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Linear conductance in Coulomb-blockade quantum dots in the presence of interactions and spin
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We discuss the calculation of the linear conductance through a Coulomb-blockade quantum dot in the
presence of interactions beyond the charging energy. In the limit where the temperature is large compared with
a typical tunneling width, we use a rate-equations approach to describe the transitions between the correspond-
ing many-body eigenstates of a dot withN- and (N11)-electrons. We consider both the elastic and rapid-
thermalization limits, where the rate of inelastic scattering in the dot is either small or large compared with the
elastic transition rate, respectively. In the elastic limit, we derive an implicit expression for the conductance,
whose calculation requires the solution of a linear set of equations. In several special cases, including the case
of a constant exchange interaction and the case where only ground-state to several-state transitions contribute
to the conductance, we find an explicit closed solution. In the rapid-thermalization limit, a closed solution is
possible in the general case. We show that the corresponding expressions for the linear conductance simplify
for a Hamiltonian that is invariant under spin rotations.

DOI: 10.1103/PhysRevB.69.115331 PACS number~s!: 73.23.Hk, 73.40.Gk, 73.63.Kv
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I. INTRODUCTION

In the Coulomb-blockade regime of quantum dots,
conductance of the dot exhibits peaks as a function of
gate voltage, where each peak corresponds to the tunn
of one more electron into the dot. Of particular interest
diffusive or ballistic chaotic dots, in which the mesoscop
fluctuations of the conductance peaks and their spacing
flect the statistical nature of the eigenfunction and eigen
ergies of the isolated dot.1,2 The simplest model of Coulomb
blockade is the constant-interaction~CI! model, in which the
electrons occupy single-particle levels in the dot and the
teraction is described by an electrostatic Coulomb ene
that is constant for a fixed number of electrons. In t
model, the conductance near a Coulomb-blockade pea
temperatures that are large compared with a typical tunne
width can be derived in a closed form using a mast
equation approach.3,4 This regime of sequential tunneling
relevant to most Coulomb-blockade experiments involv
weakly coupled dots.

At sufficiently low temperatures, the conductance throu
the dot is dominated by elastic processes. However, at fi
temperature, the electrons in the dot may undergo inela
scattering processes caused, for example, by electron-ph
or electron-electron interactions. In general, one may c
sider two limiting cases, depending on the relative magnit
of a typical elastic tunneling widthGel of an electron into the
dot and a typical inelastic scattering widthG in of electrons in
the dot. In the so-called elastic limit,Gel@G in , and inelastic
scattering processes in the dot can be ignored. In the opp
limit, Gel!G in , inelastic scattering occurs on such a sh
time scale that electrons in the dot are effectively therm
zed immediately after an electron tunnels in or out of
dot.4 This limit will be called the rapid-thermalization limit
which in the literature is also sometimes referred to as
inelastic limit. The observed suppression of the we
localization effect in weakly coupled dots at fini
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temperature5 suggests that inelastic scattering in the dot b
comes important already at temperatures comparable to
single-particle mean level spacing.6 We note that since in
weakly coupled dotsGel!D/\, we still haveG in!D/\ for
kT;D, and the above observed suppression of the we
localization effect is not inconsistent with the predicted va
ishing of the dephasing rate at low temperatures.7

In the CI model, the conductance peak heights and sp
ings are directly expressed in terms of the single-part
wave functions and energies. When the dot is chaotic,
fluctuation properties of these single-particle wave functio
and energies are well described by random-matrix theo8

Statistical properties of the conductance peaks have b
studied within the CI model in both the elastic9,10 and
rapid-thermalization6,11,12 limits, as well as for intermediate
situations.13

However, recent experiments in almost-isolated Coulom
blockade dots clearly indicate that it is necessary to take
account electron-electron interactions beyond the
model.14 For such interactions, the eigenstates of the dot
no longer characterized by Slater determinants. An impor
question that arises is how to calculate the linear cond
tance through such a dot. In this work we provide an ans
in the limit of sequential tunneling, generalizing the resu
of the CI model4 to the interacting case. We assume that b
the thermal energy and the typical excitation energies in
dot are small compared with the charging energy. This
fines the regime of Coulomb blockade, where in the vicin
of the (N11)st conductance peak only the manifolds
states withN andN11 electrons in the dot contribute to th
conductance~the manifolds with an electron number diffe
ent from eitherN andN11 are pushed away by the chargin
energy!. We discuss the calculation of the linear conductan
in terms of the transition widths between the many-bo
eigenstates in theN- and (N11)-electron dot as an electro
tunnels into the dot. This is done by introducing nonequil
rium probabilities of the dot to be in its various many-bo
©2004 The American Physical Society31-1
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eigenstate withN and N11 electrons. These probabilitie
satisfy a set of rate equations describing the transitions
tween the many-body eigenstates. We consider stationary
lutions in the linear-response approximation in both lim
where inelastic scattering of electrons in the dot is we
~elastic limit! and strong~rapid-thermalization limit!.

In the elastic limit, we reduce the problem to a set
linear equations, and provide an expression for the cond
tance in terms of the solution of this linear set. There
several important cases where an explicit solution of th
linear equations exists. Such cases include the situatio
sufficiently low temperatures where only ground-state
ground-state, or ground-state to several-state transitions~of
N and N11 electrons, respectively! contribute to the con-
ductance. The special case where only ground-state
ground-state transition is accounted for was derived in R
15 using an ‘‘intermediate state’’ approach. However,
lowest triplet and singlet states in a quantum dot can be c
in energy, in which case both states contribute to the cond
tance and it is necessary to use the ground-state to sev
state formula derived here. Another case where the rate e
tions can be solved in closed form at any temperat
corresponds to a Hamiltonian for which the occupatio
of the orbital single-particle states are good quant
numbers.16 A particularly important such case corresponds
the universal Hamiltonian2,17 in the limit of infinite Thouless
conductance~ignoring a Cooper-channel term, which is a
lowed in the absence of an orbital magnetic field!. This
Hamiltonian includes a constant exchange interaction in
dition to a constant charging energy.17

In the rapid-thermalization limit, we obtain a closed-for
expression for the conductance in the most general cas
arbitrary electron-election interactions and for any numbe
states in the dot withN andN11 electrons.

A particularly important situation occurs when the Ham
tonian of the dot is spin-rotation invariant, as is the case
the Coulomb interactions in the absence of spin-orbit sca
ing. The expressions we find for the linear conductance
then be simplified by explicitly carrying out the sum over t
magnetic quantum numbers~in both the elastic and rapid
thermalization limits!.

The outline of this paper is as follows. In Sec. II w
introduce the basic assumptions and notation. In Sec. III
discuss the rate equations satisfied by the probabilities to
the dot in one of its many-body eigenstates withN or
N11 electrons. We assume the elastic limit, where inela
scattering of electrons in the dot is negligible. In Sec. IV
use linear-response theory to linearize these master equa
in the stationary limit. A general expression for the line
conductance in terms of the solution to the rate equation
derived in Sec. V. We show that if detailed balance is sa
fied for each pair of many-body eigenstates@in the N- and
(N11)-electron dots, respectively#, then the master equa
tions and consequently the conductance can be solve
closed form. Furthermore, the corresponding expressions
shown to be simplified for Hamiltonians that are invaria
with respect to spin rotations. Physically relevant ca
where such closed solutions exist are discussed in Sec
and include the case of ground-state to several-state tra
11533
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tions ~relevant for low temperatures!, and the case of the
universal Hamiltonian in the limit of infinite Thouless con
ductance. In Sec. VII we solve the rate equations and de
a closed form for the conductance in the case where
inelastic scattering width is much larger than the elas
width ~rapid-thermalization limit!. Finally, in Sec. VIII we
summarize the main results of this paper.

II. MODEL

We consider an almost-isolated quantum dot described
a HamiltonianĤ that includes a one-body part and a tw
body interaction. The dot is weakly coupled to leads, and
assume the limitkT@\G, whereG is a typical transition rate
of an electron from the leads into the dot. In this limit we c
ignore the coherence between the dot and the leads and
rate-equations approach to study the transport through
dot.18 Furthermore, we assume the Coulomb energye2/C to
be much larger than the thermal energykT. In this limit, the
linear conductance of the dot exhibits Coulomb-blocka
peaks. When the gate voltageVg is tuned in the vicinity of a
Coulomb-blockade peak, the number of electrons in the
can be eitherN or N11. All manifolds with an electron
number different from eitherN or N11 are pushed away by
the charging energy.

The rate equations have been solved in the CI model f
single spin-degenerate level3 and for any number of single
particle levels.4 In the CI model, the two-body interaction i
modeled by a constant charging energy of an object w
capacitanceC and chargeNe. Here we derive and solve th
rate equations in the presence of interactions beyond
charging energy, where the many-body states of the dots
no longer Slater determinants.

We denote the many-body eigenstates of the dot withN
electrons byi, and their respective energies by« i

(N) . Simi-
larly, the states of the dot withN11 electrons are labeled a
j and the corresponding energies are« j

(N11) . MN andMN11

denote, respectively, the total number of theN- and
(N11)-electron states considered.

Of particular interest are cases where the dot’s Ham
tonian is spin-rotation invariant. This requires the absence
a spin-orbit interaction such that the single-particle energ
of the electrons in the dotel are spin-degenerate. In additio
for spin-rotation invariance to be valid, the matrix elemen
of the two-body interaction may depend only on the orbi
states but not on the spin indices, as for the case of Coulo
interaction. We then have

@Ĥ,Ŝ2#50 and @Ĥ,Ŝz#50, ~1!

whereŜ is the total spin operator of the dot. The many-bo
eigenstates of the dot can be characterized by the good q
tum numbers of the spinS and its projectionSz5M . The
remaining quantum numbers, in addition to the total num
of electronsN, will be labeled bya. Thus the eigenstates o
the dot withn electrons are given byi 5(a,S,M ), and their
respective energies«aS

(N) are independent ofM. The states of
the dot with N11 electrons are similarly labeled byj
5(a8,S8,M 8), and their corresponding energies are«a8S8

(N11) .
An example of a spin-rotation invariant Hamiltonian is th
recently proposed universal Hamiltonian.2,17
1-2
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III. RATE EQUATIONS

We assume that a potential differenceV is applied be-
tween the two leads~source and drain! at temperatureT.
Fractionsh l andh r of this potential difference, with

h l1h r51, ~2!

fall between the dot and the left lead, and the right lead
the dot, respectively. As a result a currentI flows through the
dot and various eigenstates of the dot can be occupied
different probabilities. We denote the nonequilibrium pro
ability for the dot to be in a particularN-electron statei by
Pi

(N) . Since we consider situations in which the dot can o
be occupied byN or N11 electrons, we require the norma
ization ( i Pi

(N)1( j Pj
(N11)51.

We further assume that energy is conserved in the tun
ing between the dot and the leads,4 neglecting virtual transi-
tions that are of higher order in the tunneling widths. Den
ing the transition widths between theN-electron statei and
the (N11)-electron statej involving an electron tunneling
into the dot from the left~right! lead byG i j

l (G i j
r ), we can

write the following rate equations for the probabilitiesPi
(N)

andPj
(N11) :

]Pi
(N)

]t
5(

j
Pj

(N11)@~12 f i j
l !G i j

l 1~12 f i j
r !G i j

r #

2Pi
(N)(

j
~ f i j

l G i j
l 1 f i j

r G i j
r ! for all i , ~3a!

]Pj
(N11)

]t
5(

i
Pi

(N)~ f i j
l G i j

l 1 f i j
r G i j

r !2Pj
(N11)(

j
@~12 f i j

l !G i j
l

1~12 f i j
r !G i j

r # for all j . ~3b!

The Fermi-Dirac function of an electron in the left~right!
lead is evaluated at a suitable energy that can be found f
energy conservation of the transition between statesi and j,
and is denoted byf i j

l ( f i j
r ). In the presence of a gate voltag

Vg , the energy of theN-electron dot in statei is given by
« i

(N)2NezVg . Here z[Cg /C, with Cg being the dot’s ca-
pacitance with respect to the gate, andC being the full dot’s
capacitance. Thus the energy of an electron~relative to the
Fermi energyeF in the leads! in the left ~right! lead that
tunnels into an N-electron dot in statei to form an
(N11)-electron dot in statej is given by

« i j 5« j
(N11)2« i

(N)2 ẽF , ~4!

where ẽF[ezVg1eF is an effective Fermi energy. Takin
into account the bias-potential drop between the dot and e
lead, we havef i j

l [ f (« i j 1h leV) and f i j
r [ f (« i j 2h reV),

where the Fermi-Dirac function at temperatureT is defined
by f (x)5@11exp(bx)#21 with b51/kT.

We note that we can choose any values ofh l and h r
satisfying Eq.~2!, but that the final result for the conductan
~derived in Sec. V! must be independent of this choice. Th
independence must follow on physical grounds since the
ear conductance is an intrinsic property of the dot and m
11533
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be independent of the way that the source-drain poten
difference is distributed. A rigorous proof of this statement
provided in the Appendix.

IV. LINEAR RESPONSE

To calculate the conductance, we are interested in find
stationary solutions of Eqs.~3!, i.e., nonequilibrium prob-
abilities Pi

(N) and Pj
(N11) that satisfy ]Pi

(N)/]t50 and
]Pj

(N11)/]t50 for all i and j, respectively. Furthermore, to
find the linear conductance, it is sufficient to solve the r
equations in linear-response theory, i.e., linearizing Eq.~3! in
V. To this end, we expandPi

(N) and Pj
(N11) around their

equilibrium valuesP̃i
(N) and P̃j

(N11)

Pi
(N)5 P̃i

(N)@11eVbC i
(N)#,

Pj
(N11)5 P̃j

(N11)@11eVbC j
(N11)#, ~5!

in terms of new variablesC i
(N) andC j

(N11) . The equilibrium
probabilities can be expressed explicitly in terms of t
eigenenergies« i

(N) and « j
(N11) of the dot withN and N11

electrons,

P̃i
(N)5

e2b(« i
(N)

2 ẽFN)

Z
, P̃j

(N11)5
e2b[« j

(N11)
2 ẽF(N11)]

Z
,

~6!

with the partition sum

Z5(
i

e2b(« i
(N)

2 ẽFN)1(
j

e2b[« j
(N11)

2 ẽF(N11)]. ~7!

The equilibrium distribution is in principle grand-canonic
with a chemical potential equal to the Fermi energyeF ~at
temperatureT) in the leads, but because of the presence
charging energy only two values of the electron numbers
allowed.

To find a linear set of equations forC i
(N) andC j

(N11) , we
substitute the expansion~5! into the rate equations~3! and
expand the Fermi-Dirac functions to first order inV, i.e.,
f i j

l 5 f i j 1h leV fi j8 and f i j
r 5 f i j 2h reV fi j8 , where we have de-

noted f i j 5 f (« i j ) and f 8 is the derivative off. Keeping only
terms that are linear in the bias voltageV, and using the
relation

P̃j
(N11)5 P̃i

(N)e2b« i j , ~8!

we obtain19

(
j

f i j @~G i j
l 1G i j

r !~C j
(N11)2C i

(N)!1~h lG i j
l 2h rG i j

r !#

50 for all i , ~9a!

(
i

~12 f i j !@~G i j
l 1G i j

r !~C j
(N11)2C i

(N)!1~h lG i j
l 2h rG i j

r !#

50 for all j . ~9b!
1-3
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Equations~9! represent a system ofMN1MN11 linear equa-
tions for MN1MN11 unknowns. However, onlyMN
1MN1121 of these equations are linearly independe
Hence, the solutions forC i

(N) and C j
(N11) are determined

only up to an additive constant. This constant is fixed
imposing the constraint

(
i

P̃i
(N)C i

(N)1(
j

P̃ j
(N11)C j

(N11)50, ~10!

which follows from the normalization condition of the non
equilibrium probabilities. In general, it is necessary to so
Eqs. ~9! numerically. These equations represent sets
detailed-balance equations. However, it is possible to
analytic solutions in cases where a detailed-balance equa
holds for each pair of statesi andj individually, i.e., in cases
where each term in the square brackets of Eqs.~9! vanishes.
This condition is equivalent to

C i
(N)2C j

(N11)5
h lG i j

l 2h rG i j
r

G i j
l 1G i j

r
for any i and j .

~11!

We emphasize that there areMNMN11 equations~11! for
only MN1MN11 unknowns, so in the general case it is n
possible to satisfy Eq.~11!. This is in contrast to the C
model where a closed solution always exists4 because of the
single-particle nature of the problem. Yet, there are a num
of important cases where a closed solution of Eq.~11! does
exist, as we discuss in Sec. VI. A solution to Eqs.~11!, when
it exists, does not depend on temperature and leads t
expression for the conductance as a sum of terms, in eac
which the dependence on temperature and on decay w
factorizes@see Eq.~14!#.

V. LINEAR CONDUCTANCE

The linear conductanceG is defined as the ratioI /V in the
limit V→0. The current through the dot can be expresse
terms of the quantities considered in the master-equation
proach. In this framework, we can calculate, for example,
currentI through the left tunneling contact, which equals t
current through the dot and through the right contact,

I 5
e

\ (
i j

@Pi
(N) f i j

l 2Pj
(N11)~12 f i j

l !#G i j
l . ~12!

Using the expansion in Eq.~5! and expandingf i j
l to first

order inV, we find the elastic linear conductance

Gel5
e2

\kT (
i j

P̃i
(N) f i j ~C i

(N)2C j
(N11)2h l!G i j

l . ~13!

Althoughh l appears explicitly in Eq.~13!, the linear conduc-
tance is independent ofh l . This must be so on physica
grounds, and a formal proof is provided in the Appendix.

The complete solution for the~elastic! linear conductance
in the general case of sequential tunneling is given by E
~9! together with Eq.~13!; we solve Eqs.~9! for C i

(N) and
C j

(N11) and substitute their values in Eq.~13!.
11533
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However, in special cases where Eqs.~11! hold, the con-
ductance is given by the closed form

Gel5
e2

\kT (
i j

P̃i
(N) f i j

G i j
l G i j

r

G i j
l 1G i j

r
, ~14a!

or equivalently

Gel5
e2

\kT (
i j

P̃ j
(N11)~12 f i j !

G i j
l G i j

r

G i j
l 1G i j

r
. ~14b!

Notice that the parametersh l,r no longer appear in the con
ductance formula. The independence of the conducta
from the values ofh l,r , which holds true in general~cf. Ap-
pendix!, becomes apparent in this special case where an
plicit formula can be given.

The conductance~14! is expressed as a sum over all pa
of many-particle statesi and j of the N-electron and (N
11)-electron dots, respectively, in contrast to the CI mo
where the conductance is described as a sum over sin
particle levels.4 We observe that the temperature depende
of the contribution from each pair of many-particle states
independent from the transition widthsG i j

l ,r .
So far, the spin symmetries have not been taken into

count in the derivation of the rate equations and the cond
tance. If this is done, the sum over the many-body stati
and j can be further simplified. For two many-body statesi
5(a,S,M ) and j 5(a8,S8,M 8), the associated partial deca
widths G i j

l andG i j
r are given by

G i j
l,r5G0

l,ru^a8S8M 8ucm
† ~r l,r!uaSM&u2, ~15!

where the operatorcm
† (r l) @cm

† (r r)# creates an electron with
spin projectionm at the left@right# point contact atr l @r r#,
and we have introduced overall coupling strengthsG0

l,r at the
left and right point contact. The spin selection rules requ
m5M 82M andS85uS61/2u for the matrix element in Eq.
~15! not to vanish. For a Hamiltonian that is invariant wi
respect to spin rotations, we can use the Wigner-Eckart th
rem to factorize the matrix element in Eq.~15! into a
Clebsch-Gordan~CG! coefficient and a reduced matrix ele
ment that is independent of the spin-projection quant
numbersM, M 8, andm,

^a8S8M 8ucm
† ~r !uaSM&52

1

A2S811
~SM1/2muS8M 8!

3~a8S8ic†~r !iaS!. ~16!

For a given pair of many-body statesi and j, the decay
widths G i j

l and G i j
r involve the same CG coefficient. In Eq

~11!, the CG coefficients in the ratio on the right-hand si
cancel and we are left with
1-4
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C i
(N)2C j

(N11)5
h lG0

l u~a8S8ic†~r l !iaS!u22h rG0
r u~a8S8ic†~r r !iaS!u2

G0
l u~a8S8ic†~r l !iaS!u21G0

r u~a8S8ic†~r r !iaS!u2
. ~17!
-
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Thus, if solutions forC i
(N) andC j

(N11) exist that satisfy Eq.
~11!, they will be independent of the spin projectionM or
M 8, i.e., C i

(N)5CaS
(N) and C j

(N11)5Ca8S8
(N11) . Defining re-

duced decay widths

G̃aS,a8S8
l,r

5G0
l,ru„a8S8ic†~r l,r!iaS…u2, ~18!

conditions~17! can be rewritten in a form in which the mag
netic quantum numbers disappear,

Ca8S8
(N11)

2CaS
(N)5

h lG̃aS,a8S8
l

2h rG̃S,a8S8
r

G̃aS,a8S8
l

1G̃aS,a8S8
r

. ~19!

Using the reduced widths in the expression~14! for the linear
conductance, and taking advantage of the unitarity of
CG, (Mmu(SM1/2muS8M 8)u251, we can write the linear
conductance in the form

Gel5
e2

\kT (
aSa8S8

P̃aS
(N) f ~«aS,a8S8!

G̃aS,a8S8
l G̃aS,a8S8

r

G̃aS,a8S8
l

1G̃aS,a8S8
r

.

~20!

Instead of using the reduced widths defined in Eq.~18!, it
is possible to express the conductance in terms of the wi
for the maximally projected spin states~i.e., M5S and M 8
5S8)

GaS,a8S8
l,r [GaSS,a8S8S8

l,r . ~21!

The reduced matrix elements in Eq.~18! are nonzero only for
S85S61/2 and, using the corresponding CG coefficien
we have

G̃aS,a8S8
l,r

5@2 max~S,S8!11#GaS,a8S8
l,r . ~22!

A subject of current interest is the mesoscopic fluctuati
of the conductance in chaotic or diffusive quantum dots w
large Thouless conductancegT .1,2 The statistical properties
of the single-particle levels in a band of width;gT around
the Fermi energy are described by random-matrix theory
the CI model, in which only charging energy is taken in
account, the finite-temperature conductance through
almost-isolated dot can be calculated in terms of the sin
particle spectrum and wave functions using the expres
derived in Ref. 4. The statistical properties of the cond
tance peaks can then be inferred directly from the rand
matrix properties of the single-particle Hamiltonian. How
ever, a realistic description of an almost-isolated quant
dot requires additional interaction terms beyond the
model. The generic form of the Hamiltonian of a chaotic d
is given by the universal Hamiltonian plus residu
interaction.2,17 The universal Hamiltonian includes, in add
tion to the charging energy term, an exchange interact
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The residual interaction terms fluctuate~because of the fluc-
tuation of the single-particle wave functions! and are of order
1/gT .

The statistical properties of the tunneling widthsG i j be-
tween many-body eigenstates of the dot withN and N11
electrons were studied in Ref. 20. Given a set of tunnel
widths ~and a given realization of the one-body Ham
tonian!, the calculation of the conductance in the presence
exchange and residual interactions can no longer be d
using the expressions derived in Ref. 4. In the limitgT→`
of the universal Hamiltonian, the orbital occupations a
good quantum numbers and one can use the explicit solu
derived in Sec. VI C below.21 However, at finitegT , it is
necessary to include the residual interaction terms. If
temperature is very low, i.e.,kT&0.1D, where D is the
single-particle mean level spacing~lowest temperatures at
tained in a typical experimental setup14!, it is usually suffi-
cient to take just theS51/2 ground state in the dot with a
odd number of electrons, whileboth the singlet (S50) and
triplet (S51) states can contribute in the dot with even nu
ber of electrons. In this case we can use the explicit exp
sion ~20! for the conductance~see Sec. VI B below!. How-
ever, at temperatureskT*0.1D, it is usually necessary to us
the general solution described by Eqs.~9! and ~13!.

VI. EXPLICIT SOLUTIONS IN THE LIMIT OF ELASTIC
SCATTERING

In general, it is not possible to find a closed solution f
the conductance in the limit of elastic scattering, and Eqs.~9!
have to be solved numerically. However, in the following w
list four important cases where explicit solutions to Eqs.~17!
or more generally to Eqs.~11! exist and the conductance
given by a closed expression.

A. Ground-state transition at low temperatures

At sufficiently low temperatures, only the transition b
tween the ground states of theN- and (N11)-electron dots
@(N,S)→(N11,S8)# provides an important contribution t
the conductance. It then sufficies to consider the two grou
state manifolds (N,S) and (N11,S8) which are, respec-
tively, (2S11)- and (2S811)-fold degenerate. In this case
there is only one equation~17! and a solution can always b
found;22 the two variablesCS

(N) and CS8
(N11) are uniquely

determined by

CS8
(N11)

5CS
(N)2

h lG̃S,S8
l

2h rG̃S,S8
r

G̃S,S8
l

1G̃S,S8
r

~23!
1-5
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and by the normalization condition~10!. The linear conductance then yields

Gel5
e2

\kT

@2 max~S,S8!11# f ~«S8
(N11)

2«S
(N)2 ẽF!

~2S11!1~2S811!e2b(«
S8
(N11)

2«S
(N)

2 ẽF)

GS,S8
l GS,S8

r

GS,S8
l

1GS,S8
r , ~24!
-
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where the widthsGS,S8
l,r correspond to the maximally pro

jected spin states withM5S andM 85S8 @cf. Eqs.~21! and
~22!#. Equation~24! for ground-state to ground-state trans
tion was first derived in Ref. 15 using an ‘‘intermediat
state’’ approach. Here we obtain this result as a special c
within the master-equation approach. According to Eq.~24!,
the functional form of the conductance~versus the effective
Fermi energy! does not depend on tunneling widths. In pa
ticular, Gel is maximized when the effective Fermi energ
ẽF[ezVg1eF is tuned to15

ẽF,max5«S8
(N11)

2«S
(N)2

kT

2
lnS 2S811

2S11 D . ~25!

This result generalizes a known result for the CI mode4

in which S50 andS851/2 ~or vice versa!.

B. Ground-state to several-state transitions

We consider only a single state in either theN- or the
(N11)-electron system and allow for any number of sta
in the other system. In the case where the single stat
associated with theN-electron dot, the variables associat
with the (N11)-electron states are chosen as

Ca8S8
(N11)

5CS
(N)2

h lG̃S,a8S8
l

2h rG̃S,a8S8
r

G̃S,a8S8
l

1G̃S,a8S8
r

, ~26!

and the variableCS
(N) is then fixed by the normalization con

dition ~10!. Clearly, Eqs.~26! solve Eqs.~19! for all a8 and
the conductance has the form~20!.

An example for which the case discussed here is us
corresponds to a dot in which the lowest states in the s
sectorsS50 andS51 are close in energy~for an even num-
ber of electrons!. The approximation of Sec. VI A may the
be poor even at very low temperatures. A good approxim
tion at low temperatures is then given by Eq.~20! with both
transitions (N,S51/2)→(N11,S850) and (N,S51/2)
→(N11,S851) included.

C. Systems with good orbital occupation numbers

We definenl5nl11nl2 to be the total occupation of th
~doubly degenerate! single-particle orbitall, i.e., the sum of
the number of spin-up and spin-down particles in that orbi
Both nl1 andnl2 can take the value 0 or 1, hencenl ob-
tains the values 0, 1 or 2. We will show below that Eqs.~19!
have a solution when allnl are good quantum numbers. F
a given pair (a,S) and (a8,S8) only one terml5l0 in
cs

†(r )5(lcl(r )als
† will then contribute to the respectiv

matrix element
11533
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~a8S8ic†~r !iaS!5(
l

cl~r !~a8S8ial
†iaS!

5cl0
~r !~a8S8ial0

† iaS!. ~27!

Clearly, if more than one orbitall contributes to the sum in
Eq. ~27!, then the occupations cannot be good quantum nu
bers in the final statea8. Since the dependence of the r
duced matrix element in Eq.~27! on the point contact atr is
only through the wave functioncl0

(r ), we have

h lG̃aS,a8S8
l

2h rG̃aS,a8S8
r

G̃aS,a8S8
l

1G̃aS,a8S8
r

5
h lGl0

l 2h rGl0

r

Gl0

l 1Gl0

r
, ~28!

where Gl
l,r5G0

l,rucl(r l,r)u2 are the single-particle deca
widths.

We now argue that Eqs.~17! have a solution given by

CaS
(m)52(

l

h lGl
l 2h rGl

r

Gl
l 1Gl

r
nl~a,S! for m5N,N11,

~29!

wherenl(a,S) are the single-particle level occupation num
bers of the states with quantum numbersa andS @note that
the label a includes all the good quantum numbers$nl%
5(n1 ,n2 , . . . ) plus any additional quantum numbers r
quired to distinguish between states with the same occu
tions $nl% and spinS]. Since two manifolds of states (a,S)
and (a8,S8) can only be connected by changing the occu
tion of a particular orbitall0 by a single particle, we have

CaS
(N)2Ca8S8

(N11)
5(

l

h lGl
l 2h rGl

r

Gl
l 1Gl

r @nl~a,S!2nl~a8,S8!#

5
h lGl0

l 2h rGl0

r

Gl0

l 1Gl0

r
. ~30!

Thus Eqs.~19! can be indeed satisfied by Eq.~29!. For the
conductance, we obtain the expression

G5
e2

\kT (
aS

a8S8

P̃aS
(N) f ~«aS,a8S8!u~a8S8ial0

† iaS!u2
Gl0

l Gl0

r

Gl0

l 1Gl0

r
,

~31!

where the orbitall0 depends on both the manifolds (a,S)
and (a8,S8). Of course, only manifolds that are connect
by the addition of an electron to a single-particle orbital co
tribute to the sum in Eq.~31!; i.e., the occupations
$nl(a8,S8)% of the manifold (a8,S8) can only differ for one
1-6
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orbital and by one unit from the occupations$nl(a,S)% of
the manifold (a,S). An expression similar to Eq.~31! ~but
including explicit sums over the magnetic quantum numbe!
was discussed in Ref. 16.

An important example of a Hamiltonian in the class d
cussed here is the so-called universal Hamiltonian in
limit of the Thouless conductancegT→`,

Ĥ5(
ls

elals
† als1

e2

2C
n̂22JSŜ2, ~32!

whereŜ5(lŜl with Ŝl5(ss8als
† sss8als8 is the total-spin

operator of the dot ands is the vector of the three 232
Pauli matrices. Since@ n̂l ,Ŝl#50, the Hamiltonian~32! is
invariant under spin rotations and characterized by the g
quantum numbers$nl%,S, andM. The conductance throug
a weakly coupled dot with a Hamiltonian~32! is then given
by Eq. ~31!.

D. Dots with degenerate ground states

In this subsection, we consider the case of low tempe
tures when only transitions between the ground states wiN
andN11 electrons in the dot are allowed and these grou
states areMN- andMN11-fold degenerate, respectively. Th
case is more general than the similar case of Sec. VI A, s
the degeneracy is not necessarily the usual spin degene
and the transition widthsG i j

l,r can be arbitrary and are no
necessarily related by a Wigner-Eckart theorem. Althou
we cannot write a closed solution forGel in this more genera
case, the degeneracy of the levels participating in the tra
port process allows for significant simplification of the e
pression forGel @as compared with the general express
given by Eqs.~9!, ~10!, and~13!#.

The level degeneracy allows us to reduce the rate eq
tions ~9! to

(
j

@~G i j
l 1G i j

r !~C j
(N11)2C i

(N)!1~h lG i j
l 2h rG i j

r !#

50 for all i , ~33a!

(
i

@~G i j
l 1G i j

r !~C j
(N11)2C i

(N)!1~h lG i j
l 2h rG i j

r !#

50 for all j . ~33b!

In the special case discussed here, the equilibrium proba
ties for N andN11 electrons are independent of the statei

and j, respectively, and we denoteP̃(N)5 P̃i
(N) for all i and

P̃(N11)5 P̃j
(N11) for all j. In particular

P̃(N)5
1

MN1MN11e2b(«(N11)2«(N)2 ẽF)
, ~34!

where« (N)5« i
(N) for all i and« (N11)5« j

(N11) for all j.
Using Eq.~34!, the general expression~13! for the con-

ductance reduces to
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Gel5
e2

\kT

f ~« (N11)2« (N)2 ẽF!

MN1MN11e2b(«(N11)2«(N)2 ẽF) (
i j

~C i
(N)

2C j
(N11)2h l!G i j

l . ~35!

Here, C i
(N) and C j

(N11) are a solution to Eqs.~33!. These
equations do not depend on the temperature, and we
therefore choose a private solutionC̃ i

(N) and C̃ j
(N11) that

is temperature-independent and determined solely by
tunneling widths. The general solution of Eqs.~33! is given
by C i

(N)5C̃ i
(N)1c and C j

(N11)5C̃ j
(N11)1c, where c is

a constant. The solution that satisfies the normali
tion condition ~10! is the one with c52( P̃(N)( iC̃ i

(N)

1 P̃(N11)( jC̃ j
(N11)). While this constantc depends on tem-

perature, it drops out in the final expression for the cond
tance, thus making the sum on the right-hand side of Eq.~35!
temperature-independent.

The conductance in Eq.~35! factorizes into two contribu-
tions. The sum overi and j is completely determined by th
tunneling widthsG i j

l,r and is independent of temperature a
the effective Fermi energy~it is also independent ofh l and
h r as is shown in the Appendix!. The prefactor of the sum on
the right-hand side of Eq.~35! does not depend on the tun
neling widthsG i j

l,r and contains the full dependence on t
temperature and Fermi energy. This prefactor determines
functional dependence of the conductance peak on the
voltage. Similar to Eq.~25! in Sec. VI A, the maximum of
Gel is attained when the effective Fermi energy is tuned

ẽF,max5« (N11)2« (N)2
kT

2
lnS MN11

MN
D . ~36!

Equations~33! need to be solved numerically. An exce
tion is the case discussed in Sec. VI A, in which the dot h
spin-rotation symmetry and the degeneracy of the gro
state corresponds to the various values of the spin projec
M. In this case Eqs.~33! can be solved in closed form@see
Eq. ~23!#, and the linear conductance~35! reduces then to
Eq. ~24!.

VII. THE RAPID-THERMALIZATION LIMIT

The above derivation of the linear conductance assu
that elastic scattering dominates, a good approximation
sufficiently low temperatures. Although the exact tempe
ture dependence of inelastic scattering events is not well
derstood, they should become more relevant with increas
temperature,5 such that their widthG in will eventually be of
comparable size toGel . We therefore consider in this sectio
the rapid-thermalization limit G in@Gel . The rapid-
thermalization conductance was calculated in Ref. 4 in
CI model using the single-particle occupation scheme. H
we derive a closed expression for this conductance in
presence of arbitrary interactions~beyond the charging en
ergy!.

We denote byP(N) the probability of the dot to be in an
N-electron state, and byP( i uN)5Pi

(N)/P(N) the conditional
probability of the dot to be in a particular many-body stati
1-7
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given the dot is occupied byN electrons. In the rapid-
thermalization limit, the conditional probabilitiesP( i uN) and
P( j uN11) are always given by their thermal equilibriu
valuesP̃( i uN) and P̃( j uN11), respectively. It is then only
the probabilitiesP(N) andP(N11) that obtain nonequilib-
rium values by a finite bias voltageV. These probabilities
satisfy the following rate equations:

]P~N!

]t
5P~N11!(

i , j
P̃~ j uN11!@~12 f i j

l !G i j
l 1~12f ij

r !G i j
r #

2P~N!(
i , j

P̃~ i uN!@ f i j
l G i j

l 1 f i j
r G i j

r #, ~37a!

]P~N11!

]t
5P~N!(

i , j
P̃~ i uN!@ f i j

l G i j
l 1 f i j

r G i j
r #

2P~N11!(
i , j

P̃~ j uN11!@~12 f i j
l !G i j

l

1~12 f i j
r !G i j

r #. ~37b!

As in the elastic case, we are interested in stationary
lutions, in which the rate of electron tunneling onto the d
(N→N11) is equal to the rate of electron tunneling off th
dot (N11→N). As in the elastic case, these equations c
be simplified in the linear response limit. In this limit w
expand

P~N!5 P̃~N!@11eVbF (N)#,

P~N11!5 P̃~N11!@11eVbF (N11)#, ~38!

whereP̃(N) andP̃(N11) are the corresponding equilibrium
distributions, andF (N) andF (N11) are unknown variables.
te
e

11533
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Collecting the terms that are independent of the bias v
ageV, we obtain the usual detailed-balance equation at e
librium. The terms that are linear inV lead to

(
i j

P̃i
(N) f i j @~F (N11)2F (N)!~G i j

l 1G i j
r !2~h lG i j

l 2h rG i j
r !#

50, ~39!

where we have used the equilibrium relationsP̃(N) P̃( i uN)
5 P̃i

(N) and P̃(N11)P̃( j uN11)5 P̃j
(N11) , together with

Eqs.~8!.
We observe that while in the elastic limit there wereMN

1MN11 unknown variables, in the inelastic limit we are le
with only two unknown variables. Consequently, an expli
solution forF (N) andF (N11) always exists and is given b
equating to zero the expression in the square brackets of
~39!.

The rapid-thermalization limit of the linear conductan
Gtherm is given by Eq.~13! but with F (N) andF (N11) replac-
ing C i

(N) andC j
(N11) , respectively. Substituting the solutio

of Eq. ~39!, we then obtain a closed expression for the rap
thermalization conductance

Gtherm5
e2

\kT

S (
i j

P̃i
(N) f i j G i j

l D S (
kl

P̃k
(N) f klGkl

r D
(
rs

P̃r
(N) f rs~G rs

l 1G rs
r !

. ~40!

This expression generalizes an analogous expression fo
CI model4 to an interacting dot. We emphasize that, unli
Eq. ~14! in the elastic case, Eq.~40! holds for the most gen-
eral interaction and for any number of states in the dot. As
the elastic case, we can exploit the spin symmetries to
form explicitly the summation over the spin projectionsM
andM 8. Equation~40! can then be written in the form
Gtherm5
e2

\kT

S (
aSa8S8

P̃aS
(N) f ~«aS,a8S8!G̃aSa8S8

l D S (
aSa8S8

P̃aS
(N) f ~«aS,a8S8!G̃aSa8S8

r D
(

aSa8S8
P̃aS

(N) f ~«aS,a8S8!~ G̃aSa8S8
l

1G̃aSa8S8
r

!

. ~41!
he

e
e
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VIII. SUMMARY AND CONCLUSION

We define

^^Xi j &&[(
i j

P̃i
(N) f ~« i j !Xi j 5(

i j
P̃ j

(N11)@12 f ~« i j !#Xi j ,

~42!

whereXi j is a quantity that depends on the many-body sta
i and j of theN- and (N11)-electron dots, respectively. Th
equilibrium probabilitiesP̃i

(N) and P̃j
(N11) to find the dot in

statesi and j are given by Eqs.~6! and~7!, while the energy
difference« i j is defined in Eq.~4!.
s

In the rapid-thermalization limit, the conductance of t
almost-isolated dot is given in general by

Gtherm5
e2

\kT

^^G i j
l &&^^G i j

r &&

^^G i j
l 1G i j

r &&
, ~43!

whereG i j
l (G i j

r ) are the partial transition widths between th
statesi and j involving the tunneling of an electron from th
left ~right! lead into the dot.

In the elastic limit, the conductance is calculated by so
ing the linear equations~9! for C i

(N) and C j
(N11) and then

substituting in the expression~13!. There are several impor
1-8
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tant cases where a closed solution is possible, including
constant-exchange-interaction model~i.e., the universal
Hamiltonian in the limit of infinite Thouless conductanc!
and the case of ground-state to several-state transitions
arbitrary electron-electron interactions. In these cases

Gel5
e2

\kT K K G i j
l G i j

r

G i j
l 1G i j

r L L . ~44!

In general, expression~44! is valid when Eqs.~11! are satis-
fied.

When the Hamiltonian is invariant under spin rotation
these expressions can be simplified by carrying out explic
the summation over the magnetic quantum numbers.
many-body levels of theN- and (N11)-electron dots are
now characterized by the quantum numbersa,S,M and
a8,S8,M 8 and the respective energies are independent oM
and M 8. Equations~43! and ~44! are now valid with the

reduced widthsG̃aSa8S8
l,r replacing the widthsGaSMa8S8M8

l,r ,
and the summation in Eq.~42! carried overaS and a8S8
only ~but not overM andM 8).

In conclusion, we have solved the rate equations
found the linear conductance in the presence of interact
in the dot ~beyond the charging energy!. In particular, we
have taken into account the spin degrees of freedom of
dot and showed the simplifications that occur when the d
Hamiltonian is invariant under spin rotations. Both the lim
of dominantly elastic scattering and rapid thermalizat
were discussed. This work generalizes the results of Re
which were derived in the limit of non-interacting electro
~except for a constant charging energy!.
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APPENDIX

Here we show that the linear conductance in Eq.~13! is
independent ofh l andh r , the fractions of the bias potentia
difference between the dot and the corresponding leads.
fining the new variablesF i

(N)[C i
(N)2h l , we can rewrite

Eqs.~9! in the form

(
j

f i j @~G i j
l 1G i j

r !~C j
(N11)2F i

(N)!2G i j
r !] 50 for all i ,

~A1a!

(
i

~12 f i j !@~G i j
l 1G i j

r !~C j
(N11)2F i

(N)!2G i j
r !]

50 for all j . ~A1b!

The solution of Eqs.~A1! is determined up to an additiv
constant. Sinceh l and h r do not appear explicitly in Eqs
~A1!, we can choose a private solutionF̃ i

(N) andC̃ j
(N11) that

is independent ofh l and h r . The general solution is then
given byF i

(N)5F̃ i
(N)1c andC j

(N11)5C̃ j
(N11)1c, wherec

is a constant. In particular, the normalization condition~10!
can be satisfied by choosing

c52F(
i

P̃i
(N)~F̃ i

(N)1h l!1(
j

P̃ j
(N11)C̃ j

(N11)G .
~A2!

The constantc depends onh l , but disappears in the fina
expression for the conductance in Eq.~13!,

Gel5
e2

\kT (
i j

P̃i
(N) f i j ~F̃ i

(N)2C̃ j
(N11)!G i j

l . ~A3!

Expression~A3! for the conductance shows clearly its ind
pendence fromh l ~andh r).
.
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