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Linear conductance in Coulomb-blockade quantum dots in the presence of interactions and spin
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We discuss the calculation of the linear conductance through a Coulomb-blockade quantum dot in the
presence of interactions beyond the charging energy. In the limit where the temperature is large compared with
a typical tunneling width, we use a rate-equations approach to describe the transitions between the correspond-
ing many-body eigenstates of a dot with and (N+1)-electrons. We consider both the elastic and rapid-
thermalization limits, where the rate of inelastic scattering in the dot is either small or large compared with the
elastic transition rate, respectively. In the elastic limit, we derive an implicit expression for the conductance,
whose calculation requires the solution of a linear set of equations. In several special cases, including the case
of a constant exchange interaction and the case where only ground-state to several-state transitions contribute
to the conductance, we find an explicit closed solution. In the rapid-thermalization limit, a closed solution is
possible in the general case. We show that the corresponding expressions for the linear conductance simplify
for a Hamiltonian that is invariant under spin rotations.
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[. INTRODUCTION temperaturgsuggests that inelastic scattering in the dot be-
comes important already at temperatures comparable to the
In the Coulomb-blockade regime of quantum dots, thesingle-particle mean level spacifigie note that since in
conductance of the dot exhibits peaks as a function of theveakly coupled dotd’o<A/%, we still havel';,<A/# for
gate voltage, where each peak corresponds to the tunnelingi~A, and the above observed suppression of the weak-
of one more electron into the dot. Of particular interest ardocalization effect is not inconsistent with the predicted van-
diffusive or ballistic chaotic dots, in which the mesoscopicishing of the dephasing rate at low temperatures.
fluctuations of the conductance peaks and their spacings re- In the Cl model, the conductance peak heights and spac-
flect the statistical nature of the eigenfunction and eigenenings are directly expressed in terms of the single-particle
ergies of the isolated dof The simplest model of Coulomb wave functions and energies. When the dot is chaotic, the
blockade is the constant-interactig@l) model, in which the fluctuation properties of these single-particle wave functions
electrons occupy single-particle levels in the dot and the inand energies are well described by random-matrix th&ory.
teraction is described by an electrostatic Coulomb energstatistical properties of the conductance peaks have been
that is constant for a fixed number of electrons. In thisstudied within the CI model in both the elast€ and
model, the conductance near a Coulomb-blockade peak a&pid-thermalizatioh'!*?limits, as well as for intermediate
temperatures that are large compared with a typical tunnelingituations->
width can be derived in a closed form using a master- However, recent experiments in almost-isolated Coulomb-
equation approach? This regime of sequential tunneling is blockade dots clearly indicate that it is necessary to take into
relevant to most Coulomb-blockade experiments involvingaccount electron-electron interactions beyond the CI
weakly coupled dots. model}* For such interactions, the eigenstates of the dot are
At sufficiently low temperatures, the conductance througho longer characterized by Slater determinants. An important
the dot is dominated by elastic processes. However, at finitquestion that arises is how to calculate the linear conduc-
temperature, the electrons in the dot may undergo inelastitance through such a dot. In this work we provide an answer
scattering processes caused, for example, by electron-phonamnthe limit of sequential tunneling, generalizing the results
or electron-electron interactions. In general, one may conef the Cl modéef to the interacting case. We assume that both
sider two limiting cases, depending on the relative magnitudéhe thermal energy and the typical excitation energies in the
of a typical elastic tunneling width g, of an electron into the dot are small compared with the charging energy. This de-
dot and a typical inelastic scattering width, of electrons in  fines the regime of Coulomb blockade, where in the vicinity
the dot. In the so-called elastic limif,,>T";,, and inelastic of the (N+1)st conductance peak only the manifolds of
scattering processes in the dot can be ignored. In the opposistates withN andN+ 1 electrons in the dot contribute to the
limit, I'<I";,, inelastic scattering occurs on such a shortconductancdthe manifolds with an electron number differ-
time scale that electrons in the dot are effectively thermali-ent from eitheiN andN+ 1 are pushed away by the charging
zed immediately after an electron tunnels in or out of theenergy. We discuss the calculation of the linear conductance
dot? This limit will be called the rapid-thermalization limit, in terms of the transition widths between the many-body
which in the literature is also sometimes referred to as theigenstates in thil- and (N+ 1)-electron dot as an electron
inelastic limit. The observed suppression of the weaktunnels into the dot. This is done by introducing nonequilib-
localization effect in weakly coupled dots at finite rium probabilities of the dot to be in its various many-body
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eigenstate withN and N+ 1 electrons. These probabilities tions (relevant for low temperaturgsand the case of the
satisfy a set of rate equations describing the transitions besniversal Hamiltonian in the limit of infinite Thouless con-

tween the many-body eigenstates. We consider stationary sguctance. In Sec. VIl we solve the rate equations and derive
lutions in the linear-response approximation in both limits2 closed form for the conductance in the case where the

where inelastic scattering of electrons in the dot is WeaRn.e'aStiC spattering .Wid.th is. much Iarggr than the elastic
(elastic limiy and strongrapid-thermalization limit width (rapid-thermalization limjt Finally, in Sec. VIII we

In the elastic limit, we reduce the problem to a set ofSummarize the main results of this paper.
linear equations, and provide an expression for the conduc- Il. MODEL
tance in terms of the solution of this linear set. There are
several important cases where an explicit solution of these We consider an almost-isolated quantum dot described by
linear equations exists. Such cases include the situation @ HamiltonianH that includes a one-body part and a two-
sufficiently low temperatures where only ground-state tobody interaction. The dot is weakly coupled to leads, and we
ground-state, or ground-state to several-state transitiohs assume the limikT>#1", wherel is a typical transition rate
N and N+1 electrons, respectivelycontribute to the con- of an electron from the leads into the dot. In this limit we can
ductance. The special case where only ground-state tgnore the.coherence between the dot and the leads and use a
ground-state transition is accounted for was derived in Reffate-€quations approach to study the transport through the
15 using an “intermediate state” approach. However, thedot'” Furthermore, we assume the Coulomb enesgy to
lowest triplet and singlet states in a quantum dot can be closg€ much larger than the thermal eneigy In this limit, the
in energy, in which case both states contribute to the condudin€@r conductance of the dot exhibits Coulomb-blockade
tance and it is necessary to use the ground-state to sever@€aks: When the gate voltalfg is tuned in the vicinity of a
state formula derived here. Another case where the rate equ oulomb-blockade peak, the number of electrons in the dot
tions can be solved in closed form at any temperatur an be eitheN or N+ 1. All manifolds with an electron

corresponds to a Hamiltonian for which the occupations?huemcbhe; rgiﬁgrggé:g/m eithell or N+1 are pushed away by

of tge S%rzital t'sinlglel-p'articlet sttatesh are good quagtutm The rate equations have been solved in the Cl model for a
numbers.”A particuiarly Important SUch case corresponds 10gjng1e spin-degenerate le¥eind for any number of single-
the universal Hamiltonign'” in the limit of infinite Thouless particle level In the CI model, the two-body interaction is
conductanceignoring a Cooper-channel term, which is al- ogeled by a constant charging energy of an object with
lowed in the absence of an orbital magnetic fieldhis  capacitancec and chargeNe Here we derive and solve the
Hamiltonian includes a constant exchange interaction in adrgte equations in the presence of interactions beyond the
dition to a constant charging energy. charging energy, where the many-body states of the dots are
In the rapid-thermalization limit, we obtain a closed-form no longer Slater determinants.
expression for the conductance in the most general case of We denote the many-body eigenstates of the dot With
arbitrary electron-election interactions and for any number oglectrons byi, and their respective energies b§’. Simi-
states in the dot wittN andN+1 electrons. larly, the states of the dot witN+ 1 electrons are labeled as

A particularly important situation occurs when the Hamil- ; 31 the corresponding energies af@* 1) My andMy,
tonian of the dot is spin-rotation invariant, as is the case Otienote respectively, the total number of thé and

the Coulomb interactions in the absence of spin-orbit scatteln 4 1)-electron states considered.

ing. The expressions we find for the linear conductance can oy particular interest are cases where the dot's Hamil-

then be simplified by explicitly carrying out the sum over the \gnian is spin-rotation invariant. This requires the absence of

magnetic quantum numbet# both the elastic and rapid- 5 spin-orbit interaction such that the single-particle energies

thermalization limit. , of the electrons in the dat, are spin-degenerate. In addition,
The outline of this paper is as follows. In Sec. Il We ¢4 gpin-rotation invariance to be valid, the matrix elements

introduce the basic assumptions and notation. In Sec. lll W the two-body interaction may depend only on the orbital
discuss the rate equations satisfied by the probabilities to fingates put not on the spin indices, as for the case of Coulomb
the dot in one of its many-body eigenstates wikhor i iaraction. We then have

N+ 1 electrons. We assume the elastic limit, where inelastic
scattering of electrons in the dot is negligible. In Sec. IV we [H,$]=0 and [H,S,]=0, )

use linear-response theory to linearize these master equations -~ )

in the stationary limit. A general expression for the linearWheresis the total spin operator of the dot. The many-body
conductance in terms of the solution to the rate equations igi9enstates of the dot can be characterized by the good quan-
derived in Sec. V. We show that if detailed balance is satistum numbers of the spi$ and its projectionS,=M. The

fied for each pair of many-body eigenstafés the N- and ~ fémaining quant.um numbers, in addition to the total number
(N+1)-electron dots, respectivdlythen the master equa- of electronsN, will be labeled bya. Thus the eigenstates of
tions and consequently the conductance can be solved #}€ dot withn electrons are given biy=(«,S,M), and their
closed form. Furthermore, the corresponding expressions aféSpective energies,d are independent d¥l. The states of
shown to be simplified for Hamiltonians that are invariantthe dot with N+1 electrons are similarly labeled by

with respect to spin rotations. Physically relevant cases=(a’,S',M’), and their corresponding energies af;a;/l)
where such closed solutions exist are discussed in Sec. VAn example of a spin-rotation invariant Hamiltonian is the

and include the case of ground-state to several-state transiecently proposed universal Hamiltoniat.
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Ill. RATE EQUATIONS be independent of the way that the source-drain potential
difference is distributed. A rigorous proof of this statement is

We assume that a potential differenveis applied be- provided in the Appendix.

tween the two leadgsource and drajnat temperatureT.
Fractionsz, and », of this potential difference, with

mtn=1, @ To calculate the conductance, we are interested in finding
fall between the dot and the left lead, and the right lead andtationary solutions of Eq¥3), i.e., nonequilibrium prob-
the dot, respectively. As a result a curréfiows through the  abilities P™ and P{N*) that satisfy 9P(N/9t=0 and
dot and various eigenstates of the dot can be occupied W|tbp(N+l)/5t 0 for aII i andj, respectively. Furthermore, to

different probabilities. We denote the nonequilibrium prob- f|nd the linear conductance, it is sufficient to solve the rate

ability for the dot to be in a particulaN-electron staté by  equations in linear-response theory, i.e., linearizing(Bpin
P("). Since we consider situations in which the dot can onlyy. To this end, we expan®™ and pJ(N+1) around their

be occupied byN or N+ 1 electrons, we require the normal-
ization =;P{M + =, P(N*H=1.

We further assume that energy is conserved in the tunnel- (N) _ B(N) (N)
ing between the dot and the Ieo”?gseglecting virtual transi- Pr=PiT1+e VYT,
tions that are of higher order in the tunneling widths. Denot-
ing the transition widths between tielectron state and
the (N+ 1)-electron statg involving an electron tunneling
into the dot from the leffright) lead byF (F ), we can
write the following rate equations for the probablhtl@éN)

IV. LINEAR RESPONSE

equilibrium valuesP(™ and P{N ")

PJ(N+1):T:')J(N+1)[1+eVB\I,J(NJrl)], (5)

in terms of new variable¥ (") andW{" " The equilibrium
probabilities can be expressed explicitly in terms of the
eigenenergies™ and&"*" of the dot withN andN+1

N+1
and P{""1): electrons,
opM e (ven)_
P 2 PNTDL(1— )T+ (1 f)I]] pny_E Alei e pvr_ € o ATl
i ) i )
Z ) Z
P<N>E fi;T, + [T} foralli (3a) ©
- + oralli, , o
( i) with the partition sum
aP(N”) (N _~ (oD
= S CIEN) - —e(N+1)]
=3 P f.r:j+f{jr{j)—P}N+1); [(1—f)T, z=2 e plimer +; e )
+(1-f)y] forall j. (3p)  The equilibrium distribution is in principle grand-canonical

with a chemical potential equal to the Fermi energy(at
The Fermi-Dirac function of an electron in the léfight)  temperatureT) in the leads, but because of the presence of
lead is evaluated at a suitable energy that can be found frogharging energy only two values of the electron numbers are
energy conservation of the transition between statesd|, allowed.
and is denoted byj; (ff;). In the presence of a gate voltage  To find a linear set of equations far(™ and¥ MY we
3\1) the energy of théN-electron dot in stateé is given by  substitute the expansiof®) into the rate equationg3) and
—NelVy. Here {=C4/C, with Cq4 being the dot’s ca- expand the Fermi-Dirac functions to first order VA i.e.,
pamtance With respect to the gate, a’.hdbeing the full dot’s f:j =f;+ 77|9Vfi'j andf{j =fi;— ﬂreri’j . where we have de-
capacitance. Thus the energy of an electf@tative to the  notedf;;=f(e;;) andf’ is the derivative of. Keeping only

Fermi energyer in the leads in the left (right) lead that terms that are linear in the bias voltaye and using the
tunnels into anN-electron dot in statei to form an relation

(N+1)-electron dot in statgis given by
_ LN+ (N PN =pNe~Fei, 8
&ij =g € €, (4)

5 we obtairt®
where eg=e{V,+ er is an effective Fermi energy. Taking
into account the bias-potential drop between the dot and each
lead, we havef;=f(e;j+neV) and fj;=f(e;—neV),
where the Fermi-Dirac function at temperatdrés defined
by f(x)=[1+exp(@)] ! with B=1KT. =0 forall i, (9a)

We note that we can choose any valuespfand 7,
satisfying Eq.(2), but that the final result for the conductance
(derived in Sec. Y must be independent of this choice. This Z (1—fip) [(Fl +I)(W (NH)_\Pi(N)H(’?lr:J =7l
independence must follow on physical grounds since the lin-
ear conductance is an intrinsic property of the dot and must =0 forall j. (9b)

2 fi[(T+ TN DNy + (T - 5]
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Equationg9) represent a system M+ My .1 linear equa- However, in special cases where E(fl) hold, the con-
tions for My+My,, unknowns. However, onlyMy  ductance is given by the closed form

+Mys1—1 of these equations are linearly independent.
Hence, the solutions fo(") and ¥"*" are determined

2 | r

only up to an additive constant. This constant is fixed by Gu= PN UL
H H H el™ ~ I:)i ij - r (146)
imposing the constraint AKT 5 Tj+T7,

Z f’i(N)\Ifi(N)Jr}j: PNy (Nt D=, (100 or equivalently
which follows from the normalization condition of the non- ) Il Y
equilibrium probabilities. In general, it is necessary to solve G.= e 2 PN*(1 1) i ij (14b)
Egs. (99 numerically. These equations represent sets of T RKT 4 ) g r!j+1“i’j'

detailed-balance equations. However, it is possible to find
analytic solutions in cases where a detailed-balance equatiq\rpotiCe that the parametens . no longer appear in the con-
holds for each pair of statésandj individually, i.e., in cases P v 9 PB

where each term in the square brackets of Egjsvanishes. ?uctatrr\]ce f(l)rmula. Thehl_nﬂerf)elgd?nce_ of the actofni\uctance
This condition is equivalent to rom the values ofy,, which holds true in generatf. Ap-

pendiX, becomes apparent in this special case where an ex-
rl— plicit formula can be given.

T ] forany i and j. The conductancél4) is expressed as a sum over all pairs

F!1+F{j of many-particle states andj of the N-electron and

(12) +1)-electron dots, respectively, in contrast to the CI model

We emphasize that there ahéyM equations(11) for where the conductance is described as a sum over single-
only My+My. 1 Unknowns soin the general case it is not Particle levels' We observe that the temperature dependence
+ ’

possible to safisfy Eq(11). This is in contrast to the CI pf the contribution from eagh pair'of m?ny-particle states is
model where a closed solution always exigiecause of the ndependent from the transition W'dﬂﬁéi ' _
single-particle nature of the problem. Yet, there are a number S0 far, the spin symmetries have not been taken into ac-
of important cases where a closed solution of 8d) does countin thg d_erlvatlon of the rate equations and the co_nduc-
exist, as we discuss in Sec. VI. A solution to E€fl), when tance. If this is done,.the-gum over the many-body states
it exists, does not depend on temperature and leads to &f'di can be further simplified. For two many-body states
expression for the conductance as a sum of terms, in each c_Tf_(“’S"\l/') andj=(a’ ’S"M '), the associated partial decay
which the dependence on temperature and on decay widthgdths I'; andT’j; are given by

factorizes[see Eq.(14)].

\I}i(N)_\PJ(NJrl):

V. LINEAR CONDUCTANCE I‘g’erTldrKa’S'M '|1,0Tm(l’|vr)|a5 M>|2’ 19

' The linear conductand® is defined as the ratid'V in the .Where the Operato,p;](rl) [lp:n(rr)] creates an electron with
limit V—0. The current through the dot can be expressed igpin projectionm at the left[right] point contact at, [r,],
terms of the quantities considered in the master-equation agyqd we have introduced overall coupling strengﬂhrsat the

proach. In this framework, we can calculate, for example, thgeft and right point contact. The spin selection rules require
currentl through the left tunneling contact, which equals the ;=\ —M ands’' = |S+1/2| for the matrix element in Eq.

current through the dot and through the right contact, (15) not to vanish. For a Hamiltonian that is invariant with

e respect to spin rotations, we can use the Wigner-Eckart theo-
|=%Z [pi(N)f!j_pJ(N+1)(1_f!j)]r:j_ (120 rem to factorize the maFri_x element in E@l5 intc_> a
ij Clebsch-GordariCG) coefficient and a reduced matrix ele-
ment that is independent of the spin-projection quantum

Using the expansion in Eq5) and expanding; to first numbersM, M’ andm,

order inV, we find the elastic linear conductance
e2

Ger= it 2 PV (UM =W V- (13

1
7 ! (a'S'M'|yl (1) aSMy=— +1(SM1/2m|S’M’)

V28’
Although 7, appears explicitly in Eq13), the linear conduc- e
tance is independent of,. This must be so on physical X(a'S'¢'(r)]as). (16
grounds, and a formal proof is provided in the Appendix.

The complete solution for theelastig linear conductance For a given pair of many-body statésand j, the decay

in the general case of sequential tunneling is given by Eqswidths I‘!j andTl'j; involve the same CG coefficient. In Eq.
(9) together with Eq(13); we solve Eqgs(9) for ‘Ifi(N) and  (11), the CG coefficients in the ratio on the right-hand side
¥ {N*D and substitute their values in EG.3). cancel and we are left with
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ey Mol(a’ S9! (r) [ aS) 2= nlgl (eS¢ (r)|2S)|?

N
\If'( )_\Pl | rer + 2 r rer t 2
Fol(a'S'[[¢'(r)]|@S)|*+ ol (e’ S|4 (r)]|eS)|

17

Thus, if solutions for# (™) andw(N*1) exist that satisfy Eq. The residual interaction terms fluctudteecause of the fluc-
(11), they will be independent of the spin projectitvh or  tuation of the single-particle wave functigrend are of order

M, e, TN =9 and PN D=wD  Defining re-  1/g7.

duced decay widths The statistical properties of the tunneling widthg be-
tween many-body eigenstates of the dot withand N+ 1
fl,;rs,arsf:r:ﬂ(a's'||¢T(r|,r)||015)|2, (18)  electrons were studied in Ref. 20. Given a set of tunneling

» ) , ) i widths (and a given realization of the one-body Hamil-
conditions(17) can be rewritten in a form in which the mag- (gnjan, the calculation of the conductance in the presence of
netic quantum numbers disappear, exchange and residual interactions can no longer be done
~ ~ using the expressions derived in Ref. 4. In the ligyt>

| r
PN+ 9 _ M s ars =1l s 0 (19 of the universal Hamiltonian, the orbital occupations are
a’s as T AT : good quantum numbers and one can use the explicit solution
aSa’'S' " T aSa’s derived in Sec. VI C belo®* However, at finitegy, it is

Using the reduced widths in the expressia#) for the linear  necessary to include the residual interaction terms. If the
conductance, and taking advantage of the unitarity of theemperature is very low, i.ekT=<0.1A, where A is the
CG, Sym|(SM1/2m[S’TM")|?=1, we can write the linear single-particle mean level spaciritpwest temperatures at-

conductance in the form tained in a typical experimental setdp it is usually suffi-
) ~ ~ cient to take just th&=1/2 ground state in the dot with an
B ORI Tasaslasars odd number of electrons, whileoth the singlet §=0) and
Ge'_m & Past(easars)z; LT : triplet (S=1) states can contribute in the dot with even num-
e aS,a’S' T T aSa’S! (20) ber of electrons. In this case we can use the explicit expres-

sion (20) for the conductancésee Sec. VI B beloyv How-
Instead of using the reduced widths defined in @®), it ever, at temperaturdsT=0.1A, it is usually necessary to use

is possible to express the conductance in terms of the widti§e general solution described by E¢8) and(13).

for the maximally projected spin statéise., M=S andM’

=g)
| | VI. EXPLICIT SOLUTIONS IN THE LIMIT OF ELASTIC
,r _ ,r
Uosars=Tassarss - (21) SCATTERING
The reduced matrix elements in £48) are nonzero only for In general, it is not possible to find a closed solution for
S'=S*1/2 and, using the corresponding CG coefficientsthe conductance in the limit of elastic scattering, and Egs.
we have have to be solved numerically. However, in the following we
_ list four important cases where explicit solutions to EdS)
I“'ofsya,s,=[2 maxsS,S') + 1]1“25'0,5, : (22)  or more generally to Eq€11) exist and the conductance is

given by a closed expression.

A subject of current interest is the mesoscopic fluctuations
of the conductance in chaotic or diffusive quantum dots with
large Thouless conductangg .>? The statistical properties A. Ground-state transition at low temperatures
of the single-particle levels in a band of widthg: around
the Fermi energy are described by random-matrix theory. |
the CI model, ir_1 yvhich only charging energy is taken into (N,S)—(N+1,5')] provides an important contribution to
account, the finite-temperature conductance through

Imost-isolated dot can b lculated in terms of the sinal e conductance. It then sufficies to consider the two ground-
aimost-isolated dot can be calculate erms ofthe SINGl€q; 416 manifolds §,S) and (N+1,S') which are, respec-

particle spectrum and wave functions using the expressioHvely, (25+1)- and (&' + 1)-fold degenerate. In this case,

derived in Ref. 4. The statistical properties of the conduc, : : :
tance peaks can then be inferred directly from the randomt—here is only one equatiofl7) and a solution can always be

. N+1 .
matrix properties of the single-particle Hamiltonian. How- found?% the two varlables;\l'(s'\‘) and \I’(S’ ) are uniquely
ever, a realistic description of an almost-isolated quantunfi€termined by
dot requires additional interaction terms beyond the CI
model. The generic form of the Hamiltonian of a chaotic dot

At sufficiently low temperatures, only the transition be-
"ween the ground states of tie and (N+ 1)-electron dots

i i i o i [ r

is given by the universal Hamiltonian plus residual Nt 1 msg—nlsg
interaction®’ The universal Hamiltonian includes, in addi- L O Th (23
tion to the charging energy term, an exchange interaction. Fsgtlsy
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and by the normalization conditiof10). The linear conductance then yields

e? [2maxS,S)+1]f(el V-l —¢p Tiglie

1= (N+1) = ) (24)
O HKT (251 1) + (28 + 1)e FeD o8 e T +TL,
|
where the Widthsl“'sfs, correspond to the maximally pro- vl ot _2 el
jected spin states witM =S andM’ =S’ [cf. Egs.(21) and (a'S'g'(r)]aS)= = i (r)(a’S'|ay]|aS)
(22)]. Equation(24) for ground-state to ground-state transi-
tion was first derived in Ref. 15 using an “intermediate- =zp%0(r)(a'8’||a10||a8). (27

state” approach. Here we obtain this result as a special case . . ] i
within the master-equation approach. According to @4),  Clearly, if more than one orbital contributes to the sum in
the functional form of the conductan¢eersus the effective EQ.(27), then the occupations cannot be good quantum num-

ticular, G is maximized when the effective Fermi energy duced matrix element in E¢27) on the point contact atis
= elV,+ e is tuned td5 only through the wave functios, (r), we have

=
(N+1)_ _(N)_ k_T

r I r
~ 0l hsars ml,~ 'y,
€EEmax—Eg €g 5 In =

| R
(25) 77|~ ;xs,a S
raS,af’S’

25"+ 1)
25+1 ) = : (28)
This result generalizes a known result for the CI mddel,

in which S— 0 andS' = 1/2 (or vice versa where T}'=T¢|y,(r,,)|?> are the single-particle decay

widths.

- We now argue that Eq$17) have a solution given by
B. Ground-state to several-state transitions

We consider only a single state in either tNe or the (m)=—2 7I|F|>\— nrl“;n (.S for m=N,N+1
(N+1)-electron system and allow for any number of states * aS N T AL d d
in the other system. In the case where the single state is Moo 29
associated with th&-electron dot, the variables associated ) ) .
with the (N+1)-electron states are chosen as wheren, («,S) are the single-particle level occupation num-

bers of the states with quantum numbersind S [note that

the label « includes all the good quantum numbedns, }
— , (26) =(ny,n,, ...) plus any additional quantum numbers re-
FS’Q,S,+F;’Q,S, quired to distinguish between states with the same occupa-
tions{n,} and spinS]. Since two manifolds of states(S)
and («¢',S') can only be connected by changing the occupa-
tion of a particular orbitah, by a single particle, we have

Ty oIt
(N+1) Ny T saers ™ Tl sars
R e
and the variablel ") is then fixed by the normalization con-
dition (10). Clearly, Egs(26) solve Eqgs(19) for all «’ and
the conductance has the for(@0).

An example for which the case discussed here is useful ol —p,I"
corresponds to a dot in which the lowest states in the spinW {0 —¥NTD=>" %[nh(a,S)—nk(a’,S’)]
sectorsS=0 andS=1 are close in energffor an even num- A I\ +T%
ber of electrons The approximation of Sec. VI A may then | ;
be poor even at very low temperatures. A good approxima- ’7IF>\0_ ”rrxo
tion at low temperatures is then given by EB0) with both - ot (30)
transitions N,S=1/2)—(N+1,S'=0) and (,S=1/2) Yoo o
—(N+1,8'=1) included. Thus Egs.(19) can be indeed satisfied by E@9). For the

conductance, we obtain the expression
C. Systems with good orbital occupation numbers , .

We definen, =n, , +n, _ to be the total occupation ofthe ~_ & < zn) rerflat 2__ Mt
(doubly degenerajesingle-particle orbitak, i.e., the sum of kT aES Pasf(eas.arsl(@’Slay eS| ro+rt
the number of spin-up and spin-down particles in that orbital. a's’ 0 (301)

Both n, ., andn, _ can take the value O or 1, hennog ob-
tains the values 0, 1 or 2. We will show below that EG®)  where the orbitah, depends on both the manifolds )
have a solution when afi, are good quantum numbers. For and («',S’). Of course, only manifolds that are connected
a given pair @,S) and (@',S") only one termA=\q in by the addition of an electron to a single-particle orbital con-
Y (r)=3,4,(r)al, will then contribute to the respective tribute to the sum in Eq.(31); i.e., the occupations
matrix element {n\(a',S")} of the manifold @',S") can only differ for one
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orbital and by one unit from the occupatiofss, («,S)} of e? feMN+D— g _T)
the manifold @,S). An expression similar to Eq31) (but Gei= 7t e, > (v
including explicit sums over the magnetic quantum numbers Myt Mysa€ ]
was discussed in Ref. 16. _ap(N+1) I

An important example of a Hamiltonian in the class dis- Y] ;. (35)
cussed here is the so-called universal Hamiltonian in thﬁere,\lli(N) and \p](NH) are a solution to Eqs33). These

limit of the Thouless conductan@g— <, equations do not depend on the temperature, and we can
5 therefore choose a private solutioh™ and ¥*" that

gzz f)\al a, +e_ﬁz_JSg2, (32) is temperature-independent and determined solely by the
o 7 2C tunneling widths. The general solution of E¢33) is given

by ¥W=FM+c and ¥ D=FN* Dy wherec is

a constant. The solution that satisfies the normaliza-
tion condition (10) is the one with c=—(PMNz,¥MN
a—TD(N”)Ej\Tf}N”)). While this constant depends on tem-

whereS=53, 8, with §,=3,,.a/ ,o,,a,, is the total-spin
operator of the dot andr is the vector of the three 22
Pauli matrices. Sincén, ,S,]=0, the Hamiltonian(32) is
invariant under spin rotations and characterized by the goo : : . .
quantum numberén, },S, andM. The conductance through perature, it drop_s out in the final expression fo_r the conduc-
a weakly coupled dot with a Hamiltonia82) is then given tance, thus m_aklng the sum on the right-hand side of&).

by Eq. (31). temperature-mdepen_dent. _ _ _

The conductance in E¢35) factorizes into two contribu-
tions. The sum oveirandj is completely determined by the
tunneling WidthsI‘!’jr and is independent of temperature and

In this subsection, we consider the case of low temperathe effective Fermi energgit is also independent of; and
tures when only transitions between the ground statesMWith %, as is shown in the AppendixThe prefactor of the sum on
andN+1 electrons in the dot are allowed and these groundhe right-hand side of Eq35) does not depend on the tun-
states aréVl - andM , 1-fold degenerate, respectively. This neling widthsl“!'jr and contains the full dependence on the
case is more general than the similar case of Sec. VI A, sincemperature and Fermi energy. This prefactor determines the
the degeneracy is not necessarily the usual spin degeneradynctional dependence of the conductance peak on the gate
and the transition widthﬂf!'jr can be arbitrary and are not voltage. Similar to Eq(25) in Sec. VI A, the maximum of
necessarily related by a Wigner-Eckart theorem. AlthoughGy, is attained when the effective Fermi energy is tuned to
we cannot write a closed solution f@r in this more general
case, the degeneracy of the levels participating in the trans- ~ _ (N1 (N)_ k—TI M1
port process allows for significant simplification of the ex- €Rmax— & € MMy
pression forGg [as compared with the general expression
given by Egs(9), (10), and(13)]. Equations(33) need to be solved numerically. An excep-

The level degeneracy allows us to reduce the rate equdion is the case discussed in Sec. VI A, in which the dot has
tions (9) to spin-rotation symmetry and the degeneracy of the ground

state corresponds to the various values of the spin projection
M. In this case Eq933) can be solved in closed forfisee

D. Dots with degenerate ground states

(36)

| N+1 N |
2 (T + TN v M) (T = 1) Eq. (23)], and the linear conductan¢85) reduces then to
Eq. (24).
=0 forall i, (339
VII. THE RAPID-THERMALIZATION LIMIT

> [T +TH@N - M) 4 (T — 7,71 The above derivation of the linear conductance assumes
: that elastic scattering dominates, a good approximation at

=0 forall j. (33b) sufficiently low temperatures. Although the exact tempera-

ture dependence of inelastic scattering events is not well un-
In the special case discussed here, the equilibrium probabilderstood, they should become more relevant with increasing
ties forN andN+ 1 electrons are independent of the states temperaturé,such that their widtH";, will eventually be of
andj, respectively, and we deno@N):’pi(N) for alli and Ccomparable size tb . We therefore consider in this section
the rapid-thermalization limit I';;>1T",;. The rapid-
thermalization conductance was calculated in Ref. 4 in the
Cl model using the single-particle occupation scheme. Here

PN*D=PMND) for all j. In particular

BN — 1 34 Ve derive a closed expression for this conductance in the
M+ My, e AN -0 presence of arbitrary interactioribeyond the charging en-
ergy).
whereeM=¢M for all i ande™N* V=N for all j. We denote byP(N) the probability of the dot to be in an
Using Eq.(34), the general expressioi3) for the con-  N-electron state, and biy(i|N)=P")/P(N) the conditional
ductance reduces to probability of the dot to be in a particular many-body state
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given the dot is occupied bW electrons. In the rapid-
thermalization limit, the conditional probabilitié(i|N) and
P(j|IN+1) are always given by their thermal equilibrium
valuesP(i|N) andP(j|N+1), respectively. It is then only
the probabilities?(N) and P(N+ 1) that obtain nonequilib-
rium values by a finite bias voltagé. These probabilities
satisfy the following rate equations:

JP(N ~
;t )=P<N+1>i2j P(IN+ D)L= i)+ (A= f{)I]
—P(N)Z P(i|N)[ ;T + ;T 1, (373
JP(N+1)

g —P(N)E P(IN)[f T+ T ]

—P(N+1)2 P(jIN+1)[(1—f})T},
1)

+(1— )], (37b)

As in the elastic case, we are interested in stationary so-
lutions, in which the rate of electron tunneling onto the dot
(N—N+1) is equal to the rate of electron tunneling off the
dot (N+1—N). As in the elastic case, these equations can

be simplified in the linear response limit. In this limit we
expand

P(N)=P(N)[1+eVBdMN],
P(N+1)=P(N+1)[1+eVRDdN+1)], (39

whereP(N) andP(N+1) are the corresponding equilibrium
distributions, andb™ and®N*1) are unknown variables.

2

e aSa'S'

= |
E PEXI\IS)f(SaS,a’S')FaSa’S’

PHYSICAL REVIEW B 69, 115331 (2004

Collecting the terms that are independent of the bias volt-
ageV, we obtain the usual detailed-balance equation at equi-
librium. The terms that are linear ¥ lead to

2 BMGL@N D= eI T]) = (= 7))

=0, (39

where we have used the equilibrium relatid®&N)P(i|N)
=PM™ and P(N+1)P(j|N+1)=PN"1), together with
Egs.(8).

We observe that while in the elastic limit there weVig,
+ My .1 unknown variables, in the inelastic limit we are left
with only two unknown variables. Consequently, an explicit
solution for®™ and®N*1) glways exists and is given by
equating to zero the expression in the square brackets of Eq.
(39).

The rapid-thermalization limit of the linear conductance
Ginermis given by Eq(13) but with @™ and®N*1) replac-
ing ¥ andW{"* Y respectively. Substituting the solution
of Eq. (39), we then obtain a closed expression for the rapid-
thermalization conductance

(2 P(N)fijF:i ) ( % ’Is(kN)kaFrkl)

Gtherm ﬁ KT

(40)
; PMf (T1e+T7To)

This expression generalizes an analogous expression for the
CI modef to an interacting dot. We emphasize that, unlike
Eqg. (14) in the elastic case, Eg40) holds for the most gen-
eral interaction and for any number of states in the dot. As in
the elastic case, we can exploit the spin symmetries to per-
form explicitly the summation over the spin projectiolls
andM'. Equation(40) can then be written in the form

I

~ N ~
> PNf(eusars)cns
aSa’S’

Gihern= AKT

(41)

~ od]| -~
2 P(aNS)f(SDKS,a’SI)(I‘aSa'S’+Fra$a’s')

aSa'S'

VIIl. SUMMARY AND CONCLUSION
We define

{(Xi= E PMf(eij)X;; = 2 PN 1—f (&)X,
(42)

In the rapid-thermalization limit, the conductance of the
almost-isolated dot is given in general by

G e? <<F,>><<F,>>
therm— AKT <<F +I,”>>

(43

Wherel“'] (F ) are the partial transition widths between the

whereX;; is a quantity that depends on the many-body stategtates andj mvolvmg the tunneling of an electron from the

i andj of theN- and (N+ 1)-electron dots, respectively. The
equilibrium probabilitiesP™ and PN to find the dot in
states andj are given by Eqs(6) and(7), while the energy
differences;; is defined in Eq(4).

left (right) lead into the dot.

In the elastic limit, the conductance is calculated by solv-
ing the linear equationg9) for ¥ and w{"*" and then
substituting in the expressigqid3). There are several impor-
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tant cases where a closed solution is possible, including thBMR 02-37296, and EIA 02-10736. We thank S. Malhotra
constant-exchange-interaction modéle., the universal for helpful discussions.

Hamiltonian in the limit of infinite Thouless conductance

and the case of ground-state to several-state transitions with APPENDIX

arbitrary electron-electron interactions. In these cases ) ) )
Here we show that the linear conductance in B@) is

g2 r:jrifj independent ofy, and #,, the fractions of the bias potential
GeFm o (44)  difference between the dot and the corresponding leads. De-
I+ T fining the new variablesb™=¥M— 7 ~we can rewrite
In general, expressiof4) is valid when Eqs(11) are satis- EQgs.(9) in the form
fied.
When the Hamiltonian is invariant under spin rotations, £+ T (PN D MY TV =0  forall i
these expressions can be simplified by carrying out explicitly 2 L #1500 )Ll ’
the summation over the magnetic quantum numbers. The (Ala)
many-body levels of thé\- and (N+1)-electron dots are
now characterized by the quantum numbersS,M and e | r (N+1)_ a (N)y _ or
a',S',M’ and the respective energies are independei of Z (L= i LT+ Ty (0] )= T)]
and M’. Equations(43) and (44) are now valid with the

reduced widthsl“'c'fSa,S, replacing the widthsl“'L;rSMa,S,M,, =0 forall j. (A1b)

and the summation in Eq42) carried overaS and a’S' The solution of Eqs(Al) is determined up to an additive

only (but not overM andM’). constant. Sincep; and 7, do not appear explicitly in Egs.
In conclusion, we have solved the rate equations angAl), we can choose a private solutidrf"™) andW¥"*? that

found the linear conductance in the presence of interactions independent ofp, and 7,. The general solution is then

in the dot (beyond the charging energyin particular, we  gjven byCDi(N)=EI3i(N)+C and W (N D=gN*D 4 o \wherec

have taken into account the spin degrees of freedom of thg a constant. In particular, the normalization conditian)

dot and showed the simplifications that occur when the dot'gan pe satisfied by choosing

Hamiltonian is invariant under spin rotations. Both the limits

of dominantly elastic scattering and rapid thermalization — i~ - ~

were discussed. This work generalizes the results of Ref. 4, €=~ Z PM(@MN+ )+ 2 PN WD,

which were derived in the limit of non-interacting electrons : (A2)

(except for a constant charging enexgy
The constant depends ony,, but disappears in the final

ACKNOWLEDGMENT expression for the conductance in Ef3),
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