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Singular corrections to the Fermi-liquid theory
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We show that the singularities in the dynamical bosonic response functions of a two-dimensional Fermi
liquid give rise to universal nonanalytic corrections to the results of the Fermi-liquid theory. In particular, we
find aT2 term in the specific heat, linear-in-T terms in the effective mass and in the uniform spin susceptibility
xs(Q50,T), and uQu term in xs(Q,T50). The existence of these terms has been the subject of recent
controversy, which is resolved in this paper. We present exact expressions for all nonanalytic terms to second
order in a generic interactionU(Q) and show that the nonanalytic terms originate exclusively from forward-
and backward-scattering of particles with zero total momentum.
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The universal features of a Fermi liquid and their physi
consequences continue to attract the attention of
condensed-matter community. In a three-dimensional Fe
liquid, the leading term in the real part of the on-shell se
energy,S(v), behaves asv for v→0 whereas the imagi
nary part vanishes asv2 or T2. Such a regular behavior o
the self-energy has a profound effect on, e.g., the spe
heat and uniform spin and charge susceptibilities, which
have similarly to the free-fermion case, i.e., the specific h
is linear inT and the susceptibilities approach finite values
T50. A regular behavior of the self-energy is also in lin
with a general argument that turning on the interaction
D.1 should not affect drastically the low-energy propert
of a system,1 unless special circumstances, e.g., a proxim
to a quantum phase transition,2 interfere.

The subject of this paper is the analysis of nonanaly
corrections~NAC! to the Fermi-liquid behavior. These co
rections are universal in a sense that they are determine
fermions near the Fermi surface, and are of fundamenta
terest as they lead to anomalous temperature and mome
dependences of observable quantities. A well-known
ample is theT3ln T term in the specific heat in three dime
sions~3D!.3 Another example, discussed recently in the co
text of the metal-insulator transition in 2D,4 is the linear-in-T
correction to the conductivity of a weakly disordered 2
system.5–7 NAC are also important for the theory of quantu
critical phenomena in itinerant ferromagnets,8 as a nonana-
lytic momentum dependence of the spin susceptibility m
change the nature of the phase transition.9 On the experimen-
tal side, bothT3ln T behavior ofC(T) and its analog in 2D
(T2) were observed in He3.10 There is also an evidence fo
the linear-in-T term in the spin susceptibility of a 2D com
pound Sr2RuO4.11,12

Nonanalyticities in observable quantities can be tra
down to a behavior ofS(v), which does not have a regula
expansion in integer powers ofv. The reason for this
nonanalyticity can be understood by recalling th
Landau’s argument for thev2 ~or T2) behavior ofS9 relies
on the Fermi statistics of quasiparticles and on the assu
tion that the effective interaction is screened at la
distances.13 Long-range~current-current14 or gauge15! inter-
actions lead to the breakdown of the Fermi liquid. Howev
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even if the bare interactionU is pointlike, the effective one
contains a long-range part at finite frequencies. Indeed,
ready to the second order inU, the effective interactionŨ
5U2P(V,q) is proportional to thedynamicalpolarization
bubble of the electron gas,P(V,q). In all dimensions,P9 is
universal and singular inq for V!vFq!vFkF ,13

P9~V,q!5aD

V

vFuqu
1•••,

whereaD is a coefficient, andvF andkF are the Fermi ve-
locity and momentum, respectively. Due to this singularq

behavior ofP9, Ũ(r ) behaves as 1/r D21 at distanceskF
21

!r !vF /uVu.
The induced long-range interaction affects the self-ene

which, to the second order inU, is given by

S9~v!.
U2

vF
E

0

uvu
dVE

;uVu/vF

;kF
dq qD22P9~V,q!.

For D.2, the leading term in the momentum integral co
verges in the infrared, andS9(v)}v2 in agreement with the
Landau’s argument. However, a subleading term is do
nated by the lower limit, and behaves not asv4, as one
might have expected, but asuvuD for D,4. For D<2, al-
ready the leading term is infrared divergent andS9(v)
}uvuD, with an extra log forD52. The breakdown of the
expansion ofS9(v) in v2 doesnot mean a breakdown of the
Fermi liquid: it is easy to see thatuS8(v)u@S9(v) for D
.1, so that the quasiparticles are well defined. However,
nonanalyticity inS in all dimensions transfers into NAC to
thermodynamic quantities.16 Indeed, power counting indi-
cates that the nonuniform charge and spin susceptibili
xc,s(Q,T) and the specific heatC(T) may acquire nonana
lytic corrections of the form max$QD21,TD21% ~Refs. 12, 17
and 18! and TD ~Refs. 19 and 20!, respectively~with extra
logs for D51,3).

Our motivation to study the NAC to the Fermi-liquid be
havior is twofold. First, it is necessary to verify the powe
counting arguments by carrying out explicit calculations
several observable quantities:C(T), xc,s(Q,T), and the ef-
fective mass. That power counting may be misleading
©2004 The American Physical Society02-1
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seen, e.g., for the free-fermion susceptibility: according
power counting, it should also have a nonanalytic mom
tum dependence, whereas the exact result is a well-kn
Lindhard function which is analytic inQ for small Q. Sec-
ond, it is very important to understand the origin of NAC
the Fermi-liquid theory. Without such an understanding, i
not clear why power counting fails in certain cases and a
why explicit calculations show that only the spin but n
charge susceptibility exhibits a nonanalytic behavior.

Results of prior explicit calculations are somewhat co
troversial. InD53, theT3ln T term inC(T) was found long
ago.3 More recently, Belitz, Kirkpatrick, and Vojta17 ~BKV !
have shown that, to the second order in the interaction,
momentum dependence of the spin susceptibility isQ2ln Q
in agreement with power counting. At the same time,
uniform xs(0,T) was found to scale asT2 ~Refs. 17 and 21!
rather than asT2ln T predicted by power counting. Th
T2ln T term in xs(0,T) was, however, found in Ref. 22. I
2D, no explicit calculations ofxs(Q,0) have been per
formed, although BKV conjectured that it should scale
uQu. As far as theT dependences are concerned, Coffey a
Bedell20 obtained aT2 term in C(T) and Das Sarmaet al.23

found a linear inT term in the effective mass,m* (T). On the
contrary, Chitov and Millis12 ~CM! argued that different con
tributions toC(T) and m* (T) cancel each other, and onl
analytic corrections survive. Yet, CM found theT term in
xs(0,T) for D52, in agreement with power counting, but n
such term inxc(0,T). Fratini and Guinea24 extended the CM
analysis to anisotropic Fermi surfaces.

In this paper, we present explicit results for the spec
heat, effective mass, and spin and charge susceptibilitie
an interacting, isotropic 2D Fermi system, to the second
der in a finite-range interactionU(q). We found that power-
counting arguments are valid in 2D, i.e.,xs(Q)}uQu,
xs(T)}T, m* (T)}T, and dC(T)}T2. These results agre
with Refs. 18–20; the form ofxs(T) agrees with that found
by CM but the forms ofm* (T) and dC(T) disagree with
those by CM. In agreement with CM, we found that differe
nonanalytic contributions to the charge susceptibi
xc(Q,T) cancel each other. We also consider arbitraryD
and explain why in D53, xs(0,T)}T2 while xs(Q,0)
}Q2ln uQu.

A tractable model adopted in this paper allowed us
analyze in detail the origin of the NAC. We found that the
corrections result from the singularities in thedynamic
particle-hole response function,P(q,V), nearq50 andq
52kF , whereP(q,V) is nonanalytic. Physically, these tw
singularities give rise to a zero-sound mode and Friedel
cillation, respectively. The singularity nearq50 is entirely
dynamic, while the one near 2kF is also present in the stati
limit for q.2kF . We found that the singularities inP(q,V)
are necessary ingredients which make power-counting a
ments valid, i.e., they ensure that the prefactors in pow
counting results do not vanish. Asq50 and 2pF singulari-
ties are generic to a Fermi liquid,13 the NAC that we found
should retain their functionalQ- andT forms for an arbitrary
order in the interaction. These forms will change, howev
for special anisotropic Fermi surfaces with, e.g., inflect
points.24
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We also found that the nonanalytic corrections origin
exclusively from a special type of essentially 1D collision
i.e., when two incoming particles have opposite mome
and experience either forward or backward scattering. T
implies that nonanalytic terms depend only onU(0) and
U(2kF) but not on the interaction averaged over the Fer
surface. Furthermore, as the two processes are parts o
same scattering amplitude Ga,b;g,d(k,2k;k,2k)
5U(0)dagdbd2U(2kF)daddbg , NAC to a Fermi-liquid be-
havior can be viewedequivalentlyas coming either from the
singularity in the dynamical particle-hole bubble atq50 or
at 52kF . As theq50 singularity is entirely dynamical, the
nonanalyticities are dynamical in nature as well.

The fact that the nonanalyticities originate fromq50 and
q52kF singularities in the particle-hole response functio
also explains why they are present in the spin but not cha
susceptibility. In the presence of a magnetic field, the int
action channels involving generation of electron-hole pa
of opposite spins acquire a finite energy gap~Zeeman split-
ting!. As a result, theq50 and 2pF singularities in this
channel are smeared by the magnetic field and a respon
this field is singular. On the other hand, a variation of t
chemical potential does not affect the singular parts of
particle-hole bubble, hence a charge response is regular25

Effective mass and specific heat.To find the effective
massm* (T) one needs to know the real part of the fermion
self-energy,S8(k,v), on the mass shell, i.e., atek[(k2

2kF
2)/2m5v. The two nontrivial second-order diagrams f

the Fermi energy are presented in Fig. 1. We evalua
S9(k,v) first and then obtainedS8(v) on the mass shell via
Kramers-Krönig transformation. The imaginary part of th
self-energy reduces to the well-known forms26 S9(k,v)
}v2lnuvu andS9(k,v)}T2ln T for k near the Fermi surface
and in the limits ofT→0 andv→0, respectively. We ob-
tainedS9(k,v,T) at arbitraryv/T andv/ek . Using this full
S9(k,v,T), we find that the real part of the self-energy o
the mass shell has a regular, Fermi-liquid-typev term, plus a
nonanalytic piece

S8~v,T!52
mŪ2

16p2vF
2

vuvugS v

T D , ~1!

whereŪ25U2(0)1U2(2pF)2U(0)U(2pF) and

g~x!511
4

x2 Fp2

12
1Li2~2e2uxu!G , ~2!

where Li2(x) is a polylogarithmic function.

FIG. 1. Nontrivial second-order diagrams for the self-energy.
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In the two limits, g(`)51 and g(x!1)'4ln 2/x. The
first limit corresponds toT50 in which case Eq.~1! gives
S8(v)}vuvu. This nonanalytic form agrees with powe
counting. For smallv/T, i.e., forx!1, the 1/x form of g(x)
leads to thevT term in S8(v,T) for v!T. This in turn
implies that the quasiparticle massm* (T) acquires a linear-
in-T correction

m* ~T!5mS 12m2Ū2
ln 2

8p2

T

EF
D . ~3!

We next consider the specific heat. The general expres
is given in Ref. 13@see also Eq.~4! below#. We verified that
for our S(k,v) it reduces to the frequency integral of th
on-shellS8(v,T). Using Eqs.~1! and ~2!, we obtained

dC~T!5
2

p
T

]

]T F 1

TE2`

` d2k

~2p!2E2`

`

dvv
]n

]v

3Im@S~k,v!G~k,v!#G
52

2m

p
T

]

]T F 1

TE2`

`

dvv
]n

]v
S8~v,T!G

52ACFL~mŪ!2S T

EF
D , ~4!

wheren is a Fermi function,CFL5pTm/3 is the Fermi-gas
result, andA59z(3)/(4p4)50.03. We see that a nonanal
ticity in the fermionic self-energy gives rise to theT2 term in
the specific heat. This term comes only from fermions in
near vicinity of the Fermi surface and from this perspect
is model independent.

Spin susceptibility.The relevant diagrams for the spin su
ceptibility are presented in Fig. 2. Evaluation of the diagra
is rather tedious but straightforward. We calculated all d
grams in two ways:~i! explicitly, by exploring the nonana
lyticities in the particle-hole bubble nearQ50 and 2kF , and
~ii ! by retaining only vertices in which both total and tran
ferred momenta are small. We obtained identical results
both methods, which proves that only a single scattering
plitude is relevant.

The nonanalytic contributions to the spin susceptibil
from individual diagrams are as follows:

x1~Q,T!5x0K~Q,T!@U2~0!1U2~2kF!#,

x2~Q,T!52x0K~Q,T!U~0!U~2kF!,

x3~Q,T!5x0K~Q,T!@U2~2kF!2U2~0!#,

x4~Q,T!5x0K~Q,T!U~0!U~2kF!,

x55x65x750, ~5!

wherex05m/p, andK(Q,0) andK(0,T) are given by
12110
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K~Q,0!5
2

3p S m

4p D 2 uQu
kF

, K~0,T!5S m

4p D 2 T

EF
. ~6!

Collecting all contributions, we find

xs~Q,T!5(
i 51

7

x i~Q,T!5x0@112K~Q,T!U2~2kF!#.

~7!

We see that all nonanalytic contributions withU(0) cancel
out, and the final result depends only onU(2kF).

We now take a deeper look into the origin of the nonan
lytic contributions to the susceptibility. The power-countin
argument does not rely on the singularity in the particle-h
bubble, i.e., a singular piece inP(Vm ,q) nearq50, Psing

5n2Vm /A(vFq)21Vm
2 , has a scaling dimension zero an

hence is treated as a constant in power counting. Howe
we found that for each diagram, a replacement ofP(Vm ,q)
by a constant does not give rise to a linear-in-uQu term in
xs(Q,0) because in the prefactors to this term all poles
located in the same half plane ofq, and the integral overq
vanishes. This vanishing could not be detected by po
counting. The substitution ofPsing instead of a constan
changes the situation as this term contains a branch-cut
gularity which is present in both half planes ofq. The q
integral then does not vanish, and theuQu term emerges in
xs(Q,0), in agreement with power counting.

FIG. 2. Relevant second-order diagrams for spin and cha
susceptibilities. The last two diagrams are nonzero only for
charge susceptibility.
2-3



e

ra

ia
e

-

ni-
f a
to
at
ex-

tic

that

n

v,
,

he
49

RAPID COMMUNICATIONS

ANDREY V. CHUBUKOV AND DMITRII L. MASLOV PHYSICAL REVIEW B 69, 121102~R! ~2004!
A nonanalyticT dependence ofx(0,T) is also associated
with the singularity inP(Q,V) but the interplay between th
two is somewhat different from that atT50 as a singular
piece inxs(0,T) comes only from a zero bosonic Matsuba
frequency and not from a set ofvm;T. We found that in any
2<D<3, the result forxs(0,T) can be expressed as

xs~0,T!5AU2~2pF!J, ~8!

whereA is a positive constant, and

J5
~D22!~42D !

2 S T

EF
D D21E

0

` dz zD22

ez21
. ~9!

For D→2, J→(T/EF) which yields Eqs.~6! and ~7!. For
arbitrary 2,D,3, xs}J}TD21 which parallelsxs(Q,0)
}uQuD21. However, inD53, Eq. ~9! yields J}T2 without
logarithmic corrections, i.e.,xs(0,T)}T2. This explains why
the Q2lnuQu term isnot accompanied byT2ln T in 3D.

Charge susceptibility.The charge susceptibilityxc(Q,T).
Here we have two additional contributions given by d
grams 6 and 7 in Fig. 2~for the spin susceptibility thes
diagrams vanish after spin summation!. We find

x6~Q,T!5x0 K~Q,T!@U2~0!2U2~2kF!#,
-

od

12110
-

x7~Q,T!52x0 K~Q,T!@U2~0!1U2~2kF!#, ~10!

whereK(Q,T) is given by Eq.~6!. Combining this last result
with Eq. ~5!, we find that all nonanalytic terms from indi
vidual diagrams cancel out, i.e.,xc(Q,T) is regular. This
agrees with the result by CM.12

To conclude, in this paper we demonstrated that the u
versal singularities in the bosonic response functions o
Fermi liquid give rise to universal nonanalytic corrections
the Fermi-liquid forms of the self-energy, the specific he
and the spin, but not charge, susceptibility. We obtained
plicit results in 2D for dC(T)}T2, xs(Q,T50)}uQu,
xs(Q50,T)}T. We demonstrated that these nonanaly
terms come from the processes with both transferredand
total momentum close to zero. We also demonstrated
thermal (}T) and quantum (}uQu) corrections to the spin
susceptibility are of different origin. This explains why i
3D, xs(Q,0)}Q2ln Q, while xs(0,T)}T2.
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