PHYSICAL REVIEW B 69, 115433 (2004

Quantum interference in nanofractals and its optical manifestation
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We consider quantum interferences of ballistic electrons propagating inside fractal structures with nanomet-
ric size of their arms. We use a scaling argument to calculate the density of states of free electrons confined in
a simple model fractal. We show how the fractal dimension governs the density of states and optical properties
of fractal structures in the rf-IR region. We discuss the effect of disorder on the density of states along with the
possibility of experimental observation.
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I. PECULIARITY OF METALLIC NANOFRACTALS fractal dimension of the tree. We show that the density of the
one-electron states manifests a power-law dependence on the

Ramified structures are widely observed in nature amomentum near zero energy with the power index being the
scales from the microscopic world up to the human sizefractal dimension. It is consistent with the red(ifor the
They have been studied in various contexts and in differenfow-momentum asymptotic of Green functions in systems of
domains of science: biology, physics, chemistry, etc. Surfacéactal dimensionality. Note that this property is typical of
science is one particular field where the ramifiedfractals since linear objects of the same size do not have
semimetal;? semiconductof, metallic’® or dielectri®’  quantum states close to zero energy according to the Born-
structures may range from the nanometric up to the microSommerfeld quantization rule. We demonstrate the macro-
metric sizes. The mean free path of electrons in metals i§copic manifestations of this power law in optical properties
usually of the order of 13-1¢° nm depending on the kinetic ©Of surfaces covered by the nanometric ramified structures by
energy. Therefore electrons propagating ballistically in mecalculating the reflectivity in the rf-IR frequency domain.
tallic nanostructures may manifest essentially quantum beFinally, with the help of a simple random matrix approdch
havior associated with strong interference of their de BroglieV€ consider the role of irregularities in fractal structures re-
waves in contrast to the diffusi¥@r hopping behavior in-  sulting from the statistical distribution of branch lengths and
tensively studied during the last decades. The combination dgfodes asymmetries that does not require to allow for the
quantum ballistic motion and ramified geometry suggests téevel-level correlations in the ballistic regime.
consider the interference of electrons in a fractal metallic We formulate the problem in terms of the Green functions
structure confining their propagation. of a particle propagating along the fractal. We employ the

Treelike structures is a natural example of fractals. Remomentum variable which is natural for consideration of the
sults obtained for quantum particles moving on treelikeinterference phenomena, whereas the energy dependence is
lattices!® for the quantum localization in the framework of given by the dispersion lai = E(p) specific for each type
sparse random matrix modé&lsopologically similar to trees, ©Of systems. It allows one to implement the results for any
and for quantum systems with tree-like hierarchy ofparticular dependence of the particle energy on the momen-
interaction$? have revealed a certain universality associatedum which are usually different for metals and for semicon-
with such a topology, that persists in different physical situ-ductors: for a free particlE = p®2m, wheremis the mass of
ations. Therefore for treelike fractals one can also expect e particle, whereas for metals=v¢|p|, wherevy is the
universa”ty of the quantum properties related to their SpeFermi VE|OCity. One-particle Green functions are obtained
cific geometry. Moreover, the key property of fractal struc-following the standard quantum field formalism widely de-
tures is the invariance under certain scaling transformationg/eloped in various textbookS.Quantum state density(pp)
Therefore considering quantum dynamics of electrons o@nd several other properties such as linear dipole response
fractal trees we take advantage of the scaling argunténts.R(w) or conductivityo(w) at a frequencyw can be found
Note that it is equally important to study the properties ofwith the help of its retardesR(E) and advanced”(E)
ensembles of isolated or interacting fractals placed togetheBreen operators via the relatidfs
at a surface, since it is experimentally difficult to address a
single nanometric object. Models of such ensembles might 1 AR
be also of interest for consideration of conductivity of thin g(p)=-— ZmTr G (E),
films,** heterogeneous catalysis of nanometer larger silver
particles!® quantum dot network¥ and in other domains.

In this paper, we consider the simplest treelike fractal with
identical length of the branches at each generation and sym- . o o
metric nodes as a support of ballistically propagating elec- o(w)=Tr GAE)]GRE+w)dp(p), (1)
trons. We introduce a single geometrical paramatarich . R
gives the ratio of branch lengths for successive generationg/hered is the dipole moment operatgr,is the current op-
We shall see that this parameter is closely related to therator, ancp is the density matrix. By the analogy to a pho-

R(w)= Tr GAE)dGR(E+ w)dp(p),
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FIG. 1. Model tree consisting of a trunk of
length Lo=L and successive adjunction of
branches. At each generationtwo branches of
length L,=al,_; are attached to the previous
branch. The scaling parametigoverns the tree
morphological properties, mass, length, and frac-
tal dimension. We restrict to 1#2a<<1. The
scattering matrix[Eq. (4)] couples incoming
fluxes to outgoing ones. The fractal of radiiss
built by attaching three identical trees to the root.

ton propagating in a Fabry-Perot resonator, we can take intaehere we have taken into account the relati@®(p)/dp
account only the coordinate par®(p,x,x") of the Green =—§(p). The trace operation now implies only summation
operators at a given enerd(p) ignoring the resonant de- over all closed trajectories in the coordinate space corre-
nominators| E—E(p)+i0]. The latter can be factored out sponding to a given momentum in complete analogy with the
during the consideration of the interference phenomena anfabry-Perot resonator.

have to be restored only at the last stage, prior to substitution

to Egs.(1). Note that in the case of ballistic propagation the Il. THE MODEL OF FRACTAL

coordinate part of the produ@”*(E) GR(E+ w) can be writ- . o

ten in a single factoG(p) depending only on the momen- ~ We model a fractal by three trees with trunks joint in a
tum p=wpL, wherepi=1/;, associated with the energy node at the fractal centdFig. 1). Each of the trees starts

shift . For g(p), Im R(w), Reo(w) the allowance for with a trunk of lengthL and is built by recursive attaching at
denominators yields the Dirag functions of energies which each terminations two homothetical branches scaled by a fac-

disappears after taking the trace. Therefore these parametéPsr g' ;I'he homothetlilcal factcm_is Ithe main_ pararggter of _thel
responsible for the absorption of electromagnetic radiatior)"0del- It governs all geometrical properties and in particular
can be calculated directly when we repld@@2GR in Egs.(1) the fractal dimension which is the main physical parameter.
by G(p). The Kramers-Kronig relation then yields the dis- For ab>1 bhranches are" longer at each sht.e%'whlereasaLor
persive parts R®(w) and Imo(w). In this paper we there- <1, branches are smaller adncreases, which is always the

fore call “Green function” the coordinate pa@(p,x,x’) of case i_n our consideration as we shall see. EIec_trons propagate
AA \AR o ballistically along the trunks and branches until they reach a
G (P)G™(p+py). . L . node where three branches are attached symmetrically at the
_ For metals the density matrix is given by the Fermi step, 16 27/3 as shown in Fig. 1. Nodes scatter the electrons
p(p)=vin:O(—p), wheren, is the electron state density in packward and forward into the attached branches.

metal near the Fermi surface and the Fermi momentum is

taken as a reference point. The dipole moment opefhtnr A. Nodes model

the momentum representation reatlsied/Jp wheree is The branches joining a node have different length which
the electron chargéwe seti=1), whereas the current 0p- janends on the indem numerating the generation, that is,
eratorj is simply pe/m. Therefore Eq(1) takes the form  the number of nodes which separates the branch from the
fractal center. Two branches are of the lendth=a"L
1 whereas the branch closest to the trunk has the lelhgth
9(p)=_—TrG(p), =a""IL. If we stop the development of the tree at a given
n=N, the last rightmost branches have a lentty=aNL
and the total number of such branches ale 2
n « Having arrived at a node an electron either scatters into
P vl the two attached branches with eqqdilie to the symmetjy
probability or returns back with a different probability. The
) node is formally described by a unitary<® scattering ma-

€ new_l_r G(ﬂ), 2) trix éwi?h the m_atrix elements; ;, coupling three out_going
mo ¢ probability amplitudesp; of the electron to the three incom-

Tr G
p=0

2 J
Im R(w)=vse nea—

Re o(w)=

115433-2



QUANTUM INTERFERENCE IN NANOFRACTALS AND.. .. PHYSICAL REVIEW B569, 115433 (2004

ing ¢, ones, where the markgrmassumes the valuésr, and N N 1—(2a)N*?t

J . _ Kk _ Kokl ( )
b for the left-scattered, right-scattered, and the back-scattered MN—kZO 2 '—k—go 2al=——o—L @
amplitudes, respectively. The relation among the amplitudes

reads which converges ttM=L/(1—2a) for a<1/2 and diverge
for a>1/2. We are interested in the regime where the mass

®p Sbb  Sbr Sl o of the fractal is infinite, and therefoeeranges from 1/2 to 1.
& | =| s st s o | 3) The model fractal has the same fractal dimension as its
consisting trees. The fractal dimension of a tree is given by a

b Sb St S/ \ standard evaluatidA which is now widely used. It implies

L 2 . the calculation of the minimum numbe¥(e) of disks of

Apart from the unitarity, the matri$§ should satisfy tWo  yiameters needed to completely cover the whole tree. In a
more requirements imposed by the nO(_ie symmetry and bf’factal structure, gradual decreasingeofeveals new details
the long-wave limit. The symmetry requirement implies thatcausingN(s) to vary nontrivially ass ~°n, whereD,, defines
the probability amplitudes for the left scattering and the rightthe so called Hausdorff-Besicovitch fra;ctal dimension.
scattering given by the coefficients, andsy, , respectively, Let us implement this definition in our case of treelike
are equal. Moreover, the symmetry with respect of the nOd?ractaI. In order to find the numbeM(s) of s-sized disks
rotation at the angle 2/3 implies that all other off-diagonal required for covering the tree we make use of the scaling

coefficients also ha\{e the same valge. We also assume th%uments. Let us take the infinite tree and applying to it the
no quantum defect is associated with the scattering at th

de. In the | limit it imoli h h hift | flomothetical factom. One obtains another tree which also
hode. In the long-wave limit it implies that no phase shift IS, 5¢ e same infinite structure but starts with a smaller trunk

introduced during the scattering process, .and hence all th& lengthal. This a-contracted tree can be considered as an
parameterss; ;, are real. These three requirements togethe%lement of the original tree, namely its first generation

yield branch with all the branches of subsequent generations at-
tached. The size of the disks covering this branch is appar-
ently a times smaller compared to original disks of the radius

, (4)  &. When we attach twaa-contracted trees to a trunk of

z -1 length L we recover the original form of our fractal with

branches covered byN{ ) disks of radiusae. One requires
L/ae additional disks to cover the trunk. We therefore obtain
the equation

-1 2
3 3

S=

Wl
WIN WD

WIN WV

as the only choice for the scattering matrx.

B. Scaling factor and the fractal dimension
Now we relate the typical length of the system and the N(ga)=2N(g)+ L (8)
scaling factora with the fractal dimension employing the ae

self-similarity aspect of the problem. In fact, in the ge”eraldetermining an asymptotic behavior Nfe) for £ —0.

casel is not the only typical length scale in the problem. The  \\e |00k for the solution of Eq@8) in the power-law form
homothetical factoa governs most of the advanced morpho- N(e)~e~ @ with «>1. It implies that the second term in the

logical properties of the model tree. The total len@p of  yight-hand side of Eq(8) can be omitted with respect to the
the tree with truncated branches ol 1)th generation fist term ase—0, and we arrive at ds) “=2(s) @

reads +o(e™%). Ityields
N N
Zy=2 L=, akL=L
k=0 k=0

This expression imposes a first limit @n: for 0<a<1 the  which is the well-knowr(Fig. 2) Hausdorff-Besicovitch frac-

1_aN+l In2
—a 5 == 9

lengthZy converges to a finite value tal dimension of a self-similar recursively built fracfl.
Equation(9) gives fractal dimension greater than 1 in the

L casea>1/2 corresponding to an infinite mad4. We also

Z= 1-a’ 6) restrict ourselves to the case<1 corresponding to a finite

o ) size Z of fractals. In this regime the spectral peculiarities
whereas fora>1 it diverges. We consider the fractals of & ypjcal of such structures manifest themselves in the most
finite size only. Actually, the radius of a tree is given by @jinteresting way.

more complicated expression and should take into account
the geometrical arrangement of the_ branches WﬁVBZangle_ lll. GREEN FUNCTIONS AND QUANTIZATION OF THE
between them. The exact calculation for the diameter gives FRACTAL STATES

— N+1 2 H
Dy=L(2+a)(1—-a“"*)/(1—a®) which also converges

when N—+« for a<l to the valueD=L(2+a)/(1 The Green function&(p) generally given by the Feyn-

—a?). mann path integral can be found for the particular case of a
The masdV of the tree that is the sum of the lengths of treelike fractal structure from recurrent relations formulated

all branches is given as in terms of the Green function of a free one-dimension par-
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4 1 generation and returning back after multiple scattering in all
the variety of nodes of subsequent generations connected to
the chosen node. Then the Green functign ; of the pre-
vious generation can be considered as a result of the free
propagation of the particle towards thtéh node followed by

the multiple scattering at this node resulting in the direct
back scatterings,, and the scattering to the attached
branches followed by the multiple returns and back scatter-
ing in the nodes and branches of the subsequent generations.
One finds the result of all these multiple scattering events by
considering the relation, E@3), among the incoming and

w
1

Fractal dimension D
N

1
, outgoing ¢ amplitudes with the allowance for the fact that
they are related by the condition
0 ' ¢I,r:Xn(p)¢l,r ) (10
0 0.5 1

which holds by the definition of Green functions.

Scaling parameter 4 The free propagatoB,(p) gives the relation

FIG. 2. Fractal dimensioD}, as function of the scaling param- ~ . N in_ . I
eter a. For 0<a<1/2 the tree has a finite mass and its fractal y=exfipLal¢p, ¢, =exfipLa’]g, 1D
dlmens_lon_ls_d_omlnated by the trunkDy,=1. Fpr 1/_K_a<.1_the between the amplitudeg, and ¢, of the waves incoming to
Taflsn (Sllnl?;;mte whereas its length remains finiteDy=a 44 outgoing from the node along the branch attached to

' the noden—1 and the amplitudes) and ¥ of the waves

outgoing from and incoming to the latter. Here we do not
specify whether//™°Ut corresponds to the right scattered or

the left scattered amplitudes at the natdel since the
elations are identical for both cases. The scattering matrix,
Eq. (4), and the condition=X,,_, ¢ together with Eqs(3),
(10), and (11) yield the exact recurrence relation for the
Green functions

ticle G, (p) =0 (x—x")exdip(x—x")] propagating along the
branches and the scattering conditions, 6. at the nodes.
We derive a recurrent relation for these functions and thereb
determine the spectrum of the eigenstate density.

A. Recurrent relations

The idea of derivation of the recurrent relations is illus-
trated in Fig. 8a). By X,(p) we denote the unknown exact 1-3Xy(p)

— H n
Green function for the particle leaving a chosen nodatbf Xn-1(p)=ex 2ipLa’] Xn(p)—3 " (12
11 Xn+1 1,
b) XN+1=..%]
» A
M w\é XN .
i RS | FIG. 3. Recurrent relations for the Green
functions.(a) A Green functionXy,_, attached to
a parent node consists of a free propagaGn
Xv 77N followed by the scattering in the node of the next
/ IN generation and back propagation. Amplitudes by
\ Y Cl) -1 -1 the outgoing and incoming waves in each branch
S .o differ by the factorXy_;. (b) The mapping cor-
fraXvyr’ " responding to Eq(13) in the long-wave limitp
\]\7\?' . f b G X =0 has two stationary p_oints.'One corresponds_to
______ > > NI a regular back scattering with the phase shift
fi=Xny1 Yo Gt —r, whereas the other does not yield any phase
‘l’ shift and gives rise to the essentially fractal do-
Ped Sy main of the spectrum near zero enerdy)
[ . ) Boundary conditions at nodes corresponding to
XN‘\ _ ,Y C) v (%) the stationary point-1 (left) and + 1 (right).

Y (x)=0 Vi (®)=0

<

— G
) 0

115433-4




QUANTUM INTERFERENCE IN NANOFRACTALS AND . .. PHYSICAL REVIEW B569, 115433 (2004

Equation(12) maps the Green functioX,(p) of a nth 1 g
node to the Green functioX,_1(p) corresponding to a node d
of the previous generation. As we are interested in the high
behavior, this equation has to be inverted to obtain the ex- !
pression ofX,(p) as function ofX,_1(p). Changing then il
index ton+1 we have M 1 i
02 Ip 04 [t | )
exd 2ipLa™ 1]+ 3X,(p) T 10 20 1p 30
Xn+1(p)= —— (13) _ _ o
3exg2ipLa ]+ X,(p) FIG. 4. Density of states for different fractal dimensioas
L =1.18 corresponding ta=5/9 (solid line), «=1.41 corresponding
that we make use in Fig.(8) for p=0. to a=11/18(dash-dot ling anda=1.71 corresponding ta=6/9

This mapping, Eq.(13), has two stationary pointXs;  (dashed ling calculated with the help of Eq17) where X, has
=+1. Both of them have physical meaning. The negativepeen obtained from Eq16) after ten iterations of Eq(12). The
sign corresponds to the regular situation when the reflectiofractal diameter is the same for all fractal dimensions. Vertical lines
of the wave function from a node occurs with a phase shifishows positions of the levels in a one-dimensional potential well of
— o exactly in the same way as the reflection from an infinitea width equal to the fractal diameter.
vertical barrier implied by the boundary conditigh+=0. The
positive sign corresponds to a free bordgr=0 when the erations of Eq(12) gives a good approximation within 1%
wave goes through the node and returns back with no phag@mpared to the exact solution, E46).
shift, as shown in Fig. ®). The latter case changes the quan-
tization rule for a particle moving in a branch confined by C. Quantization and state density
such nodes from both sides allowing the eigenstates at zero
energy that do not exist for the regular confinement. Vicinityth
of this stationary point gives rise to a specifically fractal
domain of the energy spectrum at small values of the ene
gies and momenta.

Now we are in the position to perform the quantization of
e particle motion on the entire fractal and determine the
rc_iensity of the energy eigenstates. For the purpose we con-
sider the root node at the center of the fractal with three
trunks attached and calculate contributions of all closed tra-
. jectories that start and end in a point of one of these trunks
B. Scaling close to the node. The trajectory sum starts with the zero

Now we make use of the scaling arguments and find théength trajectory which gives the contribution 1. The trajec-
Green function in the long-wave asymptotic and lang&he  tory first going to the trunk and returning back gives the
scaling assumption implies that,_;(p)=X,(ap), which  contributionX,(Lp), whereas the contribution of the trajec-
means that the Green functioX§x) corresponding to the tory which first goes to the node B=(1-3X,)/(Xo—3)
branches of any generation are functionally identical and difaccording to Eq(12). The trajectories of the second order
fer only by scaling of the argumert=a"p. Therefore in the ~ give XoB andBX, whereas the third-order results @B X,
long-wave asymptotic where expf®a™—1, Eq.(12) takes andBXgB. The overall sum reads

the form
Tr G(p)=1+Xg+B+XoB+BXo+- -

1-3X(ax)
X(X):X(T)—S’ (14) _(14+Xo)(14B) 214X 17
1-BX, 31X,
of a functional equation, where we have employed a smallg s tollows from summation of the geometric series.
d'mer.‘s"’”'es? argumert=Lp '“SteaF’ ofp. In the long-wave limit, injecting Eq.15) into Eq.(17) we
This equation has an exact solution find
1—x~ =2 —a
1+x*

which shows that at small energies the density of fractal
energy eigenstates follows the power-law dependence on the
momentum with the power index given by the Hausdorff-
1—(a"Lp)* Besicovitch fractal dimension. In Fig. 4 we illustrate the dif-
- - (16)  ference between the fractal spectrum found from &)
1+(a"Lp)“ and the spectrum of a one-dimensional particle moving in the
potential well of the width Z=2L/(1—a) suggested by Eq.
Equation(16) holds for small arguments. However, even (6) for the fractal diameter. One clearly sees that the fractal
for a large values ok=Lp or smalln an accurate numerical boundary conditions at the nodes corresponding to the sta-
approximation can be obtained with the help of few itera-tionary pointX=1 of mapping Eq(14) result in the appear-
tions of the exact recurrent relation, EG2). For lowp and  ance of the spectrum near zero energy, where the potential
for a=2/3, with Eq.(15) as a starting point, say=10 it-  well does not have eigenstates.

with @ given by Eq.(9) and yields an asymptotic expression

Xn(Lp)
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Re oy w)= (22

Let us consider now the optical response of the nanofrac- 3vim

tals calculating the reflectivity of a transparent support sur- hereN. is th ber of fractal i Wi |
face covered by fractals as a function of the incident fieldV1ereN 1S theé number ot fractals per unit area. We replace
e productN;n, by the specific density of stateg of the

frequency. We start with the case of isolated fractals each . . >
ractal material near the Fermi surface multiplied by the total

which independently contribute to the reflectivity. The typi- I fth ial d ited . f
cal frequency domain can be estimated as the inverse of th2!UmeV of the material deposited per unit surface, express

typical time of flight of an electron across the fractal given 1€ Tunk sizd =Z(1-a) in terms of the typical fractal size
by the Fermi velocity divided by the fractal siZe Eq. (6), % Ed-(6), and the fractal dlmen5|oaé Eq. (9), and substi-
which for the fractal of 100 nm corresponds to the THz tute a/v¢h instead of the produate” whereo is the re-
frequency domain that is far IR or short rf radiation. Then weSidual conductivity® and ) is the electron mean free path in
consider the case of “merging” fractals, when the neighbor-Pulk metal. In the last replacement we assume that
ing fractals irregularly placed at the surface can interact with™ Nei/Prv s WhereNg, is the density of the metal electrons.
capacitorlike connections via their most closely approachingVe arrive at

terminations.

IV. NANOFRACTAL RESPONSE TO rf-IR FIELD 262N, (Lw) —a
fl — f
Us

4doaVug Zo\ ¢
Im Ry(w)=— ———F———| —
A. Isolated nanofractals 3oN(27—=1)*\ Ug
The Maxwell equation
R (@) 4oVw (Zw) @ 23
e ow)= E—
2 ° Anmp3(2Ye—1)«\ vy

»
iwog(w)+ ?Rs(w) E

&2 w? 47 [ X
IX c c Nonanalytical behavior of these dependencies at0 does
(19) not allow one to determine the dispersive parts RRéw)

and Imog(w) from the Kramers-Kronig relations. However
the latter should be of minor importance provided the trans-
parent material supporting the fractal at its surface has a

refraction indexr different from 1. In the latter case

for a plane electromagnetic wae incident normally to a
surface covered by isolated fractalsxat 0 allows one to
find an intensity of the reflected fieke, provided the specific
conductivity o5(w) and the specific dipole susceptibility
Rs(w) of a unit surface area are known. The inhomogeneities , w
of the surface have to be much smaller compared to the E=Vb“ 8im(Zwlvy)
wavelength of the wave and the thicknds®f the fractal E coh 32lte—q)e
layer. For a wave incident at an angle to the surface the same

equation is valid for the tangent component of the field, The simplest possible way to find the missing parts is to take
whereas the normal component is not affected by the layer " analytical continuation of Eq23) to the complex plane
the fractals. The continuity condition for the tangent field andsuch thatg(Zw/vs)~w™“ vanishes at the negative part of
the jump of its derivative across the surface the real axis.

av ¢ w

c Prv¢

+1+r' (24

E+E, =E;, B. Ensemble of nanofractals

When the size of the fractals becomes larger than the
D) A7b| w? interfractals distance, the model of isolated fractals fails,
E(E_Er_Et): 7 lwoy(w)+ ?Rs(‘*’) E. (20 since the dipole approximation for the response is not any
longer valid. At the same time, allowing for the contribution
related to the conductivity we have to take into account the
points of the closest approach of neighboring fractals, where
the potential difference experiences large changes. These do-

yield the relation

E: —2mblicoy(w)+ wRy(w)] mains work as capacitors that assume the main part of the
E  c?+2aficodw)+wRy(w)] dipole activity of the system. When the ramified structures
are randomly distributed on the surface but not yet result in
—2mb the electric current percolation, as it is the case for the ex-
= o2 licoy(w)+ wRy(w)] (21) perimental work for instance, the fractal ensembles conform

the Dykhne modet? Formulated for a two-phase random

for the ratio of the reflected- and the incident-field ampli- conducting surface with the conductivities and o differ-
tudes. ent for different phases this model yields the macroscopic

Equations(2) and (18) yield conductivity oo ¢s= V010, Which immediately suggests

1/2

(25

Oeff=

,€N. 2L\~
Im R((I)):_Nfava_ —

4oVw (Zw>_“iwb2
3

3mp?(2Ye—1)« Zd

Ug Ut
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for the effective conductivity of the fractals covering the sur-
face. Here we have assumed that the capacitors of a plate
sizeb separated by a mean shortest interfractal distdrere
subjected to the potential differen@& accumulated on the
distance of the fractal siz2.

Substitution of Eq(25) to Eq.(21) yields

E, 27wb?

A%
6AxmZd2Ye— 1)«

|
E Cu¢

Y2 7\ "2 1—r
+m, 4 8 12 g
(26)

Ut
FIG. 5. Universal forms of the quantum state density profiles for

randomly perturbed fractals with the fractal dimensians 1.18

(solid line), a=1.41 (dash-dot ling and a=1.71 (dashed ling

These profiles do not depend on the size of the perturbation which
results only in scaling of the energies.

where we have omitted the real part of the effective conduc
tivity as small relative to the support contribution.

C. Random fractals

Thus far we have been considering the model of an idegPne sees that by introducing an energy scaling fa&or
fractal with a high symmetry and an exponential variation of=&F with F=[Z(1—2"")/p]*/(«* Dy~ W+ Eq. (30)
the branch lengths with generation number. In order to get agan be reduced to the form
idea of how close can be such a model to the reality we now
consider an ensemble of irregularly distorted fractals. The (=&
simplest way to model the random distortion is to treat it as E=E+
a perturbation of the fractal Hamiltonian by a random matrix
with a given mean squar@/?) of the matrix elements. The
transformation rule

sinTra '’ (3D

which does not contain parameters other than the fractal di-
mension.

In order to find the universal dependenci¢s, «) there is

G(E)=G[E(B)], @7 o need to solve Eq(31). After the replacementf
3 L =—ke'’, one eliminatesc employing the fact thaf is real
E=E+(VA)TrG(E), (28)  and finds the dependenéé€) in a parametric form

suggested by one of the authtras a simple way to solve

i 1U(1+ @)
the equation describing such a perturbation. Equati) Z(0)= _eia( _ S'haa

relates the ensemble averaged perturbed Green function sinésinwTa '
G(E) with the unperturbed on&(E) depending on a trans- _ ",

formed argumen&(E). The transformatiorE(E) follows & 0):_( —sinad acosa
from the solution of a nonlinear algebraic equatfiiq. (28)] singsinTa

possible solutions the one continuously changing from
to o for E varying in this interval. By the same replacement
of the argument one can obtain all other linear properties of -
the randomly perturbed system. The imaginary part of(&,«)/7 shown in Fig. 5 as a func-
Comparing Egs(1) and(2) and Eq.(18) with the allow- tion of the energy for different fractal dimensiona yields
ance of the conditioy(E<0)=0 one finds an expression the shape of the state densmYW(E)zFlm"é(E/F,a)/w
which for the case of irregular fractals should replace the
1 —LE\"@ factor TIG(p)/ 7= (2/37)[ Zw/v¢(2Y*—1)] “~E~ % in the
a( ) , (29 expression, Eq(4), as well as in Egs(23) for the dipole
Im(—1) response and the conductivity and in Eg6) for the effec-
tive conductivity of a disordered surface. It yields

which allows one to fincE for eachE selecting from many (
(32

—sinaf )“’”“cowa

sindsinwa sinra’

Tr G(E)=—go ”

consistent with the state density, Edj), for both the positive
and the negative energies. The constnénters as a cofac-

tor of the other unknown quantiyv2) and both factors to- 4 Jhowivg 91 Zolvy
gether form a single energy parameWr=gy(V?) respon- E, T7eN | ¢ dw Ut Yaw olla_q |’
sible for the strength of the random perturbation. We lmE: ) "
substitute Eqgs(6), (9), and(29) to Eq. (28) and obtain 2mwb®| maVg . w(E) (merging fractals
Cu¢ Amzd
- W |[—z(1-2"YnE|“ 30 (33
sinTa Ut for the absorption of isolated and merging fractals.
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V. POSSIBILITY OF OBSERVATION

-20 ImE~/E e

We conclude by discussing the possibility to observe the
optical manifestations typical of fractal structures experi-
mentally for realistic parameters of nanostructures. We take
pvs~5 eV, vi/c~10"2 for the Fermi velocity and mo-
mentum,V~1 nm for the mean thickness of the fractal ma-
terial at the surfacdg~1 nm for the cross-section size of the
fractal branchesZ~ A\~ 100 nm for the fractal radius of the %2~
order of the mean free path on an electron in metal, ’
o[Ag]/eq=6.3x107/8.85x 10" 2 sec ! for the silver bulk
conductivity in cgs units, and~ 10 nm for the interfractals ¢
distance. For the frequencw[THz] we take the units
10 Hz natural for the electrons moving inside the nanomet- _;
ric sized objects. In order to be specific we chose the fractal
dimensiona=1.41 which corresponds to the scaling factor ~FIG. 6. () Density of states(b) optical response of surfaces

a=11/18. In this regime from Eq33) one finds covered by isolated fractals an@) merging fractals when the in-
terfractal distance is smaller compared to the fractal size. For a

b)

0.7 ®[THz]
6 12

% ; ?

0.2

-0.2

-100ImE/E ¢)

wd ) regular fractal(solid lineg one sees the power-law dependencies
E, | |s==—+w107?|g, w(0.71w) isolated, corresponding to the fractal dimensiar=1.41 chosen. No typical
IMm—=—10"2%{ |2dw ' .
E energy reference exists for the unperturbed fractals, whereas for
5w[g,w(0.71 w)]Y? merging, disordered fractals the typical energy is given by the disorder pa-

(34 rameterW= go(V?) which is small(dashed ling medium(dotted

) . line), or large(dash-dot ling¢ with respect to the energy unit chosen.
which corresponds to the energy absorption at the level 01! ) oel é P o

10"%. Such a small absorption is associated however with &rhed fractals when the frequency exceeds the typical size
phase shift of a few degrees, which is normally detectable byf the parametew governing the disorder.
the ellipsometric measurements in the optical domain. The
same estimate also can serve as the detection limit for IR
domain whereas the internal reflection technique should be
even more sensitive. The authors express their gratitude to D. Khmelnitskii, V.
The dependencies, E(B4), are shown in Fig. 6 for dif- Kravtsov, |. Procaccia, and C. Textier for the discussions and
ferent sizes of the disorder parameter in the regime of botifor indication to relevant publications. One of the authors
isolated and merging fractals. The power law dependencg@/.A.) also thanks Ph. Cahuzac and R. Larciprete for the
corresponding to the ideally symmetric fractals manifests itdiscussion of the experimental feasibility of ellipsometric
self as an asymptotic dependence for the irregularly perand internal reflection measurements.
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