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Although it has long been known that the classical notions of capacitance need modification at the nano-
scale, in order to account for important quantum effects, very few first-principles investigations of these
properties exist for any real material systems. Here we present the results of a largehsoéie investigation
of the capacitance properties of carbon nanotube systems. The simulations are based on a recently developed
real-space nonequilibrium Green’s-function approach, with special attention being paid to the treatment of the
bound stategpresent in the system. In addition, use has been made of a symmetry decomposition scheme for
the charge density. This is needed both to speed up the calculations and in order to study the origins of the
induced charges. Specific systems investigated indiwdendthreenested nanotube shells, the insertion of a
capped nanotube into another, a connec¢ie0/(6,6) nanotube junction, and the properties of a nanotube
acting as a probe over a flat aluminum surface. First-principles estimates of the capacitance matrix coefficients
for all these systems are provided, along with a discussion of the quantum corrections. For the case of the
nanotube junction, the numerical value of the capacitance is sufficiently high, as to be useful for future device

applications.
DOI: 10.1103/PhysRevB.69.115418 PACS nuni®er73.61.Wp, 72.80.Rj
. INTRODUCTION age. HenceC,z andC, ., represent the firdinear andnon-

o ) ) ) . linear capacitance matrix coefficients, respectively. These
Within classical electrostatics, the capacitance is & Megspefficients take quantum effects into account, and may dif-
sure of a conductor’s ability to store charg@he classical o, considerably from their classical counterpdrtsNote
capacitance coefficients,; of a set of conductors are de- ;¢ that hecause conductors are no longer equipotential sur-
fined by Q=2 5CapVy, W.h'Ch gives the accumulatlc_)n of faces, the capacitance coefficients may no longer be calcu-
chargeQ, on conductora in response to a change in the lated with geometrical techniques only. Instead, one has to

elec_trostatl_c potentiad¥/s on con_ductor,@ ’ The classical ca- investigate the electron dynamics and ithéuced rearrange-
pacitance is purely a geometric quantity, and depends onl . : .
ent of chargen response to a change in the electrochemi-

on the shape and the spatial arrangements of the conductors . .
and on the presence of any dielectric medium. A typical calod! _potenha!, S0 that the concept of the electrochemical ca-
culation of the conductance coefficients entails the solving oP2citance is intimately related to that of quantum

,4,7,8
Poisson’s equation for a series of conductors subject to ihgansport’ _ _
appropriate boundary conditions. Although the theory of the quantum capacitance is almost

Central to the classical notion of capacitance is that of £ decade old,there have been few first-principles calcula-
set of well-defined conductors, with zero electric field intions of these properties for any real material systems. How-
their bulk. These assumptions, however, typically breakever, the recent advent of molecular electronic systems has
down at the nanometer length scale, when the screeningiven new urgency towards understanding fundamental prob-
length of the material becomes comparable to the dimensiorlems of this type. In this paper, we present such an analysis
of the system. In this case, conductors may no longer béor prototypical carbon nanotube systems, using a recently
equipotential surfaces, and the classical notion of capacitanaeveloped real-space nonequilibrium  Green's-function
has to be generalized to that of theectrochemicatapaci-  formalism®° Specifically, the capacitance behavior of nano-
tance, where each conductor is connected to an electron resibe shells, the insertion of one nanotube into another, a
ervoir with an electrochemical potential>=® Then, theself-  metal-metal nanotube junction, and a nanotube acting as a
consistentcharge variatiordQ,, on conductora, when the probe over a flat aluminum surface will all be discussed.

electrochemical potential of theeservoirconnected to con- We have focused on carbon nanotubes because of the very
ductor 8 is changed by a small amoudf ; with respect to  important role that this material system plays in the emerging
some reference potential, is given®by field of nanotechnolog}* Depending on their helicity, car-

bon nanotubes are either metals or semiconductors, which—
40 _2 C..(d /e)+2 Coo(dyle)(dpufe)+ - anr)g with their unique meg:hanical properties—makes them
a” g Zap Mg <4 ey Mg My : an ideal system for exploring quantum transport at the na-
(1) nometer length scale. Indeed, a number of prototypical car-
bon nanotube-based devices with outstanding characteristics
In contrast to the classical case, there is no reason for theave already been produced, and their properties explored
charge accumulation to be linear at a given finite-bias voltboth experimentalf# and theoretically? The majority of
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these theoretical investigations have focused orctmeluc-  erations. The electronic states of the atoms are modeled
tanceand the current-voltagel {V) characteristics of nano- using a linear combination of atomic orbitéls with
tube devices. To date, there have been relatively few studie{sﬁv}={¢s,qbpx,(z)py,(,bpz} (Ref. 30 and standard pseudo-

of the other transport properties such as the capacitance apgtentials®* The Kohn-Sham eigenstates of the system, with
self-inductance; " which are all properties that depend on 5 shifted Hartree potential at the boundary between the leads

the induced rearrangement of charge, rather than on the dimd the central scattering regidf are then expanded in

rect flow of current. A good understanding of these properterms of this basis:

ties is of course important both from a fundamental and a

technological viewpoint. Capacitance properties are central i i

to the workings of nanotubes as scanning prdfesemory v 22;4 C,d,(r—R))  (v=5s,px,py.P,), )

devices, their ability to store charge, and in understanding

the dynamicresponse of nanotubes to externally applied al-and | is an index for the atom number. The Kohn-Sham

ternating currentac fields4*’ equation may then be transformed into a standard matrix
A short outline of this paper is as follows. In the following problem’

section, we briefly review the methodology which is based _ _ _

on ab initio simulations using a real-space nonequilibrium H,.c,=E'S,.c,, (©)

Green’s-function formalism. Section Il presents a symmetry . . I

analysis of carbon nanotube systemst which is i);nportaz ith H,,, andS,,, representing the Hamiltonian and overlap

both for speeding up the numerical aspects of the problerﬂqatrix elements between the orbitals located at different

and for an analysis of the induced charge. This aspect is alsites. respectively. The information about the electron occu-

important for technical reasons in order to properly deal withpat'o_n f’md the Fharge density is contained in the den§|ty
the bound states present in the system. Capacitance resulf&trix p, which is used to calculate the real-space density
for the different carbon nanotube systems are given in Se@(r):

IV, while Sec. V is reserved for the final discussion and con-

clusions. Finally, we have relegated to Appendix A an outline ry= *(r—R) 5 r—R 4

of the calculations of the quantum corrections within the p(r) % Pul Purl ) @

linear response regime. - ) )
and the number of electrons within a given region,

Il. METHODOLOGY Nregion= T pSregion- 5
Our numerical mvestlg%’t{gns are based on a recently deT‘he NEGF-DFT formalism calculates bath(p) andp self-

velopedab initio formalism,™™which combines the Keldysh consistently to at least 18 eV via standard iteration proce-

e . y . ’19 .
p;;fsqu;tt;”g?n;ri?nﬂi}fgg;f'?aegze(ﬁ’% s'r(nN'IEaS'E)n;VIth dures. For the two-probe geometry, the NEGF theory gives
b y-tuncti » 'muiations. the density matrix as

the details of this technique are somewhat technical and have
been given elsewhere, we restrict ourselves here to a brief o —i

summary, and otherwise refer the interested reader to Refs. 9 p= —f dEG=(E)= —f dEGRX=GA, (6)

and 10 for more details. To date, this method has been ap- 2m 2m

plied to an ever growing number of physical systems, includyyith GRA denoting the retarded/advanced Green’s function
ing fullerenes®®* metallic nanowire$>*® nanotube of the device as a function of energg and S <=
systems,"**clusters;® and select organic compouri@i8’in  _ i Im(f,3'+f,3") the lesser self-energy of the system.

a two-probe geometry. Roughly speaking, the main advangeres ' " represent the self-energy due to the coupling to the
tages of the NEGF-DFT approach dfgit enables a proper |eft and right electrodes, respectively, ahd(E) the corre-
treatment of theoperboundary conditions for a quantum sponding electron distribution function giving the occupation
system under a bias voltaget) a fully atomistic treatment  of each of the eigenstates of the electrodes. These quantities
of the electrodes; anii) a self-consistent calculation of the are all evaluated by standard medd&32For discussion pur-
charge density via NEGF, thereby incorporating the effect ohyoses, let us view a device to be a very lafdee to leads

both thescatteringand theboundstates in the system. More- pyt finite system, the®R may be expressed in terms of the

over, because of the extensive use of real-space grids, th§yenstates of the Hamiltonig® "} and their energiesE, }:
entire procedure may be parallelized enabling the treatment

of large systems. - _ | Py (|
Although the NEGF-DFT code has generally been used GR(E)=[H—ES-3'-3""1~lim > ECE T

to calculate the |-V characteristics of two-probe 70 f 't

devices?1%21-%7jt is both the electrostatic potential and the ™

self-consistentharge density that are the two most importantror a system at equilibriumy, = u, = u, all the states below

quantities for the calculation of the quantum capacitancethis potential will be filled so that,(E) = f,(E)=1. For this
Calculation of the electrostatic potential is carried outcase,

by standard multigrid techniqué%?® while the calcula-
tion of the charge density is based on the following consid- RgG=(E)]=2Im[GR(E)]. 8
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FIG. 1. Integration pathway in the complex plane used to evalu- 3

atep, i.e., EQ.(9). FIG. 2. (Color online Schematic of the device used to calculate

A capacitance for a generic two-probe system. Note that the system is
The nonequilibrium density matrixg may then be rewritten surrounded by a metal gate to keep in the field lines. The gate
as potential V3=0 sets the energy and electrochemical scale for the
system. The equivalent circuit of the system is shown below.

=2 J”mi”dEeRE
p=—_im | (E)

+ iRe{ fﬂmaxdEG<(E)} Having computed the charge density, it is straightforward
T “ ’ to calculate thdinear capacitance coefficients, hereafter sim-
9 ply referred to as the capacitance coefficients, using the defi-

nition C,z=edQ,/dug; i.e., by applying a change in volt-
where wmin=min(uw+V, i, +V;) and wmax=max( +V, ,u ageAV=dul/e to a given reservoir and then measuring the
+V,).19 Generally speaking, the direct evaluation of this in-charge differenceAQ=Q(V+AV)—Q(V). As a further
tegral contains contributions from both thscattering feature, we have used the Dirichlet boundary conditions for
states—i.e., eigenstates with a continuous spectrum whicthe electrostatic potential at the walls of our finite-sized cal-
correspond to electrons with wave functions extending infi-culational box, which corresponds to the entire system being
nitely into the leads—anthoundstates, which are states of surrounded by a metal contain€ras shown in Fig. 2. This
discrete energy with the wave function localized in the cenbox is needed in order tterminateany field lines that ema-
tral scattering region and decaying into the leads. Boundhate from the system. In the limit of an infinite-sized con-
states can arise in a number of ways. For instance, they mdginer, the computed results reduce to that of a nanotube
arise when the molecules in the central scattering regiogystem in free space. A further advantage is that it allows for
have molecular states with energies below the propagatinéfie treatment ofcharged nanotube systems. However, the
threshold of the leadSpr when there are band gaps presenthanotubes do interact with walls of the container, so that the
in both of the lead electrodes. Bound states may also appe&fUivalent circuit of the system is characterizedttmee ca-
because of mismatches in the symmetries of the wave fundacitors, as illustrated in Fig. 2. As will be discussed, this
tions, as will be further discussed in Sec. IV. From Eg),  Primarily leads toself-chargingeffects. Finally, since we are
one can infer thaGR has poles neaE=E,,—i#, where Mmostly dealing with two-conductor systems, the main quan-
{En are the discrete energies of the bound states. Sindéies calculated are
these poles lie below the real energy axis in the complex
plane,GR is analytic above the real axis. Thus, a convenient AQ1=CuAVi+CrAVy,
way of dealing with Eq(9) is to integrate the first term along
a semicircle in the upper half of the complex plane starting AQ2=CaAV;+CrAV,. (10

from some minimum energy that lies below all the StateSHere, the Caa matrix coefficients represent the “self-

and ending on the real axis iy, as shown in Fig. 1. charging” andC,, the “mutual-charging” terms of the con-
Numerically very accurate integration is achieved by meangyctors.

of Gaussian quadrature with a relatively modest number of
points. The presence of bound states betwegp and wmax

is actually problematic, giving rise to singularities &<
which manifest themselves through convergence problems.
Fortunately, most of the systems investigated to date are free Because carbon nanotubes are structures with a high de-
from this problem, and so the integration of the second terngree of symmetry, there is opportunity for significantly re-

of Eq. (9) is straightforward. The exceptions here are somelucing the computational costs of the calculations by means
of the carbon nanotube systems considered in this paper. Thé a group theory analysié. This is important because most
explicit handling of the bound states is somewhat subtle, andf the nanotube systems we consider consist of several hun-
requires both a symmetry decomposition of the charge derdreds of atoms, and are therefore computationally quite ex-
sity (discussed in Sec. )l and a shifting of the integration pensive. These savings are accomplished by means of recast-
limits (described in Sec. IV ing the problem with a set ohybrid molecular orbitals,

min

Ill. SYMMETRY ANALYSIS OF NANOTUBE
CHARGE DENSITY
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which are obtained in terms of theeducible representation
of the symmetry group of the nanotube. This approach has
the further advantage of allowing one to classify the charge-

. e Q0.
density contributions in terms of the different symmetry Cb 65
properties of the wave functions. This not only gives insight (D
into the induced charge, but is also important for technical >
reasons in order to properly deal with the bound states L
present in the system. CS) % Qj .(p

Here, we briefly outline our method for constructing such .
a symmetric basis. For brevity, only the highly symmetric
armchair and zigzag tubes will be considered. These are de-
scribed by symmorphic groups, for which the translations FIG. 3. (Color onling Schematic of£p,, andXp,, symmetric
and rotations are decoupled from each other so that rotatiorsbitals constructed on a ring ¢8,5) tube out ofp, ,p, orbitals.
can be treated as point-group operations. For infinitely long

(n,n) armchair, or (,0) zigzag tubes, the symmetry group Oc H=HOc,,
is Dy, for evenn and D4 for odd n. For our purposes,
it is sufficient to use the lower point rotation growd,, Oc, S=SOc,- (12

which is a subgroup of botb,, andD, 4. The C, group

consists of n rotation operations, through angles The Cartesian basis orbitajg,} form a basis for ae-
10,2m/n,2(2=/n), . .., (n—1)2=/n}, with the axis of rota-  ducible representationf Cy . We need to find combinations
tion running along the center of the nanotube. We define af {¢,} which will serve as basis for thiereducible repre-
symbol C, to denote rotation through anglen2n. In this  sentationof Cy. Such a basis may be constructed in two
notation, the groupC, can be thought to consist of opera- stages. First, it is necessary to change the axis of the Carte-
tions {CY,CL, ...,Ch !}, where the superscript indicates sian orbitals from the global coordinates of the three-
the number of time<, is applied successively, with=0  dimensional{x,y,z} grid to atom specific axes which are
corresponding to the identity element of the group. The parmore appropriate for the treatment of the nanotubes. Starting
ent groupsD,,, and D4 contain, in addition to the elements from the Cartesian basis orbita{l$5,¢px,¢p ,¢pz}, we con-

of C,,, n C, rotation axes plus additional plane reflection strycttube frame Orbitab{(ﬁtsube,¢tpuife'¢tput,>e,¢;uige} where
symmetries(one horizontal plane foD,; and n dihedral * Y g

lanes forD,4). The C, symmetry also holds for a perfect they’ axis runs along the direction from tube center to the
P nd/- n SY y P atom,x’ is tangent to tube circumference, arids along the
open semi-infinite 1f,n) or (n,0) tube. For some half-tubes,

it is also possible to construct a cap at the end of the tublong|tud|nal direction of the tubeand hence unchanggds

. . hown in Fig. 3. Hence, for each atom, we can use the new
which shares th&€, symmetry and, whenever possible, we ~ - . .
) . ) . orbital basis defined as
will make use of such structures. Finally, for a junction be-

tween f,n) and (0,0) tubesC,, symmetry will hold if the tsube: b,
center axes of the two tubes coincide.

Consider a nanotubg@r a junction of semi-infinite nano- :)“?e= cog 0) ¢y, +Sin(0) by, ,
tubes with rotational symmetr\N. For such tubes, any rota- X X y
tion of Cy will take a given atom from its site to another tube ;

S . e . =—sin(6 +cog 4 ,
atomic site. When the atom is moved by rotation, its associ- Py’ A )%x 1 )d’py

ated Cartesian wave functions are rotated with it. When the tube._
rotation is completed, it is possible to express the rotated ¢pz, = ®p, (13

wave functions in terms of the unrotated wave functions aQN . / PP
S . . here 0 is the angle betweey andy’ axes specifying the
the new atomic site. Hence one can think of each rotation &, 0 9 n y pecifying

§ngular orientation of the atom around the central axis of the

taki.ng an orbital and expres;ing it as a combination .Of NeW,anotube. We now proceed to construct new symmetry orbit-
orbitals at the new atomic site. Thus the wave functighs als ¢Y™ from combinations of$“P¢ We recall that our

, . , )
:)efore a:(ntc:]If gftetr rqtatlct))n qperatloﬁ:,r ’t bé)tthhexprﬁssed ;nt' system is described by symmetry groQR . In such a sys-
erms ot the Lartesian basis, are refate rough a rotaliofl , atoms are arranged in sets of rings, located in a series

operatorOCN such that along the longitudinal direction of the tube, where ring
containsK, atoms and obeys symmet(yy, so thatK, is
divisible by N. To illustrate, we haveK,=2n for a (n,n)

. . tube andK,=n for a (n,0) tube. We divide$'“?® orbitals
As the system is described by symmetry gro, the into subsets containingky, orbitals belonging to atoms of

HamiltonianH and the overlap matri$ of the system must .

also be consistent with the symmetry group. In particular,rlrlg r, so that
expectation values must obéy |H|¥)=(W¥'|H|¥"), since HlUPE = ptube (14)

applying a rotatiorCy must leave the system properties in- phnlt e

variant. It therefore follows straightforwardly that the fol- where atom is reindexed as atoiiri belonging to ring and
lowing commutation relations must hold: 1=18,px,Py,Pz}. As each ring had rotational symmetry,

Oc, ="', (11)
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we can further divide the orbitals on rimgnto N subsets of
4K, /N orbitals which will transform into each other under =", L=liL== if N even. (19
rotation operations o€y . Thus, the final indices are such
that for a rotation through anglemN, It clearly follows that for the real basis, the matrix elements
O glibe  — guve 15 (631 /|H] 34" must vanish unless=L".
NPulrpm— Pu’rp [modm+1N)] In order to take advantage of the fact that large blocks of

elements of théd and Svanish in the new, symmetric basis,

wherep indexes the subset of orbitals that map into eache must rewrite all the relevant quantities in this basis. Spe-

other andm is the orbital index within this subset, which cifically, let us briefly consider converting Hamiltonian ma-

denotes the angular ordering of its atoms along the rin rix HS&' | defined in the Cartesian basis, between (atbi-

et‘rary) spatial regions labele#l or B. Matrices for a change of
basis may be written in the standard way as

N Z

each subsep contains orbitals of samg which get rotated
into each other under action of elements @f. Finally,
using this scheme, normalized symmetry orbitals are ob-
tained as

Tani=5",

T =(d D (20)

These matrices carry along indices for the region that is
transformed A or B), the index for the symmetric basis, and
where 1={0,=1,...,=(N—1)/2 for N odd, Ii;j,?* the index for the Cartesian basis. Each column of these ma-
+1,... 2[(N2)—-1],+N/2} for N even, ande=e"“"".  icas represents one of the symmetric states expressed in
For ease of notation, we have also defined a new collectiVgsyms of the nonsymmetric Cartesian basis. We apply the

index v, which from now on refers to all the indices except change of basis matrix to obtak in the symmetric basis:
thel associated with the symmetry, i.e={u',r,p}.

N
1
¢?}’y|m: (ﬁf}T’pJ: \/_N mE:l (ﬁ’ur,r,p,mfml, (16)

Given the way we defined it, the symmetric state has the H= (To)  HEAT. (21)
property that unde€y the state transforms into itself multi-
plied by a constant: The elements of this matrix are just
sym_ _| ysym
Ocydui=€dui (17 Hab i = bulHasl éur1 1), (22

In group theory this property means that symmetry orbitalsyhich will vanish if1#1’ and, hence, the matridSL" is a
with different | form a basis for different irreducible repre- pjgck matrix as well.

sentations oCy . Itis easy to see that any matrix elements  \we now describe how to take advantage of the block na-
of Hamiltonian matrixH (and overlap matrixS) between tyre of the transformed matrices. Here, we shall only discuss
symmetry orbitals from different representations must vanin detail two-probesystems. Use of the real, symmetric basis

ish. Using the behavior of the symmetric states ur@ef, 5 gefined by Eq19) ensures tha, S, andp are real block
and recalling thaD¢  commutes withH [see Eq(12)], we  matrices, which reduces the memory storage requirements.

note Now each family of nonzero submatrices associated with in-
dexL can be treated as an independent problem, to which the
(B3N IH[ M =(#3)"11|Oc 1Oc HOG 1Oc, | 43 methodology outlined in the preceding section may be ap-
plied. However, now the nonzero block matrices will be re-
= (PN H|SI™. (18  duced in size by a factor of ®/relative to the full matrices,

except for thel =0,N/2 cases which are reduced by a factor
This implies that the matrix element must vanish unless of 1/N when compared to the complex symmetric basis.
=I". In other words,H and S matrices become block Hence, one obtains a family df/2 equations foN even and
matrices—a property that is very useful for the speeding UgN+ 1)/2 for N odd. Quantities such as the block matrix for

of the numerical calculations. _ the retarded Green’s function, indexed byare then given
In many cases, it is advantageous to work with a reapy

basis. Such a real symmetric basis{aei}’Lm} may be formed

from combinations of the basis functiof;’" by means of GRsymL_FsymL_ E"SsymL_isymL]fl, (23)
=", L=1.0; with 3symt representing the block matrix for the sum of the

self-energies from the left and right leads. With block matrix

i(d)smer F5m) GRsYML the density of state$DOS) of the scattering region
\/5 vl v,—l _ can now be expressed as

o= L=li;1=l= =",
(g B S g (SREEYHI=> I (24
\/E v, v,—| dE - C C cC - dE f
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group for the specific carbon nanotube under consideration.
This decomposes the problem into different, independent
block matrices, which are labeled hy(the symmetry index

of the wave functions and has the advantage of significantly
speeding up the code.

IV. CAPACITANCE OF CARBON NANOTUBE SYSTEMS

Having discussed the methodology and the symmetry de-
composition of the charge density, we present our capaci-
tance calculations for prototypical carbon nanotube systems.

FIG. 4. Symmetry decomposed bands(d2,0 and (6,6) tube:  Specifically, we have investigated the capacitance of nested
L=0 (solid ling), L=1 (dashed ling L=2 (long dashed ling and  two- andthreeshelled nanotubes, the insertion of one nano-
L =3 (dotted ling. tube into another, a nanotube junction, and use of a nanotube

as a capacitance probe over a flat Al surft®Ve have
which decomposes the DOS into its component contributionimited our studies to system in which there is no direct

from wave functions having a different symmetry Simi-  current(dc) flowing between any of the conductors, which
larly, one computes means that there is negligible overlap between the electronic
_ wave functions of the different conductors.
é<,symL: éR,symLz<,symLéA,symL, (25)
with the Fermi occupation function defined as before, to ob- A. Multiwall tubes in a periodic geometry

tain the submatrix of the full symmetric density matps'™ For the first example, we consider ticapacitance per

unit lengthof two nested armchair nanotubes. Such systems,
dE"GR'SymL(E)} which corresponds to that of two multiwalled nanotube
shells, has recently been realized experimentafySpecifi-
cally, we looked at the case of a metalli§,5 nanotube
1 max(u +Vy V) g
+ _R{f dEG<,SymL(E)} (conductor }, inside a largerify,m) nanotubgconductor 2,
T min(u+Vy,pp+Vy) with helicity indexm ranging from 12 to 22. For the smallest
(26) (12,12 tube, the closest distance between atoms on the dif-
ferent tubes is 9.1 A. The atomic cutoff radius used was 4.7
Generally, the limits of the energy integrals and integrationA, so that all the tubes arde factoseparate entities, except
contours are the same as before. However, as already notedr presence of the real-space electrostatic potential which
adjustments may need to be made in the presence of bour@uples the two tubes. By connecting these tubes to two
states. By expanding the submatric}?t‘@/mL into the full-  different reservoirs, a quantum system that is analogous to a
sized matrices»*Y™", and using the appropriate change of classical, concentric cylindrical capacitor is constructed.

basis matrixT, one obtains the expression for the total den- 1N€ Simulations were carried out in a periodic configura-
sity matrix tion, with one unit cell of &5,5) tube with 40 carbon atoms,

and one unit cell of the largem(n) tubes with & carbon
. ~ — atoms. Here, the use of the symmetry analysis turned out to
PZE P ZE TTpsymiT, (27)  pe important as we were able to study systems um to
=22, which contains 216 atoms in the unit cell. Central
which is now decomposed into contributions from each symsimulation box sizes of 4940x 4.8 A3 discretized on a grid
metry indexL. Again, the method vastly speeds up calcula-of 256x256x32 and 8 80x4.8 A*> on a grid of 512
tion as the time consuming steps of determinigGR, and ~ X512x 32 were used. Each calculation used XQoints in
G~ generally speed up by factorO((N/2)%)/(N/2) our sampling.
=0((N/2)?). The electrochemical potential of the system is measured
A very similar approach can be used for the calculation ofwith respect to an arbitrary reference potential, which we set
the density matrix and symmetry analysis foperiodic sys-  as follows. First, by imposing &(r)=Vgae in the longitu-
tem As an example of this, we have applied the symmetrydinal direction on the walls of the container surrounding the
decomposition to the nanotube band structures, as shown iranotube system, we are able to imppseand u, on each
Fig. 4 for the(12,0 and(6,6) nanotubes. Note that near the of the two tubes. These are set by changing the external bias
Fermi level, theL=0 andL=2 bands dominate th€l2,0 = voltage on the reservoirs coupled to the tubes. Weusby
and(6,6) nanotube system, respectively. This analysis is im4ixing Vg,e=0, and then findingt, = u,= u, such that the
portant for the discussion of thél2,0/(6,6) metal-metal two-tube system is neutral. This also determines the origin of
nanotube junction in Sec. IV C. our energy scale. The capacitance matrix coefficients are
In summary, in this section we have outlined a way ofthen determined as with respectgg, as described in Sec.
rewriting the problem in terms of new set of hybrid orbitals Il. For example, if potentialu;— w;+dw4, then the first
determined by therreducible elements of the rotational tube acquires chargdQ;, and the second tube acquires

~SymL:E|m

jmin(#lJrVI V)
p ar

—oo
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FIG. 5. Capacitance vs tube radius {&r5) shell inside (,m)
tubes. The left(right) panel shows data for a 4040 A? (80
% 80 A2) metal container enclosing the system. The analytical re- FIG. 6. (Color onling The charge-density variatiothQ (upper
sults are obtained as described in the text and the Appendix, and aP@nel$ and characteristic potentialfower panels for the nested
marked with a solid line. (5,9/(12,12 system. The electrochemical potential variation is ap-

plied to the innex5,5) tube (left panels and the outef12,12 tubes
charge of the opposite sigihQ, in response. BotIC,, and (right panel$. From these plotsy~0.9 just inside the inner tube
C,, are then easily determined. Similari@,, and C,, are ~ andu=0.75 just inside the outer tube.

found by changing.,. In discussing the capacitance results,(:(5'5)(12’12)6lgree with each other to better than 1%, which is

it will be convenient to label the capacitance coefficients,n"important check on the quality of our calculated results.
with (n,m) h_eI|C|ty indices of the nanotu_bes. For instance, gjnce the charge injected into tli®,5) tube is almost com-
C(12,12),(s5 9ives the charge accumulation on th2,12  pletely screened by the response charge of( 1212 tube,
tube in response to a variation of the electrochemical poterpne can expect that th@s 5). (5.5 Will change only slightly as
tial of the (5,5 tube reservoir. the container size is increased. That is indeed what is ob-
First, we consider the case of (&5/(12,12 nanotube served, as shown in Fig. 5. As the metal container gets larger,
system, all in a metal container 4@0 A? in the plane per- the outer tube screens more of the charge on the inner tube,
pendicular to the nanotube axis. The capacitance responsedad so the numerical values of the two coefficients become
essential linear, to better than 1%, to applied voltages of atloser and closer. We estimate that in the infinite container
least 5 V, and so that well-defined voltage-independent caimit, all (5,5/(12,12 capacitance coefficients will have a
pacitance coefficients are readily obtained. For ¢Bg)/  numerical magnitude of 0.015 aF.

(12,12 system, capacitance coefficients per unit cell of Figure 6 shows the bias-induced variation in the charge
density and in the scaled electrostatic potential
C1,1=C(s55) (55~ 0.0150 aF, =edU(r)/du. From the induced charge-density plots, it is
clear that the nanotubes polarize, at least to some extent. The
C21=C12,12)(557~ —0.0135 aF, polarization of the outer tube is much less when the electro-
chemical potential is changed there, because a significant
C12=C(s55) (12,127 —0.0134 aF, portion of the induced charge will be found on the metal gate
surrounding the system. Note that when the charge is in-
C2,2=C(12,12)(12,127 0.0243 aF (28 jected into the inner tube, most of the characteristic potential

. _ . is confined to the space between the two nanotubes, which is
were obtained (1 aF10 **F). If the system consisted of | ihe case when the outer tube is charged. By means of this
two nested nanotubes in free space, the magnitude of all foyh, 5 acteristic potential, the charging mechanism may easily
coefficients would be the same. However, since we are deale explained. Ifdu, is applied to the first tube, the Fermi

ing with a finite system surrounded by a metal box, the OUteénergy shifts byd, and the band structure responds by
nanotube will interact with this box, as schematically illus- shifting up by u, du;, whereuy(r) is averaged over the
trated in Fig. 2. Thus, th€ ;1 15)(12 12c0efficient is expected yolume of the tube. Howeven,; <1 inside the first tube, and

to be larger in magnitude. In response to the potential variahence the tube acquires a net charge (3(dn, /dE)du,

tion at(12,12 tube, the induced charge @85,5 amounts to  using the DOS of the tube averaged over the appropriate
only 55% of the charge o12,12, indicating that the rest of energy window. In the second tube, the electrochemical po-
the induced charge is on the container. In contrast, if charggential stays the same, while the bands are shifted upwards
is injected into the(5,5 tube, then the(12,12 tube does by u;du, [usingu,(r) averaged over tube]2Hence some
most of the screening, with 89% of the induced charge foundands empty out and the second tube acquires a net charge
on the (12,12 tube. We also find thatC(;515 55 and  —u(dn,/dE)du.
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Estimating the value ofi from the plot of the character-
istic potential(Fig. 6), we see that the tube band structure
will shift relative to the Fermi energy by only-0.1du.
Within maximum applied bias of 5V, this will not be suffi-
cient to shift the Fermi energy of th&,5 nanotube into the
energy region with a nonlinear DQ&call that the armchair
tubes have linear bands over a large region about the Fermi
level). Therefore, the capacitance is also expected to be con-
stant in this voltage range, which is what we observe.

To gain further insight into the relation between the clas-
sical and quantum capacitance coefficients, we have derived
a simple analytical formula based on theétfker capaci-
tance formalisnd, outlined in the Appendix. The relevant
system geometry here consists of two thin, concentric cylin-
drical tubes of lengthl, which are treated as &wo-
dimensionalelectron gas. It is assumed that these tubes do
not interact with the boundary container, and that the system
is always neutral. All capacitance coefficients will therefore
have equal magnitud€, with a value of

FIG. 7. (Color online Charge-density variation for the case of
three nested nanotubes. Here, the bias voltage has been applied to

2l R N N the outermost(36,0 tube. Note the polarization response in the
2% n _2) + _1) + _2) (290 form of induced dipoles on the intermedia&2,0 semiconducting
C Ry Ry R2 tube.

Here R, , are the radii of the outer and inner tube, respec- , ) ) i
tively, N ‘=4me?(do/dE) is the screening length, and In the_presencenf an intermediate semiconducting tube, the
do/dE is the density of states per unit area of the tube cyl-capacitance coefficients are
inder. These parameters were all estimated fromath@itio c — 00180 aF
data. The factora;/R; and\,/R, all have a constant value (80,807 ’
of about 0.15 for the armchair tubes, since the DOS at that
Fermi energy is approximately constant. We estimate the
geometric parametef?, , as the average radius of the charge
distribution of each nanotube, and these take on values of
(8.14-0.54) A for a (12,12 and (3.39-0.73) A for the
(5,5) tubes, respectively. With these parameters, we have cal-
culated all the capacitive coefficients and plotted the result€learly, the presence of the semiconducting tube enhances
in Fig. 5. Note that the agreement between this simple modehe value of the cross capacitance by about 10%. We can see
and theab initio capacitive coefficients is quite good. Also, precisely how this comes about by examining the change in
for the nested nanotube system, the quantum correckiRs  charge density, as shown in Fig. 7. Clearly, even though the
are quite significant and comparable to the classical logarithsemiconducting tube does not acquire any net charge, its
mic term. The classical limit, which is reached when the firstelectrons exhibit a polarization response such that a small
term of Eq.(29) is much larger than the screening terms,dipole is induced about each carbon atom in response to the
which holds forR;>1.35R,, which is a limit that is not electric field due to the applied voltage. This increases the
reached for our largest tubes. value of the capacitance in analogy to the classical ¥ase.
As a further test of the nanoscale capacitance, we havEurther increasing the number of semiconducting nanotube
considered the case of three nested nanotubes. Specificalbhells between the two metal nanotubes is therefore expected
the three shells considered consisted(36,0, (22,0, and to boost the numerical values of the capacitance coefficients
(9,0 tubes, so that the innermost and outermost tubes areonsiderably.
both metallic and separated from each other by a semicon-
ducting tube. In analogy to the classical case, one expects B. Two-probe capacitance
that the semiconducting tube now acts as a dielectric, and . .
will therefore increase the value of the capacitance. Since the We now tum to the case of a two-pr_ope system, in which
intermediate(22,0) tube does not acquire substantial chargea cappeds,5) nanotube IS inserted a f|n|t_e distance into an
when a voltage is applied to its reservoir, we consider th&PeN(12,12 nanotube, with the central axis of the two tubes

capacitance coefficients between 26,0 and (9,0) tubes commdmg, a}s'shown in Fig. 8. The system now consists _of
only. In the absenceof any intermediate semiconducting two s_em|-|nf|n|t¢ carbon nan_otube leads, and a cent_ral region
nanotube, the capacitance coefficients are containing the junction. All in all, the system consisted of

458 carbon atoms in a 4040x34 A3 to 40x40x 64 A3

C(36,0),(9,07~ —0.0135 aF,
C(9,0),(36,07~ —0.0137 aF,

C(36,0),(36,07~ 0-0494 aF. 31)

C(9.0),(9.07~0.0164 aF, box, discretized on a 256256x 512 grid. For our calcula-
tions, we choose to measure the electrochemical potential
C(36,0),(9,0~ —0.0117 aF. (30)  with respect to a state where the two nanotubes leads, en-
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FIG. 8. (Color onling Charging of(12,12/(5,5) tube junction as . 9

(5,5 tube is inserted into the opdh2,12 tube, for a central simu- 0 L L
lation box with 458 atoms. A-0.272 eV bias is applied to the right -6 -5 4 -3 -2 -1 0 1 2 3 4 5 6
(5,5) tube in(a,0, and on the lef12,12 tube in(b,d). Upper panel Penetration depth (unit cell = 2.42 A)
show gray-scale plots of charge accumulation walb) [(12,12] ) )
tube on the lef(right) corresponding to charge addition afi®,12 FIG. 9. Capacitance (1217 s5) VS penetration depth for

[(5,5] tube subject to charge depletion. The lower panels display@PPed(5,9 inside (12,12 tube.
histogram plots of the charge accumulated on the tube rings, corre-

sponding to the geometry shown (a,0. the capacitance coupling between the container and lead
) ) ) tubes will progressively decrease, and the charge accumu-
closed in a box wittVq,.=0, are as close to neutrality as |ated on the tube leads will decrease. For infinitely large box,
possible. The electrochemical potential for a neutt®,12  the lead tubes would be neutral, all charge variation would
tube is found to be-6.127 eV and-6.071 eV for the neu- occur in the vicinity of the junction, and to ensure the neu-
tral (5,5 tube. These potentials are very close, and we set thgality of the system, all four capacitance matrix coefficients
reference zero-bias potential to be halfway between thesgould be expected to be equal in magnitude. In other words,
two values. This implies a net gain of 0.0042 electrons pefn the equivalent circuit diagram, only one capacitance ma-
unit for the (12,12 tube, and a loss of 0.0025 electrons peririx element describing the tube-tube interaction would
unit cell from the(5,5) tube. Clearly, these extra charges areremain3?
so small that the nanotube system deviates only very slightly As more and more of thés,5 nanotube is inserted into
from perfect neutrality. As with the other calculation, the the (12,12 tube, the Capacitance of the system increases and
charge-voltagecharacteristics are essentially linear within ultimately the system behaves similar to the case of two
1%, at least up to a bias of 1 V. o . nested nanotube shells. This is shown in Fig. 9. The slope in
The charging of the tube is shown in Fig. 8, which alsothjs figure approaches a value of 0.012 aF, which is in rea-
shows both a gray-scale plot of the charge variation and gonable agreement with the 0.015 aF result obtained for the
more quantitative measure in the form of a histogram plot ohanotube shells. Finally, we note that these results are all
the change in the total charge accumulated on each nanotulgyre or less independent from the dangling bonds present on
ring. We note that the12,12 tube acquires a very large the (12,12 tube, since saturating these bonds with hydrogen
amount of charge on its terminal ring, which is most likely changes the results by less than 1%.
due to the presence of its dangling bonds. For the particular Haying discussed the capacitance results, we address the
configuration shown, the capacitance coefficients are issue of theboundstates for this system. For a perfect, infi-
c — 01050 aF nite periodic nanotube, the onl)_/ eigenstate_s prese_:nt in the
(5555 * ’ system are the Bloch states, which are continuous in energy.
However, asemi-infinitetube may also have states of dis-

Ca212)s57~ ~0.0455 aF, crete energy localized at the end of the tube. Such bound

C _ 00451 aF states have been predicted, and their energies calculated for a
652127 ’ (5,5 capped tub&? Localized states in carbon nanotube tips
_ have also been observed experimentally in scanning tunnel-
C 0.1565 aF. 32 . ; .
(12.12)(12,12) (32) ing microscopy experiments.
Again the capacitance coefficier@$s s)(12,12)andC 12 125 5) From the standpoint of capacitance, only the rearrange-

are seen to agree to within 1%. Note that nanotube, to whicments of charge in theontinuum stateshould matter, as
the bias is applied, gains charge along its entire length withinhese are the only ones in contact with the reservoirs. But to
the junction region. This self-charging is due to the capacicalculate this correctly, one must take care of the bound
tive coupling between the nanotube and the surrounding boxtates properly. For our systems, it is computationally too
Clearly, the values of th€ ,, terms will increasdinearly in  difficult to find the localized eigenstates directly, as this
size as more and more of the charge density is included. Awould entail solving the scattering problem for the system
the size of the container surrounding the system is increasedith no incoming/outgoing staté8.However, the symmetry
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' ‘ ] ‘ ' stance, from Fig. 10, it is evident that there are no bound
DOS total states for theL=0 term of the charge density, so that a
I | self-consistent treatment of these terms is straightforward.
M g Terms withL from L=1 to L=6, however, have varying
, ) 3 : ‘ , numbers of bound states in the gap, which may either be
treated as being occupied by shifting the limit of the contour
N integral of Eq.(22) to include them or simply to keep them
= empty. Note also that the position of these bound states can
: L=1 shift slightly in the presence of a bias voltage. Unfortunately,
L L the appropriate shifts in the contour limits, when these prob-
lematic states are present, is somewhat arbitrary, but appears
; ‘ to be unavoidable within the model. Generally, we have used
‘ L = the smallest possible shifts to eliminate the problem. Of
; : L= course, in a real system the occupation of the bound states
1 | — will largely depend on the way the system was prepared, or
53 L4 by the inclusion of additional interactions.
Ay L B To summarize our treatment of the bound states, we note
: ‘ : that our main purpose is to investigate the capacitance,
i which depends on charge rearrangements in the continuous
5 I ‘ states. To that end, we need to keep the bound states at a
: f ? =6 constant occupatiofeither full or empty as a bias voltage is
L i L applied. The latter is accomplished by shifting the limits of
-8 =7 -6 -5 -4 the contour integral for the symmetry decomposed Green’s
Energy (eV) functions. Without such a treatment, it was found to be dif-
ficult to have proper numerical convergence.

L=2

|

L=5

FIG. 10. (Color onling Total (top panel and symmetry decom-
posed(lower panels DOS (arbitrary unit$ for the (12,12 open,
semi-infinite tube. Note the presence of bound states, which appear
for 7»=5x10"% a.u. (dashed ling The Fermi energy is at
—6.10 eV(dashed vertical line Bound states are handled by keep- ~ So far, we have examined the capacitance properties of
ing them either completely empty or fully occupied. For instance, towell-separated nanotubes. Here, we examine the properties
populate the bound state for the=6 case, one needs to shift the of a nanotube junction where two different metallic tubes are
contour integral limit toE:+0.82 eV. Alternatively, this state may joined together, and are characterized by a conductance gap
be handled by choosing to terminate the contour integral limit forabout the Fermi energy. Such a gap may arise if the bands at
L =6 contribution below the energy of the unoccupied bound statethe Fermi energy of the two tubes making up the junction
resulting in that bound state being empty Note that in our Self'have a different Symmetry_ Such junctions are important as
consistgnt calculation the energies of_ the bound states will shif{hey form the basis of a number of nanodevit®&42The
depending on whether they are occupied or not. specific junction we consider is that of two semi-infinite

(12,0 and(6,6) tubes, as shown in Fig. 11. The junction is
decomposition of the DOS equatid@4) allows the bound symmetric under a rotation of/26 around the nanotube axis
states to be readily identified. This is achieved by adding and, hence, obeys th€g rotation group symmetry. From
complex parametery to the denominator of Eq23) and  Fig. 4, it is clear that th€12,0 Fermi energy bands have
comparing the densitgn, /dE for different values ofy. In =2 symmetry, while thg6,6) tubes have.=0 symmetry.

Fig. 10, we showdn, /dE calculated with vanishingyg and  This implies that for an electron arriving at the junction via a
with small but finite . We see that the two densities coin- propagating state with energy close to the Fermi energy,
cide closely, except for the appearance of additional veryhere are no propagating states of the same symmetry for the
sharp peaks. These new peaks appear only inside the baetéctron to exit by. Because the junction does not break the
gap. We identify these peaks in density as being due tagixfold symmetry, the electron cannot change its symmetry
bound states. An electron in any one of these bound statesiisdex by scattering at the junction. Hence, the electron can-
trapped there permanently, since there are no lead states wdt propagate into the other tube, and will therefore undergo
the same symmetry and energy through which it could leavéotal internal reflection at the junction. Note that although no
the system. The bound states are primarily associated witbcattering states are allowed across the junction, evanescent
the dangling bonds at the open end of the tube. We find thatiaves are not forbidden. These, however, decay exponen-
saturating these dangling bonds with hydrogen greatly retially away from the junction, and here appear to make a
duces the number of bound states in the system. negligible contribution. Figure 12 illustrates the DOS and the

Bound states may be dealt with by using E87) and  conductance of the tuf8.
choosing the limit of contour integration such that they re- Itis interesting to consider the capacitance of such a junc-
main separated from the point where the contour touches thiton as a possible element in a nanodevice. Note that if the
real axis. In this way, the bound states are counted as beingerfect symmetry of this nanotube junction is broken, as is
either completely occupied or completely empty. For in-the case for asymmetric junctions, then the conductance gap

C. Junction with conductance gap
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FIG. 11. Structure 0f12,0(6,6) junction. Note the symmetry
arrangement of5-7) pairs about the circumference of the tubes, ‘ ‘
directly at the junction. ‘ ' L=

-

would disappear and current would flow directly through the ; ‘

device. In this case, it is no longer meaningful to define the l L=3
device properties in terms of capac_itance cogfficie_nts. Re- \ ,?; | | e
sults as a function of bias were obtained for a junction con- 5 ' 2 3 > 1

sisting of five 48-atom unit cells for each side of the junc- Energy (eV)

tion, i.e., 480 carbon atoms in total. A box of X4@0

x 44 A3 discretized by a grid of 256256x 256 was used to FIG. 12. (Color onling Conductances (top panel, total DOS
describe the system. Some attention has also been paid to tfabitrary unit$, and symmetry decomposed DQBwer panels
length dependence of the junction capacitance by extendinigr the (12,0/(6,6) junction. The electrochemical potential of the

the length of(6,6) tube out to eight unit cells for a total of junction has been shifted by 3.0 eV, so that the Fermi energy is
624 carbon atoms in total. located atEgp=—3.078 eV (dashed line in centgr To correctly

The Fermi energies of the tubes are6.090 and PoPulate the bound states, the limits of the contour integrals were
—6.103 eV for the neutra(6,6) and (12,0 tubes, respec- Chosento be &g forL=0,2.3, andEg+0.272 eV forL =1. The
tively. We could therefore, in principle, take 6.097 eV as latter shifts compensate for slight shifts in the position of the bound
the zero point for the electrochemical potential which is agtates under a bias voltage.
close as possible to perfect neutrality. However, th2,0
nanotube is characterized by a tiny gap of 0.082 eV. Sincélistance into the(6,6) tube. Upon injection, the induced
we wish to focus on the metallic behavior of the tubes, wecharge with opposite sign appears in the 0 states, which
have opted to shift the electrochemical potential relative taexist in the (6,6) tube and decay some distance into the
the gate by applying & 3 eV to both potentials, which puts (12,0 tube. Since each of these decaying components pen-
the equilibrium potential at—3.078 eV. This shift also etrates some distance into the other tubes, the charge com-
moves the band structure of the tubes, so that a neutral tugynent will overlap across the junction. Charges are induced
would be obtained by filling bands up t63.330 eV for the  in a similar fashion in thé =2 states of th¢12,0 tube if the
(6,6) and—3.367 eV for thg12,0 tube. Because the zero of pjss s applied to the6,6) nanotube. The states with
the electrochemical potential is now higher, the tubes acquire. 1,3 symmetry do not have any conducting bands near the
additional charges: 2.297 and 2.277 electrons for(§8)  ormj energy, and so these will behave like semiconductors,
and (12,0 tubes, respectively. This represents a change ofy have a limited polarization response. So, while this

A ; : .
about 1% for each carbon atom in the junction. charge may undergo some rearrangement, the total charge

We now examine how the charge " the Junction réar ssociated with these states is more than two orders of mag-
ranges itself under a bias voltage. For this discussion, a syni-.

metry decomposition is essential, because in this case tHBtUde smaller th‘?‘” the charge accumulated in lthe0,2

two nanotubes are in direct contact and the capacitance caiiaes: as shown in Fig. 14. _ .
not be simply obtained by counting the charge on each tube. Frpm the discussion, it is clear that the capacitance mat_rlx
First, we note that imposing a finite bias on the tubes doegoefﬂments may be calculat.ed from the charge accumulation
not break the symmetry of the junction, and hence the conln theL=0,2 states: charge in the=0 state could only have
ductance gap persists. Nonzero conductance will only occudtived through the(6,6) tube, while charge in thé. =2
when the bias is large enough as to bring bands of the sanféates could only have arrived through #i2,0 tube. Be-
symmetryL into alignment. We, however, will limit our dis- cause filled bands cannot carry curréhthe L=1,3 states
cussion to the regime where this does not occur. Considewill not accumulate any charge and hence can be ignored.
what happens when a positive bias is applied to the lefiVe label the voltage applied to th&2,0 tube asdVy, ),
(12,0 tube. The resulting charge distribution is shown in Fig.and that on th&6,6) tube asdVgg . Similarly, dQ, , corre-

13: charge is injected into the=2 states near the Fermi sponds to the changes in the=0,2 charge, respectively. The
energy. Such states exist in tiE2,0 tube and decay some charge accumulated in the junction for these two applied
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FIG. 13. Total and symmetry decomposed charge accumulatio
under a+0.272 eV bias applied to the lgft2,0 tube of the(12,0/
(6,6) nanotube junction.

These show behavior that is qualitatively similar to the co-
efficients as for the other nanotube systems. Thus, the self-
charging components are larger and depend linearly on the

voltages is plotted in Fig. 15, and note the linear dependenc@be length because of the interaction with the surrounding

on the bias voltage. The capacitance coefficients, also plotte?P*: We have checked this explicitly by calculating the ca-
here, are then given by pacitance coefficients as the number (6f6) unit cells is

increased. As expected, all the capacitance coefficients re-

dQo(dV(se) main constant except for th€ g)(s,6) CO€fficient which in-
C6.6).(6.6~ dV—se ' creases linearly. We argue as before that all terms of the
(60) capacitance matrix will tend to the same absolute value as
dQ,(dV(eg) the size of the container box is increased, and this will be

accomplished mostly through a reduction in the self-charging
terms. Therefore, we expect th@y ), (6.6)aNd C(s.6),(12,0)
terms we have obtained for a finite box should be reasonably

C T dVizg
(12,0),(6,6) dVi2,0)

dQy(dV, ; - . -
C :M close to the corresponding coefficients for the junction in
(6,6),(12,0y dav ’
(6.6) vacuum:°
40u(dV Perhaps the most important feature for this system is that
Cla20).(12 O):M. (33) the capacitance value obtained for this nanotube junction is
T dV(12,0) very high, as compared to that of the nested nanotube shells.

Indeed, units with such high capacitance values may turn out

Hence,C gives the charge arriving into the system _ i .
1L (6,6)(12,0)
from the (6,6) reservoir in response to an electrochemical®© be useful for memory devices. We believe that this feature

change in thg12,0 reservoir. The volume of integration in 'S dué to the overlapping DOS for the induced charges,

this case is the whole junction, i.e., all the C atoms within the/VNich boosts the capacitance even though the actual contact

simulation box. The small-bias capacitance coefficients ca/drea is relayively'small. Finally, we no'te that the investigated
(12,0/(6,6) junction is perhaps the simplest system with a

culated are S ‘ )
conductance gap, and that other similar junctions exist. An
Cs.6)(6.6=0-205 aF, (n,m) tube hasJ-fold rotational symmetry if botln and m
are divisible byJ. The necessary condition to be able to form
C(12,0) 6,6~ —0.125 aF, a symmetric junction is that the helicity indices of the second
tube all have a common divisor with For such a system, a
C6,6) (12,07~ —0.127 aF, conductance gap may be the result depending on the symme-
try of states in both tubes at the Fermi energy. A particularly
C12,0)(12,070.199 aF. (39 interesting configuration would involve a system of two
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FIG. 15. Charge accumulatigtop panels and capacitance co-
efficients(lower panelsfor the biased12,0/(6,6) junction. For the
left (right) panels, the bias is applied to thE2,0 tube[(6,6) tube].
Note that charge accumulation is quite linear and the capacitance
coefficients more or less are constant over the applied bias-voltage
regime.

tubes where a conductance gap is present, but where one
tube is sufficiently larger than the other, so that direct inser-
tion of one tube into the other is possible. Such a system
would most likely see an extra enhancement in the capaci-
tance because it combines both the boost from the insertion
with the effect of the overlapping DOS from the junction.

D. Nanotubes as scanning capacitance probes FIG. 16. (Color onling Accumulated charge on thex® Al

. electrode and5,5) capped nanotube when a positive bias is applied
Carbon nanotubes may well have a considerable future 33 the tube. Note that the charge accumulated on the electrode in

capacitance pro_bes, and, indeed, the first experimgnts of thrll§.sponse to the positive charging of the nanotube is concentrated in
type are beginning to emerdeéHence, as a prototypical ex- the middle of top electrode layer.

ample, we have investigated the capacitance properties of a
capped(5,5) nanotube over a flal0g Al surface, as shown tube, most of the charge is located right at the tip, while the

in Fig. 16. The simulation box size considered was 60 : : ;
charge on the Al surface is well localized directly underneath
x 60 A? and enclosed 83, 5x5, or 9x9 Al electrodes. 9 Y

) ) the charged nanotube in the middle of the electrode.
The 9x9 system, which was the largest practical system We g, re 17 summarizes the capacitance measurements for

could investigate, consisted of 162 Al and 150 carbon atomsy e nanotube over different electrodes as a function of in-

Typical cgpacitance calculations for this §ystem took abo“&reasing distance. As expected, the cross-charging capaci-
24|h on eight processors offa sma(l; Pe_nt|u_r|n v CI#SteL' tance increases as the size of the Al surface becomes larger
n our investigations, we focused primarily on the charg-, 4 jecreases as the distance between the nanotube and the

ing coefficjents as a funqtion of the distance from the AIsurface is increased. To estimate the capacitance for the case
surface, with the bias applied to the nanotube only. The clos,

h b h b b d th ; of a nanotube over an infinite-sized Al surface, we have car-
est a}gprogc et\k/)veen7t3(?&nano;[1u € pro eh and the SU:I 3fi&d out a finite-size scaling analysis. As shown in the inset,
considered was about 7.3 4, so that again there was no lofhere js aimost perfect scaling with the value of the capaci-

of current between the two components. At this distance, thgyncq coefficients versusLE. The estimated capacitance co-

charge accumulation is linear to within 1% for up 10 efficient at the distance of closet approach is 0.0201 aF,

+0.3 V, allowing for the extraction of well-defined capaci- \ ich is only up slightly from the & 9 result. As a function
tance coefficients. At this distance, we measured of distance, the data are well described by the fit

Cloxass™ 00186 aF, Cexnys5(d)=(0.1974-0.0069 aF.  (36)
Clos 5500777 aF. 39 These capacitance coefficients are actually quite low, and for
As may be expected, the self-charging coefficient is veryscanning capacitance applications one may well want to in-
much larger than the cross-charging term. This is due to therease the charging response. One obvious way to achieve
strong interaction of the nanotube with the surrounding boxthis is to functionalize the ends of the nanotube, say, with
and the relatively large distance between the nanotube argimall metal clusters. To test this idea, we have placed an Al
the Al surface. The actual charge distribution is shown inatom on the nanotube axis both 3.28 A inside and 1.65 A
Fig. 16. Several expected features are evident. On the nanoutside the nanotube cap. When the Al atom is placed inside
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are added to the system. From top to bottom, we illustrate the case

FIG. 17. Cross capacitance as a function of separation distanc®f N0 impurities present, an Al atom inside the tube, an Al atom
for 3x 3, 5x5, and 9x9 Al electrodes. The extrapolated infinite Outside and in front of the tube, and an O atom in front of the tube.

width electrode result is included for comparisgriangles. The
inset shows examples of fitting used to obtain the infinite widthorder to cut down on the computational costs and to better
limit, with sample curves for three different distances shown. analyze the induced charges, a symmetry decomposition of
the charge density matrix in terms of the irreducible elements
the tube, the calculated capacitance-i8.0192 aF, which is  of the rotational group of the nanotube about its axis was
essentially the same as for the system without the Al atomfound to be particularly useful. For each of the systems con-
This suggests that small metal clusters placed inside theéidered, we provide estimates of the capacitance coefficients
nanotube are unlikely to enhance the response of the syste@)d an analysis of the induced charges. While the capaci-
because of the screening effects. Placing the Al atom outsid@nce for most systems is sméttofarad range its value
the nanotube gives a capacitance coefficient-@022 aF, may be boosted by nesting and/or inserting nanotubes into
which represents a 14% increase in the response. Henceach other. The capacitance of {12,0/(6,6) was also con-
placing small metal clusters on the nanotube tip is likely tosiderably larger than that of the other systems, which is an
have significantly enhanced the charging effects. As a furthegffect that most likely derives from the overlapping DOS of
test, we have also investigated the effects of placing an oxyeach junction element. Quantum effects are clearly evident
gen atom(electron acceptoroutside the nanotube cluster. for these nanotube systems, and derive mostly from the finite
However, in this situation, the effect was similar to adding anPOS available. Hence, the notion of the electrochemical ca-
Al atom to the nanotube. The measured capacitance coeffpacitance is essential for understanding this important nano-
cient was—0.0199 aF, so that response is somewhat lowepcale system.
than adding an Al atom. This difference presumably reflects
the chemistry and DOS near the Fermi energy for thg ACKNOWLEDGMENTS
oxygen-doped system. Finally, for completeness, we show in
Fig. 18 the induced charges for the different probe systems We thank Jeremy Taylor and Brian Larade for help in the
examined, with the positions of the dopant atoms markedearly stages of this work. We gratefully acknowledge finan-
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surface are primarily localized within the top layer only; asCanadaH.G.), and a RGC granGrant No. HKU 7091/01P
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length of the nanotube. (NCSO for extensive computer time.

V. SUMMARY APPENDIX

In summary, we have computed the finite-bias capacitance Here we outline calculations of the quantum corrections
coefficients for prototypical carbon nanotube systems, usinfpr the capacitance using the linear-response theory of
a recently developed DFT-NEGF approach. Specific systemBuittiker? It is assumed that the system consists of a number
considered included nestédo- andthreeshell carbon nano- of quantum conductors, each connected to its own reservoir
tubes, the insertion of one nanotube into another, a nanotubwith its own electrochemical potential, so that the initial
junction with a conductance gap, and the behavior of a nanaelectrostatic potentidl ([ «,],r) is a complicated functional
tube as a capacitance probe. Generally speaking, these symth of the position vector and the electrochemical poten-
tems consisted of several hundreds of atoms each. Hence, filals. A small variationdw, in one of the electrochemical
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potentials brings the system to a new equilibrium state, sucfound. This gives the charge accumulat®®, on conductor

that eU([u,+du,],r)—eU([u,l],r)=edU(u,,r) a due to changes in the electrochemical potential in reservoir
=X u.du,, whereu, is thecharacteristic potential B. The capacitance matrix coefficients are then given by
dU([ pol.r
u,;e% . (A1) C =edQ“=e2f drl & dn(r,a)_dn(a,r)u (r)
Ma g, -0 “B dug @t dE dE AV
Charge rearranges itself in two different ways when the elec- (AS)

trochemical potential of a reservoir changes. First, there i§Ve now have all the ingredients for calculating the capaci-
the injected charge which is written in terms of filling up of tance coefficients for simple geometrical situations. The sim-

the DOS for the incoming charge carriers: plest case of a parallel-plate capacitor is described at length
dn(r.a) in Ref. 3. In what follows, we will extend our analysis to
n(r,a i indri i i
dpinj o(1) = = du,. (A2) concentric cylindrical capacitors, without any edge effects.

Consider two concentric cylinders of radigg and R,.
Each cylinder is assumed to be thin and unable to screen its
interior; the value of the potential insider the cylinder walls
is assumed to be constant. Equal and opposite charges will

a after a variationdu,. The sum over all the injectivities : . ;
. L . reside on each of the cylinders, so that the total charge is
from the different reservoirs gives the total local density of : A : L
ero. Henceuy,(p), using cylindrical coordinates, satisfies

states. Second, in response to the injected charge, there is t@we ovlindrical Poisson equation
induced charge density generated by the change in the elec- y q
trostatic potential inside the device. Within the Thomas-

The injectivity is dn(r,a)/dE, and gives the partial density
of states associated with carriers arriving tbhom reservoir

Fermi app.roximation the induced density is then related to Ei pﬂU(P) _o. (A6)
the potential via p dp ap

dn(a,r) dan(r) This is easily solved to obtain(p)=a,+as In(p) for R,

dPind,a(f):—Eo; g edUN =~ —4g Yadka, <p<R, and u(p)=a, for p<R; and u(p)=a, for p

(A3) >R,. One can solve for the coefficierds using the fact that
u.(p) is continuous at the walls, and its derivative discon-
with dn(a,r)/dE representing themissivity i.e., the partial  tinuous due to the presence of the sheet charge density in the
density of states associated with carriers ejected into the regylinder. The accumulated sheet charge density is propor-
ervoir  from pointr in response to a change in the electro-tional to (1-u,)do, /dE on cylinder 1 ancu; do,/dE on
chemical potential. Generally, in the absence of magnetigylinder 2, wheredo, ,/dE are the respective densities of

fields, the injectivity and emissivity are the same. The charstates per unit area. The capacitance coefficients per unit
acteristic potential is then obtained self-consistently by solviength are then obtained by inspection:

ing the modified Poisson’s equation

2l
2 dg(é)ua_d”éré“) " & =IN(R/Ry) + X1 /Ry + 2, /Ry, (A7)

Once u, is known, the sum of the injected and inducedwith )\i%:47762 doy ,/dE, which is the formula quoted in
charges integrated over the volume of the conductor may bthe main text.

—V2u,(r)=4me
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