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Surface-state conduction of medium-sized nanowires

Katsuyoshi Kobayashi
Department of Physics, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
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The electrical conduction of medium-sized nanowires are studied theoretically. As an example the conduc-
tance of silicon nanowires with facets is calculated using the Landauer formalism. The electrical currents in the
energy region of the bulk band gap are localized at the surfaces of the nanowires, which demonstrates highly
inhomogeneous current distribution in medium-sized nanowires. In addition there are cases that current distri-
butions are localized along the edges of the nanowires. This is due to the existence of the states localized at the
edges of wedges surrounded by two semi-infinite surfaces. The conditions for existence of the edge states are
discussed using one-dimensional models. The possibility of vertex states localized at intersections of edge lines
is also mentioned.
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I. INTRODUCTION

We present a theoretical study on the electrical conduc
of medium-sized nanowires. Here we mean by medium s
the sizes which are larger than the atomic scales and
smaller than the scales where surface effects can be
glected. These ensure that when surface states exist o
surfaces of nanowires, surface states and bulk states are
distinguishable, and their contributions to electrical cond
tion are comparable. This can lead to highly inhomogene
current distribution in nanowires, which may affect oth
physical properties such as local temperature and heat
duction.

Another interest in medium-sized nanowires is the ex
tence of lines, on which different surfaces meet, if the s
faces of nanowires are faceted. The existence of edges
give rise to new properties which are not understood by
simple sum of those of individual surfaces. The importan
of edges has already emphasized, for example, in the e
trostatic potential and work functions of faceted me
nanowires1,2 and in the atomic structures of nanowires.3 In
this paper we emphasize it in the context of the electro
structures and conduction properties of medium-si
nanowires. We actually show a possibility of existence
new states localized at the edges of nanowires.

We choose ideal silicon nanowires as model systems
possess surface states. Silicon nanowires have so far stu
extensively. Several examples of recent studies are as
lows. The silicon nanowires composed of fullerenelike un
were proposed by experimental observations and molecu
orbital calculations.4 The contacts between hydroge
terminated silicon nanowires and metal electrodes,5 and the
geometric and electronic structures of silicon nanowires w
diameters less than 1 nm~Ref. 6! were studied theoretically
by density-functional methods. Recently the surface ato
structures and band gaps of hydrogen-terminated sili
nanowires with small diameters were directly observ
experimentally,7 and silicon nanowires with pentagonal cro
sections were predicted theoretically.8 In contrast to these
studies, the interest in the present paper is taken in
surface-state conduction of nanowires.

The reason for the choice of the silicon nanowires in
0163-1829/2004/69~11!/115338~8!/$22.50 69 1153
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ideal structures without reconstruction is that they are sim
systems and the energy regions of the bulk and surface s
are well separated. These make it easy to analyze nume
results and provide a clear view on the physics of mediu
sized nanowires. The ideal wires are useful as a prototyp

Of course, in order to compare theoretical results direc
with experiments, we must at least take account of the
face reconstructions.9 In addition, in the case of nanowires
the finite-size effect of surfaces on the reconstructions
the atomic structures at edges are not trivial things. For
tling these things the geometrical optimization by densi
functional calculations is desirable, which will be done
future works.

In this paper the electronic states of the wires are
pressed by a tight-binding method. The conductance
electrode-wire-electrode systems is calculated by the La
auer formalism. We find that the current distribution is loc
ized on the surfaces of the nanowires in the energy regio
the bulk band gap. The surfaces where localized curr
flows and the extent of the current distribution vary with bi
voltages. In addition some nanowires show the current
tribution localized along the edges of the nanowire surfac
This is due to that the currents are carried by the states
calized at the edges and existing outside the energy reg
of the bulk and surface bands. The method and results
numerical calculations are shown in Secs. II and III. T
conditions for the existence of the edge states are discu
in Sec. IV, where we refer to a possibility of the existence
vertex states which are localized at the vertices of nano
ticles with facets.

II. METHOD OF NUMERICAL CALCULATION

We calculate the conductance of electrode-nanow
electrode systems. Figure 1 shows the atomic structure o
system mainly discussed in this paper. The nanowire cons
of 1380 Si atoms. The atomic positions of the wire are id
ones of the bulk geometry. The axis and length of the na
wire are the@110# direction and 36.4 Å, respectively. The s
sides of the nanowire are (111̄), (1̄11̄), (1̄11),(11̄1̄),
(001), and (001̄) surfaces. The distances between the (111̄)
©2004 The American Physical Society38-1
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and (1̄11̄) surfaces and between the~001! and (001̄) sur-
faces are 25.4 Å and 28.5 Å, respectively. This type
nanowires may be particularly interesting because their s
are the most fundamental$111% and$001% surfaces of silicon.
The small-diameter nanowires experimentally observed
of this type, though their surfaces are terminated w
hydrogens.7

The electrodes are semi-infinite Au wires. The axis of
Au wires is the@110# direction. The sides of the Au wires ar
~001!, ~001̄), (11̄0), and (1̄10) surfaces. The distances b
tween the~001! and (001̄) surfaces and between the (110̄)
and (1̄10) surfaces are 36.7 Å and 37.5 Å, respectively. T
unit cell of the electrodes consists of 257 atoms.

The distance between the end planes of the Si nano
and the Au electrodes is 2.38 Å. There are Au atoms at
centers of the end planes of the Au electrodes, but the ce
axis of the Si nanowire runs midway between the two kin
of atoms nearest to the center. Therefore the shortest dist
between Si and Au atoms is 2.47 Å which is a length b
tween the nearest-neighbor Si-Si and Au-Au distances.

The electronic states of the nanowire and electrodes
expressed by tight-binding methods. Thesp3s* method is
used for the Si nanowire,10 which takes account of 3s and 3p
orbitals and an additionals orbital denoted bys* . For the Au
electrodes and the Au-Si interaction we use the tight-bind
parameters by Harrison.11 The onsite energies of the Au ele
trodes are adjusted so that the Fermi energy of the Au e
trodes is equal to that of the Si nanowire. We neglect
interactions between thes* orbital of Si and the orbitals o
Au.

The conductance is calculated using the Landauer form
ism, where conductance is obtained from the transmiss

FIG. 1. ~a! Top view of a Si nanowire with Au electrodes.~b!
Cross section of the Si nanowire. Atoms in different layers
superposed.
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probability of the system.12–14The method of calculations is
similar to previous studies of surface-state conduction.15–18

The Bloch states of the Au electrodes including evanesc
waves are obtained by diagonalizing the transfer matrix
fined in terms of the tight-binding Hamiltonian. By imposin
the appropriate boundary conditions expressed by the B
states on the two Au electrons, the tight-binding Hamilton
of the electrode-nanowire-electrode system is reduced
coupled linear equation. The transmission probability is o
tained by solving it.

III. RESULT OF NUMERICAL CALCULATION

Figure 2~a! shows a conductance spectrum of the syst
shown in Fig. 1. The Fermi energy of the isolated Si nan
wire is 0.41 eV, where we define zero in energy as
conduction-band top of bulk silicon in this paper. This de
nition of energy is convenient to recognize the energy reg
of the bulk band gap. The conductance spectrum should
shown so that zero in bias voltage corresponds to the Fe
energy. But, for ease of the comparison with band structu
the conductance spectrum is also shown in the units of
ergy.

Figure 2~b! shows the number of conduction channels
the isolated Si nanowire as a function of energy. The cond
tion channels are calculated by diagonalizing the trans
matrix for the isolated nanowire. The number of right-goi
propagating channels is counted. If the contacts between
nanowire and electrodes are perfect and their electro
states are identical, the number of conduction channels m
tiplied by the conductance unit 2e2/h is equal to the conduc

e
FIG. 2. ~a! Conductance spectrum of the Au-Si-Au syste

shown in Fig. 1.~b! Number of conduction channels of the isolate
Si wire.
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SURFACE-STATE CONDUCTION OF MEDIUM-SIZED . . . PHYSICAL REVIEW B69, 115338 ~2004!
tance of the perfect-contact system. The conductance va
shown in Fig. 2~a! are much smaller than the perfect one
This result reflects the facts that the electronic states of th
nanowire and the Au electrodes are different, and their c
tacts are not good mainly due to the lattice mismatch
tween them. But, since these spectra are roughly pro
tional, it is considered that the conductance spectrum in
2~a! shows features intrinsic to the electronic states of the
nanowire. We calculated the conductance with shifting
position of the Si nanowire in a direction perpendicular
the wire axis, and verified that the conductance spect
does not qualitatively depend on the contact position of
Si nanowire on the electrodes. We guess this result due t
averaging effect by lattice mismatch when contact areas
large.

As we will show the band structure of the Si nanow
below, the energy regions below20.1 eV and above 1.2 eV
in the conductance spectrum of Fig. 2~a! correspond to the
bulk valence and conduction bands of the nanowire, resp
tively. The energy regions of the surface-state bands of
Si$111% and $001% surfaces lie between 0.3 and 1.1 eV a
between20.5 and 0.2 eV, respectively. The broad peak n
the Fermi energy corresponds to the surface-state band
the $111% surface. Therefore at low bias voltages curre
flows mainly through the$111% surfaces of the nanowires
which leads to highly inhomogeneous current distribution

In order to see this directly we calculate current distrib
tion in the wire. Figure 3 shows current distributions cor
sponding to the conductances at~a! 20.5, ~b! 20.1, ~c! 0.6,
and~d! 1.0 eV. Current is calculated by the method used i
previous paper.15 Figures 3~a!, 3~b!, and 3~c! show the dis-
tributions of current carried mainly by the bulk states,$001%
surface states, and$111% surface states, respectively. The cu
rent distributions of Figs. 3~b! and 3~c! with energies in the
bulk band gap are not extended over all the facets of
nanowire but localized on either of the$001% and $111% fac-
ets, which reflects the difference in energy regions of
~001! and ~111! surface-state bands. Such current distrib
tions localized on individual facets of a nanowire are gen
ally expected, because surface-state bands of different
faces are generally located in different energy regions
addition we note that the current distribution in Fig. 3~d! is
localized at the edges formed by two$111% surfaces. This
result suggests that the current is carried by edge states

In order to show directly the existence of the edge sta
we calculate the electronic structure of the isolated Si na
wire. Figure 4 shows the band structure. The densely li
bands below20.1 eV and above 1.2 eV are the bulk valen
and conduction bands, respectively. The band gap of the
bands of the nanowire is slightly larger than that of the b
silicon due to the finite-size effect.7 In the bulk band gap we
see the surface-state bands of the$111% and$001% surfaces. In
addition two bands exist: one lies between the$001% and
$111% surface-states bands and the other between the$111%
surface-state bands and the bulk conduction bands. The
doubly degenerated, corresponding to the existence of
two edges formed by two$111% surfaces. We verified tha
these bands do not exist in simple superposition of the b
structures of the two-dimensional~111! and ~001! surfaces.
11533
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FIG. 3. Current distributions in the Si nanowire. The distrib
tions on the cross sections at the middle two layers of the nano
are superposed. Energy is~a! 20.5, ~b! 20.1, ~c! 0.6, and~d! 1.0
eV. Closed and open circles show the currents flowing in the p
tive and reverse directions along the wire axis, respectively.
radius of the circles is proportional to the absolute value of curre
The outermost surface atoms are located on the almost hexag
octagons. Units of length are Å. These figures show currents ca
mainly by ~a! bulk states,~b! $001% surface states,~c! $111% surface
states, and~d! edge states.
8-3
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KATSUYOSHI KOBAYASHI PHYSICAL REVIEW B 69, 115338 ~2004!
Figure 5 shows a wave function of a state in the up
edge band. The wave function is localized at the ed
formed by two $111% surfaces. The wave functions in th
lower edge band are also localized at the edges of the
$111% surfaces. There is no edge state localized at the ed
formed by the$111% and $001% surfaces.

FIG. 4. Band structure of the isolated Si nanowire.S1 and S2

indicate the surface-state bands of the$111% and $001% surfaces,
respectively. Edge-state bands are labeled byE1 and E2. Zero in
energy corresponds to the top of the valence bands of bulk sili
a is the lattice constant of the wire.

FIG. 5. Wave function of an edge state of the Si nanowire. T
distribution shows the state in theE2 band in Fig. 4 at the cente
of the Brillouin zone. The radius of the circles is proportional
the squared absolute value of the wave function. Units of length
in Å.
11533
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We calculate the electronic states of a nanowire with
smaller diameter. The cross section of the wire is sma
than that in Fig. 1~b! by one double layer on each surface.
this case also edge states appear, and the electronic stru
is not qualitatively different from those of the larger nan
wire.

The numerical results above suggest that the appear
of edge states depends on the combination of the two
faces intersecting at edges, and there are conditions for
existence of edge states. We discuss the conditions u
simple models in the following section.

IV. DISCUSSION OF EDGE STATE

Since the edge states are localized at the edges of na
ires, we can discuss them using a wedge shown in Fig.~a!
instead of nanowires. The wedge is surrounded by two se
infinite surfaces labeled asS1 andS2. Since they are surface
of a crystal, the unit cell of the wedge can be defined by t
primitive lattice vectors parallel to the cross section of t
wedge.

n,

e

re

FIG. 6. ~a! Cross section of a wedge surrounded by two surfa
S1 andS2. The parallelogram shows a unit cell of the wedge.a1 and
a2 are primitive lattice vectors of the cell.~b!, ~c! One-dimensional
models for edge states. Left and right chains express the two
faces of the wedge above. The joint of the chains corresponds to
edge region.«1 and«2 of ~b! are the onsite energies of the left an
right chains, respectively.2t1 and 2t2 are the intrachain transfe
energies of the left and right chains, respectively.2t12 is the inter-
chain transfer energy.Cn andDn are coefficients in a wave function
at thenth site in the left and right chains numbered from the ed
The parameters of~c! are defined similarly.
8-4
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SURFACE-STATE CONDUCTION OF MEDIUM-SIZED . . . PHYSICAL REVIEW B69, 115338 ~2004!
When the angle between the two surfaces is large,
interaction between the surface states localized on each
face is small except for the region near the edge. There
we can use a one-dimensional model shown in Fig. 6~b! in
order to discuss the existence of the edge states. The lef
right chains express the two surfaces of the wedge. The j
of the chains corresponds to the edge. We neglect the ato
structures in the direction along the edge line for simplic
because it is easy to take account of it by considering o
dimensional Bloch states along the edge direction.

The chain atoms may be regarded as the topmost atom
the surfaces or more generally the surface regions where
face states are localized. We assume singles orbital for each
atom. The onsite energies of the orbitals of surface 1 an
are «1 and «2, and their transfer energies are2t1 and
2t2, respectively. The transfer energy between the edge
oms of surface 1 and 2 is2t12. The coefficients of the
orbitals in linear combination of atomic orbitals areCn and
Dn for surface 1 and 2, respectively.

First we consider the symmetrical case wheret15t2[t
and «15«250. When the two surfaces are decoupled (t12
50) or we consider independently two infinite surfac
along the directions parallel to the surfaces, the energyE of
the surface states is given by

E522t coska, ~4.1!

wherek anda are a wave number and the lattice constant
the chain. When the two surfaces are coupled at the edg
is easy to show that ifut12u.utu, two states localized at th
edge exist outside the energy region of the surface-state
above. The energies and wave functions of the edge s
are given by

E52tS l1
1

l D , ~4.2!

and Cn5ln21C1 , Dn5ln21D1, and C156D1, respec-
tively, wherel56t/t12. This result explains the edge stat
formed at the edge of the (111̄) and (11̄1̄) surfaces of the S
nanowire: there are two edge states, and one is below an
other is above the energy region of the surface-state ban
the $111% surface.

The edge states with1 and 2 signs in the above may
regarded as bonding and antibonding states of the two
face states, respectively. In fact whenut12u@utu the edge
states are identical to molecular states of the two atoms a
ends of the left and right surfaces.

The conditionut12u.utu may not be satisfied in the usu
situation that two chains are simply connected, because
interchain interaction is usually weaker than the intrach
one. But this condition may be satisfied at the edges
wedges. For example, as seen from Fig. 1~b! the distance
between the dangling bonds of the atoms nearest to the
of the (11̄1) and (11̄1̄) surfaces is shorter than that betwe
the dangling bonds on the$111% surfaces. This suggests th
the intersurface interaction of dangling bonds is stron
than the intrasurface one, which leads to the existence o
edge states.
11533
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Next we discuss the asymmetrical case. The general c
ditions for existence of edge states are presented in Appe
A. Here we consider two special cases where the phys
meanings of the existence conditions are clear. The first
is that t15t2[t and «1Þ«2. The inequality separates th
surface-state bands of the two surfaces. In this case also
edge states exist above the upper surface-state band an
low the lower one, whenuau,1 and uD«/tu,a211/a2

22, wherea5t/t12 andD«5«12«2. The former condition
is the same as that of the symmetrical case. The latter
means that the surface-states band of the two inequiva
surfaces are not much separated in comparison to the b
widths. Sincea is usually the order of 1, this means that th
two surface-state bands overlap. This may explain that
edge state exists at the edges of the$111% and$001% surfaces
of the Si nanowire, because the surface-state bands of t
surfaces are separated as seen from Fig. 4.

The second special case is thatt1Þt2 and«15«2. In this
case the conditions for existence of edge states area2

11/b2.2 andb211/a2.2 with uau,1 andubu,1, where
a5t1 /t12 and b5t2 /t12. These conditions mean the inte
surface interactiont12 is stronger than the intrasurface on
t1 and t2 by a certain amount. In this case also two ed
states exist above and below the broader band.

For the general case thatt1Þt2 and«1Þ«2, the physical
meanings of the conditions are not so simple as those ab
But it may qualitatively be concluded that the overlap of t
surface-state bands of the two surfaces and the strong pe
bation at the edge are important factors for existence of e
states.

The surface structures of real Si nanowires may be rec
structed. For example, the$111% surfaces would be recon
structed in the 231 structure if the surface area is not s
large than that the 737 reconstruction forms. In such a cas
there are two atoms in the unit cell of the chain and
should consider a model shown in Fig. 6~c!. The transfer
energies take the values2tA and2tB by turns. For simplic-
ity we consider the case that the left and right chains
equivalent and all the onsite energies are the same. In
case also it is possible to show the existence of edge st
The derivation is shown in Appendix B.

Due to the two inequivalent atoms in a unit cell, there a
two surface-state bands and a band gap opens between
Whenut12u.utBu, two edge states exist above the upper ba
and below the lower band. This is similar to the case of o
atom in a unit cell. In addition two edge states exist in t
band gap, whenut12u.utBu and utAu.utBu or ut12u,utBu and
utAu,utBu. The Si(111)231 surface has two surface-sta
bands in the bulk band gap and a band gap opens betw
them.9,19,20Therefore there is possibility that two edge sta
exist in the surface-state band gap at the edges formed
two $111% surfaces.

We calculate the electronic states of nanowires with va
ous axes and surfaces. Figure 7 shows an example. The
and surfaces of the wire are the@001# direction and four
$100% surfaces, respectively. Figure 7~b! shows the band
structure. An edge-state band appears below the surface-
bands of the$100% surfaces. Since there are two danglin
bonds in a unit cell of the~100!131 surface, they form two
8-5
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KATSUYOSHI KOBAYASHI PHYSICAL REVIEW B 69, 115338 ~2004!
FIG. 7. ~a! Cross section and~b! band structure of a Si nanowir
with four $100% surfaces.~c! Cross section of a nanowire su
rounded by four$100% and$110% surfaces. The wire axis of both th
wires is parallel to the@001# direction.S1 andE1 in the band struc-
ture denote the surface-state bands of the$100% surfaces and the
edge-state band, respectively,a is the lattice constant of the wire.
11533
surface-state bands. The surface-state bands shown in
7~b! are the lower bands. The upper ones are hidden in
energy region of the bulk conduction bands. Therefore
present case corresponds to the model in Fig. 6~c!. In fact we
verified that there are states localized at the edges of
nanowire above the upper surface-state bands. Edge s
are not found in the band gap between the lower and up
surface-state bands in the present case.

When$110% surfaces are introduced to the wire as sho
in Fig. 7~c!, the edge-state band disappears. This may be
to little overlap of the surface-state bands of the~100! and
~110! surfaces. When the nanowire is surrounded by o
four $110% surfaces, two edge-state bands appear above
below the surface-state bands of the$110% surfaces, which
also corresponds to the model of Fig. 6~a!. Detailed analyses
of the edge states of various nanowires will be presented
separate paper.

The edge states of wedges have already be studied in
acoustic phonons of elastic continua21–23and the electrostatic
modes of dielectric wedges.24 The image states of an electro
bound near a right-angle corner surrounded by two surfa
were also studied theoretically.25 The edge states in this pa
per are different from these ones in the point that the pres
ones are electronic localized states consisting of Shock
type surface states.

States induced by edges were also found theoretically26,27

and were observed experimentally28–34 at steps of surfaces
The edge states of steps may be similar to the present on
the point that they appear by the violation of translation sy
metry of surfaces at edges. Actually there are step st
essentially identical to the present edge states. But some
states may be differentiated in the point that the wave fu
tions of the edge states at an intersection of two semi-infi
surfaces decay on both the surfaces with increasing the
tances from the intersection. Since the steps usually stu
are one or two atomic steps, it is difficult to determin
whether the wave function decays or propagates on the
surface of a step. Therefore, the surface states localize
the riser surface may be regarded as edge states in the ca
step edges. They are decaying waves on the terrace bu
standing waves on the riser surface.

The present edge states can be classified as follows in
context of complex band structures.35 An electron wave
function in a crystal has properties

c~r1ai !5l ic~r !, i 51,2,3, ~4.3!

whereai is a primitive translational vector. Whenul i u51 for
all i, the state is a bulk state. The surface states localized
the surfaceS1 parallel to the two vectorsa2 anda3 consist of
waves withul1uÞ1 andul2u5ul3u51. The surface states o
the surfaceS2 parallel toa1 anda3 have similar properties
Therefore the edge states localized at the intersection
these two surfacesS1 and S2 are composed of waves wit
ul1uÞ1, ul2uÞ1, andul3u51. The pure edge states lie ou
side the bulk-state bands and the surface-state bands of
the S1 andS2 surfaces. This classification leads to the ex
tence of vertex states localized at the intersection of e
lines parallel to the three translational vectors. The ver
8-6



st
tic
th

la
nt
te
l-

Si
r
o
le

su
de

a
lf

c
a

o

es
gi
s
st

ze
id
s
o

on
y
liz
-
i

ss
on
n
tw
t

at
c

ie
si
le
s
em
e

not
ture

ut-
ar-
-

s in
f

e

in

t in

al

SURFACE-STATE CONDUCTION OF MEDIUM-SIZED . . . PHYSICAL REVIEW B69, 115338 ~2004!
states should be composed of waves withul i uÞ1 for all i,
and lie outside the bulk-state, surface-state, and edge-
bands. We calculated the electronic state of a Si nanopar
and verified the existence of vertex states. The details of
vertex states will be presented in a separate paper.

In the present paper we did not self-consistently calcu
the electronic states of the system. When we take accou
the charge redistribution, following changes are expec
One is the Schottky barrier formation at meta
semiconductor contacts.5 Since the present medium-sized
nanowires have partially filled surface states, the surface
gions of the nanowires are metallic. This inhomogeneity
the nanowires may make the Schottky barrier more comp
than that in the simple metal-semiconductor contacts.

Second is the charge transfer between inequivalent
faces. As shown in Fig. 4 the surface-state bands of the i
$111% surface lie above those of the$001% surface. This
means that the charge transfer from the$111% surfaces to the
$001% surfaces occurs, and the former and latter surfaces
positively and negatively ionized, respectively. The se
consistency lifts and lowers the$001% and$111% surface-state
bands, respectively. This mutual approach of the surfa
state bands tends toward the appearance of edge states
edges of the inequivalent surfaces as discussed above.

However, it may be expected that the charge transfer d
not occur between the$111% and $001% 231 reconstructed
surfaces, because the surface-state bands of both surfac
split into occupied and empty bands, and the Fermi ener
of these surfaces do not much differ.9 In this case edge state
may exist without charge transfer, because the surface-
bands of these surfaces overlap.

V. CONCLUSION

We studied the surface-state conduction of medium-si
nanowires. The conductance and electronic states of the
Si nanowires with$111% and $100% facets were calculated a
an example. The current distributions in the energy region
the bulk band gap are localized at either of the$111% and
$100% surfaces, reflecting the difference in the energy regi
of these surface-state bands. In addition there are energ
gions where currents are carried by the edge states loca
at the intersections of two$111% surfaces. These results dem
onstrate the highly inhomogeneous current distribution
medium-sized nanowires.

The existence conditions of edge states were discu
using the one-dimensional models. Though the conditi
vary with the details of surface structures, it may be co
cluded that the overlap of the surface-state bands of the
surfaces forming a wedge and the strong perturbation at
edge are generally favorable for the existence of edge st
Furthermore we pointed out the possibility of the existen
of vertex states.

The inhomogeneous distributions of the currents carr
by surface states and edge states may affect other phy
properties of medium-sized nanowires. For examp
electron-phonon scatterings take place mainly at surface
edges and the dissipation of energy is not simple. The t
perature distribution is determined by the generation of h
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and the heat current conductivity, which also may be
homogeneous. These problems will be discussed in fu
works.
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APPENDIX A

We present the conditions for existence of edge state
the model of Fig. 6~b!. We seek solutions in the form o
Cn5l1

n21C1 and Dn5l2
n21D1 with ul1u,1 and ul2u,1.

The tight-binding equations are reduced to

E5«12t1~l111/l1!, ~A1!

E5«22t2~l211/l2!, ~A2!

EC15«1C12t1l1C12t12D1 , ~A3!

and

ED15«2D12t2l2D12t12C1 . ~A4!

These equations yield

l1l25ab, ~A5!

where a5t1 /t12 and b5t2 /t12. Therefore the condition
uabu,1 is necessary. From Eqs.~A1! and ~A2! we obtain

S 1

a
2a Dl12S 1

b
2b Dl21

D«

t12
50 ~A6!

where D«5«12«2. The condition for existence of edg
states is that the curves in Eqs.~A5! and~A6! have points of
intersection in the regionul1u,1 andul2u,1 on thel1-l2
plane.

The conditions for the case that there is one solution
the regionuabu,l1,1 or 21,l1,2uabu are

2g,D«,d, ~A7!

or

2d,D«,g, ~A8!

whereg5ut2u(a211/b222) andd5ut1u(b211/a222). It
can be proved that it is impossible that two solutions exis
either region above.

APPENDIX B

We show that edge states exist in the model of Fig. 6~c!.
We seek solutions in the form ofCn

A5ln21C1
A and Cn

B

5ln21C1
B with ulu,1. Since the system is symmetric

about the center, we may choose thatDn
A56Cn

A and Dn
B5

6Cn
B . The tight-binding equations are reduced to

EC1
A52tAC1

B2
tB

l
C1

B, ~B1!
8-7
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EC1
B52tAC1

A2tBlC1
A , ~B2!

and

EC1
A52tAC1

B2t12~6C1
A!, ~B3!

where we choose the origin of energy at the onsite energ«.
The first two equations above yield

E25tA
2 1tB

21tAtBS l1
1

l D , ~B4!

and the first and third equations yield

l56
tB

t12

C1
B

C1
A

. ~B5!

This equation combined with Eqs.~B1! and ~B2! yields a
quadratic equation inl

l21p~12q2!l2q250, ~B6!

where p5tB /tA and q5tB /t12. Here we define thatf (x)
5x21p(12q2)x2q2. Since f (0)52q2,0 and f (61)
5(16p)(12q2), a necessary condition for the existence
solutions withulu,1 is that (11p)(12q2).0 or (12p)
3(12q2).0. In addition, for real energyE to exist, the
right side of Eq.~B4! must not be negative when the sol
ris

re

. B

lid

. B

11533
f

tions of Eq.~B6! are substituted into it. These are the suf
cient conditions for the existence of the edge states.

Since Eq.~B4! can be rewritten as

S E

tA
D 2

511p21pS l1
1

l D , ~B7!

the solutionl with pl.0 exists if q2,1. There are two
edge states for this solution. One is located in energy ab
the upper surface-state band and the other below the lo
one.

The solution withpl,0 exists whenupu,1 andq2,1,
or upu.1 andq2.1. This result comes from an inequality

f ~2p! f ~21/p!52
q2

p2
~12p2!2,0. ~B8!

This means that the solutionl exists between2p and
21/p and we obtain

p

l
~l1p!~l11/p!.0, ~B9!

which is equivalent to that the right side in Eq.~B7! is posi-
tive. In this case also there are two edge states which
located in the band gap between the two surface-state ba
ett.
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