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Capacitance, induced charges, and bound states of biased carbon nanotube systems
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Although it has long been known that the classical notions of capacitance need modification at the nano-
scale, in order to account for important quantum effects, very few first-principles investigations of these
properties exist for any real material systems. Here we present the results of a large-scaleab initio investigation
of the capacitance properties of carbon nanotube systems. The simulations are based on a recently developed
real-space nonequilibrium Green’s-function approach, with special attention being paid to the treatment of the
bound statespresent in the system. In addition, use has been made of a symmetry decomposition scheme for
the charge density. This is needed both to speed up the calculations and in order to study the origins of the
induced charges. Specific systems investigated includetwo andthreenested nanotube shells, the insertion of a
capped nanotube into another, a connected~12,0!/~6,6! nanotube junction, and the properties of a nanotube
acting as a probe over a flat aluminum surface. First-principles estimates of the capacitance matrix coefficients
for all these systems are provided, along with a discussion of the quantum corrections. For the case of the
nanotube junction, the numerical value of the capacitance is sufficiently high, as to be useful for future device
applications.

DOI: 10.1103/PhysRevB.69.115418 PACS number~s!: 73.61.Wp, 72.80.Rj
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I. INTRODUCTION

Within classical electrostatics, the capacitance is a m
sure of a conductor’s ability to store charge.1 The classical
capacitance coefficientsCab of a set of conductors are de
fined by Qa5(bCabVb , which gives the accumulation o
chargeQa on conductora in response to a change in th
electrostatic potentialVb on conductorb. The classical ca-
pacitance is purely a geometric quantity, and depends o
on the shape and the spatial arrangements of the condu
and on the presence of any dielectric medium. A typical c
culation of the conductance coefficients entails the solving
Poisson’s equation for a series of conductors subject to
appropriate boundary conditions.

Central to the classical notion of capacitance is that o
set of well-defined conductors, with zero electric field
their bulk. These assumptions, however, typically bre
down at the nanometer length scale, when the scree
length of the material becomes comparable to the dimens
of the system. In this case, conductors may no longer
equipotential surfaces, and the classical notion of capacita
has to be generalized to that of theelectrochemicalcapaci-
tance, where each conductor is connected to an electron
ervoir with an electrochemical potentialm.2–6 Then, theself-
consistentcharge variationdQa on conductora, when the
electrochemical potential of thereservoirconnected to con-
ductorb is changed by a small amountdmb with respect to
some reference potential, is given by3

dQa5(
b

Cab~dmb /e!1(
bg

Cabg~dmb /e!~dmg /e!1•••.

~1!

In contrast to the classical case, there is no reason for
charge accumulation to be linear at a given finite-bias v
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age. Hence,Cab andCabg represent the firstlinear andnon-
linear capacitance matrix coefficients, respectively. The
coefficients take quantum effects into account, and may
fer considerably from their classical counterparts.5,6 Note
also that because conductors are no longer equipotential
faces, the capacitance coefficients may no longer be ca
lated with geometrical techniques only. Instead, one ha
investigate the electron dynamics and theinduced rearrange-
ment of chargein response to a change in the electrochem
cal potential, so that the concept of the electrochemical
pacitance is intimately related to that of quantu
transport.3,4,7,8

Although the theory of the quantum capacitance is alm
a decade old,3 there have been few first-principles calcul
tions of these properties for any real material systems. H
ever, the recent advent of molecular electronic systems
given new urgency towards understanding fundamental p
lems of this type. In this paper, we present such an anal
for prototypical carbon nanotube systems, using a rece
developed real-space nonequilibrium Green’s-funct
formalism.9,10 Specifically, the capacitance behavior of nan
tube shells, the insertion of one nanotube into anothe
metal-metal nanotube junction, and a nanotube acting a
probe over a flat aluminum surface will all be discussed.

We have focused on carbon nanotubes because of the
important role that this material system plays in the emerg
field of nanotechnology.11 Depending on their helicity, car
bon nanotubes are either metals or semiconductors, whic
along with their unique mechanical properties—makes th
an ideal system for exploring quantum transport at the
nometer length scale. Indeed, a number of prototypical c
bon nanotube-based devices with outstanding characteri
have already been produced, and their properties explo
both experimentally12 and theoretically.13 The majority of
©2004 The American Physical Society18-1
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these theoretical investigations have focused on theconduc-
tanceand the current-voltage (I -V) characteristics of nano
tube devices. To date, there have been relatively few stu
of the other transport properties such as the capacitance
self-inductance,14–17 which are all properties that depend o
the induced rearrangement of charge, rather than on the
rect flow of current. A good understanding of these prop
ties is of course important both from a fundamental an
technological viewpoint. Capacitance properties are cen
to the workings of nanotubes as scanning probes,15 memory
devices, their ability to store charge, and in understand
the dynamicresponse of nanotubes to externally applied
ternating current~ac! fields.14,17

A short outline of this paper is as follows. In the followin
section, we briefly review the methodology which is bas
on ab initio simulations using a real-space nonequilibriu
Green’s-function formalism. Section III presents a symme
analysis of carbon nanotube systems, which is impor
both for speeding up the numerical aspects of the prob
and for an analysis of the induced charge. This aspect is
important for technical reasons in order to properly deal w
the bound states present in the system. Capacitance re
for the different carbon nanotube systems are given in S
IV, while Sec. V is reserved for the final discussion and co
clusions. Finally, we have relegated to Appendix A an outl
of the calculations of the quantum corrections within t
linear response regime.

II. METHODOLOGY

Our numerical investigations are based on a recently
velopedab initio formalism,9,10 which combines the Keldysh
nonequilibrium Green’s-function theory8,18,19 ~NEGF! with
real-space density-functional theory~DFT! simulations. As
the details of this technique are somewhat technical and h
been given elsewhere, we restrict ourselves here to a b
summary, and otherwise refer the interested reader to Re
and 10 for more details. To date, this method has been
plied to an ever growing number of physical systems, incl
ing fullerenes,20,21 metallic nanowires,22,23 nanotube
systems,17,24 clusters,25 and select organic compounds26,27 in
a two-probe geometry. Roughly speaking, the main adv
tages of the NEGF-DFT approach are~i! it enables a prope
treatment of theopen-boundary conditions for a quantum
system under a bias voltage;~ii ! a fully atomistic treatment
of the electrodes; and~iii ! a self-consistent calculation of th
charge density via NEGF, thereby incorporating the effec
both thescatteringand theboundstates in the system. More
over, because of the extensive use of real-space grids
entire procedure may be parallelized enabling the treatm
of large systems.

Although the NEGF-DFT code has generally been u
to calculate the I -V characteristics of two-probe
devices,9,10,21–27it is both the electrostatic potential and th
self-consistentcharge density that are the two most importa
quantities for the calculation of the quantum capacitan
Calculation of the electrostatic potential is carried o
by standard multigrid techniques,10,28 while the calcula-
tion of the charge density is based on the following cons
11541
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erations. The electronic states of the atoms are mod
using a linear combination of atomic orbitals29 with
$fn%5$fs ,fpx

,fpy
,fpz

% ~Ref. 30! and standard pseudo
potentials.31 The Kohn-Sham eigenstates of the system, w
a shifted Hartree potential at the boundary between the le
and the central scattering region,9,10 are then expanded in
terms of this basis:

C i5(
n

cn
i fn~r2RI ! ~n5s,px ,py ,pz!, ~2!

and I is an index for the atom number. The Kohn-Sha
equation may then be transformed into a standard ma
problem:7

Hmncn
i 5EiSmncn

i , ~3!

with Hmn andSmn representing the Hamiltonian and overla
matrix elements between the orbitals located at differ
sites, respectively. The information about the electron oc
pation and the charge density is contained in the den
matrix r̂, which is used to calculate the real-space dens
r(r ):

r~r !5(
mn

fm* ~r2RI !r̂mnfn~r2RJ!, ~4!

and the number of electrons within a given region,

Nregion5Tr@ r̂S# region . ~5!

The NEGF-DFT formalism calculates bothH( r̂) andr̂ self-
consistently to at least 1023 eV via standard iteration proce
dures. For the two-probe geometry, the NEGF theory gi
the density matrix as

r̂5
2 i

2pE dEG,~E!5
2 i

2pE dEGRS,GA, ~6!

with GR,A denoting the retarded/advanced Green’s funct
of the device as a function of energyE and S,5
22i Im( f lS

l1 f rS
r) the lesser self-energy of the system

HereS l ,r represent the self-energy due to the coupling to
left and right electrodes, respectively, andf l ,r(E) the corre-
sponding electron distribution function giving the occupati
of each of the eigenstates of the electrodes. These quan
are all evaluated by standard means.9,10,32For discussion pur-
poses, let us view a device to be a very large~due to leads!
but finite system, thenGR may be expressed in terms of th
eigenstates of the Hamiltonian$Cn% and their energies$En%:

GR~E!5@H2ES2S l2S r #21; lim
h→0

(
n

uCn&^Cnu
E2En1 ih

.

~7!

For a system at equilibrium,m l5m r5m, all the states below
this potential will be filled so thatf l(E)5 f r(E)51. For this
case,

Re@G,~E!#52 Im@GR~E!#. ~8!
8-2
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The nonequilibrium density matrixr̂ may then be rewritten
as

r̂5
2

p
ImF E

2`

mmin
dEGR~E!G1

1

p
ReF E

mmin

mmax
dEG,~E!G ,

~9!

wheremmin5min(ml1Vl ,mr1Vr) and mmax5max(ml1Vl ,mr
1Vr).

10 Generally speaking, the direct evaluation of this
tegral contains contributions from both thescattering
states—i.e., eigenstates with a continuous spectrum w
correspond to electrons with wave functions extending i
nitely into the leads—andboundstates, which are states o
discrete energy with the wave function localized in the c
tral scattering region and decaying into the leads. Bou
states can arise in a number of ways. For instance, they
arise when the molecules in the central scattering reg
have molecular states with energies below the propaga
threshold of the leads,9 or when there are band gaps prese
in both of the lead electrodes. Bound states may also ap
because of mismatches in the symmetries of the wave fu
tions, as will be further discussed in Sec. IV. From Eq.~7!,
one can infer thatGR has poles nearE5Em2 ih, where
$Em% are the discrete energies of the bound states. S
these poles lie below the real energy axis in the comp
plane,GR is analytic above the real axis. Thus, a conveni
way of dealing with Eq.~9! is to integrate the first term alon
a semicircle in the upper half of the complex plane start
from some minimum energy that lies below all the stat
and ending on the real axis atmmin , as shown in Fig. 1.
Numerically very accurate integration is achieved by me
of Gaussian quadrature with a relatively modest numbe
points. The presence of bound states betweenmmin andmmax
is actually problematic, giving rise to singularities inG,

which manifest themselves through convergence proble
Fortunately, most of the systems investigated to date are
from this problem, and so the integration of the second te
of Eq. ~9! is straightforward. The exceptions here are so
of the carbon nanotube systems considered in this paper.
explicit handling of the bound states is somewhat subtle,
requires both a symmetry decomposition of the charge d
sity ~discussed in Sec. III!, and a shifting of the integration
limits ~described in Sec. IV!.

FIG. 1. Integration pathway in the complex plane used to eva

ate r̂, i.e., Eq.~9!.
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Having computed the charge density, it is straightforwa
to calculate thelinear capacitance coefficients, hereafter sim
ply referred to as the capacitance coefficients, using the d
nition Cab5edQa /dmb ; i.e., by applying a change in volt
ageDV5dm/e to a given reservoir and then measuring t
charge differenceDQ5Q(V1DV)2Q(V). As a further
feature, we have used the Dirichlet boundary conditions
the electrostatic potential at the walls of our finite-sized c
culational box, which corresponds to the entire system be
surrounded by a metal container,33 as shown in Fig. 2. This
box is needed in order toterminateany field lines that ema-
nate from the system. In the limit of an infinite-sized co
tainer, the computed results reduce to that of a nanot
system in free space. A further advantage is that it allows
the treatment ofcharged nanotube systems. However, th
nanotubes do interact with walls of the container, so that
equivalent circuit of the system is characterized bythreeca-
pacitors, as illustrated in Fig. 2. As will be discussed, t
primarily leads toself-chargingeffects. Finally, since we are
mostly dealing with two-conductor systems, the main qu
tities calculated are

DQ15C11DV11C12DV2 ,

DQ25C21DV11C22DV2 . ~10!

Here, the Caa matrix coefficients represent the ‘‘self
charging’’ andCab the ‘‘mutual-charging’’ terms of the con
ductors.

III. SYMMETRY ANALYSIS OF NANOTUBE
CHARGE DENSITY

Because carbon nanotubes are structures with a high
gree of symmetry, there is opportunity for significantly r
ducing the computational costs of the calculations by me
of a group theory analysis.34 This is important because mos
of the nanotube systems we consider consist of several
dreds of atoms, and are therefore computationally quite
pensive. These savings are accomplished by means of re
ing the problem with a set ofhybrid molecular orbitals,

-

FIG. 2. ~Color online! Schematic of the device used to calcula
capacitance for a generic two-probe system. Note that the syste
surrounded by a metal gate to keep in the field lines. The g
potentialV350 sets the energy and electrochemical scale for
system. The equivalent circuit of the system is shown below.
8-3
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which are obtained in terms of theirreducible representation
of the symmetry group of the nanotube. This approach
the further advantage of allowing one to classify the char
density contributions in terms of the different symme
properties of the wave functions. This not only gives insig
into the induced charge, but is also important for techni
reasons in order to properly deal with the bound sta
present in the system.

Here, we briefly outline our method for constructing su
a symmetric basis. For brevity, only the highly symmet
armchair and zigzag tubes will be considered. These are
scribed by symmorphic groups, for which the translatio
and rotations are decoupled from each other so that rotat
can be treated as point-group operations. For infinitely lo
(n,n) armchair, or (n,0) zigzag tubes, the symmetry grou
is Dnh for even n and Dnd for odd n. For our purposes
it is sufficient to use the lower point rotation groupCn ,
which is a subgroup of bothDnh and Dnd . The Cn group
consists of n rotation operations, through angle
$0,2p/n,2(2p/n), . . . ,(n21)2p/n%, with the axis of rota-
tion running along the center of the nanotube. We defin
symbol Cn to denote rotation through angle 2p/n. In this
notation, the groupCn can be thought to consist of oper
tions $Cn

0 ,Cn
1 , . . . ,Cn

n21%, where the superscript indicate
the number of timesCn is applied successively, withn50
corresponding to the identity element of the group. The p
ent groupsDnh andDnd contain, in addition to the element
of Cn , n C2 rotation axes plus additional plane reflectio
symmetries~one horizontal plane forDnh and n dihedral
planes forDnd). The Cn symmetry also holds for a perfec
open semi-infinite (n,n) or (n,0) tube. For some half-tubes
it is also possible to construct a cap at the end of the t
which shares theCn symmetry and, whenever possible, w
will make use of such structures. Finally, for a junction b
tween (n,n) and (n,0) tubes,Cn/2 symmetry will hold if the
center axes of the two tubes coincide.

Consider a nanotube~or a junction of semi-infinite nano
tubes! with rotational symmetryN. For such tubes, any rota
tion of CN will take a given atom from its site to anothe
atomic site. When the atom is moved by rotation, its ass
ated Cartesian wave functions are rotated with it. When
rotation is completed, it is possible to express the rota
wave functions in terms of the unrotated wave functions
the new atomic site. Hence one can think of each rotation
taking an orbital and expressing it as a combination of n
orbitals at the new atomic site. Thus the wave functionsC
before andC8 after rotation operationCN , both expressed in
terms of the Cartesian basis, are related through a rota
operatorOCN

such that

OCN
C5C8. ~11!

As the system is described by symmetry groupCn , the
HamiltonianH and the overlap matrixS of the system mus
also be consistent with the symmetry group. In particu
expectation values must obey^CuHuC&5^C8uHuC8&, since
applying a rotationCN must leave the system properties i
variant. It therefore follows straightforwardly that the fo
lowing commutation relations must hold:
11541
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OCN
H5HOCN

,

OCN
S5SOCN

. ~12!

The Cartesian basis orbitals$fm% form a basis for are-
ducible representationof CN . We need to find combination
of $fm% which will serve as basis for theirreducible repre-
sentationof CN . Such a basis may be constructed in tw
stages. First, it is necessary to change the axis of the C
sian orbitals from the global coordinates of the thre
dimensional$x,y,z% grid to atom specific axes which ar
more appropriate for the treatment of the nanotubes. Star
from the Cartesian basis orbitals$fs ,fpx

,fpy
,fpz

%, we con-

struct tube frame orbitals$fs
tube,fpx8

tube,fpy8

tube,fpz8

tube% where

the y8 axis runs along the direction from tube center to t
atom,x8 is tangent to tube circumference, andz8 is along the
longitudinal direction of the tube~and hence unchanged!, as
shown in Fig. 3. Hence, for each atom, we can use the n
orbital basis defined as

fs
tube5fs ,

fpx8

tube5cos~u!fpx
1sin~u!fpy

,

fpy8

tube52sin~u!fpx
1cos~u!fpy

,

fpz8

tube5fpz
, ~13!

whereu is the angle betweeny and y8 axes specifying the
angular orientation of the atom around the central axis of
nanotube. We now proceed to construct new symmetry or
als fsym from combinations off tube. We recall that our
system is described by symmetry groupCN . In such a sys-
tem atoms are arranged in sets of rings, located in a se
along the longitudinal direction of the tube, where ringr
containsKr atoms and obeys symmetryCN , so thatKr is
divisible by N. To illustrate, we haveKr52n for a (n,n)
tube andKr5n for a (n,0) tube. We dividef tube orbitals
into subsets containing 4Kr orbitals belonging to atoms o
ring r, so that

fm8,r ,I 8
tube [fm8,I

tube, ~14!

where atomI is reindexed as atomI 8 belonging to ringr and
m5$s,px ,py ,pz%. As each ring hasN rotational symmetry,

FIG. 3. ~Color online! Schematic of(py8 and(px8 symmetric
orbitals constructed on a ring of~5,5! tube out ofpx ,py orbitals.
8-4
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we can further divide the orbitals on ringr into N subsets of
4Kr /N orbitals which will transform into each other und
rotation operations ofCN . Thus, the final indices are suc
that for a rotation through angle 2p/N,

OCN
fm8,r ,p,m

tube [fm8,r ,p,[mod(m11,N)]
tube , ~15!

where p indexes the subset of orbitals that map into ea
other andm is the orbital index within this subset, whic
denotes the angular ordering of its atoms along the r
Because of the previous transformation to the tube fra
each subsetp contains orbitals of samem which get rotated
into each other under action of elements ofCN . Finally,
using this scheme, normalized symmetry orbitals are
tained as

fn,l
sym5fm8,r ,p,l

sym
5

1

AN
(

m51

N

fm8,r ,p,meml, ~16!

where l 5$0,61, . . . ,6(N21)/2% for N odd, l 5$0,
61, . . . ,6@(N/2)21#,1N/2% for N even, ande5ei2p/N.
For ease of notation, we have also defined a new collec
index n, which from now on refers to all the indices exce
the l associated with the symmetry, i.e.,n5$m8,r ,p%.

Given the way we defined it, the symmetric state has
property that underCN the state transforms into itself mult
plied by a constant:

OCN
fn,l

sym5e lfn,l
sym. ~17!

In group theory this property means that symmetry orbit
with different l form a basis for different irreducible repre
sentations ofCN . It is easy to see that any matrix elemen
of Hamiltonian matrixH ~and overlap matrixS) between
symmetry orbitals from different representations must v
ish. Using the behavior of the symmetric states underOCN

and recalling thatOCN
commutes withH @see Eq.~12!#, we

note

^fn8,l 8
sym uHufn,l

sym&5^fn8,l 8
sym uOCN

21OCN
HOCN

21OCN
ufn,l

sym&

5e l 2 l 8^fn8,l 8
sym uHufn,l

sym&. ~18!

This implies that the matrix element must vanish unlesl
5 l 8. In other words,H and S matrices become block
matrices—a property that is very useful for the speeding
of the numerical calculations.

In many cases, it is advantageous to work with a r
basis. Such a real symmetric basis set$fn,L

sym% may be formed
from combinations of the basis functions$fn,l

sym% by means of

fn,L
sym5fn,l

sym, L5 l ,0;

fn,L
sym55

1

A2
~fn,l

sym1fn,2 l
sym !

i

A2
~fn,l

sym2fn,2 l
sym !

S L5u l u;1<u l u<
N21

2 D ,
11541
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fn,L
sym5fn,l

sym, L5 l ;L5
N

2
if N even. ~19!

It clearly follows that for the real basis, the matrix elemen
^fn8,L8

sym uHufn,L
sym& must vanish unlessL5L8.

In order to take advantage of the fact that large blocks
elements of theH andS vanish in the new, symmetric basi
we must rewrite all the relevant quantities in this basis. S
cifically, let us briefly consider converting Hamiltonian m
trix HAB

car , defined in the Cartesian basis, between two~arbi-
trary! spatial regions labeledA or B. Matrices for a change o
basis may be written in the standard way as

TA,n l ,I5~fn l
sym! I ,

TB,n8 l 8,I 85~fn8 l 8
sym

! I 8 . ~20!

These matrices carry along indices for the region tha
transformed (A or B), the index for the symmetric basis, an
the index for the Cartesian basis. Each column of these
trices represents one of the symmetric states expresse
terms of the nonsymmetric Cartesian basis. We apply
change of basis matrix to obtainH in the symmetric basis:

HAB
sym5~TA!21HAB

carTB . ~21!

The elements of this matrix are just

HAB,n l ,n8 l 8
sym

5^fn l uHABufn8 l 8&, ~22!

which will vanish if lÞ l 8 and, hence, the matrixHAB
sym is a

block matrix as well.
We now describe how to take advantage of the block

ture of the transformed matrices. Here, we shall only disc
in detail two-probesystems. Use of the real, symmetric ba
as defined by Eq.~19! ensures thatH, S, andr̂ are real block
matrices, which reduces the memory storage requireme
Now each family of nonzero submatrices associated with
dexL can be treated as an independent problem, to which
methodology outlined in the preceding section may be
plied. However, now the nonzero block matrices will be r
duced in size by a factor of 2/N relative to the full matrices,
except for theL50,N/2 cases which are reduced by a fact
of 1/N when compared to the complex symmetric bas
Hence, one obtains a family ofN/2 equations forN even and
(N11)/2 for N odd. Quantities such as the block matrix f
the retarded Green’s function, indexed byL, are then given
by

G̃R,sym,L5@H̃sym,L2ES̃sym,L2S̃sym,L#21, ~23!

with S̃sym,L representing the block matrix for the sum of th
self-energies from the left and right leads. With block mat
G̃R,sym,L the density of states~DOS! of the scattering region
can now be expressed as

dn

dE
5(

L
Im@TrC~S̃CC

sym,LG̃CC
sym,L!#5(

L

dnL

dE
, ~24!
8-5
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which decomposes the DOS into its component contributi
from wave functions having a different symmetryL. Simi-
larly, one computes

G̃,,sym,L5G̃R,sym,LS̃,,sym,LG̃A,sym,L, ~25!

with the Fermi occupation function defined as before, to
tain the submatrix of the full symmetric density matrixrsym:

r̃sym,L5
2

p
ImF E

2`

min(m l1Vl ,mr1Vr )

dEG̃R,sym,L~E!G
1

1

p
ReF E

min(m l1Vl ,mr1Vr )

max(m l1Vl ,mr1Vr )

dEG̃,,sym,L~E!G .
~26!

Generally, the limits of the energy integrals and integrat
contours are the same as before. However, as already n
adjustments may need to be made in the presence of b
states. By expanding the submatricesr̃sym,L into the full-
sized matricesr̂sym,L, and using the appropriate change
basis matrixT, one obtains the expression for the total de
sity matrix

r̂5(
L

r̂L5(
L

T†r̂sym,LT, ~27!

which is now decomposed into contributions from each sy
metry indexL. Again, the method vastly speeds up calcu
tion as the time consuming steps of determiningS, GR, and
G, generally speed up by factorO„(N/2)3

…/(N/2)
5O„(N/2)2

….
A very similar approach can be used for the calculation

the density matrix and symmetry analysis for aperiodic sys-
tem. As an example of this, we have applied the symme
decomposition to the nanotube band structures, as show
Fig. 4 for the~12,0! and ~6,6! nanotubes. Note that near th
Fermi level, theL50 andL52 bands dominate the~12,0!
and~6,6! nanotube system, respectively. This analysis is
portant for the discussion of the~12,0!/~6,6! metal-metal
nanotube junction in Sec. IV C.

In summary, in this section we have outlined a way
rewriting the problem in terms of new set of hybrid orbita
determined by theirreducible elements of the rotationa

FIG. 4. Symmetry decomposed bands of~12,0! and ~6,6! tube:
L50 ~solid line!, L51 ~dashed line!, L52 ~long dashed line!, and
L53 ~dotted line!.
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group for the specific carbon nanotube under considerat
This decomposes the problem into different, independ
block matrices, which are labeled byL ~the symmetry index
of the wave functions!, and has the advantage of significant
speeding up the code.

IV. CAPACITANCE OF CARBON NANOTUBE SYSTEMS

Having discussed the methodology and the symmetry
composition of the charge density, we present our cap
tance calculations for prototypical carbon nanotube syste
Specifically, we have investigated the capacitance of ne
two- and three-shelled nanotubes, the insertion of one nan
tube into another, a nanotube junction, and use of a nano
as a capacitance probe over a flat Al surface.35 We have
limited our studies to system in which there is no dire
current ~dc! flowing between any of the conductors, whic
means that there is negligible overlap between the electr
wave functions of the different conductors.

A. Multiwall tubes in a periodic geometry

For the first example, we consider thecapacitance per
unit lengthof two nested armchair nanotubes. Such syste
which corresponds to that of two multiwalled nanotu
shells, has recently been realized experimentally.36,37Specifi-
cally, we looked at the case of a metallic~5,5! nanotube
~conductor 1!, inside a larger (m,m) nanotube~conductor 2!,
with helicity indexm ranging from 12 to 22. For the smalles
~12,12! tube, the closest distance between atoms on the
ferent tubes is 9.1 Å. The atomic cutoff radius used was
Å, so that all the tubes arede factoseparate entities, excep
for presence of the real-space electrostatic potential wh
couples the two tubes. By connecting these tubes to
different reservoirs, a quantum system that is analogous
classical, concentric cylindrical capacitor is constructed.

The simulations were carried out in a periodic configu
tion, with one unit cell of a~5,5! tube with 40 carbon atoms
and one unit cell of the larger (n,n) tubes with 8n carbon
atoms. Here, the use of the symmetry analysis turned ou
be important as we were able to study systems up ton
522, which contains 216 atoms in the unit cell. Cent
simulation box sizes of 4034034.8 Å3 discretized on a grid
of 2563256332 and 8038034.8 Å3 on a grid of 512
3512332 were used. Each calculation used 200k points in
our sampling.

The electrochemical potential of the system is measu
with respect to an arbitrary reference potential, which we
as follows. First, by imposing aU(r )5Vgate in the longitu-
dinal direction on the walls of the container surrounding t
nanotube system, we are able to imposem1 andm2 on each
of the two tubes. These are set by changing the external
voltage on the reservoirs coupled to the tubes. We setm by
fixing Vgate50, and then findingm15m25mo such that the
two-tube system is neutral. This also determines the origin
our energy scale. The capacitance matrix coefficients
then determined as with respect tomo , as described in Sec
II. For example, if potentialm1→m11dm1, then the first
tube acquires chargedQ1, and the second tube acquire
8-6
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charge of the opposite signdQ2 in response. BothC11 and
C12 are then easily determined. Similarly,C21 and C22 are
found by changingm2. In discussing the capacitance resul
it will be convenient to label the capacitance coefficie
with (n,m) helicity indices of the nanotubes. For instanc
C(12,12),(5,5) gives the charge accumulation on the~12,12!
tube in response to a variation of the electrochemical po
tial of the ~5,5! tube reservoir.

First, we consider the case of a~5,5!/~12,12! nanotube
system, all in a metal container 40340 Å2 in the plane per-
pendicular to the nanotube axis. The capacitance respon
essential linear, to better than 1%, to applied voltages o
least 5 V, and so that well-defined voltage-independent
pacitance coefficients are readily obtained. For the~5,5!/
~12,12! system, capacitance coefficients per unit cell of

C1,15C(5,5)(5,5)50.0150 aF,

C2,15C(12,12)(5,5)520.0135 aF,

C1,25C(5,5)(12,12)520.0134 aF,

C2,25C(12,12)(12,12)50.0243 aF ~28!

were obtained (1 aF510218 F). If the system consisted o
two nested nanotubes in free space, the magnitude of all
coefficients would be the same. However, since we are d
ing with a finite system surrounded by a metal box, the ou
nanotube will interact with this box, as schematically illu
trated in Fig. 2. Thus, theC(12,12)(12,12)coefficient is expected
to be larger in magnitude. In response to the potential va
tion at ~12,12! tube, the induced charge on~5,5! amounts to
only 55% of the charge on~12,12!, indicating that the rest o
the induced charge is on the container. In contrast, if cha
is injected into the~5,5! tube, then the~12,12! tube does
most of the screening, with 89% of the induced charge fou
on the ~12,12! tube. We also find thatC(12,12)(5,5) and

FIG. 5. Capacitance vs tube radius for~5,5! shell inside (m,m)
tubes. The left~right! panel shows data for a 40340 Å2 (80
380 Å2) metal container enclosing the system. The analytical
sults are obtained as described in the text and the Appendix, an
marked with a solid line.
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C(5,5)(12,12)agree with each other to better than 1%, which
an important check on the quality of our calculated resu
Since the charge injected into the~5,5! tube is almost com-
pletely screened by the response charge of the~12,12! tube,
one can expect that theC(5,5),(5,5)will change only slightly as
the container size is increased. That is indeed what is
served, as shown in Fig. 5. As the metal container gets lar
the outer tube screens more of the charge on the inner t
and so the numerical values of the two coefficients beco
closer and closer. We estimate that in the infinite contai
limit, all ~5,5!/~12,12! capacitance coefficients will have
numerical magnitude of 0.015 aF.

Figure 6 shows the bias-induced variation in the cha
density and in the scaled electrostatic potentialu
5edU(r )/dm. From the induced charge-density plots, it
clear that the nanotubes polarize, at least to some extent.
polarization of the outer tube is much less when the elec
chemical potential is changed there, because a signifi
portion of the induced charge will be found on the metal g
surrounding the system. Note that when the charge is
jected into the inner tube, most of the characteristic poten
is confined to the space between the two nanotubes, whic
not the case when the outer tube is charged. By means of
characteristic potential, the charging mechanism may ea
be explained. Ifdm1 is applied to the first tube, the Ferm
energy shifts bydm1 and the band structure responds
shifting up by u1 dm1, where u1(r ) is averaged over the
volume of the tube. However,u1,1 inside the first tube, and
hence the tube acquires a net charge (12u)(dn1 /dE)dm1,
using the DOS of the tube averaged over the appropr
energy window. In the second tube, the electrochemical
tential stays the same, while the bands are shifted upw
by u1 dm1 @usingu1(r ) averaged over tube 2#. Hence some
bands empty out and the second tube acquires a net ch
2u(dn2 /dE)dm.

-
are

FIG. 6. ~Color online! The charge-density variationdQ ~upper
panels! and characteristic potentials~lower panels! for the nested
~5,5!/~12,12! system. The electrochemical potential variation is a
plied to the inner~5,5! tube~left panels! and the outer~12,12! tubes
~right panels!. From these plots,u'0.9 just inside the inner tube
andu'0.75 just inside the outer tube.
8-7
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POMORSKI, PASTEWKA, ROLAND, GUO, AND WANG PHYSICAL REVIEW B69, 115418 ~2004!
Estimating the value ofu from the plot of the character
istic potential~Fig. 6!, we see that the tube band structu
will shift relative to the Fermi energy by only;0.1 dm.
Within maximum applied bias of 5 V, this will not be suffi
cient to shift the Fermi energy of the~5,5! nanotube into the
energy region with a nonlinear DOS~recall that the armchai
tubes have linear bands over a large region about the F
level!. Therefore, the capacitance is also expected to be
stant in this voltage range, which is what we observe.

To gain further insight into the relation between the cla
sical and quantum capacitance coefficients, we have der
a simple analytical formula based on the Bu¨ttiker capaci-
tance formalism,3 outlined in the Appendix. The relevan
system geometry here consists of two thin, concentric cy
drical tubes of lengthl, which are treated as atwo-
dimensionalelectron gas. It is assumed that these tubes
not interact with the boundary container, and that the sys
is always neutral. All capacitance coefficients will therefo
have equal magnitudeC, with a value of

2peol

C
5 lnS R2

R1
D1S l1

R1
D1S l2

R2
D . ~29!

Here R1,2 are the radii of the outer and inner tube, resp
tively, l2154pe2(ds/dE) is the screening length, an
ds/dE is the density of states per unit area of the tube c
inder. These parameters were all estimated from theab initio
data. The factorsl1 /R1 andl2 /R2 all have a constant valu
of about 0.15 for the armchair tubes, since the DOS at
Fermi energy is approximately constant. We estimate
geometric parametersR1,2 as the average radius of the char
distribution of each nanotube, and these take on value
(8.1420.54) Å for a ~12,12! and (3.3910.73) Å for the
~5,5! tubes, respectively. With these parameters, we have
culated all the capacitive coefficients and plotted the res
in Fig. 5. Note that the agreement between this simple mo
and theab initio capacitive coefficients is quite good. Als
for the nested nanotube system, the quantum correctionsl/R
are quite significant and comparable to the classical loga
mic term. The classical limit, which is reached when the fi
term of Eq. ~29! is much larger than the screening term
which holds forR1@1.35R2, which is a limit that is not
reached for our largest tubes.

As a further test of the nanoscale capacitance, we h
considered the case of three nested nanotubes. Specifi
the three shells considered consisted of~36,0!, ~22,0!, and
~9,0! tubes, so that the innermost and outermost tubes
both metallic and separated from each other by a semic
ducting tube. In analogy to the classical case, one exp
that the semiconducting tube now acts as a dielectric,
will therefore increase the value of the capacitance. Since
intermediate~22,0! tube does not acquire substantial char
when a voltage is applied to its reservoir, we consider
capacitance coefficients between the~36,0! and ~9,0! tubes
only. In the absenceof any intermediate semiconductin
nanotube, the capacitance coefficients are

C(9,0),(9,0)50.0164 aF,

C(36,0),(9,0)520.0117 aF. ~30!
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In the presenceof an intermediate semiconducting tube, t
capacitance coefficients are

C(9,0),(9,0)50.0180 aF,

C(36,0),(9,0)520.0135 aF,

C(9,0),(36,0)520.0137 aF,

C(36,0),(36,0)50.0494 aF. ~31!

Clearly, the presence of the semiconducting tube enhan
the value of the cross capacitance by about 10%. We can
precisely how this comes about by examining the chang
charge density, as shown in Fig. 7. Clearly, even though
semiconducting tube does not acquire any net charge
electrons exhibit a polarization response such that a sm
dipole is induced about each carbon atom in response to
electric field due to the applied voltage. This increases
value of the capacitance in analogy to the classical cas38

Further increasing the number of semiconducting nanot
shells between the two metal nanotubes is therefore expe
to boost the numerical values of the capacitance coefficie
considerably.

B. Two-probe capacitance

We now turn to the case of a two-probe system, in wh
a capped~5,5! nanotube is inserted a finite distance into
open~12,12! nanotube, with the central axis of the two tub
coinciding, as shown in Fig. 8. The system now consists
two semi-infinite carbon nanotube leads, and a central reg
containing the junction. All in all, the system consisted
458 carbon atoms in a 40340334 Å3 to 40340364 Å3

box, discretized on a 25632563512 grid. For our calcula-
tions, we choose to measure the electrochemical pote
with respect to a state where the two nanotubes leads,

FIG. 7. ~Color online! Charge-density variation for the case
three nested nanotubes. Here, the bias voltage has been appl
the outermost~36,0! tube. Note the polarization response in th
form of induced dipoles on the intermediate~22,0! semiconducting
tube.
8-8
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CAPACITANCE, INDUCED CHARGES, AND BOUND . . . PHYSICAL REVIEW B69, 115418 ~2004!
closed in a box withVgate50, are as close to neutrality a
possible. The electrochemical potential for a neutral~12,12!
tube is found to be26.127 eV and26.071 eV for the neu-
tral ~5,5! tube. These potentials are very close, and we set
reference zero-bias potential to be halfway between th
two values. This implies a net gain of 0.0042 electrons
unit for the ~12,12! tube, and a loss of 0.0025 electrons p
unit cell from the~5,5! tube. Clearly, these extra charges a
so small that the nanotube system deviates only very slig
from perfect neutrality. As with the other calculation, th
charge-voltagecharacteristics are essentially linear with
1%, at least up to a bias of 1 V.

The charging of the tube is shown in Fig. 8, which al
shows both a gray-scale plot of the charge variation an
more quantitative measure in the form of a histogram plo
the change in the total charge accumulated on each nano
ring. We note that the~12,12! tube acquires a very larg
amount of charge on its terminal ring, which is most like
due to the presence of its dangling bonds. For the partic
configuration shown, the capacitance coefficients are

C(5,5)(5,5)50.1050 aF,

C(12,12)(5,5)520.0455 aF,

C(5,5)(12,12)520.0451 aF,

C(12,12)(12,12)50.1565 aF. ~32!

Again the capacitance coefficientsC(5,5)(12,12)andC(12,12)(5,5)
are seen to agree to within 1%. Note that nanotube, to wh
the bias is applied, gains charge along its entire length wi
the junction region. This self-charging is due to the capa
tive coupling between the nanotube and the surrounding b
Clearly, the values of theCaa terms will increaselinearly in
size as more and more of the charge density is included
the size of the container surrounding the system is increa

FIG. 8. ~Color online! Charging of~12,12!/~5,5! tube junction as
~5,5! tube is inserted into the open~12,12! tube, for a central simu-
lation box with 458 atoms. A10.272 eV bias is applied to the righ
~5,5! tube in~a,c!, and on the left~12,12! tube in~b,d!. Upper panel
show gray-scale plots of charge accumulation with~5,5! @~12,12!#
tube on the left~right! corresponding to charge addition and~12,12!
@~5,5!# tube subject to charge depletion. The lower panels disp
histogram plots of the charge accumulated on the tube rings, c
sponding to the geometry shown in~a,c!.
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the capacitance coupling between the container and
tubes will progressively decrease, and the charge accu
lated on the tube leads will decrease. For infinitely large b
the lead tubes would be neutral, all charge variation wo
occur in the vicinity of the junction, and to ensure the ne
trality of the system, all four capacitance matrix coefficien
would be expected to be equal in magnitude. In other wo
in the equivalent circuit diagram, only one capacitance m
trix element describing the tube-tube interaction wou
remain.39

As more and more of the~5,5! nanotube is inserted into
the ~12,12! tube, the capacitance of the system increases
ultimately the system behaves similar to the case of t
nested nanotube shells. This is shown in Fig. 9. The slop
this figure approaches a value of 0.012 aF, which is in r
sonable agreement with the 0.015 aF result obtained for
nanotube shells. Finally, we note that these results are
more or less independent from the dangling bonds presen
the ~12,12! tube, since saturating these bonds with hydrog
changes the results by less than 1%.

Having discussed the capacitance results, we addres
issue of theboundstates for this system. For a perfect, in
nite periodic nanotube, the only eigenstates present in
system are the Bloch states, which are continuous in ene
However, asemi-infinitetube may also have states of di
crete energy localized at the end of the tube. Such bo
states have been predicted, and their energies calculated
~5,5! capped tube.44 Localized states in carbon nanotube ti
have also been observed experimentally in scanning tun
ing microscopy experiments.45

From the standpoint of capacitance, only the rearran
ments of charge in thecontinuum statesshould matter, as
these are the only ones in contact with the reservoirs. Bu
calculate this correctly, one must take care of the bou
states properly. For our systems, it is computationally
difficult to find the localized eigenstates directly, as th
would entail solving the scattering problem for the syste
with no incoming/outgoing states.10 However, the symmetry

y
e-

FIG. 9. Capacitance (C(12,12)(5,5)) vs penetration depth for
capped~5,5! inside ~12,12! tube.
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POMORSKI, PASTEWKA, ROLAND, GUO, AND WANG PHYSICAL REVIEW B69, 115418 ~2004!
decomposition of the DOS equation~24! allows the bound
states to be readily identified. This is achieved by addin
complex parameterih to the denominator of Eq.~23! and
comparing the densitydnL /dE for different values ofh. In
Fig. 10, we showdnL /dE calculated with vanishingh and
with small but finiteh. We see that the two densities coi
cide closely, except for the appearance of additional v
sharp peaks. These new peaks appear only inside the
gap. We identify these peaks in density as being due
bound states. An electron in any one of these bound stat
trapped there permanently, since there are no lead stat
the same symmetry and energy through which it could le
the system. The bound states are primarily associated
the dangling bonds at the open end of the tube. We find
saturating these dangling bonds with hydrogen greatly
duces the number of bound states in the system.

Bound states may be dealt with by using Eq.~27! and
choosing the limit of contour integration such that they
main separated from the point where the contour touches
real axis. In this way, the bound states are counted as b
either completely occupied or completely empty. For

FIG. 10. ~Color online! Total ~top panel! and symmetry decom
posed~lower panels! DOS ~arbitrary units! for the ~12,12! open,
semi-infinite tube. Note the presence of bound states, which ap
for h5531025 a.u. ~dashed line!. The Fermi energy is a
26.10 eV~dashed vertical line!. Bound states are handled by kee
ing them either completely empty or fully occupied. For instance
populate the bound state for theL56 case, one needs to shift th
contour integral limit toEF10.82 eV. Alternatively, this state ma
be handled by choosing to terminate the contour integral limit
L56 contribution below the energy of the unoccupied bound st
resulting in that bound state being empty. Note that in our s
consistent calculation the energies of the bound states will s
depending on whether they are occupied or not.
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stance, from Fig. 10, it is evident that there are no bou
states for theL50 term of the charge density, so that
self-consistent treatment of these terms is straightforwa
Terms with L from L51 to L56, however, have varying
numbers of bound states in the gap, which may either
treated as being occupied by shifting the limit of the conto
integral of Eq.~22! to include them or simply to keep them
empty. Note also that the position of these bound states
shift slightly in the presence of a bias voltage. Unfortunate
the appropriate shifts in the contour limits, when these pr
lematic states are present, is somewhat arbitrary, but app
to be unavoidable within the model. Generally, we have u
the smallest possible shifts to eliminate the problem.
course, in a real system the occupation of the bound st
will largely depend on the way the system was prepared
by the inclusion of additional interactions.

To summarize our treatment of the bound states, we n
that our main purpose is to investigate the capacitan
which depends on charge rearrangements in the continu
states. To that end, we need to keep the bound states
constant occupation~either full or empty! as a bias voltage is
applied. The latter is accomplished by shifting the limits
the contour integral for the symmetry decomposed Gree
functions. Without such a treatment, it was found to be d
ficult to have proper numerical convergence.

C. Junction with conductance gap

So far, we have examined the capacitance propertie
well-separated nanotubes. Here, we examine the prope
of a nanotube junction where two different metallic tubes
joined together, and are characterized by a conductance
about the Fermi energy. Such a gap may arise if the band
the Fermi energy of the two tubes making up the junct
have a different symmetry. Such junctions are important
they form the basis of a number of nanodevices.40,41,42The
specific junction we consider is that of two semi-infini
~12,0! and ~6,6! tubes, as shown in Fig. 11. The junction
symmetric under a rotation of 2p/6 around the nanotube axi
and, hence, obeys theC6 rotation group symmetry. From
Fig. 4, it is clear that the~12,0! Fermi energy bands haveL
52 symmetry, while the~6,6! tubes haveL50 symmetry.
This implies that for an electron arriving at the junction via
propagating state with energy close to the Fermi ene
there are no propagating states of the same symmetry fo
electron to exit by. Because the junction does not break
sixfold symmetry, the electron cannot change its symme
index by scattering at the junction. Hence, the electron c
not propagate into the other tube, and will therefore unde
total internal reflection at the junction. Note that although
scattering states are allowed across the junction, evanes
waves are not forbidden. These, however, decay expon
tially away from the junction, and here appear to make
negligible contribution. Figure 12 illustrates the DOS and t
conductance of the tube.43

It is interesting to consider the capacitance of such a ju
tion as a possible element in a nanodevice. Note that if
perfect symmetry of this nanotube junction is broken, as
the case for asymmetric junctions, then the conductance
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CAPACITANCE, INDUCED CHARGES, AND BOUND . . . PHYSICAL REVIEW B69, 115418 ~2004!
would disappear and current would flow directly through t
device. In this case, it is no longer meaningful to define
device properties in terms of capacitance coefficients.
sults as a function of bias were obtained for a junction c
sisting of five 48-atom unit cells for each side of the jun
tion, i.e., 480 carbon atoms in total. A box of 40340
344 Å3 discretized by a grid of 25632563256 was used to
describe the system. Some attention has also been paid t
length dependence of the junction capacitance by exten
the length of~6,6! tube out to eight unit cells for a total o
624 carbon atoms in total.

The Fermi energies of the tubes are26.090 and
26.103 eV for the neutral~6,6! and ~12,0! tubes, respec-
tively. We could therefore, in principle, take26.097 eV as
the zero point for the electrochemical potential which is
close as possible to perfect neutrality. However, the~12,0!
nanotube is characterized by a tiny gap of 0.082 eV. Si
we wish to focus on the metallic behavior of the tubes,
have opted to shift the electrochemical potential relative
the gate by applying a13 eV to both potentials, which put
the equilibrium potential at23.078 eV. This shift also
moves the band structure of the tubes, so that a neutral
would be obtained by filling bands up to23.330 eV for the
~6,6! and23.367 eV for the~12,0! tube. Because the zero o
the electrochemical potential is now higher, the tubes acq
additional charges: 2.297 and 2.277 electrons for the~6,6!
and ~12,0! tubes, respectively. This represents a change
about 1% for each carbon atom in the junction.

We now examine how the charge in the junction re
ranges itself under a bias voltage. For this discussion, a s
metry decomposition is essential, because in this case
two nanotubes are in direct contact and the capacitance
not be simply obtained by counting the charge on each tu
First, we note that imposing a finite bias on the tubes d
not break the symmetry of the junction, and hence the c
ductance gap persists. Nonzero conductance will only oc
when the bias is large enough as to bring bands of the s
symmetryL into alignment. We, however, will limit our dis
cussion to the regime where this does not occur. Cons
what happens when a positive bias is applied to the
~12,0! tube. The resulting charge distribution is shown in F
13: charge is injected into theL52 states near the Ferm
energy. Such states exist in the~12,0! tube and decay som

FIG. 11. Structure of~12,0!~6,6! junction. Note the symmetry
arrangement of~5-7! pairs about the circumference of the tube
directly at the junction.
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distance into the~6,6! tube. Upon injection, the induce
charge with opposite sign appears in theL50 states, which
exist in the ~6,6! tube and decay some distance into t
~12,0! tube. Since each of these decaying components p
etrates some distance into the other tubes, the charge c
ponent will overlap across the junction. Charges are indu
in a similar fashion in theL52 states of the~12,0! tube if the
bias is applied to the~6,6! nanotube. The states withL
51,3 symmetry do not have any conducting bands near
Fermi energy, and so these will behave like semiconduct
and have a limited polarization response. So, while t
charge may undergo some rearrangement, the total ch
associated with these states is more than two orders of m
nitude smaller than the charge accumulated in theL50,2
states, as shown in Fig. 14.

From the discussion, it is clear that the capacitance ma
coefficients may be calculated from the charge accumula
in theL50,2 states: charge in theL50 state could only have
arrived through the~6,6! tube, while charge in theL52
states could only have arrived through the~12,0! tube. Be-
cause filled bands cannot carry current,46 the L51,3 states
will not accumulate any charge and hence can be igno
We label the voltage applied to the~12,0! tube asdV(12,0),
and that on the~6,6! tube asdV(6,6) . Similarly, dQ0,2 corre-
sponds to the changes in theL50,2 charge, respectively. Th
charge accumulated in the junction for these two appl

,

FIG. 12. ~Color online! ConductanceG ~top panel!, total DOS
~arbitrary units!, and symmetry decomposed DOS~lower panels!
for the ~12,0!/~6,6! junction. The electrochemical potential of th
junction has been shifted by13.0 eV, so that the Fermi energy i
located atEF523.078 eV ~dashed line in center!. To correctly
populate the bound states, the limits of the contour integrals w
chosen to be atEF for L50,2,3, andEF10.272 eV forL51. The
latter shifts compensate for slight shifts in the position of the bou
states under a bias voltage.
8-11
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voltages is plotted in Fig. 15, and note the linear depende
on the bias voltage. The capacitance coefficients, also plo
here, are then given by

C(6,6),(6,6)5
dQ0~dV(6,6)!

dV(6,6)
,

C(12,0),(6,6)5
dQ2~dV(6,6)!

dV(12,0)
,

C(6,6),(12,0)5
dQ0~dV(12,0)!

dV(6,6)
,

C(12,0),(12,0)5
dQ2~dV(12,0)!

dV(12,0)
. ~33!

Hence,C(6,6)(12,0) gives the charge arriving into the syste
from the ~6,6! reservoir in response to an electrochemi
change in the~12,0! reservoir. The volume of integration i
this case is the whole junction, i.e., all the C atoms within
simulation box. The small-bias capacitance coefficients
culated are

C(6,6)(6,6)50.205 aF,

C(12,0)(6,6)520.125 aF,

C(6,6)(12,0)520.127 aF,

C(12,0)(12,0)50.199 aF. ~34!

FIG. 13. Total and symmetry decomposed charge accumula
under a10.272 eV bias applied to the left~12,0! tube of the~12,0!/
~6,6! nanotube junction.
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These show behavior that is qualitatively similar to the c
efficients as for the other nanotube systems. Thus, the
charging components are larger and depend linearly on
tube length because of the interaction with the surround
box. We have checked this explicitly by calculating the c
pacitance coefficients as the number of~6,6! unit cells is
increased. As expected, all the capacitance coefficients
main constant except for theC(6,6)(6,6) coefficient which in-
creases linearly. We argue as before that all terms of
capacitance matrix will tend to the same absolute value
the size of the container box is increased, and this will
accomplished mostly through a reduction in the self-charg
terms. Therefore, we expect thatC(12,0),(6,6) and C(6,6),(12,0)
terms we have obtained for a finite box should be reasona
close to the corresponding coefficients for the junction
vacuum.39

Perhaps the most important feature for this system is
the capacitance value obtained for this nanotube junctio
very high, as compared to that of the nested nanotube sh
Indeed, units with such high capacitance values may turn
to be useful for memory devices. We believe that this feat
is due to the overlapping DOS for the induced charg
which boosts the capacitance even though the actual con
area is relatively small. Finally, we note that the investiga
~12,0!/~6,6! junction is perhaps the simplest system with
conductance gap, and that other similar junctions exist.
(n,m) tube hasJ-fold rotational symmetry if bothn and m
are divisible byJ. The necessary condition to be able to for
a symmetric junction is that the helicity indices of the seco
tube all have a common divisor withJ. For such a system, a
conductance gap may be the result depending on the sym
try of states in both tubes at the Fermi energy. A particula
interesting configuration would involve a system of tw

n

FIG. 14. Total and symmetry decomposed charge accumula
under a10.272 eV bias applied to the right~6,6! tube of the~12,0!/
~6,6! nanotube junction.
8-12
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CAPACITANCE, INDUCED CHARGES, AND BOUND . . . PHYSICAL REVIEW B69, 115418 ~2004!
tubes where a conductance gap is present, but where
tube is sufficiently larger than the other, so that direct ins
tion of one tube into the other is possible. Such a sys
would most likely see an extra enhancement in the cap
tance because it combines both the boost from the inse
with the effect of the overlapping DOS from the junction.

D. Nanotubes as scanning capacitance probes

Carbon nanotubes may well have a considerable futur
capacitance probes, and, indeed, the first experiments of
type are beginning to emerge.15 Hence, as a prototypical ex
ample, we have investigated the capacitance properties
capped~5,5! nanotube over a flat~100! Al surface, as shown
in Fig. 16. The simulation box size considered was
360 Å2 and enclosed 333, 535, or 939 Al electrodes.
The 939 system, which was the largest practical system
could investigate, consisted of 162 Al and 150 carbon ato
Typical capacitance calculations for this system took ab
24 h on eight processors of a small Pentium IV cluster.

In our investigations, we focused primarily on the cha
ing coefficients as a function of the distance from the
surface, with the bias applied to the nanotube only. The c
est approach between the nanotube probe and the su
considered was about 7.3 Å, so that again there was no
of current between the two components. At this distance,
charge accumulation is linear to within 1% for up
60.3 V, allowing for the extraction of well-defined capac
tance coefficients. At this distance, we measured

C(939)(5,5)520.0186 aF,

C(5,5)(5,5)50.0777 aF. ~35!

As may be expected, the self-charging coefficient is v
much larger than the cross-charging term. This is due to
strong interaction of the nanotube with the surrounding b
and the relatively large distance between the nanotube
the Al surface. The actual charge distribution is shown
Fig. 16. Several expected features are evident. On the n

FIG. 15. Charge accumulation~top panels! and capacitance co
efficients~lower panels! for the biased~12,0!/~6,6! junction. For the
left ~right! panels, the bias is applied to the~12,0! tube@~6,6! tube#.
Note that charge accumulation is quite linear and the capacita
coefficients more or less are constant over the applied bias-vo
regime.
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tube, most of the charge is located right at the tip, while
charge on the Al surface is well localized directly underne
the charged nanotube in the middle of the electrode.

Figure 17 summarizes the capacitance measurement
the nanotube over different electrodes as a function of
creasing distance. As expected, the cross-charging cap
tance increases as the size of the Al surface becomes la
and decreases as the distance between the nanotube an
surface is increased. To estimate the capacitance for the
of a nanotube over an infinite-sized Al surface, we have c
ried out a finite-size scaling analysis. As shown in the ins
there is almost perfect scaling with the value of the capa
tance coefficients versus 1/L2. The estimated capacitance c
efficient at the distance of closet approach is 0.0201
which is only up slightly from the 939 result. As a function
of distance, the data are well described by the fit

C(`3`)(5,5)~d!5~0.197/d20.0069! aF. ~36!

These capacitance coefficients are actually quite low, and
scanning capacitance applications one may well want to
crease the charging response. One obvious way to ach
this is to functionalize the ends of the nanotube, say, w
small metal clusters. To test this idea, we have placed an
atom on the nanotube axis both 3.28 Å inside and 1.65
outside the nanotube cap. When the Al atom is placed ins

ce
ge

FIG. 16. ~Color online! Accumulated charge on the 939 Al
electrode and~5,5! capped nanotube when a positive bias is appl
to the tube. Note that the charge accumulated on the electrod
response to the positive charging of the nanotube is concentrat
the middle of top electrode layer.
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POMORSKI, PASTEWKA, ROLAND, GUO, AND WANG PHYSICAL REVIEW B69, 115418 ~2004!
the tube, the calculated capacitance is20.0192 aF, which is
essentially the same as for the system without the Al at
This suggests that small metal clusters placed inside
nanotube are unlikely to enhance the response of the sys
because of the screening effects. Placing the Al atom out
the nanotube gives a capacitance coefficient of20.022 aF,
which represents a 14% increase in the response. He
placing small metal clusters on the nanotube tip is likely
have significantly enhanced the charging effects. As a fur
test, we have also investigated the effects of placing an o
gen atom~electron acceptor! outside the nanotube cluste
However, in this situation, the effect was similar to adding
Al atom to the nanotube. The measured capacitance co
cient was20.0199 aF, so that response is somewhat lo
than adding an Al atom. This difference presumably refle
the chemistry and DOS near the Fermi energy for
oxygen-doped system. Finally, for completeness, we show
Fig. 18 the induced charges for the different probe syste
examined, with the positions of the dopant atoms mark
Note that for all the systems, the charges induced in the
surface are primarily localized within the top layer only;
with previously discussed systems, there is evidence for c
siderable self-charging effects all the way along the en
length of the nanotube.

V. SUMMARY

In summary, we have computed the finite-bias capacita
coefficients for prototypical carbon nanotube systems, us
a recently developed DFT-NEGF approach. Specific syst
considered included nestedtwo- andthree-shell carbon nano-
tubes, the insertion of one nanotube into another, a nano
junction with a conductance gap, and the behavior of a na
tube as a capacitance probe. Generally speaking, these
tems consisted of several hundreds of atoms each. Henc

FIG. 17. Cross capacitance as a function of separation dist
for 333, 535, and 939 Al electrodes. The extrapolated infinit
width electrode result is included for comparison~triangles!. The
inset shows examples of fitting used to obtain the infinite wi
limit, with sample curves for three different distances shown.
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order to cut down on the computational costs and to be
analyze the induced charges, a symmetry decompositio
the charge density matrix in terms of the irreducible eleme
of the rotational group of the nanotube about its axis w
found to be particularly useful. For each of the systems c
sidered, we provide estimates of the capacitance coeffici
and an analysis of the induced charges. While the cap
tance for most systems is small~attofarad range!, its value
may be boosted by nesting and/or inserting nanotubes
each other. The capacitance of the~12,0!/~6,6! was also con-
siderably larger than that of the other systems, which is
effect that most likely derives from the overlapping DOS
each junction element. Quantum effects are clearly evid
for these nanotube systems, and derive mostly from the fi
DOS available. Hence, the notion of the electrochemical
pacitance is essential for understanding this important na
scale system.
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APPENDIX

Here we outline calculations of the quantum correctio
for the capacitance using the linear-response theory
Büttiker.3 It is assumed that the system consists of a num
of quantum conductors, each connected to its own reser
with its own electrochemical potential, so that the initi
electrostatic potentialU(@ma#,r ) is a complicated functiona
both of the position vector and the electrochemical pot
tials. A small variationdma in one of the electrochemica

ce

FIG. 18. ~Color online! Charging profiles as various impuritie
are added to the system. From top to bottom, we illustrate the
of no impurities present, an Al atom inside the tube, an Al at
outside and in front of the tube, and an O atom in front of the tu
8-14
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CAPACITANCE, INDUCED CHARGES, AND BOUND . . . PHYSICAL REVIEW B69, 115418 ~2004!
potentials brings the system to a new equilibrium state, s
that eU(@ma1dma#,r )2eU(@ma#,r )5edU(ma ,r )
5(auadma , whereua is thecharacteristic potential,

ua5e
dU~@ma#,r !

dma
U

dma50

. ~A1!

Charge rearranges itself in two different ways when the e
trochemical potential of a reservoir changes. First, there
the injected charge which is written in terms of filling up
the DOS for the incoming charge carriers:

dr in j ,a~r !5
dn~r ,a!

dE
dma . ~A2!

The injectivity is dn(r ,a)/dE, and gives the partial densit
of states associated with carriers arriving tor from reservoir
a after a variationdma . The sum over all the injectivities
from the different reservoirs gives the total local density
states. Second, in response to the injected charge, there
induced charge density generated by the change in the
trostatic potential inside the device. Within the Thoma
Fermi approximation the induced density is then related
the potential via

dr ind,a~r !52(
a

dn~a,r !

dE
edU~r !52

dn~r !

dE
uadma ,

~A3!

with dn(a,r )/dE representing theemissivity, i.e., the partial
density of states associated with carriers ejected into the
ervoir a from point r in response to a change in the electr
chemical potential. Generally, in the absence of magn
fields, the injectivity and emissivity are the same. The ch
acteristic potential is then obtained self-consistently by so
ing the modified Poisson’s equation

2¹2ua~r !54pe2S dn~r !

dE
ua2

dn~r ,a!

dE D . ~A4!

Once ua is known, the sum of the injected and induc
charges integrated over the volume of the conductor may
.

ys
s,

Q

n
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found. This gives the charge accumulationdQa on conductor
a due to changes in the electrochemical potential in reser
b. The capacitance matrix coefficients are then given by

Cab5
edQa

dmb
5e2E dr Fdab

dn~r ,a!

dE
2

dn~a,r !

dE
ub~r !G .

~A5!

We now have all the ingredients for calculating the capa
tance coefficients for simple geometrical situations. The s
plest case of a parallel-plate capacitor is described at len
in Ref. 3. In what follows, we will extend our analysis t
concentric cylindrical capacitors, without any edge effect

Consider two concentric cylinders of radiusR1 and R2.
Each cylinder is assumed to be thin and unable to scree
interior; the value of the potential insider the cylinder wa
is assumed to be constant. Equal and opposite charges
reside on each of the cylinders, so that the total charg
zero. Hence,u1(r), using cylindrical coordinatesr, satisfies
the cylindrical Poisson equation

1

r

]

]r Fr ]u~r!

]r G50. ~A6!

This is easily solved to obtainu(r)5a21a3 ln(r) for R1
,r,R2 and u(r)5a1 for r,R1 and u(r)5a4 for r
.R2. One can solve for the coefficientsai using the fact that
u1(r) is continuous at the walls, and its derivative disco
tinuous due to the presence of the sheet charge density in
cylinder. The accumulated sheet charge density is pro
tional to (12u1)ds1 /dE on cylinder 1 andu1 ds2 /dE on
cylinder 2, whereds1,2/dE are the respective densities o
states per unit area. The capacitance coefficients per
length are then obtained by inspection:

2p l

C
5 ln~R2 /R1!1l1 /R11l2 /R2 , ~A7!

with l1,2
2154pe2 ds1,2/dE, which is the formula quoted in

the main text.
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