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Quantum interference in nanofractals and its optical manifestation

F. Carlier and V. M. Akulin
Laboratoire Aime´ Cotton, Bâtiment 505, CNRS II, Campus d’Orsay, Orsay Cedex F-91405, France
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We consider quantum interferences of ballistic electrons propagating inside fractal structures with nanomet-
ric size of their arms. We use a scaling argument to calculate the density of states of free electrons confined in
a simple model fractal. We show how the fractal dimension governs the density of states and optical properties
of fractal structures in the rf-IR region. We discuss the effect of disorder on the density of states along with the
possibility of experimental observation.
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I. PECULIARITY OF METALLIC NANOFRACTALS

Ramified structures are widely observed in nature
scales from the microscopic world up to the human si
They have been studied in various contexts and in differ
domains of science: biology, physics, chemistry, etc. Surf
science is one particular field where the ramifi
semimetal,1,2 semiconductor,3 metallic,4,5 or dielectric6,7

structures may range from the nanometric up to the mic
metric sizes. The mean free path of electrons in metal
usually of the order of 102–103 nm depending on the kineti
energy. Therefore electrons propagating ballistically in m
tallic nanostructures may manifest essentially quantum
havior associated with strong interference of their de Brog
waves in contrast to the diffusive8 or hopping9 behavior in-
tensively studied during the last decades. The combinatio
quantum ballistic motion and ramified geometry suggest
consider the interference of electrons in a fractal meta
structure confining their propagation.

Treelike structures is a natural example of fractals. R
sults obtained for quantum particles moving on treel
lattices,10 for the quantum localization in the framework o
sparse random matrix models11 topologically similar to trees,
and for quantum systems with tree-like hierarchy
interactions12 have revealed a certain universality associa
with such a topology, that persists in different physical si
ations. Therefore for treelike fractals one can also expe
universality of the quantum properties related to their s
cific geometry. Moreover, the key property of fractal stru
tures is the invariance under certain scaling transformatio
Therefore considering quantum dynamics of electrons
fractal trees we take advantage of the scaling argumen13

Note that it is equally important to study the properties
ensembles of isolated or interacting fractals placed toge
at a surface, since it is experimentally difficult to addres
single nanometric object. Models of such ensembles m
be also of interest for consideration of conductivity of th
films,14 heterogeneous catalysis of nanometer larger si
particles,15 quantum dot networks,16 and in other domains.

In this paper, we consider the simplest treelike fractal w
identical length of the branches at each generation and s
metric nodes as a support of ballistically propagating el
trons. We introduce a single geometrical parametera which
gives the ratio of branch lengths for successive generati
We shall see that this parameter is closely related to
0163-1829/2004/69~11!/115433~9!/$22.50 69 1154
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fractal dimension of the tree. We show that the density of
one-electron states manifests a power-law dependence o
momentum near zero energy with the power index being
fractal dimension. It is consistent with the result17 for the
low-momentum asymptotic of Green functions in systems
fractal dimensionality. Note that this property is typical
fractals since linear objects of the same size do not h
quantum states close to zero energy according to the B
Sommerfeld quantization rule. We demonstrate the mac
scopic manifestations of this power law in optical propert
of surfaces covered by the nanometric ramified structures
calculating the reflectivity in the rf-IR frequency domai
Finally, with the help of a simple random matrix approach18

we consider the role of irregularities in fractal structures
sulting from the statistical distribution of branch lengths a
nodes asymmetries that does not require to allow for
level-level correlations in the ballistic regime.

We formulate the problem in terms of the Green functio
of a particle propagating along the fractal. We employ t
momentum variable which is natural for consideration of t
interference phenomena, whereas the energy dependen
given by the dispersion lawE5E(p) specific for each type
of systems. It allows one to implement the results for a
particular dependence of the particle energy on the mom
tum which are usually different for metals and for semico
ductors: for a free particleE5p2/2m, wherem is the mass of
the particle, whereas for metalsE5v f upu, wherev f is the
Fermi velocity. One-particle Green functions are obtain
following the standard quantum field formalism widely d
veloped in various textbooks.19 Quantum state densityg(p)
and several other properties such as linear dipole resp
R(v) or conductivitys(v) at a frequencyv can be found
with the help of its retardedĜR(E) and advancedĜA(E)
Green operators via the relations20

g~p!52
1

p
Im Tr ĜR~E!,

R~v!5 Tr ĜA~E!d̂ĜR~E1v!d̂r̂~p!,

s~v!5 Tr ĜA~E! ĵ ĜR~E1v!d̂r̂~p!, ~1!

whered̂ is the dipole moment operator,ĵ is the current op-
erator, andr̂ is the density matrix. By the analogy to a ph
©2004 The American Physical Society33-1
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FIG. 1. Model tree consisting of a trunk o
length L05L and successive adjunction o
branches. At each generationn, two branches of
length Ln5aLn21 are attached to the previou
branch. The scaling parametera governs the tree
morphological properties, mass, length, and fra
tal dimension. We restrict to 1/2,a,1. The
scattering matrix @Eq. ~4!# couples incoming
fluxes to outgoing ones. The fractal of radiusZ is
built by attaching three identical trees to the roo
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ton propagating in a Fabry-Perot resonator, we can take
account only the coordinate partsG(p,x,x8) of the Green
operators at a given energyE(p) ignoring the resonant de
nominators@E2E(p)1 i0#. The latter can be factored ou
during the consideration of the interference phenomena
have to be restored only at the last stage, prior to substitu
to Eqs.~1!. Note that in the case of ballistic propagation t
coordinate part of the productGA(E)GR(E1v) can be writ-
ten in a single factorG(p) depending only on the momen
tum p5vpE8 , wherepE851/v f , associated with the energ
shift v. For g(p), Im R(v), Res(v) the allowance for
denominators yields the Diracd functions of energies which
disappears after taking the trace. Therefore these param
responsible for the absorption of electromagnetic radia
can be calculated directly when we replaceGAGR in Eqs.~1!
by G(p). The Kramers-Kronig relation then yields the di
persive parts ReR(v) and Ims(v). In this paper we there
fore call ‘‘Green function’’ the coordinate partG(p,x,x8) of
ĜA(pf)Ĝ

R(p1pf).
For metals the density matrix is given by the Fermi s

r̂(p)5v fneQ(2p), wherene is the electron state density i
metal near the Fermi surface and the Fermi momentum
taken as a reference point. The dipole moment operatord̂ in
the momentum representation readsd̂5 ie]/]p where e is
the electron charge~we set\51), whereas the current op
erator ĵ is simply pe/m. Therefore Eq.~1! takes the form

g~p!5
1

p
Tr G~p!,

Im R~v!5v fe
2ne

]

]p U
p50

Tr GS p1
v

v f
D ,

Re s~v!5
e2nev

mv f
Tr GS v

v f
D , ~2!
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where we have taken into account the relation]Q(p)/]p
52d(p). The trace operation now implies only summatio
over all closed trajectories in the coordinate space co
sponding to a given momentum in complete analogy with
Fabry-Perot resonator.

II. THE MODEL OF FRACTAL

We model a fractal by three trees with trunks joint in
node at the fractal center~Fig. 1!. Each of the trees start
with a trunk of lengthL and is built by recursive attaching a
each terminations two homothetical branches scaled by a
tor a. The homothetical factora is the main parameter of th
model. It governs all geometrical properties and in particu
the fractal dimension which is the main physical parame
For a.1 branches are longer at each step, whereas foa
,1, branches are smaller asn increases, which is always th
case in our consideration as we shall see. Electrons propa
ballistically along the trunks and branches until they reac
node where three branches are attached symmetrically a
angle 2p/3 as shown in Fig. 1. Nodes scatter the electro
backward and forward into the attached branches.

A. Nodes model

The branches joining a node have different length wh
depends on the indexn numerating the generation, that i
the number of nodes which separates the branch from
fractal center. Two branches are of the lengthLn5anL
whereas the branch closest to the trunk has the lengthLn21
5an21L. If we stop the development of the tree at a giv
n5N, the last rightmost branches have a lengthLN5aNL
and the total number of such branches are 2N.

Having arrived at a node an electron either scatters
the two attached branches with equal~due to the symmetry!
probability or returns back with a different probability. Th
node is formally described by a unitary 333 scattering ma-
trix Ŝ with the matrix elementssj , j 8 coupling three outgoing
probability amplitudesf j of the electron to the three incom
3-2
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ing c j ones, where the markerj assumes the valuesl, r, and
b for the left-scattered, right-scattered, and the back-scatt
amplitudes, respectively. The relation among the amplitu
reads

S fb

f r

f l

D 5S sbb sbr sbl

srb srr srl

slb slr sll

D S cb

c r

c l

D . ~3!

Apart from the unitarity, the matrixŜ should satisfy two
more requirements imposed by the node symmetry and
the long-wave limit. The symmetry requirement implies th
the probability amplitudes for the left scattering and the rig
scattering given by the coefficientssrb andslb , respectively,
are equal. Moreover, the symmetry with respect of the n
rotation at the angle 2p/3 implies that all other off-diagona
coefficients also have the same value. We also assume
no quantum defect is associated with the scattering at
node. In the long-wave limit it implies that no phase shift
introduced during the scattering process, and hence all
parameterssj , j 8 are real. These three requirements toget
yield

Ŝ5S 2 1
3

2
3

2
3

2
3 2 1

3
2
3

2
3

2
3 2 1

3

D , ~4!

as the only choice for the scattering matrix.21

B. Scaling factor and the fractal dimension

Now we relate the typical lengthL of the system and the
scaling factora with the fractal dimension employing th
self-similarity aspect of the problem. In fact, in the gene
caseL is not the only typical length scale in the problem. T
homothetical factora governs most of the advanced morph
logical properties of the model tree. The total lengthZN of
the tree with truncated branches of (N11)th generation
reads

ZN5 (
k50

N

Lk5 (
k50

N

akL5L
12aN11

12a
. ~5!

This expression imposes a first limit ona : for 0,a,1 the
lengthZN converges to a finite value

Z5
L

12a
, ~6!

whereas foraf1 it diverges. We consider the fractals of
finite size only. Actually, the radius of a tree is given by
more complicated expression and should take into acco
the geometrical arrangement of the branches with 2p/3 angle
between them. The exact calculation for the diameter gi
DN5L(21a)(12aN11)/(12a2) which also converges
when N→1` for a,1 to the value D5L(21a)/(1
2a2).

The massMN of the tree that is the sum of the lengths
all branches is given as
11543
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2kLk5 (
k50

N

2kakL5
12~2a!N11

122a
L, ~7!

which converges toM5L/(122a) for a,1/2 and diverge
for a.1/2. We are interested in the regime where the m
of the fractal is infinite, and thereforea ranges from 1/2 to 1.

The model fractal has the same fractal dimension as
consisting trees. The fractal dimension of a tree is given b
standard evaluation22 which is now widely used. It implies
the calculation of the minimum numberN(«) of disks of
diameter« needed to completely cover the whole tree. In
fractal structure, gradual decreasing of« reveals new details
causingN(«) to vary nontrivially as«2Dh, whereDh defines
the so called Hausdorff-Besicovitch fractal dimension.

Let us implement this definition in our case of treelik
fractal. In order to find the numberN(«) of «-sized disks
required for covering the tree we make use of the sca
arguments. Let us take the infinite tree and applying to it
homothetical factora. One obtains another tree which als
has the same infinite structure but starts with a smaller tr
of lengthaL. This a-contracted tree can be considered as
element of the original tree, namely its first generati
branch with all the branches of subsequent generations
tached. The size of the disks covering this branch is ap
ently a times smaller compared to original disks of the rad
«. When we attach twoa-contracted trees to a trunk o
length L we recover the original form of our fractal with
branches covered by 2N(«) disks of radiusa«. One requires
L/a« additional disks to cover the trunk. We therefore obta
the equation

N~«a!52N~«!1
L

a«
, ~8!

determining an asymptotic behavior ofN(«) for «→0.
We look for the solution of Eq.~8! in the power-law form

N(«);«2a with a.1. It implies that the second term in th
right-hand side of Eq.~8! can be omitted with respect to th
first term as «→0, and we arrive at (a«)2a52(«)2a

1o(«2a). It yields

a52
ln 2

ln a
, ~9!

which is the well-known~Fig. 2! Hausdorff-Besicovitch frac-
tal dimension of a self-similar recursively built fractal.22

Equation~9! gives fractal dimension greater than 1 in th
casea.1/2 corresponding to an infinite massM. We also
restrict ourselves to the casea,1 corresponding to a finite
size Z of fractals. In this regime the spectral peculiariti
typical of such structures manifest themselves in the m
interesting way.

III. GREEN FUNCTIONS AND QUANTIZATION OF THE
FRACTAL STATES

The Green functionsG(p) generally given by the Feyn
mann path integral can be found for the particular case o
treelike fractal structure from recurrent relations formulat
in terms of the Green function of a free one-dimension p
3-3
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ticle Go(p)5Q(x2x8)exp@ip(x2x8)# propagating along the
branches and the scattering conditions, Eq.~3!, at the nodes.
We derive a recurrent relation for these functions and ther
determine the spectrum of the eigenstate density.

A. Recurrent relations

The idea of derivation of the recurrent relations is illu
trated in Fig. 3~a!. By Xn(p) we denote the unknown exac
Green function for the particle leaving a chosen node ofnth

FIG. 2. Fractal dimensionDh as function of the scaling param
eter a. For 0,a,1/2 the tree has a finite mass and its frac
dimension is dominated by the trunk :Dh51. For 1/2,a,1 the
mass is infinite whereas its length remains finite :Dh5a
52 ln(2)/ln(a).
11543
y

generation and returning back after multiple scattering in
the variety of nodes of subsequent generations connecte
the chosen node. Then the Green functionXn21 of the pre-
vious generation can be considered as a result of the
propagation of the particle towards thenth node followed by
the multiple scattering at this node resulting in the dire
back scatteringsbb and the scattering to the attache
branches followed by the multiple returns and back scat
ing in the nodes and branches of the subsequent generat
One finds the result of all these multiple scattering events
considering the relation, Eq.~3!, among the incomingf and
outgoingc amplitudes with the allowance for the fact th
they are related by the condition

c l ,r5Xn~p!f l ,r , ~10!

which holds by the definition of Green functions.
The free propagatorGo(p) gives the relation

c̃5exp@ ipLan#fb , cb
in5exp@ ipLan#f̃, ~11!

between the amplitudescb andfb of the waves incoming to
and outgoing from the noden along the branch attached t
the noden21 and the amplitudesf̃ and c̃ of the waves
outgoing from and incoming to the latter. Here we do n
specify whetherc̃ in,out corresponds to the right scattered
to the left scattered amplitudes at the noden21 since the
relations are identical for both cases. The scattering ma
Eq. ~4!, and the conditionc̃5Xn21f̃ together with Eqs.~3!,
~10!, and ~11! yield the exact recurrence relation for th
Green functions

Xn21~p!5exp@2ipLan#
123Xn~p!

Xn~p!23
. ~12!

l

n

xt
by
ch

to
ift
se
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to
FIG. 3. Recurrent relations for the Gree
functions.~a! A Green functionXN21 attached to
a parent node consists of a free propagationG0

followed by the scattering in the node of the ne
generation and back propagation. Amplitudes
the outgoing and incoming waves in each bran
differ by the factorXN21. ~b! The mapping cor-
responding to Eq.~13! in the long-wave limitp
50 has two stationary points. One corresponds
a regular back scattering with the phase sh
2p, whereas the other does not yield any pha
shift and gives rise to the essentially fractal d
main of the spectrum near zero energy.~c!
Boundary conditions at nodes corresponding
the stationary point21 ~left! and11 ~right!.
3-4
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QUANTUM INTERFERENCE IN NANOFRACTALS AND . . . PHYSICAL REVIEW B69, 115433 ~2004!
Equation~12! maps the Green functionXn(p) of a nth
node to the Green functionXn21(p) corresponding to a nod
of the previous generation. As we are interested in the hign
behavior, this equation has to be inverted to obtain the
pression ofXn(p) as function ofXn21(p). Changing then
index ton11 we have

Xn11~p!5
exp@2ipLan11#13Xn~p!

3 exp@2ipLan11#1Xn~p!
~13!

that we make use in Fig. 3~b! for p50.
This mapping, Eq.~13!, has two stationary pointsXst

571. Both of them have physical meaning. The negat
sign corresponds to the regular situation when the reflec
of the wave function from a node occurs with a phase s
2p exactly in the same way as the reflection from an infin
vertical barrier implied by the boundary conditionc50. The
positive sign corresponds to a free bordercx850 when the
wave goes through the node and returns back with no ph
shift, as shown in Fig. 3~c!. The latter case changes the qua
tization rule for a particle moving in a branch confined
such nodes from both sides allowing the eigenstates at
energy that do not exist for the regular confinement. Vicin
of this stationary point gives rise to a specifically frac
domain of the energy spectrum at small values of the e
gies and momenta.

B. Scaling

Now we make use of the scaling arguments and find
Green function in the long-wave asymptotic and largen. The
scaling assumption implies thatXn21(p)5Xn(ap), which
means that the Green functionsX(x) corresponding to the
branches of any generation are functionally identical and
fer only by scaling of the argumentx5anp. Therefore in the
long-wave asymptotic where exp(2IpLan)→1, Eq.~12! takes
the form

X~x!5
123X~ax!

X~ax!23
, ~14!

of a functional equation, where we have employed a sm
dimensionless argumentx5Lp instead ofp.

This equation has an exact solution

X~x!5
12xa

11xa
, ~15!

with a given by Eq.~9! and yields an asymptotic expressio

Xn~Lp!5
12~anLp!a

11~anLp!a
. ~16!

Equation~16! holds for small arguments. However, eve
for a large values ofx5Lp or smalln an accurate numerica
approximation can be obtained with the help of few ite
tions of the exact recurrent relation, Eq.~12!. For low p and
for a52/3, with Eq. ~15! as a starting point, sayn510 it-
11543
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erations of Eq.~12! gives a good approximation within 1%
compared to the exact solution, Eq.~16!.

C. Quantization and state density

Now we are in the position to perform the quantization
the particle motion on the entire fractal and determine
density of the energy eigenstates. For the purpose we
sider the root node at the center of the fractal with th
trunks attached and calculate contributions of all closed
jectories that start and end in a point of one of these tru
close to the node. The trajectory sum starts with the z
length trajectory which gives the contribution 1. The traje
tory first going to the trunk and returning back gives t
contributionX0(Lp), whereas the contribution of the trajec
tory which first goes to the node isB5(123X0)/(X023)
according to Eq.~12!. The trajectories of the second ord
give X0B andBX0 whereas the third-order results inX0BX0
andBX0B. The overall sum reads

Tr G~p!511X01B1X0B1BX01•••

5
~11X0!~11B!

12BX0
5

2

3

11X0

12X0
, ~17!

as it follows from summation of the geometric series.
In the long-wave limit, injecting Eq.~15! into Eq.~17! we

find

Tr G~p!5 2
3 ~Lp!2a, ~18!

which shows that at small energies the density of frac
energy eigenstates follows the power-law dependence on
momentum with the power index given by the Hausdor
Besicovitch fractal dimension. In Fig. 4 we illustrate the d
ference between the fractal spectrum found from Eq.~17!
and the spectrum of a one-dimensional particle moving in
potential well of the width 2Z52L/(12a) suggested by Eq
~6! for the fractal diameter. One clearly sees that the frac
boundary conditions at the nodes corresponding to the
tionary pointX51 of mapping Eq.~14! result in the appear-
ance of the spectrum near zero energy, where the pote
well does not have eigenstates.

FIG. 4. Density of states for different fractal dimensionsa
51.18 corresponding toa55/9 ~solid line!, a51.41 corresponding
to a511/18 ~dash-dot line!, anda51.71 corresponding toa56/9
~dashed line!, calculated with the help of Eq.~17! where X0 has
been obtained from Eq.~16! after ten iterations of Eq.~12!. The
fractal diameter is the same for all fractal dimensions. Vertical lin
shows positions of the levels in a one-dimensional potential wel
a width equal to the fractal diameter.
3-5
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IV. NANOFRACTAL RESPONSE TO rf-IR FIELD

Let us consider now the optical response of the nanof
tals calculating the reflectivity of a transparent support s
face covered by fractals as a function of the incident fi
frequency. We start with the case of isolated fractals eac
which independently contribute to the reflectivity. The typ
cal frequency domain can be estimated as the inverse o
typical time of flight of an electron across the fractal giv
by the Fermi velocity divided by the fractal sizeZ, Eq. ~6!,
which for the fractals2 of 100 nm corresponds to the TH
frequency domain that is far IR or short rf radiation. Then
consider the case of ‘‘merging’’ fractals, when the neighb
ing fractals irregularly placed at the surface can interact w
capacitorlike connections via their most closely approach
terminations.

A. Isolated nanofractals

The Maxwell equation

]2

]x2
E2

v2

c2
E5

4p

c2
dS x

bD F ivss~v!1
v2

c
Rs~v!GE

~19!

for a plane electromagnetic waveE incident normally to a
surface covered by isolated fractals atx50 allows one to
find an intensity of the reflected fieldEr provided the specific
conductivity ss(v) and the specific dipole susceptibilit
Rs(v) of a unit surface area are known. The inhomogenei
of the surface have to be much smaller compared to
wavelength of the wave and the thicknessb of the fractal
layer. For a wave incident at an angle to the surface the s
equation is valid for the tangent component of the fie
whereas the normal component is not affected by the laye
the fractals. The continuity condition for the tangent field a
the jump of its derivative across the surface

E1Er5Et ,

v

c
~E2Er2Et!5

4pb

c2 F ivss~v!1
v2

c
Rs~v!GEt , ~20!

yield the relation

Er

E
5

22pb@ icss~v!1vRs~v!#

c212p@ icss~v!1vRs~v!#

.
22pb

c2
@ icss~v!1vRs~v!# ~21!

for the ratio of the reflected- and the incident-field amp
tudes.

Equations~2! and ~18! yield

Im R~v!52Nfav f
2 e2ne

v

2

3 S Lv

v f
D 2a

,

11543
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Re ss~v!5
2e2nev

3v fm
Nf S Lv

v f
D 2a

, ~22!

whereNf is the number of fractals per unit area. We repla
the productNfne by the specific density of statesns of the
fractal material near the Fermi surface multiplied by the to
volumeV of the material deposited per unit surface, expre
the trunk sizeL5Z(12a) in terms of the typical fractal size
Z, Eq. ~6!, and the fractal dimensiona, Eq. ~9!, and substi-
tute s/v fl instead of the productnse

2 wheres is the re-
sidual conductivity23 andl is the electron mean free path i
bulk metal. In the last replacement we assume thatns
5Nel /pfv f whereNel is the density of the metal electron
We arrive at

Im Rs~v!52
4saVv f

3vl~21/a21!a S Zv

v f
D 2a

,

Re ss~v!5
4sVv

3lmv f
2~21/a21!a S Zv

v f
D 2a

. ~23!

Nonanalytical behavior of these dependencies atv50 does
not allow one to determine the dispersive parts ReRs(v)
and Imss(v) from the Kramers-Kronig relations. Howeve
the latter should be of minor importance provided the tra
parent material supporting the fractal at its surface ha
refraction indexr different from 1. In the latter case

Er

E
.

Vbs

cl

8ip~Zv/v f !
2a

3~21/a21!a Fav f

c
2

v

pfv f
G1

12r

11r
. ~24!

The simplest possible way to find the missing parts is to t
an analytical continuation of Eq.~23! to the complex plane
such thatg(Zv/v f);v2a vanishes at the negative part o
the real axis.

B. Ensemble of nanofractals

When the size of the fractals becomes larger than
interfractals distance, the model of isolated fractals fa
since the dipole approximation for the response is not
longer valid. At the same time, allowing for the contributio
related to the conductivity we have to take into account
points of the closest approach of neighboring fractals, wh
the potential difference experiences large changes. These
mains work as capacitors that assume the main part of
dipole activity of the system. When the ramified structur
are randomly distributed on the surface but not yet resul
the electric current percolation, as it is the case for the
perimental work2 for instance, the fractal ensembles confor
the Dykhne model.24 Formulated for a two-phase rando
conducting surface with the conductivitiess1 ands2 differ-
ent for different phases this model yields the macrosco
conductivityse f f5As1s2 which immediately suggests

se f f5F 4sVv

3lmv f
2~21/a21!a S Zv

v f
D 2a ivb2

Zd G 1/2

~25!
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for the effective conductivity of the fractals covering the su
face. Here we have assumed that the capacitors of a p
sizeb separated by a mean shortest interfractal distanced are
subjected to the potential differenceZE accumulated on the
distance of the fractal sizeZ.

Substitution of Eq.~25! to Eq. ~21! yields

Er

E
. i

2pvb2

cv f
F sV
6lmZd~21/a21!aG 1/2S Zv

v f
D 2a/2

1
12r

11r
,

~26!

where we have omitted the real part of the effective cond
tivity as small relative to the support contribution.

C. Random fractals

Thus far we have been considering the model of an id
fractal with a high symmetry and an exponential variation
the branch lengths with generation number. In order to ge
idea of how close can be such a model to the reality we n
consider an ensemble of irregularly distorted fractals. T
simplest way to model the random distortion is to treat it
a perturbation of the fractal Hamiltonian by a random mat
with a given mean squarêV2& of the matrix elements. The
transformation rule

G̃̂~E!5Ĝ@Ẽ~E!#, ~27!

E5Ẽ1^V2&TrĜ~Ẽ!, ~28!

suggested by one of the authors18 as a simple way to solve
the equation describing such a perturbation. Equation~27!
relates the ensemble averaged perturbed Green fun

G̃̂(E) with the unperturbed oneĜ(E) depending on a trans
formed argumentẼ(E). The transformationẼ(E) follows
from the solution of a nonlinear algebraic equation@Eq. ~28!#

which allows one to findẼ for eachE selecting from many
possible solutions the one continuously changing from2`
to ` for E varying in this interval. By the same replaceme
of the argument one can obtain all other linear properties
the randomly perturbed system.

Comparing Eqs.~1! and ~2! and Eq.~18! with the allow-
ance of the conditiong(E,0)50 one finds an expression

Tr Ĝ~E!52g0

1

Im~21!2a S 2LE

v f
D 2a

, ~29!

consistent with the state density, Eq.~1!, for both the positive
and the negative energies. The constantg0 enters as a cofac
tor of the other unknown quantitŷV2& and both factors to-
gether form a single energy parameterW5g0^V

2& respon-
sible for the strength of the random perturbation. W
substitute Eqs.~6!, ~9!, and~29! to Eq. ~28! and obtain

E5Ẽ1
W

sinpa
F2Z~12221/a!Ẽ

v f
G2a

. ~30!
11543
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One sees that by introducing an energy scaling factoE
5EF with F5@Z(12221/a)/v f #

a/(a11)W21/(a11), Eq. ~30!
can be reduced to the form

E5 Ẽ1
~2 Ẽ!2a

sinpa
, ~31!

which does not contain parameters other than the fracta
mension.

In order to find the universal dependenciesẼ(E,a) there is
no need to solve Eq.~31!. After the replacementẼ
52keiu, one eliminatesk employing the fact thatE is real
and finds the dependenceẼ(E) in a parametric form

Ẽ~u!52eiuS 2sinau

sinu sinpa D 1/(11a)

,

E~u!52S 2sinau

sinu sinpa D 1/11a

cosu

1S 2sinau

sinu sinpa D 2a/11a cosau

sinpa
. ~32!

The imaginary part ofẼ(E,a)/p shown in Fig. 5 as a func-
tion of the energyE for different fractal dimensionsa yields
the shape of the state densityga,W(E)5FImẼ(E/F,a)/p
which for the case of irregular fractals should replace
factor TrG(p)/p5(2/3p)@Zv/v f(2

1/a21)#2a;E 2a in the
expression, Eq.~4!, as well as in Eqs.~23! for the dipole
response and the conductivity and in Eq.~26! for the effec-
tive conductivity of a disordered surface. It yields

Im
Er

E
55 24p2

Vbsv

cl Fv f

c

]

]v
1

1

pfv f
Gga,WS Zv/v f

21/a21
D ,

2pvb2

cv f
FpsVga,W~E!

lmZd G1/2

~merging fractals!

~33!

for the absorption of isolated and merging fractals.

FIG. 5. Universal forms of the quantum state density profiles
randomly perturbed fractals with the fractal dimensionsa51.18
~solid line!, a51.41 ~dash-dot line!, and a51.71 ~dashed line!.
These profiles do not depend on the size of the perturbation w
results only in scaling of the energies.
3-7



th
ri
ak

a-
e

e
ta

e
ct
o

l
h
b
h

r I
b

o
n
i
e

size

V.
and
rs

the
ric

s
-
r a

ies
l

for
pa-

n.

F. CARLIER AND V. M. AKULIN PHYSICAL REVIEW B 69, 115433 ~2004!
V. POSSIBILITY OF OBSERVATION

We conclude by discussing the possibility to observe
optical manifestations typical of fractal structures expe
mentally for realistic parameters of nanostructures. We t
pfv f;5 eV, v f /c;1022 for the Fermi velocity and mo-
mentum,V;1 nm for the mean thickness of the fractal m
terial at the surface,b;1 nm for the cross-section size of th
fractal branches,Z;l;100 nm for the fractal radius of th
order of the mean free path on an electron in me
s@Ag#/«056.33107/8.85310212 sec21 for the silver bulk
conductivity in cgs units, andd;10 nm for the interfractals
distance. For the frequencyv@THz# we take the units
1012 Hz natural for the electrons moving inside the nanom
ric sized objects. In order to be specific we chose the fra
dimensiona51.41 which corresponds to the scaling fact
a511/18. In this regime from Eq.~33! one finds

Im
Er

E
521022H F v]

2]v
1v1022Gga,W~0.71v! isolated,

5v@ga,W~0.71v!#1/2 merging,
~34!

which corresponds to the energy absorption at the leve
1024. Such a small absorption is associated however wit
phase shift of a few degrees, which is normally detectable
the ellipsometric measurements in the optical domain. T
same estimate also can serve as the detection limit fo
domain whereas the internal reflection technique should
even more sensitive.

The dependencies, Eq.~34!, are shown in Fig. 6 for dif-
ferent sizes of the disorder parameter in the regime of b
isolated and merging fractals. The power law depende
corresponding to the ideally symmetric fractals manifests
self as an asymptotic dependence for the irregularly p
ud

os
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E.
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e,

vit
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i
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turbed fractals when the frequency exceeds the typical
of the parameterW governing the disorder.
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N. Kébaili, J. Le Roux, A. Masson, and B. Yoon, Eur. Phys. J.
16, 265 ~2001!.

3E. Borsella, M.A. Garcia, G. Mattei, C. Maurizio, P. Mazzoldi,
Catturuzza, F. Gonella, G. Battaglin, A. Quaranta, and F. Dac
ito, J. Appl. Phys.90, 4467~2001!.

4S. Pratontep, P. Preece, C. Xirouchaki, R.E. Palmer, C.F. S
Navarro, S.D. Kenny, and R. Smith, Phys. Rev. Lett.90, 055503
~2003!.

5V.M. Shalaev, R. Botet, D.P. Tsai, M. Moskovits, W.L. Mocha
and R.G. Barrera, Physica A207, 197 ~1994!.

6V.A. Markel, L.S. Muratov, M.I. Stockman, and T.F. Georg
Phys. Rev. B43, 8183~1991!.

7For a review see V.M. Shalaev, Phys. Rep.272, 61 ~1996!.
8Diffusive behavior corresponds both to the classical conducti

of metallic microfractals and to the multifractal structures of t
energy eigenfunctions near the percolation limit associated w
the metal-dielectric transition in the disordered metals, see D
,

,

p-

z-

y

th
.

Khmelnitskii, JETP Lett.32, 229 ~1980!; A.D. Mirlin and F.
Evers, Phys. Rev. B62, 7920 ~2000!; It also yields specific
optical properties at low frequencies, see U. Sivan and Y. Im
ibid. 35, 6074~1986!.

9E.I. Levin, M.E. Raikh, and B.I. Shklovskii, Phys. Rev. B44, 11
281 ~1991!.

10B. Derrida and G.J. Rodgers, J. Phys. A26, L457 ~1993!.
11A.D. Mirlin, and Y.V. Fyodorov, Phys. Rev. B56, 13 393~1997!.
12B.L. Altshuler, Y. Gefen, A. Kamenev, and L.S. Levitov, Phy

Rev. Lett.78, 2803~1997!.
13See, e.g., K.G. Wilson, Phys. Rev. B4, 3174 ~1971!; K.G. Wil-

son, ibid. 4, 3184~1971!.
14S. Blacher, F. Brouers, A. Sarychev, A. Ramsamugh, and

Gadenne, Langmuir12, 183 ~1996!.
15V.I. Bukhtiyarov, A.F. Carley, L.A. Dollard, and M.W. Roberts

Surf. Sci.381, L605 ~1997!.
16P. Marquardt, Appl. Phys. A: Mater. Sci. Process.68, 211~1999!.
17J.M. Barbaroux, J.M. Combes, and R. Montcho, J. Math. An

Appl. 213, 698 ~1997!.
18V.M. Akulin, Phys. Rev. A48, 3532~1993!.
3-8



ki

QUANTUM INTERFERENCE IN NANOFRACTALS AND . . . PHYSICAL REVIEW B69, 115433 ~2004!
19See, e.g., A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshins
Methods of Quantum Field Theory in Statistical Physics~Dover,
New York, 1963!.

20K. Efetov, Supersymmetry in Disorder and Chaos~Cambridge
University Press, Cambridge, 1999!

21C. Texier and, G. Montambaux, J. Phys. A30, 10 307~2001!.
11543
, 22See for instance J. W. Harris and H. Stocker,Handbook of Math-
ematics and Computational Science, ~Springer-Verlag, New
York, 1998!.

23E.M. Lifchitz and L.P. Pitaevskii,Physical Kinetics~Butterworth-
Heinemann, U.K., 1981!, Chap. 78.

24A.M. Dykhne, Sov. Phys. JETP32, 63 ~1971!.
3-9


