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Singular corrections to the Fermi-liquid theory
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We show that the singularities in the dynamical bosonic response functions of a two-dimensional Fermi
liquid give rise to universal nonanalytic corrections to the results of the Fermi-liquid theory. In particular, we
find aT? term in the specific heat, linear-ifiterms in the effective mass and in the uniform spin susceptibility
Xs(Q=0,T), and|Q| term in x4(Q,T=0). The existence of these terms has been the subject of recent
controversy, which is resolved in this paper. We present exact expressions for all nonanalytic terms to second
order in a generic interactiod (Q) and show that the nonanalytic terms originate exclusively from forward-
and backward-scattering of particles with zero total momentum.
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The universal features of a Fermi liquid and their physicaleven if the bare interactiod is pointlike, the effective one
consequences continue to attract the attention of theontains a long-range part at finite frequencies. Indeed, al-

condensed-matter community. In a three-dimensional Fernfeady to the second order Iy, the effective interactiot

|IqUId, the |eading term in the real pal’t Of the On-She” Self-:UZH(Q,q) is proportiona| to thajynamica|p0|arization

energy,E(w)..behaves2 a® for w—0 whereas the imagi- - bubble of the electron gakl(Q,q). In all dimensions1” is

nary part vanishes as“ or T°. Such a regular behavior of ynjversal and singular in for Q<veq<uvekg,*®

the self-energy has a profound effect on, e.g., the specific

heat and uniform spin and charge susceptibilities, which be-

have similarly to the free-fermion case, i.e., the specific heat H"(Q’Q):aDW*‘ T

o . R o Flal

is linear inT and the susceptibilities approach finite values at

T=0. A regular behavior of the self-energy is also in line Wwhereap, is a coefficient, andr andkg are the Fermi ve-

with a general argument that turning on the interaction inlocity and momentum, respectively. Due to this singudar

D>1 should not affect drastically the low-energy propertiesbehavior ofI1”, U(r) behaves as 6?7 * at distancesk;1

of a systent, unless special circumstances, e.g., a proximity<r<uvg/|Q|.

to a quantum phase transitidrnterfere. The induced long-range interaction affects the self-energy
The subject of this paper is the analysis of nonanalytiovhich, to the second order id, is given by

corrections(NAC) to the Fermi-liquid behavior. These cor-

rections are universal in a sense that they are determined by " U? (el ~ke D_2rrn

fermions near the Fermi surface, and are of fundamental in- = (@)= ;fo dQ Lmv dgg” “H"(Q,q).

terest as they lead to anomalous temperature and momentum F

dependences of observable quantities. A well-known exFor D>2, the leading term in the momentum integral con-

ample is theT3In T term in the specific heat in three dimen- verges in the infrared, anil” (w) = w? in agreement with the

sions(3D).2 Another example, discussed recently in the con-Landau’s argument. However, a subleading term is domi-

text of the metal-insulator transition in 20s the linear-inT ~ nated by the lower limit, and behaves not @&, as one

correction to the conductivity of a weakly disordered 2D might have expected, but 4&|° for D<4. ForD<2, al-

systent ' NAC are also important for the theory of quantum ready the leading term is infrared divergent aBd(w)

critical phenomena in itinerant ferromagn@tas a nonana- |w|P, with an extra log foD=2. The breakdown of the

lytic momentum dependence of the spin susceptibility mayexpansion oB”(w) in w? doesnotmean a breakdown of the

change the nature of the phase transifi@n the experimen- Fermi liquid: it is easy to see that ' (w)|>X"(w) for D

tal side, bothT3In T behavior ofC(T) and its analog in 2D >1, so that the quasiparticles are well defined. However, the

(T?) were observed in He'® There is also an evidence for nonanalyticity inY in all dimensions transfers into NAC to

the linear-inT term in the spin susceptibility of a 2D com- thermodynamic quantiti€. Indeed, power counting indi-

pound SyRuQ,. 112 cates that the nonuniform charge and spin susceptibilities
Nonanalyticities in observable quantities can be tracedy. (Q,T) and the specific hedZ(T) may acquire nonana-

down to a behavior oF (w), which does not have a regular lytic corrections of the form mgQP 1, T°~1 (Refs. 12, 17

expansion in integer powers ab. The reason for this and 18 and TP (Refs. 19 and 20 respectively(with extra

nonanalyticity can be understood by recalling thatlogs forD=1,3).

Landau’s argument for the? (or T?) behavior of>” relies Our motivation to study the NAC to the Fermi-liquid be-

on the Fermi statistics of quasiparticles and on the assumgravior is twofold. First, it is necessary to verify the power-

tion that the effective interaction is screened at largecounting arguments by carrying out explicit calculations of

distances? Long-range(current-currerif' or gaugé® inter-  several observable quantitieS(T), x.s(Q,T), and the ef-

actions lead to the breakdown of the Fermi liquid. Howeverfective mass. That power counting may be misleading is
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seen, e.g., for the free-fermion susceptibility: according to p

power counting, it should also have a nonanalytic momen-® b

tum dependence, whereas the exact result is a well-know: Q

Lindhard function which is analytic i@ for small Q. Sec- (\_{M e

ond, it is very important to understand the origin of NAC in fj Q) 7‘%

the Fermi-liquid theory. Without such an understanding, it is — > > > > > > >
not clear why power counting fails in certain cases and alsck k+q k k PPt kg Kk

why explicit calculations show that only the spin but not
charge susceptibility exhibits a nonanalytic behavior.
Results of prior explicit calculations are somewhat con-
troversial. INnD=3, theT3In T term inC(T) was found long
ago® More recently, Belitz, Kirkpatrick, and Vojta (BKV)
have shown that, to the second order in the interaction, th
momentum dependence of the spin susceptibilitD#n Q
in agreement with power counting. At the same time, th
uniform x<(0,T) was found to scale af° (Refs. 17 and 2L
rather than asT2InT predicted by power counting. The

2 ; .
T4InT term in x4(0,T) was, however, found in Ref. 22. In —U(0)8,,855— U(2Ke) .50, NAC to a Fermi-liquid be-

2D, no explicit calculations ofy(Q,0) have been per- : . . ; :
formed, although BKV conjectured that it should scale ashawor can be viewegquivalentlyas coming either from the

ingularity in the dynamical particle-hole bubblecgt O or

. As far as theT dependences are concerned, Coffe and . o . .
|I3Qe|deIFO obtained ar? {)erm inC(T) and Das Sarmat al?% at =2k A_s_theqzo smgu_larlty is entirely dynamical, the
found a linear il term in the effective massy* (T). On the nonanalyticities are dynamical in nature as well

. - . The fact that the nonanalyticities originate fraps 0 and
contrary, Chitov and Milli¥? (CM) argued that different con- _ : L L :
tributions toC(T) andm* (T) cancel each other, and only g=2kg singularities in the particle-hole response functions

analytic corrections survive. Yet, CM found tfieterm in also explains why they are present in the spin but not charge

X.(0.T) for D=2, in agreement with power counting, but no susceptibility. In the presence of a magnetic field, the inter-

. . . action channels involving generation of electron-hole pairs
such term 'rD(C.(O’T)‘ I_:ratlnl a_nd Guined extended the CM of opposite spins acquire a finite energy dageman split-
analysis to anisotropic Fermi surfaces.

ting). As a result, theq=0 and 2 singularities in this

he{l;t‘ tgéfzgi/%err’nz\gsi p;izegt iﬁxgl:g'tcrhe;ul(tassfuosrctgetiSﬁ’;g;'cérannel are smeared by the magnetic field and a response to
' ’ P 9 P is field is singular. On the other hand, a variation of the

an interacting, isotropic 2D Fermi system, to the second or-

. D ; . chemical potential does not affect the singular parts of the
der in a finite-range interactiod (q). We found that power- : :
: T . article-hole bubble, hence a charge response is regular.
counting arguments are valid in 2D, i.exs(Q)x|Q|, P 9 P g

Effective mass and specific hedb find the effective
* 2
XS.(T)OCT’ m*(T)eT, and 5C(T)T". These.results agree massm* (T) one needs to know the real part of the fermionic
with Refs. 18-20; the form of(T) agrees with that found self-energy,3 ' (k,»), on the mass shell, i.e., at= (k2
* . - 1 ’ L 1 . "

by CM but the forms ofm (T.) and 5C(T) disagree .W'th —k,2:)/2m=w. The two nontrivial second-order diagrams for
those by CM. In agreement with CM, we found that different . g

; A - .. the Fermi energy are presented in Fig. 1. We evaluated
nonanalytic contributions to the charge susceptibility

Xo(Q.T) cancel each other. We also consider arbitrary ira(lrﬁ:r)sfl}i?;]?n1rg]nesrlloortr)r;[zlt?oena %(1)()3 ?rg;h?ng]rassasrr:ecl)lfvtﬁe
and explain why inD=3, y0,T)*xT? while x(Q,0) 9 ‘ ginayy p

=Qn Q). self-energy reduces to the well-known forfs”(k,w)

A tractable model adopted in this paper allowed us toxwzlmw| and2"(k,w)= TN T for k near the Fermi surface

; : - and in the limits ofT—0 and w—0, respectively. We ob-
analyze in detail the origin of the NAC. We found that these,_. ,, . : :
corrections result from the singularities in tteynamic tained3"(k, o, T) at arbitrarye/T andw/ ey . Using this full

prtce-le response funcioR (6.2, nearq-0 andq & (.1 e 119 0t e fea part of e seltereroy on
=2kg, wherell(q,Q) is nonanalytic. Physically, these two nonanalvtic piece guiar, q yp P
singularities give rise to a zero-sound mode and Friedel os- yue p

cillation, respectively. The singularity negr=0 is entirely _

dynamic, while the one neaikg is also present in the static mu? (w>

FIG. 1. Nontrivial second-order diagrams for the self-energy.

We also found that the nonanalytic corrections originate
exclusively from a special type of essentially 1D collisions,
i.e., when two incoming particles have opposite momenta
&nd experience either forward or backward scattering. This
implies that nonanalytic terms depend only or{0) and

(2kg) but not on the interaction averaged over the Fermi
surface. Furthermore, as the two processes are parts of the
same scattering amplitude TI', 4., s(k,—k;k,—K)

limit for g>2kg . We found that the singularities i (q,() (0 )=- 167720§ wlolg T @
are necessary ingredients which make power-counting argu-
mentg valid, i.e., they ensure that the prefacto_rs in ppwer\'/vhereUZ:UZ(O)JrU2(2pF)—U(O)U(2pF) and
counting results do not vanish. As=0 and 2o singulari-
ties are generic to a Fermi liquid,the NAC that we found 5
should retain their functionaD- andT forms for an arbitrar 4lm ; —|x|

. . ; ! y g(x)=1+ — | +Li(—e "), )
order in the interaction. These forms will change, however, x2| 12
for special anisotropic Fermi surfaces with, e.g., inflection
points?* where Li(x) is a polylogarithmic function.
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In the two limits, g(«)=1 andg(x<1l)=~4In2Kk. The
first limit corresponds tal =0 in which case Eq(l) gives
3'(w)*w|w|. This nonanalytic form agrees with power
counting. For smalb/T, i.e., forx<<1, the 1% form of g(x)
leads to thewT term in X' (w,T) for <T. This in turn
implies that the quasiparticle masg (T) acquires a linear-
in-T correction

U2In2 T

— 3
82 Er ®

m*(T)zm(l—m2

We next consider the specific heat. The general expressiol

is given in Ref. 13 see also Eq4) below]. We verified that
for our 2 (k,w) it reduces to the frequency integral of the
on-shellY’ (w,T). Using Eqgs.(1) and(2), we obtained

f“« q on
—o wwﬁw

xlm[E(k,w)G(k,w)]]

oo

d%k

1 Lm

T

2 _ 9
Cw o aT

5C(T)

_o2m_ 9|1 (- an _,
o Tar|7)_dewggz e
— [T
=—AcFL<mu>2(—), @
Er

wheren is a Fermi functionCg = 7#Tm/3 is the Fermi-gas
result, andA=9/(3)/(47*)=0.03. We see that a nonanaly-
ticity in the fermionic self-energy gives rise to tfié term in

the specific heat. This term comes only from fermions in a
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FIG. 2. Relevant second-order diagrams for spin and charge
susceptibilities. The last two diagrams are nonzero only for the
charge susceptibility.
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near vicinity of the Fermi surface and from this perspective

is model independent.
Spin susceptibilityThe relevant diagrams for the spin sus-

ceptibility are presented in Fig. 2. Evaluation of the diagrams
is rather tedious but straightforward. We calculated all dia-

grams in two ways(i) explicitly, by exploring the nonana-
lyticities in the particle-hole bubble ne@=0 and X, and
(i) by retaining only vertices in which both total and trans-
ferred momenta are small. We obtained identical results i
both methods, which proves that only a single scattering a
plitude is relevant.

The nonanalytic contributions to the spin susceptibility

from individual diagrams are as follows:
x1(Q,T)=xoK(Q, T)[U?(0) + U(2k)],
x2(Q.T)=—xoK(Q, T)U(0)U(2ke),
x3(Q,T)=xoK(Q,T)[U?(2ke) —U*(0)],
x4(Q.T)=xoK(Q, T)U(0)U(2kg),

X5=X6=Xx7=0, 5)

where yo=m/7, andK(Q,0) andK(0,T) are given by

Collecting all contributions, we find

7
XS<Q,T)=§1 xi(Q,T)=xo[1+2K(Q,T)U?(2ke)].

(7)

We see that all nonanalytic contributions with0) cancel

mr?_)ut, and the final result depends only Oii2kg).

We now take a deeper look into the origin of the nonana-
lytic contributions to the susceptibility. The power-counting
argument does not rely on the singularity in the particle-hole
bubble, i.e., a singular piece i (y,q) nearq=0, Ilgg

= 1,0/ (veq) 2+ sz, has a scaling dimension zero and
hence is treated as a constant in power counting. However,
we found that for each diagram, a replacementl¢f) ,,q)

by a constant does not give rise to a lineaf@j-term in
xs(Q,0) because in the prefactors to this term all poles are
located in the same half plane qf and the integral oveq
vanishes. This vanishing could not be detected by power
counting. The substitution ofl,, instead of a constant
changes the situation as this term contains a branch-cut sin-
gularity which is present in both half planes qf The q
integral then does not vanish, and i@ term emerges in
xs(Q,0), in agreement with power counting.
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A nonanalyticT dependence of(0,T) is also associated x7(Q,T)=—xo K(Q,T[U%0)+U?(2kg)], (10
with the singularity inlI(Q,(}) but the interplay between the
two is somewhat different from that &t=0 as a singular
piece iny4(0,T) comes only from a zero bosonic Matsubara
frequency and not from a set @f,,~ T. We found that in any

whereK(Q,T) is given by Eq(6). Combining this last result
with Eq. (5), we find that all nonanalytic terms from indi-
vidual diagrams cancel out, i.ex.(Q,T) is regular. This
agrees with the result by CI#.

2=<D=3, the result forys(0,T) can be expressed as To conclude, in this paper we demonstrated that the uni-
A2 versal singularities in the bosonic response functions of a
xs(0.1) =AU(2pe)J, ® Fermi liquid give rise to universal nonanalytic corrections to
whereA is a positive constant, and the Fermi-liquid forms of the self-energy, the specific heat
and the spin, but not charge, susceptibility. We obtained ex-
_(D=2)(4-D)[ T\P 7t (=dz P2 plicit results in 2D for 6C(T)=T?, x«Q,T=0)=|Q|,
- 2 E_F fo e?—1 ©) xs(Q=0,T)=T. We demonstrated that these nonanalytic

terms come from the processes with both transfeaed

For D—2, J—(T/Eg) which yields Egs.(6) and (7). For  total momentum close to zero. We also demonstrated that
arbitrary 2<D<3, x,xJT°~! which parallelsxs(Q,0)  thermal (T) and quantum €|Q|) corrections to the spin
«|QIP~1. However, inD=3, Eq.(9) yields J=T? without  susceptibility are of different origin. This explains why in
logarithmic corrections, i.ex<(0,T)=T2. This explains why 3D, xs(Q,0)xQ?In Q, while x(0,T)xT?.
the Q2In|Q| term isnot accompanied byr2in T in 3D. _ S _ _
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