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Spin splitting in symmetrical SiGe quantum wells
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Spin splitting of conduction electron states has been analyzed for all possible point symmetries of SiGe
quantum well structures. A particular attention is paid to removal of spin degeneracy caused by the rotoinver-
sion asymmetry of #001) heterointerface between two diamond-lattice materials. The asymmetry is shown to
result in spin splitting of both Rashba and Dresselhaus types in symmetrical SiGe quantum wells. Conse-
qguences of the spin splitting on spin relaxation are discussed.
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I. INTRODUCTION group describes the symmetry of an ideal heterointerface
with the interfacial chemical bonds lying in the same plane.
Spin properties attract the great attention in recent yearA nonideal interface containing monoatomic fluctuations has
due to attempts to realize an electronic device based on thevo kinds of flat areas with interfacial planes shifted with
spin of carriers. Conduction electrons are obvious candidatag®spect to each other by a quarter of the lattice constant. The
for such devices, particularly in nanostructures where elecipcal symmetry of each area is,Cas well. However if the
tron energy spectrum and shape of the envelope functiongoth kinds are equally distributed, the interface overall sym-
can be effectively engineered by the growth design, applicametry increases up t6,, . It follows then that the symmetry
tion of electric or magnetic fields as well as by illumination ¢ o Si_,Ge/Si QW structure containing two interfaces is

with light. described by one of five point groud3,4 or Dy, in case of

.Variogs sem?c_o.nductc.)r materials are being involved in the[wo ideal interfaces with odd or even number of monolayers
spintronics activities. SiGe quantum welQW) structures between them,, for a pair of ideal and rough interfaces:
U )

are among therhi.* Although bulk Si and Ge have an inver- Do for ¢ ideal intert fth I
sion center, QW structures grown from these materials caﬁ:““ Or Dan Tor tWo nonideat intertaces ot the overall sym-
metry C,, each, see Fig. 1.

lack such a center and allow the spin splitting of the elec- X
tronic subbands. Two of the above-mentioned grougd3,;, andD,;,, con-

The quantum engineering of spintronic devices is usuallyfain the space inversion operation and forbid the spin split-
focused on the Rashba spin-dependent term to the electrdig of electronic states. Three remaining groups allow the
effective Hamiltonian in heterostructures. This contributionspin-dependent linear-ikterm ;= y,g0 kg . Hereo, are
appears due to asymmetry of the heteropoterittaé so- the Pauli matrices ané=(k,,ky) is the in-plane electron
called structure inversion asymmetry, or $lAnd has no Wwave vector.
relation to the properties of a bulk semiconductor. In Si; ,GeJ/Si QWs grown along directiow||[ 001] with

In 1lI-V heterostructures, there exists another spin-low enough content of Ge in the alloy layer, the lowest con-
dependent contribution called the Dresselhaus term that agluction band is located near thé point of the Brillouin
pears due to bulk inversion asymmet(®IA). It is com-  zone. Note that in the following we consider the electronic
monly believed that the Dresselhaus contribution is absent iftates attached to th¢, valley because, due to the quantum
structures grown from centrosymmetric materials. confinement effect, its bottom lies lower thag and X,

In the present work we show that the Dresselhaus-likevalleys® Hereafter the subscriptsy,z indicate threeX val-
spin splitting is possible in heterostructures made of Si andeys as well as the Cartesian coordinate system with
Ge due to the anisotropy of chemical bonds at interfaces. X||[[100], y[[010] being the in-plane axes. The symmetry
analysis of the electron quantum confined states is based on
the fact that at thex point the bulk Bloch functions form
projective representations of the point groDp,. All five

Symmetry of a(001)-grown interface between Si,Ge,  above-mentioned groups are subgroup®gf. In the group
and Si can be g or C,, on averagé.The former point D,4, the Dresselhaus-like term

II. SYMMETRY ARGUMENTS

n odd n even
FIG. 1. Different interface profiles and QW
v -I_I.l_ point symmetries. The growth direction [i801],
— B n is a number of monoatomic layers.
Dy D C,, C, D,
Dresselhaus splitting ~ NO spin splitting ~ Rashba and Dresselhaus ~ Rashba splitting NO spin splitting
splitting
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hp(K) = agke— oryky TABLE I. Irreducible representations of ti@,, group and ex-
amples of their basic functions and matrices. The axemndy’ are

is an only invariant which can be constructed from the prod-parallel to the crystallographic directiofs10], [110].
ucts o,kg. On the contrary, in the groug,,, the only

invariant combination is the Rashba term Representation Basic functions Basic matrices
+
hr(K) = 0k, — oy . A Kz
R( ) x v A~ erky/; (o
The analysis shows that both combinatitigk) andhg(k) B* Ky i oy My M,
are invariants of the grou@,,, i.e., both Dresselhaus- and B- K3 0y Ny M,

Rashba-like spin-dependent terms are allowed.

In SiGe/Si QWs with high Ge content, the lowest conduc-
tion band may be located at the point. The bulk Bloch X =sin(2mx/a)cod 2my/a)
functions form projective representations of tbg, point X, states [ ] (3
group which arep equivalent to the usual representations of Y=cog2mx/a)sin(2myla),

the same group. In this case the associated coordinate syst&fierea is the lattice constant. For the bulk stabés, X, in

x'",y’,z" is connected with the valley principal ad$|[111]  {he hases?), (3), the interband matrix elements can be pre-
and the in-plane axes ||[110] (perpendicular to one of the sented as

mirror-reflection planes and y’|[[112]. In (001)-grown
QWs of the symmetryD,,, or Dy, intersection of these
point groups withD 34 is C,p, with the inversion, so that the
spin degeneracy is retained. On the other hand, the intersec- R R
tion of the rest three groups wifBy4 is C. As a result, the  Here P=(A/mg)(S|pyX), U=(S|U,|X), p is the momen-
effective Hamiltonian for thd_-valley electrons in QWs of tum operator, and the pseudovectdr (%/4m3c?) VWX p
the symmetryD,4, C,, or C,4, contains three linearly inde- enters into the spin-orbit Hamiltoniadso= o U (W is the
pendent combinations . k,,, o,K, , and oKy respon-  microscopic potential
sible for the spin splitting. The substitution of Eq(4) into Eq. (1) results in

SiGe/Si heterostructures grown in thH@1l)-direction
have eitherD34 or C3, point symmetry depending on the 1
parity of monolayer numbers. TH2,4 group has the inver- AHO‘hD(k)( 0 - 1),
sion center and retains the spin degeneracy whereaSthe
group allows the spin splitting. The lowest conduction bandwhere the second multiplier is ax2 matrix related to the
in (111)-SiGe/Si QWs is located at the point of the Bril-  basis(2). The matrixA’H does notlead to lifting the degen-
louin zone. SinceCs, is a subgroup oD5y, the relevant eracy of theX; states in the bulk centrosymmetric material,
symmetry isCs,, and the invariant combination of the prod- in accordance with the general symmetry consideration.

ke Ky
—k, —ky

Oy —Oy

e, ) e, )

oy Oy

uctso kg is the Rashba term The splitting can be achieved if one takes into account the
anisotropy of chemical bonds at the interfaces. It results in
oKy —ayikyr o-functional contributions to the Hamiltoniarh, andHgg
of the form
I1l. MICROSCOPIC THEORY
AH,=Vu8(z—25), AHgo=Vso 8(z—2z5), (5

A. Spin splitting of X-valley electrons in (001)-grown QWs wherez; is the interface coordinate. The matricég,,Vso

Microscopically, a linear-irk correction to the have few linearly independent components and can be con-
conduction-band effective Hamiltonian is given by the sec-structed by using the method of invariants. In the latter the 2
ond order of the perturbation theory X2 interband matrice¥,,,Vso are decomposed into prod-

R R ucts Mk, or M;a,, whereM; are the basic matrices cou-

B HsdH i+ HipHso 1) pling the conduction- and valence-band states. They trans-

a E.—E, ' form according to the irreducible representations contained
in the productX; X X, of the conduction- and valence-band

HereHy, andHgo are interbanck- p and spin-orbit interac-  representations. We demonstrate this method in the case of

tion Hamiltonians, respectively. We take into considerationihe [owest symmetry under studgp, .

only the coupling of the conductio, states and the valence  The four nonequivalent irreducible representations of the

X, states. The symmetry properties of the Bloch functions at:, point group are shown in Table | together with relevant

the X point of a diamond-lattice semiconductor crystal COin'exampIes of basic functions. In th@,, point group, the

AH

cide with those of the following functiofis product X; X X, equals the sum B*+2B~. This readily
o= P allows one to find the basic matrich?dﬁ in the bases$,Z and
=cog2nz/a) X',Y' defined asx’=(X—Y)/\2 andY'=(X+Y)/\2 as
X, states . 2
Z=sin(2wz/a), follows:
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As indicated in Table I, the matrit, or M, transforms

according to the representati®1 while M5 or M, is the
basis matrix of the representati@? .
As a result, each of the two matrices in E§) is deter-

>

I |\7|2:

1

0 0
1 o)

>
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[P1,P2,P3,P4];=[P1,—P2,P3,— P4l

From here it readily follows that, in the former case, the
electronic states in SiGe QWs are spin degenerdte=0)

and, in the latter, the spin degeneracy is removed by a
Dresselhaus-like linear-ik-terms. The similar analysis can
be carried out for nonideal SiGe QW structures of @,
andC,, symmetry.

B. Spin splitting of L electrons

mined by four linearly independent parameters. In the bases \without spin, the basis functions for thepoint may be

S,Z andX,Y, they have the form

[Pike+ Pk, Prky+ Pk, "
7 Pgky+ Paky  Pakyt Pk’
Ve Ulo-X_UZO-y _U10'y+U20'X (7)
SO _U30'y+U4O'X U30'X_U40'y '

Here the parameteR®, andU,, (n=1+4) are purely imagi-
nary. We note that?, and U, describe the properties of
interfaces in contrast to the bulk constafsand i/ in Eq.
(4). In the envelope-function approach thelependence of
this interface contribution reduces tosafunction as shown
in Eq. (5).

By using Egs.(1) and (5)—(7), one can show that, for a
single interface of theC,, symmetry, the correction to the
conduction-band Hamiltonian linear k , and responsible
for the removal of spin degeneracy is given by

10

0 1 8

AHCZVZ( )Hifé(z—zif).

HereH; is a linear combination of the spin Pauli matrices

that, in the first-order approximation in the perturbati@bis
has the form

P
Hif:E_O[(U3_Ul)hD(k)+(U4_U2)hR(k)]

u
- E_O[(Pl+ P3)hp(k)+(P2+Pyg) hr(k)],  (9)

with E, being the band gap betweef and X, states.

The electron effective Hamiltonian in an ideal QW con-

tains a sum of two contribution®) related to the left-|()
and right-hand-siddr) interfaces. If the QW contains an
even number of monoatomic layer® 4, symmetry, then
the corresponding parametas§,U", or P, P! are intercon-
nected due t&, and inversion operations by

[U1,U3,U3,U4],=[U3,U,,Uq,Us],

[P1,P2,P3,P4],=[—P3,—P4,—P1,—P3];.

chosen as like for the L, conduction-band statghe Bloch
functionS’), and a9 like (X',Y") for theL s, valence-band
states. With spin, they are multiplied by the spin functiéns
and | .

In a bulk diamond-lattice semiconductor, the spin-orbit
interaction results in a splitting by some valeof the L3,
valence band into thel( ,Ls) and Lg subbands. In the
three-fold degeneratB-point, the second-order perturbation
theory with allowance forA#0 gives rise to Dresselhaus-
like conduction-band spin-splitting in 1I-V QW&However,
this is not the case for thepoint due to large energy spacing
between the top valence bahd, (X’,Y’) and lower-lying
valence-band states. Therefore, one should again take into
account the interband spin-orbit interaction.

In the bulk, the spin-orbit coupling between the and
L5 bands is forbidden. However, the groGg has only two
symmetry operations: the identity and reflection in the
(y',z') plane. The reflection vyields (S'|U,/|X")
=(S'|Uy, »|Y')=0, but the following matrix elements are
nonzero:

Ui=(S'|Uy/|X"),
Us=(S'|U[X"),

UL=(S'|U,|Y"). (10)

Introducing the matrix element of the butkp-interaction

P’ =(h/m)(S'|px|X’), we obtain from Egs(1) and (10)
for the L states in 8001) QW

2P
A,}—{CS:_ E! 5(Z_Z|f)(uéo-z’kx’+U:,L(Tyrer
0

+UéO'Xr<ky:>). (11)
HereEj is the energy gap between the and thel 5, states,

and the angular brackets mean averaging over the quantum-
confined state. As a result the compondqgt = (k,+Kk,

If the QW contains an odd number of monoatomic layers— 2K,)/\/6 reduces tGi\'/&'):(kar ky)/\/6 whereas the com-

(D,4 symmetry, then

[U1,U3,U3,Uy],=[Uq,—U;,,U3z,— U],

ponentk, = (ky—ky)/y2 remains unchanged.
Inclusion of the spin splittingA of the valence band
slightly modifies the coefficients in the above expression:
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In this paper, we have analyzed spin splitting of electron
Ujo, Ky states in SiGe heterostructures of all possible symmetries.
The absence of inversion center can be also probed by means
of second-harmonic generation experimert$® An ideal
oKy SinGe, .superlattic.e with oddn and m allows segond—
AT harmonic generation. It was demonstrated experimentally
that Sj,Ge, superlattices with nominally odd and evenm
] possess comparable second-harmonic conversion efficlency.
OyrKys

1 1

AHc =—8(z—z¢)P' +
o=~ Az ) E,—Al2 Ej+A/2

U;+U; Uz—U;
+
Ey— A2 Ej+Al2

Uj+Us;  Uj—U;
+
Ey—A/2 E{+A/2

The weak nonlinear response can be explained by antiphase
microscopic domains shifted with respect to each other by
one monoatomic layer along the growth direct[@01], see
C. Spin splitting in (111)-grown QWs the profiles labeled aB,, in Fig. 1.
Similarly, different domains are characterized by opposite
signs of the linear-irk spin-dependent matrild;; in Eq. (8).
The influence of this kind of imperfection on the D’yakonov-
Perel’ spin relaxation of the conduction electrons depends on
U'=—U. U.=0 the relation between the linear dimensignof a single do-
1 31 2=Y ; ;
main and the electron mean free phth the interface plane.
and we get from Eq11) the Rashba-like contribution for the In the casdp>1, the spin-relaxation time of free carriers is

In (112)-grown QWs the relevant symmetry &;, with
the axisC5 and two more mirror reflection planes in addition
to the elements o€ group. The rotation yields

(111) SiGe QWs with odd number of monolayers: the same as in a perfect structure:
2P'U; 1 2 ) ‘ )
AHe,,= 0z ~z)——— (awky —ayke).  (12) T G (4

0

If the number of monolayers is eve§y symmetry then ~ Here 7q is the relaxation time of spia component(for in-
the inversion imposes the conditia,=0, and spin split- Plane spin the corresponding time isg2. In Eq. (14) 7, is
ting is absent. the momentum scattering time, the angular brackets mean
averaging over the carrier energy distribution, af(d;) is
the interface value of the envelope function calculated at
IV DISCUSSION H;=0. In the opposite limiting cask,<I, one has

Within the envelope-function approximation, the electron

wave functiony satisfies the Schdinger equation with the 1 _ i |_D 15
effective Hamiltonian ESEENE (15
H=Hy(k,,k)+V(z2)+AH. where g is given by Eq.(14). If the time 7, is governed by

) o o ] scattering from the antiphase-domain wabsundariesone
Here H, is the bulk spin-independent Hamiltonian wikh  can use Eq(14) for estimations of the spin-relaxation times.
=—1idldz, V(z) is the heteropotential, and the correction Thys, we conclude that, even if the overall symmetry of a
A is given by Eq.(8). . SiGe heterostructure B,, due to the antiphase domains, the
Instead of solving the Schdinger equation with the |ack of inversion center within a particular domain leads to
Hamiltonian, one can equivalently find general solutions the spin dephasing according to E¢s4) and (15).
of the equations’{o+V)¢=E¢ within each homogeneous  The presence of domain structure with a shift of both

layer and then apply the boundary conditions interfaces by one monolayer limits the spin-relaxation time.
This upper bound fots has no impurity nature and, hence,
Wz —0)=h(z5+0), does not require random asymmetric doping assumed in

Refs. 4 and 11. Our work shows that interfaces produce spin-
orbit splitting even in undoped symmetrical SiGe QWSs. This
opens a possibility to discuss the recent spin-relaxation times
measurements in these heterostructares.
where the velocity operatar,=#~*9Hq/dk, . In conclusion, we have shown that linearkirspin split-

In order to estimate the spin splitting one needs to gaing is present even in symmetrical SiGe QWs. It can be of
beyond the envelope-function approximation. This can b&rashba, Dresselhaus, or both types. The splitting is caused

done in the pseudopotential or tight-binding model WhIChby anisotropy of chemical bonds at interfaces.
yields the matrixH;; in boundary condition$13). The work

on estimation of the interface-induced spin splitting in the

2i
(Uzw)lziffoz(Uzw)lzif+0+gHifl//(zif)y (13
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