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Surface-state conduction of medium-sized nanowires
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The electrical conduction of medium-sized nanowires are studied theoretically. As an example the conduc-
tance of silicon nanowires with facets is calculated using the Landauer formalism. The electrical currents in the
energy region of the bulk band gap are localized at the surfaces of the nanowires, which demonstrates highly
inhomogeneous current distribution in medium-sized nanowires. In addition there are cases that current distri-
butions are localized along the edges of the nanowires. This is due to the existence of the states localized at the
edges of wedges surrounded by two semi-infinite surfaces. The conditions for existence of the edge states are
discussed using one-dimensional models. The possibility of vertex states localized at intersections of edge lines
is also mentioned.
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[. INTRODUCTION ideal structures without reconstruction is that they are simple
systems and the energy regions of the bulk and surface states

We present a theoretical study on the electrical conductioare well separated. These make it easy to analyze numerical
of medium-sized nanowires. Here we mean by medium sizéesults and provide a clear view on the physics of medium-
the sizes which are larger than the atomic scales and ag&zed nanowires. The ideal wires are useful as a prototype.
smaller than the scales where surface effects can be ne- Of course, in order to compare theoretical results directly
glected. These ensure that when surface states exist on tHéth experiments, we must at least take account of the sur-
surfaces of nanowires, surface states and bulk states are wéce reconstructionIn addition, in the case of nanowires,
distinguishable, and their contributions to electrical conducthe finite-size effect of surfaces on the reconstructions and
tion are comparable. This can lead to highly inhomogeneou&he atomic structures at edges are not trivial things. For set-
current distribution in nanowires, which may affect othertling these things the geometrical optimization by density-
physical properties such as local temperature and heat cofiinctional calculations is desirable, which will be done in
duction. future works.

Another interest in medium-sized nanowires is the exis- N this paper the electronic states of the wires are ex-
tence of lines, on which different surfaces meet, if the surPressed by a tight-binding method. The conductance of
faces of nanowires are faceted. The existence of edges m&ectrode-wire-electrode systems is calculated by the Land-
give rise to new properties which are not understood by th@uer formalism. We find that the cgrrent distribution is chal-
simple sum of those of individual surfaces. The importancdzed on the surfaces of the nanowires in the energy region of

of edges has already emphasized, for example, in the elefle bulk band gap. The surfaces where localized current
trostatic potential and work functions of faceted metalflows and the extent of the current distribution vary with bias

nanowire$? and in the atomic structures of nanowifesy  Vvoltages. In addition some nanowires show the current dis-

this paper we emphasize it in the context of the electronidribution localized along the edges of the nanowire surfaces.

structures and conduction properties of medium-sized his is due to that the currents are carried by the states lo-

nanowires. We actually show a possibility of existence ofcalized at the edges and existing outside the energy regions

new states localized at the edges of nanowires. of the bulk and surface bands. The method and results of
We choose ideal silicon nanowires as model Systems thé]:umerical calculations are shown in Secs. Il and Ill. The

possess surface states. Silicon nanowires have so far studig@nditions for the existence of the edge states are discussed

extensively. Several examples of recent studies are as fold Sec. IV, where we refer to a possibility of the existence of

lows. The silicon nanowires composed of fullerenelike unitsvertex states which are localized at the vertices of nanopar-

were proposed by experimental observations and moleculafcles with facets.

orbital calculationd. The contacts between hydrogen-

terminated silicon nanowires and metal electratiasd the

geometric and electronic structures of silicon nanowires with Il. METHOD OF NUMERICAL CALCULATION

diameters less than 1 ntRef. 6) were studied theoretically

by density-functional methods. Recently the surface atomicI V\ie dcalculflte thlf. con(iucr:ancethof telec_troctje-rlanowllrterz]-
structures and band gaps of hydrogen-terminated silicoff €ctrode systems. Figure 1 shows the atomic structure ot the

nanowires with small diameters were directly observeoSyStem mainly discussed in this paper. The nanowire consists

experimentally, and silicon nanowires with pentagonal CrOSSof 1380 Si atoms. The atomic positions of the wire are ideal

; ; ; f the bulk geometry. The axis and length of the nano-
sections were predicted theoretic&llyn contrast to these ones o A . )
studies, the interest in the present paper is taken in thWire are thg 110] direction and 36.4 A, respectively. The six

surface-state conduction of nanowires. sides of the nanowire are (1}, (111), (111),(111),
The reason for the choice of the silicon nanowires in the(001), and (00] surfaces. The distances between thel()L 1
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FIG. 1. (a) Top view of a Si nanowire with Au electrodet) Energy (eV)
Cross section of the Si nanowire. Atoms in different layers are
superposed. FIG. 2. (8 Conductance spectrum of the Au-Si-Au system

shown in Fig. 1(b) Number of conduction channels of the isolated

and (111) surfaces and between tl{@01) and (00) sur-  Siwire.

faces are 25.4 A and 28.5 A, respectively. This type of

. 1 o
nanowires may be particularly interesting because their sidgdrobability of the systen’~'“The method of calculations is

are the most fundamentél11} and{001 surfaces of silicon. Similar to previous studies of surface-state conductor?

The small-diameter nanowires experimentally observed aréh€ Bloch states of the Au electrodes including evanescent
of this type, though their surfaces are terminated withWaves are obtained by diagonalizing the transfer matrix de-
hydrogens. fined in terms of the tight-binding Hamiltonian. By imposing
The electrodes are semi-infinite Au wires. The axis of theth€ appropriate boundary conditions expressed by the Bloch
Au wires is the[ 110] direction. The sides of the Au wires are States on the two Au electrons, the tight-binding Hamiltonian

(00D, (001), (110), and (1L0) surfaces. The distances be- of the electrode-nanowire-electrode system is reduced to a
' ' ' ' coupled linear equation. The transmission probability is ob-

tween the(001) and (00) surfaces and between the (ML  {zined by solving it.
and (110) surfaces are 36.7 A and 37.5 A, respectively. The
unit cell pf the electrodes consists of 257 atoms. _ _ IIl. RESULT OF NUMERICAL CALCULATION
The distance between the end planes of the Si nanowire
and the Au electrodes is 2.38 A. There are Au atoms at the Figure Za) shows a conductance spectrum of the system
centers of the end planes of the Au electrodes, but the centshown in Fig. 1. The Fermi energy of the isolated Si nano-
axis of the Si nanowire runs midway between the two kindswire is 0.41 eV, where we define zero in energy as the
of atoms nearest to the center. Therefore the shortest distancenduction-band top of bulk silicon in this paper. This defi-
between Si and Au atoms is 2.47 A which is a length be-nition of energy is convenient to recognize the energy region
tween the nearest-neighbor Si-Si and Au-Au distances.  of the bulk band gap. The conductance spectrum should be
The electronic states of the nanowire and electrodes arshown so that zero in bias voltage corresponds to the Fermi
expressed by tight-binding methods. Thp®s* method is  energy. But, for ease of the comparison with band structures,
used for the Si nanowir¥,which takes account ofsand 3  the conductance spectrum is also shown in the units of en-
orbitals and an additionalorbital denoted byg*. For the Au  ergy.
electrodes and the Au-Si interaction we use the tight-binding Figure Zb) shows the number of conduction channels of
parameters by Harrisa.The onsite energies of the Au elec- the isolated Si nanowire as a function of energy. The conduc-
trodes are adjusted so that the Fermi energy of the Au eledion channels are calculated by diagonalizing the transfer
trodes is equal to that of the Si nanowire. We neglect thamatrix for the isolated nanowire. The number of right-going
interactions between th&" orbital of Si and the orbitals of propagating channels is counted. If the contacts between the
Au. nanowire and electrodes are perfect and their electronic
The conductance is calculated using the Landauer formaktates are identical, the number of conduction channels mul-
ism, where conductance is obtained from the transmissiotiplied by the conductance unie2/h is equal to the conduc-
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tance of the perfect-contact system. The conductance values
shown in Fig. 2a) are much smaller than the perfect ones.
This result reflects the facts that the electronic states of the Si
nanowire and the Au electrodes are different, and their con-
tacts are not good mainly due to the lattice mismatch be-
tween them. But, since these spectra are roughly propor-
tional, it is considered that the conductance spectrum in Fig.
2(a) shows features intrinsic to the electronic states of the Si
nanowire. We calculated the conductance with shifting the
position of the Si nanowire in a direction perpendicular to
the wire axis, and verified that the conductance spectrum
does not qualitatively depend on the contact position of the

Si nanowire on the electrodes. We guess this result due to an 20
averaging effect by lattice mismatch when contact areas are
large. 104

As we will show the band structure of the Si nanowire
below, the energy regions below0.1 eV and above 1.2 eV

in the conductance spectrum of Figapcorrespond to the 01
bulk valence and conduction bands of the nanowire, respec-
tively. The energy regions of the surface-state bands of the 10

Si{111} and {001} surfaces lie between 0.3 and 1.1 eV and
between—0.5 and 0.2 eV, respectively. The broad peak near
the Fermi energy corresponds to the surface-state bands of
the {111} surface. Therefore at low bias voltages current
flows mainly through thg111} surfaces of the nanowires,
which leads to highly inhomogeneous current distribution.

In order to see this directly we calculate current distribu-
tion in the wire. Figure 3 shows current distributions corre-
sponding to the conductances(at — 0.5, (b) —0.1, (c) 0.6,
and(d) 1.0 eV. Current is calculated by the method used in a
previous papel® Figures 3a), 3(b), and 3c) show the dis-
tributions of current carried mainly by the bulk staté3)1}
surface states, ad11} surface states, respectively. The cur-
rent distributions of Figs. ®) and 3c) with energies in the
bulk band gap are not extended over all the facets of the
nanowire but localized on either of tH601} and{111} fac-
ets, which reflects the difference in energy regions of the
(001) and (111) surface-state bands. Such current distribu-
tions localized on individual facets of a nanowire are gener-
ally expected, because surface-state bands of different sur-
faces are generally located in different energy regions. In
addition we note that the current distribution in FigdBis
localized at the edges formed by twWall} surfaces. This
result suggests that the current is carried by edge states.

In order to show directly the existence of the edge states
we calculate the electronic structure of the isolated Si nano-
wire. Figure 4 shows the band structure. The densely lined
bands below-0.1 eV and above 1.2 eV are the bulk valence
and conduction bands, respectively. The band gap of the bulk
bands of the nanowire is slightly larger than that of the bulk FIG. 3. Current distributions in the Si nanowire. The distribu-

silicon due to the finite-size effettn the bulk band gap We fions on the cross sections at the middle two layers of the nanowire
see't.he surface-state bgnds of{th;a:l} and{001} surfaces. In 4o superposed. Energy(® —0.5, (b) —0.1, (c) 0.6, and(d) 1.0
addition two bands exist: one lies between #0801 and ey Closed and open circles show the currents flowing in the posi-
{113 surface-states bands and the other betweer{1h#  tve and reverse directions along the wire axis, respectively. The
surface-state bands and the bulk conduction bands. They aggdius of the circles is proportional to the absolute value of current.
doubly degenerated, corresponding to the existence of thehe outermost surface atoms are located on the almost hexagonal
two edges formed by tw¢111l surfaces. We verified that octagons. Units of length are A. These figures show currents carried
these bands do not exist in simple superposition of the banghainly by (a) bulk states(b) {001 surface stategc) {111} surface
structures of the two-dimensionél11) and (001) surfaces.  states, andd) edge states.

=20 -10 0 10 20
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S, andS,. The parallelogram shows a unit cell of the wedajeand

FIG. 4. Band structure of the isolated Si nanowig.and S, a, are primitive lattice vectors of the celb), (c) One-dimensional
indicate the surface-state bands of #141} and {001} surfaces, models for edge states. Left and right chains express the two sur-
respectively. Edge-state bands are labelecEpyand E,. Zero in faces of the wedge above. The joint of the chains corresponds to the

energy corresponds to the top of the valence bands of bulk silicorBdge regions; ande, of (b) are the onsite energies of the left and
ais the lattice constant of the wire. right chains, respectively-t; and —t, are the intrachain transfer

energies of the left and right chains, respectively,, is the inter-
Iphain transfer energ,, andD, are coefficients in a wave function
at thenth site in the left and right chains numbered from the edge.
SI‘he parameters i) are defined similarly.

A

Figure 5 shows a wave function of a state in the uppe
edge band. The wave function is localized at the edge
formed by two{111} surfaces. The wave functions in the
lower edge band are also localized at the edges of the tWo e calculate the electronic states of a nanowire with a
{11% surfaces. There is no edge state localized at the edgegnaller diameter. The cross section of the wire is smaller

formed by the{111} and {001} surfaces. than that in Fig. (b) by one double layer on each surface. In
this case also edge states appear, and the electronic structure

20 is not qualitatively different from those of the larger nano-
wire.

10- The numerical results above suggest that the appearance
of edge states depends on the combination of the two sur-
faces intersecting at edges, and there are conditions for the

0 existence of edge states. We discuss the conditions using
simple models in the following section.

-10

IV. DISCUSSION OF EDGE STATE
=20

' T ' Since the edge states are localized at the edges of nanow-

20 10 0 1020 ires, we can discuss them using a wedge shown in F&. 6
FIG. 5. Wave function of an edge state of the Si nanowire. Thenstead of nanowires. The wedge is surrounded by two semi-

distribution shows the state in th®, band in Fig. 4 at the center infinite surfaces labeled & andS,. Since they are surfaces

of the Brillouin zone. The radius of the circles is proportional to of a crystal, the unit cell of the wedge can be defined by two

the squared absolute value of the wave function. Units of length ar@rimitive lattice vectors parallel to the cross section of the

in A. wedge.
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When the angle between the two surfaces is large, the Next we discuss the asymmetrical case. The general con-
interaction between the surface states localized on each sutitions for existence of edge states are presented in Appendix
face is small except for the region near the edge. Therefora. Here we consider two special cases where the physical
we can use a one-dimensional model shown in Fig) 1 meanings of the existence conditions are clear. The first one
order to discuss the existence of the edge states. The left aigl thatt,=t,=t and £,#¢,. The inequality separates the
right chains express the two surfaces of the wedge. The joirdurface-state bands of the two surfaces. In this case also two
of the chains corresponds to the edge. We neglect the atomigtige states exist above the upper surface-state band and be-
structures in the direction along the edge line for simplicity,low the lower one, whera|<1 and |Ae/t|<a?+ 1/a?
because it is easy to take account of it by considering one- 2, wherea=t/t;, andAe=¢,—&,. The former condition
dimensional Bloch states along the edge direction. is the same as that of the symmetrical case. The latter one

The chain atoms may be regarded as the topmost atoms ffeans that the surface-states band of the two inequivalent
the surfaces or more generally the surface regions where swurfaces are not much separated in comparison to the band-
face states are localized. We assume sisgiebital for each  widths. Sincea is usually the order of 1, this means that the
atom. The onsite energies of the orbitals of surface 1 and &vo surface-state bands overlap. This may explain that no
are e; and e,, and their transfer energies aret; and  edge state exists at the edges of {hel} and{001} surfaces
—t,, respectively. The transfer energy between the edge abf the Si nanowire, because the surface-state bands of these
oms of surface 1 and 2 is-t;;. The coefficients of the surfaces are separated as seen from Fig. 4.
orbitals in linear combination of atomic orbitals aBg and The second special case is tha#t, ande;=¢,. In this
D, for surface 1 and 2, respectively. case the conditions for existence of edge states e

First we consider the symmetrical case whefet,=t  +1/82>2 andB?+ 1/a?>2 with |a|<1 and|8|<1, where
ande;=&,=0. When the two surfaces are decouplég (  a=t,/t;, and B=t,/t;,. These conditions mean the inter-
=0) or we consider independently two infinite surfacessurface interaction,, is stronger than the intrasurface ones
along the directions parallel to the surfaces, the en&gy t, andt, by a certain amount. In this case also two edge

the surface states is given by states exist above and below the broader band.
For the general case thgt#t, ande,#¢,, the physical
E=—2t coska, (4. meanings of the conditions are not so simple as those above.

ut it may qualitatively be concluded that the overlap of the

surface-state bands of the two surfaces and the strong pertur-

fche chain. When the t.WO surfaces are coupled .at the edge, Bation at the edge are important factors for existence of edge
is easy to show that ifty,|>|t|, two states localized at the oo

edge exist outside_the energy region O_f the surface-state ban The surface structures of real Si nanowires may be recon-
above. The energies and wave functions of the edge stat@$ ,cted. For example, the11} surfaces would be recon-

wherek anda are a wave number and the lattice constant o

are given by structed in the X1 structure if the surface area is not so
large than that the X7 reconstruction forms. In such a case
1 : . .
E=—t|\+—], (4.2  there are two atoms in the unit cell of the chain and we
A should consider a model shown in Figcb The transfer

ine1 N B _energies take the valuest, and —tg by turns. For simplic-
f.mdl C“_h}‘ A(—:litPtn_;\'h' Dy, Iétmd C|31_— itﬁl’ (;espetct ity we consider the case that the left and right chains are
Ively, wherei = =1Uty,. This result explains the edge sta esequivalent and all the onsite energies are the same. In this

formed at the edge of the (1) and (111) surfaces of the Si  case also it is possible to show the existence of edge states.

nanowire: there are two edge states, and one is below and thg,e derivation is shown in Appendix B.

other is above the energy region of the surface-state band of pye to the two inequivalent atoms in a unit cell, there are

the {111} surface. two surface-state bands and a band gap opens between them.
The edge states with- and — signs in the above may \when|t,,)>|tg|, two edge states exist above the upper band

regarded as bonding and antibonding states of the two sugnd below the lower band. This is similar to the case of one

face states, respectively. In fact whenj>[t| the edge atom in a unit cell. In addition two edge states exist in the

states are identical to molecular states of the two atoms at thgand gap, whert,) > |tg| and |ta|>]tg| or |t;]<|tg| and

ends of the left and right surfaces. [ta]<|tg|. The Si(111)2 1 surface has two surface-state
The condition|t, > |t| may not be satisfied in the usual pands in the bulk band gap and a band gap opens between

situation that two chains are simply connected, because them?1%2°Therefore there is possibility that two edge states

interchain interaction is usually weaker than the intrachairexist in the surface-state band gap at the edges formed by

one. But this condition may be satisfied at the edges ofyg {111} surfaces.

wedges. For example, as seen from Fifp)lthe distance We calculate the electronic states of nanowires with vari-

between the dangling bonds of the atoms nearest to the edggs axes and surfaces. Figure 7 shows an example. The axis

of the (111) and (111) surfaces is shorter than that betweenand surfaces of the wire are tf{01] direction and four

the dangling bonds on thd11} surfaces. This suggests that {100 surfaces, respectively. Figurebj shows the band

the intersurface interaction of dangling bonds is strongestructure. An edge-state band appears below the surface-state

than the intrasurface one, which leads to the existence of theands of the{100 surfaces. Since there are two dangling

edge states. bonds in a unit cell of th€1001X 1 surface, they form two
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surface-state bands. The surface-state bands shown in Fig.
7(b) are the lower bands. The upper ones are hidden in the
energy region of the bulk conduction bands. Therefore the
present case corresponds to the model in Fig. &n fact we
verified that there are states localized at the edges of the
nanowire above the upper surface-state bands. Edge states
are not found in the band gap between the lower and upper
surface-state bands in the present case.

When{110 surfaces are introduced to the wire as shown
in Fig. 7(c), the edge-state band disappears. This may be due
to little overlap of the surface-state bands of ti€0) and
(110 surfaces. When the nanowire is surrounded by only
four {110 surfaces, two edge-state bands appear above and
below the surface-state bands of tfidG surfaces, which
also corresponds to the model of Figap Detailed analyses
of the edge states of various nanowires will be presented in a
separate paper.

The edge states of wedges have already be studied in the
acoustic phonons of elastic contiftig>and the electrostatic
modes of dielectric wedgé$ The image states of an electron
bound near a right-angle corner surrounded by two surfaces
were also studied theoreticafly.The edge states in this pa-
per are different from these ones in the point that the present
ones are electronic localized states consisting of Shockley-
type surface states.

States induced by edges were also found theoretféify
and were observed experimentafty** at steps of surfaces.
The edge states of steps may be similar to the present ones in
the point that they appear by the violation of translation sym-
metry of surfaces at edges. Actually there are step states
essentially identical to the present edge states. But some step
states may be differentiated in the point that the wave func-
tions of the edge states at an intersection of two semi-infinite
surfaces decay on both the surfaces with increasing the dis-
tances from the intersection. Since the steps usually studied
are one or two atomic steps, it is difficult to determine
whether the wave function decays or propagates on the riser
surface of a step. Therefore, the surface states localized on
the riser surface may be regarded as edge states in the case of
step edges. They are decaying waves on the terrace but are
standing waves on the riser surface.

The present edge states can be classified as follows in the
context of complex band structurEsAn electron wave
function in a crystal has properties

P(r+a)=Nuy(r), =123, 4.3

whereg; is a primitive translational vector. Whén;| =1 for

all i, the state is a bulk state. The surface states localized on
the surfaces; parallel to the two vectora, andag consist of
waves with|]\ ;| # 1 and|\,|=|\3|=1. The surface states on
the surfaceS, parallel toa; anda; have similar properties.
Therefore the edge states localized at the intersection of
these two surfaceS,; and S, are composed of waves with
INi|#1, N5 #1, and|\5|=1. The pure edge states lie out-
side the bulk-state bands and the surface-state bands of both
the S; and S, surfaces. This classification leads to the exis-
tence of vertex states localized at the intersection of edge
lines parallel to the three translational vectors. The vertex
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states should be composed of waves Wiij#1 for all i, and the heat current conductivity, which also may be not
and lie outside the bulk-state, surface-state, and edge-stdd@mogeneous. These problems will be discussed in future
bands. We calculated the electronic state of a Si nanoparticorks.
and verified the existence of vertex states. The details of the
vertex states will be presented in a separate paper. ACKNOWLEDGMENTS
In the present paper we did not self-consistently calculate Numerical calculations were performed at supercomput-
the electronic states of the system. When we take account %frs at the Institute of Solid State Physics. This work is par-
the chgrge redistribution, foIIovymg changgs are expecteq.ia"y supported by a Grant-in-Aid from the Ministry of Edu-
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semiconductor contactsSince the present medium-sized Si
nanowires have partially filled surface states, the surface re-
gions of the nanowires are metallic. This inhomogeneity of
the nanowires may make the Schottky barrier more complex We present the conditions for existence of edge states in
than that in the simple metal-semiconductor contacts. the model of Fig. &). We seek solutions in the form of
Second is the charge transfer between inequivalent suc, =\]"*C, and D,=\}"'D; with |\{|<1 and|\,|<1.
faces. As shown in Fig. 4 the surface-state bands of the idedlhe tight-binding equations are reduced to
{111} surface lie above those of th@®01} surface. This

APPENDIX A

means that the charge transfer from {h&1} surfaces to the E=e1—t;(A1+1/Ny), (A1)
{001} surfaces occurs, and the former and latter surfaces are
positively and negatively ionized, respectively. The self- E=e,— (A2t 1/np), (A2)

consistency lifts and lowers tH801} and{111} surface-state

bands, respectively. This mutual approach of the surface-

state bands tends toward the appearance of edge states at el

edges of the inequivalent surfaces as discussed above.
However, it may be expected that the charge transfer does ED;=¢,D1—1AD1—11,Cy. (A4)

not occur between th¢l11} and {001} 2X 1 reconstructed These equations yield

surfaces, because the surface-state bands of both surfaces are

split into occupied and empty bands, and the Fermi energies NAr=ap, (A5)

of these surfaces do not much diffen this case edge states h _ _ .

ere a=t,/ty, and B=t,/t;,. Therefore the condition

may exist without charge transfer, because the surface-st Vi . .
bands of these surfaces overlap. a1013|<1 is necessary. From Eq&1) and(A2) we obtain

1 1
oty

We studied the surface-state conduction of medium-sizewhere Ae=¢;—¢,. The condition for existence of edge
nanowires. The conductance and electronic states of the idegiiates is that the curves in E¢85) and(A6) have points of
Si nanowires with111} and {100 facets were calculated as intersection in the regiop\1|<1 and|\,/<1 on the\;-\,
an example. The current distributions in the energy region oplane.
the bulk band gap are localized at either of {141} and The conditions for the case that there is one solution in
{100 surfaces, reflecting the difference in the energy regionsghe region|a8|<\,;<1 or —1<\;<—|ap| are
of these surface-state bands. In addition there are energy re-
gions where currents are carried by the edge states localized
at the intersections of twfil11} surfaces. These results dem- or
onstrate the highly inhomogeneous current distribution in
medium-sized nanowires. —0<Ae<y, (A8)
The existence conditions of edge states were discussgherey=|t,|(a?+1/82—2) ands=t;|(B2+1/a?—2). It
using the one-dimensional models. Though the conditiongan pe proved that it is impossible that two solutions exist in
vary with the details of surface structures, it may be con-gither region above.
cluded that the overlap of the surface-state bands of the two
surfaces forming a wedge and the strong perturbation at the APPENDIX B
edge are generally favorable for the existence of edge states.
Furthermore we pointed out the possibility of the existence We show that edge states exist in the model of F{g).6
of vertex states. We seek solutions in the form off=\""!C} and C?
The inhomogeneous distributions of the currents carried=A""'C? with |\|<1. Since the system is symmetrical
by surface states and edge states may affect other physicathout the center, we may choose tBd}=+C/ andDE=
properties of medium-sized nanowires. For examplez+ CE_ The tight-binding equations are reduced to
electron-phonon scatterings take place mainly at surfaces or
edges and the dissipation of energy is not simple. The tem-
perature distribution is determined by the generation of heat

EC1=81C1—I1)\1C1—t12D1, (A3)

Ae
t1o

V. CONCLUSION

—y<Ae<$, (A7)

t
Ecﬁz—tAcﬁ—ch, (B1)
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ECS=—t,CP—tg\Ch, (B2) tions of Eq.(B6) are substituted into it. These are the suffi-
cient conditions for the existence of the edge states.
and Since Eq.(B4) can be rewritten as
ECT=—taCT—t1 £ CY), (B3) E\2 ) 1
where we choose the origin of energy at the onsite energy (a =1+ptp{ At VA (B7)

The first two equations above yield . . o,
the solution\ with pA>0 exists ifg“<1. There are two

s 22 1 edge states for this solution. One is located in energy above
Ef=ta+tg+ialg| A+ ], (B4)  the upper surface-state band and the other below the lower
one.
and the first and third equations yield The solution withpA <0 exists wher|p|<1 andq®<1,
B or |p|>1 andg?®>1. This result comes from an inequality
tg C1
ti> C} q 22
f(=p)f(=1/p)=——(1-p)°<0. (B8)
This equation combined with Eq$B1) and (B2) yields a p

quadratic equation in This means that the solution exists between—p and

N2+ p(1—g?)A—q?=0, (B6) —1/p and we obtain

where p=tg/ty, and q=tg/t;,. Here we define thaf(x) p

=x2+p(1-g?)x—qg?. Since f(0)=—q?<0 and f(*1) y (A +P)(A+1/p)>0, (B9)
=(1=p)(1—q?), a necessary condition for the existence of

solutions with|\|<1 is that (1+p)(1—g%) >0 or (1-p) which is equivalent to that the right side in E&7) is posi-
X(1—g?>0. In addition, for real energf to exist, the tive. In this case also there are two edge states which are
right side of Eq.(B4) must not be negative when the solu- located in the band gap between the two surface-state bands.
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