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Nanomechanics of single and multiwalled carbon nanotubes
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Buckling behavior of single-walled and multiwalled carbon nanotubes is studied under axial compression in
this work. Brenner’s ‘‘second generation’’ empirical potential is used to describe the many-body short-range
interatomic interactions for single-walled carbon nanotubes, while the Lennard Jones model for the van der
Waals potential is added for multiwalled carbon nanotubes. Single-, two-, three-, and four-walled nanotubes are
considered in the simulations in order to examine the effects of the number of layers on the structural
properties of the multiwalled nanotubes. Results indicate that there exists an optimum diameter for single-
walled nanotubes at which the buckling load reaches its maximum value. The buckling load increases rapidly
with the increase of the diameter up to the optimum diameter. A further increment beyond this diameter results
in a slow decline in buckling load until a steady value is reached. The effects of layers on the buckling load of
multiwalled nanotubes are also examined.
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I. INTRODUCTION

The discovery of carbon nanotubes in the early 1990’s
Iijima1 has sparked a revolution in chemical physics and m
terials science in recent years. Since then, much researc
been done on these new forms of carbon because of its
ceptional mechanical properties. Among these efforts, c
puter simulations using empirical pair potential are effect
methods for the analysis of structural and mechanical pr
erties of complex systems, such as carbon nanotubes.
instance, based on the empirical chemical pseudopote
theory proposed by Abell,2 Tersoff3,4 introduced an empirica
interatomic potential for complex covalently bonded sy
tems. Using the proposed potential, Tersoff presented a
tively accurate description of the structural properties a
energetics of carbon. Brenner5 developed an empirical many
body potential-energy expression for hydrocarbons by
cluding additional terms into Tersoff’s covalent-bondin
order formalism that corrects for an inherent overbinding
radicals. Nonlocal effects are also incorporated in his pot
tial via an analytic function that defines conjugation based
the coordination of carbon atoms that neighboring carb
carbon bonds. This potential is commonly known as
REBO potential. To model the complex chemistry in lar
many-body systems, Brenneret al.6 further proposed a so
called ‘‘second-generation’’ potential energy expression
solid carbon and hydrocarbon molecules by modifying
analytical functions for the intramolecular interactions a
an extended database relative to the earlier version.5 Their
new expression is found to have a significant improvem
on ~1! yielding of reasonable bond energies, bond leng
and force constants between atoms,~2! allowing for covalent
bond breaking and forming, and~3! elastic and plastic be
haviors.

The abovementioned developments of many-body in
atomic potentials have made molecular dynamics sim
tions of large systems possible and efficient. Yakobsonet al.7
0163-1829/2004/69~11!/115429~8!/$22.50 69 1154
y
-

has
x-
-

e
p-
or

ial

-
la-
d

-

f
n-
n
-

e

r
e

t
s

r-
-

applied REBO potential to investigate the instability
single-walled carbon nanotubes under the axial compress
bending, and torsional deformation, respectively. In th
study, a continuum shell model is also introduced to desc
the buckling and bending behavior of nanotubes in the p
tic deformation regime by properly chosen parameters. Co
well and Wille8,9 carried out a large-scale calculation on t
single-walled nanotubes subjected to axial compression
stretched in plastic deformation regime. Instead of using
conjugate-gradient method used by Yakobsonet al.,7 Corn-
well and Wille used finite temperature molecular dynam
simulation to examine the relaxation of nanotubes. T
REBO potential is also employed in their work to descri
the interatomic interactions. Using the molecular dynam
simulations as well as the Tersoff many-body potential
ergy, Erkoc10 investigated the structural stability of single
walled carbon nanotubes with infinite length and the therm
behavior of three different single-walled carbon nanotubes
similar size, both in diameter and length.11 The effect of
temperature on the structure of nanotubes is examine
their study. In addition, Erkocet al.12 investigated the stabil-
ity of finite carbon nanorods formed from multiwalled nan
tubes with different chirality. Their simulation result
showed that the carbon nanorod is not stable even at
temperatures. The molecular dynamics simulation on
mechanisms of buckling, bending, slipping, and elastic
covery of carbon nanotubes have been carried out by G
et al.13 Their work investigated the effects of length and su
face type of nanotubes on the mechanisms of the interac
between the carbon nanotubes and the surfaces. Also,
and Sinnott14 studied carbon nanotube tip-surface interact
using a many-body empirical hydrocarbon potential coup
to a long-range Lennard-Jones potential. Their simulation
dicated how the deformation of the rope leads to the dis
tion of its end, and allows for the determination of the effe
of shear stresses within the bundle on the buckling force
the rope. Hertelet al.15 investigated the effects of surfac
©2004 The American Physical Society29-1
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van der Waals forces on the shape of single-walled
multiwalled carbon nanotubes using molecular mechan
simulation. Their simulation showed that the van der Wa
interaction between nanotubes and a substrate leads to
stantial axial and radial deformations of absorbed nanotu
destroying the idealized shape of free tubes. In addit
Ru16–19proposed elastic shell models for the buckling ana
ses of double-walled carbon nanotubes. The derived exp
expression for critical axial strain indicated the role of t
van der Waals interaction between the outer and inner tu
His formula showed that the van der Waals forces do
increase the critical axial strain for infinitesimal buckling
the double-walled carbon nanotube.

The above studies examined the structural deforma
associated with mechanical and thermal loads. This pap
complementary to the earlier works by providing a comp
hensive study on the buckling behavior of perfectly stru
tured single-walled and multiwalled carbon nanotubes un
compressive deformation. The solution to this problem
made possible by employing the molecular dynamic simu
tion technique, using Brenner’s ‘‘second generation’’ pote
tial function, which has the advantages of faster compu
tional time and the ability to simulate large systems w
more than 200 atoms, while maintaining the accuracies
semiempirical andab initio methods. In this study, we als
computed the optimum diameter of a single-walled carb
nanotube at its maximum buckling load, and investigated
effect of the number of layers in a multiwalled carbon nan
tube on its properties during buckling. The spontaneous p
tic collapse of the nanotubes from the simulation is in qu
tative agreement with the experimental observations
Lourie et al.20 and the simulated observations of Srivasta
et al.21 using the quantum generalized tight binding meth

II. NUMERICAL SIMULATIONS AND DISCUSSION

The entire numerical simulations are carried out using
classical molecular dynamics method22 in which Newtonian
equations of motion are solved numerically for a set of ato
interacting via Brenner’s ‘‘second generation’’ reactive e
pirical many-body bond order potential energy.6 In this study,
the buckling behavior of single-walled and multiwalled ca
bon nanotubes are simulated by solving the equations of
tions using the Gear’s predictor-corrector algorithm.23 The
axial compression of perfectly structured single-walled a
multiwalled carbon nanotubes is achieved by applying a
of 20 and 10 m/s, respectively, at both ends. At the sa
time, the atoms at both ends of the nanotube are kept tr
parent to the interatomic forces. The end atoms are t
moved inwardly along the axis by small steps, followed b
conjugate gradient minimization method whilst keeping
end atoms fixed.

A. Single-walled carbon nanotubes

To characterize the buckling behavior of single-wall
carbon nanotubes, a~8,0! single-walled carbon nanotube
used in the simulation. The nanotube has a lengthl 543 Å
11542
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and diameterd56.3 Å. Each time step used in this simul
tion is equivalent to 1 fs and the simulations are allowed
run for 20 000 time steps.

Figure 1 shows the plot of strain energy per atom, wh
is determined as the difference in total energy per atom of
strained and unstrained carbon nanotube, against st
which is defined as the ratio of elongation/original length
the ~8,0! carbon nanotubes after it is compressed axially
ing the Brenner’s second generation empirical poten
function.6 In addition, for comparison, the similar strain e
ergy calculated for~8,0! carbon nanotube using quantu
generalized tight-binding molecular dynamics~GTBMD!21 is
also shown. At the elastic regime, both Brenner’s seco
generation empirical analytical potential function and t
GTBMD simulation agrees well~only with a slight differ-
ence!. Furthermore, Brenner’s second generation empir
analytical potential function shows that the~8,0! carbon
nanotube can be compressed up to a strain«50.13 before
buckling; while the GTBMD simulation for the same nan
tube shows that buckling starts at strain«50.12. Hence, gen-
erally both the GTBMD and Brenner’s second generat
empirical analytical potential agrees well with one ea
other, validating the accuracy of the latter.

Figure 1 depicts that the~8,0! single-walled carbon nano
tube undergoes elastic deformation before collapsing c
strophically at a certain critical strain of«50.13, resulting in
a 30% spontaneous drop of strain energy per atom to
eV/atom. The nature of the spontaneous plastic collaps
single-walled nanotubes reported in this paper is in qual
tive agreement with the experimental observation of Lou
et al.20 and the simulated observation of Srivastavaet al.21

using the GTBMD scheme. The calculated critical stre
scr5149 GPa for the~8,0! single-walled carbon nanotube i
this work is also close to the simulation work of Srivasta
et al.21 who obtainedscr5153 GPa. The~8,0! carbon nano-
tube is subjected to acute morphological changes, he
higher strains are found in the~8,0! carbon nanotube, par
ticularly around the kinks.

FIG. 1. Computed strain energy per atom for~8,0! single-walled
carbon nanotubes using Brenner’s ‘‘second generation’’ empir
potential~BSGFP! ~Ref. 6! and~8,0! single-walled carbon nanotub
using GTBMD ~Ref. 21!.
9-2
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In Fig. 2, the shading indicates the strain energy per at
equally spaced from below 0.25 eV~lightest! to above 1.25
eV ~darkest!. According to Fig. 2~a!, at «50.13 the com-
pressed~8,0! carbon nanotube maintains its cylindrical sha
before spontaneously deforming into a symmetric three
pattern as shown in Fig. 2~b!, leading to a plastic collaps
and a net release of energy. This phenomenon has also
discussed by Srivastavaet al.21 The highly symmetric mor-
phological shape is intrinsic to the mechanics of a perfe

FIG. 2. Morphological changes for~8,0! single-walled nanotube
showing high strains concentrated at the kinks. The~8,0! nanotube
at «50.13 ~a! spontaneously collapse into a three-fin pattern wh
maintaining its straight axis~b!. At «50.15, the nanotube buckle
sideways~c! before further reduction in length at«50.17 ~d!.
11542
,

n

een

t,

undisturbed carbon nanotube as reported.7,21 Furthermore,
higher strain energy per atom is found along the edges of
fin. At «50.15, the nanotube continues to deform with t
pinches thinning while buckling sideways, as shown in F
2~c!. It is observed that high strain energy per atom is loca
across the pinch as the nanotube is being compressed.
ther increase in strain beyond«50.17 causes the nanotube
continue to buckle sideways with further reduction in leng
l, as shown in Fig. 2~d!, where high strain energy per atom
concentrated at the kinks.

A length/diameter (l /d) ratio of 7.7:1 is used to illustrate
its relationship with the buckling loadsPcr of selected zig-
zag and armchair single-walled carbon nanotubes listed
Table I. From the table, it is observed that as the diameted
increase, the buckling loadsPcr also increase steadily unt
the optimum diameters ofd511.76 Å andd520.36 Å for
the zig-zag and armchair nanotubes, respectively, were
tained. Beyond these optimum diametersd, the buckling
loadsPcr start to decrease instead. It is, however, import
to note that for anyl /d ratio, there is an optimum diamete

For clarity, Fig. 3 shows the plot of buckling loadPcr
against diameterd for zig-zag single-walled carbon nano
tubes. As the diameterd of the zig-zag nanotube increase
there is a rapid increase in its buckling loadPcr . However, as
the diameterd reaches an optimum valued511.76 Å, any
further increment beyond that will cause the buckling lo
Pcr to decrease slowly to a steady value of about 1
31027 N. It is evident that the lengthl of the carbon nano-
tubes will affect the critical strain«cr .

It is worthy to note that the classical shell theory can
used for the local buckling analysis of nanotubes. For a la
of cylindrical shell with length l, radius r, thickness t,
Young’s modulusE, Poisson’s ration, andm and 2n longi-
tudinal and circumferential wave numbers, the critical str
for the buckling of the cylindrical shell is obtained as24
TABLE I. Buckling loads for selected zig-zag and armchair single-walled carbon nanotubes.

Zig zag Armchair

~n,m!
Diameter

d ~Å!
Pcr

~31027 N! ~n,m!
Diameter

d ~Å!
Pcr

~31027 N! ~n,m!
Diameter

d ~Å!
Pcr

~31027 N! ~n,m!
Diameter

d ~Å!
Pcr

~31027 N!

~4,0! 3.13 0.72 ~20,0! 15.67 1.25 ~4,4! 5.43 0.87 ~20,20! 27.15 1.19
~5,0! 3.92 0.94 ~21,0! 16.46 1.24 ~5,5! 6.79 0.88 ~21,21! 28.50 1.17
~6,0! 4.70 1.01 ~22,0! 17.24 1.23 ~6,6! 8.14 0.90 ~22,22! 29.86 1.16
~7,0! 5.49 1.09 ~23,0! 18.02 1.21 ~7,7! 9.50 0.90 ~23,23! 31.22 1.16
~8,0! 6.27 1.10 ~24,0! 18.81 1.18 ~8,8! 10.86 0.91 ~24,24! 32.58 1.15
~9,0! 7.05 1.14 ~25,0! 19.59 1.16 ~9,9! 12.22 1.03 ~25,25! 33.93 1.14
~10,0! 7.84 1.19 ~26,0! 20.38 1.15 ~10,10! 13.57 1.04 ~26,26! 35.29 1.12
~11,0! 8.62 1.20 ~27,0! 21.16 1.14 ~11,11! 14.93 1.12 ~27,27! 36.65 1.11
~12,0! 9.40 1.22 ~28,0! 21.94 1.14 ~12,12! 16.29 1.13 ~28,28! 38.01 1.11
~13,0! 10.19 1.25 ~29,0! 22.73 1.13 ~13,13! 17.65 1.15 ~29,29! 39.36 1.10
~14,0! 10.97 1.27 ~30,0! 23.51 1.12 ~14,14! 19.00 1.16 ~30,30! 40.72 1.09
~15,0! 11.76 1.30 ~35,0! 27.43 1.11 ~15,15! 20.36 1.16 ~32,32! 43.44 1.09
~16,0! 12.54 1.29 ~40,0! 31.35 1.10 ~16,16! 21.72 1.18 ~34,34! 46.15 1.09
~17,0! 13.32 1.27 ~45,0! 35.27 1.10 ~17,17! 23.08 1.19 ~35,35! 47.51 1.09
~18,0! 14.11 1.26 ~50,0! 39.18 1.09 ~18,18! 24.43 1.19 ~37,37! 50.22 1.09
~19,0! 14.89 1.25 ~55,0! 43.10 1.09 ~19,19! 25.79 1.20 ~40,40! 54.29 1.09
9-3
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scr5
Et3

12~12n2! H @n21~m2p2r 2/ l 2!#2

r 2~m2p2r 2/ l 2! J
1

E~m2p2r 2/ l 2!

@n21~m2p2r 2/ l 2!#2 . ~1!

In predicting the buckling load of nanotubes by using t
cylindrical shell model, almost all previous literature
adopted the interlayer separation of graphite, i.e.,t53.4 Å as
the representative thickness of single-walled nanotub
However, the buckling loads obtained from Eq.~1! are much
larger than our molecular dynamics simulated resultst
53.4 Å is used. Here, we took the diameter of carbon at
~1.54 Å! as the thickness of the nanotube, as shown in F
2~a!. The Young modulusE51.28 TPa is directly extracted
from the experimental results of Wonget al.25 for the calcu-
lation of buckling loads using Eq.~1!. The buckling load is
not sensitive to the value of Poisson’s ratio, thus in t
study, it is taken asn50.25. Using the cylindrical shell for
mula in Eq.~1! and molecular dynamics, buckling loads a
computed for various zig-zig single-walled nanotubes,
shown in Fig. 3. It is observed from Fig. 3 that the two s
of results are in good agreement with diameterd ranging
from 5.49 to 43.1 Å or larger. In spite of this, the resu
obtained from the cylindrical shell formula@Eq. ~1!# for di-
ametersd smaller than 4.7 Å do not agree well with that
the molecular dynamics simulation. This is because
nanotube behaves more similar to a rod than a cylindr
shell with thickness/radius (t/r ) ratio larger than 0.66. In
view of this, the buckling loads of zig-zag nanotubes w
fixed ends are also calculated using Euler’s formula26 and are
presented in Fig. 3,

Pcr5
4p2EI

l 2 , ~2!

where I is the moment of inertia. For the fixed lengt
diameter (l /d) ratio, the buckling loads obtained from

FIG. 3. Comparison between cylindrical shell formula and m
lecular dynamics simulation for buckling loadsPcr of various zig-
zig single-walled nanotubes with different diameters
11542
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Euler’s formula for nanotubes with fixed ends are prop
tional to the diameterd of nanotubes, as shown in Fig. 3. It
obvious from the trend that the Euler formula is more re
sonable than the cylindrical shell model in the estimation
the buckling loads of nanotubes with (t/r ) ratio larger than
0.66.

Figure 4 plots the various critical strains«cr of a ~10,10!
single-walled carbon nanotube at different lengthsl from
24.6 to 140.0 Å. This plot shows that as the lengthl in-
creases, the critical strain«cr decreases. This indicates that
larger l /d ratio results in a lower critical strain«cr .

B. Multiwalled carbon nanotubes

Comparisons are also made between multiwalled car
nanotubes to determine the effect of the number of layers
the properties of the multiwalled nanotubes. Three confi
rations of multiwalled nanotubes are considered in the sim
lation: the first is a two-walled~5,5! and ~10,10! nanotube;
the second is a three-walled~5,5!, ~10,10!, and~15,15! nano-
tube; and the last is a four-walled~5,5!, ~10,10!, ~15,15!, and
~20,20! nanotube. The lengths of all three multiwalled nan
tubes arel 560 Å. And their diametersd are 13.52, 20.36,
and 27.15 Å for the two-, three-, and four-walled nanotub
respectively. In these simulations, the long-range van
Waals potential is added into the short-range covalent po
tial for the interlayer interaction using the Lennard-Jon
12-6 potential27

Vi j ~r i j !54
j

s F S s

r i j
D 12

2S s

r i j
D 6G , ~3!

where the coefficients of well-depth energyj and the equi-
librium distance s are 4.203831023 eV and 3.4 Å,
respectively.28

It is worthy to note that the van der Waals potential
nonzero only if the covalent potential is zero, such that th
is no artificial reaction barrier formed by the steep repuls
wall of the Lennard-Jones 12-6 potential to prevent no
bonded atoms from chemical reactions. The three mu

- FIG. 4. Critical strains«cr for ~10,10! single-walled carbon
nanotubes with diameter of 13.57 Å at different lengthsl.
9-4
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walled nanotubes are compressed axially using the s
method as the single-walled nanotubes. Each time ste
equivalent to 1 fs and there are a total of 20 000 time ste
which corresponds approximately to«50.066. The resulting
plots are shown in Fig. 5. For multiwalled nanotubes withm
layers, the total strain energy is

Es5(
i

m

Ei . ~4!

Figure 5 depicts that the two-walled carbon nanotu
manages to keep its elasticity for the longest with the larg
critical strain at«50.06, whilst the four-walled carbon nano
tube has the lowest critical strain at«50.038. Instead of a
spontaneous decrease of strain energy upon buckling as
denced in the single-walled carbon nanotubes, the strain

FIG. 5. Strain energy per atom for two layers@~5,5! and~10,10!
with diameter of 13.57 Å#, three layers@~5,5!, ~10,10!, and~15,15!
with diameter of 20.36 Å#, and four layers@~5,5!, ~10,10!, ~15,15!,
and ~20,20! with diameter of 27.15 Å# multiwalled carbon nano-
tubes.

FIG. 6. Potential energy per atom for each layer for~5,5!,
~10,10!, and ~15,15! three-walled carbon nanotube with diamet
20.36 Å.
11542
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ergy per atom increases until all the layers in the multiwal
carbon nanotubes are fully buckled.

The sudden increase in strain energy per atom for e
layer is due to the spontaneous increase in potential en
of each atom for each layer as depicted in Fig. 6. From
plot, it is observed that the middle layer has the largest
crement of potential energy of each atom for each layer
lowed by the inner layer and then the outer layer. Be
sandwiched between the outer and inner layer, when
three-walled carbon nanotube starts to buckle, the atom
the middle layer will have more nearest neighbors than th
of the outer and inner layer. This causes the formation
more chemical bonds to form, fromsp2 to sp3 configura-
tions. Thus, it leads to a larger increase in the empirical b
order function and consequently the potential energy. He
the middle layer has the highest strain energy per atom
each layer after buckling, as seen in Fig. 7.

FIG. 7. Strain energy per atom of each layer for~5,5!, ~10,10!,
and ~15,15! three-walled carbon nanotube with diameter 20.36 Å

FIG. 8. Distances between atoms from different layers bef
buckling at«50.047 and after buckling at«50.055 for the three-
walled carbon nanotube.
9-5
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FIG. 9. Three-dimensional and
cross-sectional view of morpho
logical changes for three-walled
~5,5!, ~10,10!, and ~15,15! carbon
nanotube with diameter 20.4 Å. A
«50.0484 the outer layer deform
into a ‘‘ring’’ pattern ~a!. Further
compression at«50.0486 causes
the middle later to deform too~b!.
At «50.0493, the inner layer also
buckles ~c! and at «50.052, all
the three layers are deformed~d!
er

FIG. 10. Force-deformation curves of each layer for~5,5!,

~10,10!, and ~15,15! three-walled carbon nanotube with diamet
20.4 Å.
11542
FIG. 11. Force-deformation curves for two layers@~5,5! and
~10,10! with diameter of 13.57 Å#, three layers@~5,5!, ~10,10!, and
~15,15! with diameter of 20.36 Å#, and four layers@~5,5!, ~10,10!,
~15,15!, and~20,20! with diameter of 27.15 Å# multiwalled carbon
nanotubes.
9-6
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TABLE II. Buckling loads for selected two and three-walled carbon nanotubes.

Two-walled Three-walled

(n1 ,m1) (n2 ,m2)
Pcr

(31027 N) (n1 ,m1) (n2 ,m2) (n3 ,m3)
Pcr

(31027 N)

~5,5! ~10,10! 1.72 ~5,5! ~10,10! ~15,15! 2.46
~10,10! ~15,15! 2.02 ~10,10! ~15,15! ~20,20! 2.73
~15,15! ~20,20! 2.09 ~15,15! ~20,20! ~25,25! 2.81
~20,20! ~25,25! 2.10 ~20,20! ~25,25! ~30,30! 3.05
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Figure 8 depicts the distances of a selective pair of ato
from different layers at«50.047 ~before buckling! and «
50.055~after buckling! of the three-walled carbon nanotub
It is observed that at«50.047, the distances between t
atoms from different layers are approximately 3.4 Å apa
However, at«50.055, the distances between these atoms
reduced to values less than 1.6 Å. The decrease in dist
allows the formation ofsp3 bond that results in a rise in th
potential energy.

To further explain the phenomenon of the increase
strain energy per atom upon buckling as observed in Fig
the plot of the strain energy per atom for each layer of
three-walled nanotube against the strain« is presented in Fig.
7. Before buckling, the three layers have the same st
energy per atom for each layer. However, at«50.0484 the
outer layer starts to buckle first, followed by the middle lay
at «50.0486, and then inner layer at«50.0493 ~see the
inset of Fig. 7 for amplification!.

Figure 9 shows the three-dimensional and cross-secti
three-walled nanotube at different strains. It is evident fr
Fig. 9~a! that the outer layer starts to deform first into a ri
pattern at«50.0484, while the middle and inner layers a
undeformed and their strain energies remain low. Howe
further compression at«50.0486 causes the middle layer
deform too, resulting in a sudden increase in the strain
ergy per atom because of the increase in potential energy
to the atoms in the middle layer. Similarly at this time, t
inner layer maintains the elasticity of the nanotube tem
rarily as shortly after at«50.0493, the inner layer also star
to buckle, therefore increasing the overall potential ene
and hence further increasing the strain energy per atom
ther. After«50.052, all the layers are deformed, hence th
is no further abrupt increase in potential energy due to
sudden addition of nearest neighbors.

The force-deformation plot in Fig. 10 shows the buckli
load Pcr that each layer is able to withstand. Being a lay
with a wider diameterd, the outer layer of the three-walle
carbon nanotube has the highest bucking loadPcr at about
1.1831027 N. However, it also tends to buckle fractional
earlier than the other two layers after deformingD l
52.9 Å. The buckling loadsPcr for the middle and inner
layers are lower at 0.8831027 N and 0.4231027 N, respec-
tively.

According to Fig. 11, the buckling loadPcr increases as
the number of layers in a multiwalled nanotube increas
The four-walled nanotube buckles first atD l 52.3 Å even
though it has the highest buckling loadPcr at 3.231027 N;
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while the three-walled nanotube buckles atD l 52.9 Å with
Pcr52.531027 N. And finally, the two-walled nanotube
buckles last atD l 53.7 Å but with the lowest buckling load
Pcr51.731027 N. Hence the more layers a multiwalle
nanotube has, the higher the buckling loadPcr is required.

The buckling loadsPcr for two and three-walled carbon
nanotubes are tabulated in Table II. It is observed from
table that generally multiwalled carbon nanotubes ha
larger buckling loadsPcr . For instance, the~10,10!, ~15,15!
two-walled carbon nanotube has a higher buckling loadPcr

52.0231027 N compared to the~5,5!, ~10,10! two-walled
carbon nanotube that has a buckling loadPcr51.72
31027 N ~see Table II!. Moreover, Table II also verifies tha
as the number of layers in a carbon nanotube increases
buckling loadPcr increases too. According to Table I, th
buckling loadPcr for a ~5,5! single-walled carbon nanotub
is 0.8831027 N. However, if an extra outer layer is added
form a ~5,5!, ~10,10! two-walled carbon nanotube, its buck
ling load Pcr increases to 1.7231027 N as seen in Table II.
If another layer is added to form a~5,5!, ~10,10!, and~15,15!
three-walled carbon nanotube, the buckling loadPcr in-
creases to 2.4631027 N.

III. CONCLUSIONS

The molecular dynamics simulation technique was u
to analyze the structural properties of the single-walled a
multiwalled nanotubes. The buckling loads for a number
single-walled and multiwalled carbon nanotubes are de
mined in the study. The calculations show that as the dia
eter of single-walled nanotubes increases, the buckling l
Pcr increases rapidly up to an optimum buckling loadPcr .
Any further increase beyond the optimum diameterd, how-
ever, will result in a slow decline in buckling loadPcr up to
a steady value. Therefore, each single-walled carbon na
tube has an optimum diameterd that yields the highest buck
ling load Pcr . In addition, the number of layers in a mult
walled nanotube will also affect its structural propertie
When a single-walled carbon nanotube buckles, there
sudden decrease in strain energy, however, when a m
walled carbon nanotube buckles, there is a spontaneou
crease in strain energy. This is due to the growth of poten
energy as more chemical bonds change fromsp2 to sp3 con-
figurations.
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