electrons c
ing in from the reservoirs no longer have a sharp step
energy distribution at the chemical potential.
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When the applied magnetic field has a nonvanishingx
component, new effects occur in the conductance plate
especially at low temperatures. In Figs. 2~b! and 2~c!, we
illustrate the conductance plateaus foru5p/4 andu50, re-
spectively. In the case ofu5p/4, we can see from Fig. 1~b!

FIG. 2. ~Color online! Conductance as a function of the chem
cal potential at different temperaturesT ~in units of \v/kB), for
different directions of the magnetic field:~a! u5p/2, ~b! u5p/4,
and ~c! u50.
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that the energy subbands are split, so as the chemical po
tial increases, the first contribution to the conductance w
be from the lowest minimum in Fig. 1~b!, and the second
contribution occurs when the chemical potential passes
second minimum of the same subband. Asm further in-
creases and passes the local maximum, the conductanc
creases bye2/h. By this mechanism, peaks of the condu
tance are formed, as demonstrated in Figs. 2~b!, 2~c!. We
note that temperature-smeared curves look very simila
those in the much investigated 0.7 anomaly phenomen3

though additional investigations would be needed bef
speculating that the present mechanism could be an alte
tive to other explanations of this effect offered in the liter
ture.

It should be emphasized that the external magnetic fiel
not necessary to observe the conductance peculiarities
cussed in this paper. Similar effects can be obtained du
interactions that mix spin states. The simplest example
polarized nuclear spins. The nuclear spin polarization is
namic because of the spin diffusion and relaxation proces
il
on
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Since the electron equilibration time scales are much sho
than the time scales of dynamics of the nuclear spin syst
the adiabatic approximation can be applied.5 Within this ap-
proximation, the effective magnetic field due to the polariz
nuclear spins can be considered quasistatic and relations
sented above can be used to describe the conductance.

In summary, this paper has focused on the interplay
various in-plane magnetic field components, Rashba s
orbit interaction, and finite temperature in their effects on
conductance. We have found that the angle of the magn
field with respect to the conductance channel has a sig
cant effect on the conductance. The variation of the angle
the field generates gaps in the energy subband structure
control the pattern of the conductance variation as the che
cal potentials are varied by applied gate voltages.
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