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Spin relaxation in GaAs quantum dots
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The spin-relaxation time due to the electron-acoustic phonon scattering in GaAs quantum dots is studied
after the exact diagonalization of the electron Hamiltonian with the spin-orbit coupling. Different effects such
as the magnetic field, the quantum dot size, and the temperature on the spin-relaxation time are investigated in
detail. Moreover, we show that the perturbation method widely used in the literature is inadequate in account-
ing for the electron structure and therefore the spin-relaxation time.
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I. INTRODUCTION

Spin-related phenomena in semiconductors have attra
much attention recently as they are the key ingredient in
field of spintronics.1 Among these, the spin-orbit couplin
mechanisms in semiconductor quantum dots~QD’s! provide
a basis for device applications such as qubits in quan
computers and have therefore caused much interest.2–7 Vosk-
oboynikov et al. studied the electron structures of QD’s b
exactly diagonalizing the Hamiltonian with spin-orb
coupling.8 Governale studied the electron structure of fe
electron interacting QD’s with Rashba spin-orbit coupling
spin-density-functional theory.9 Valı́n-Rodrı́guezet al. inves-
tigated spin procession in QD’s with the spin-orbit couplin2

Besides the effect of the spin mixing in the electron str
ture, the spin-orbit coupling also induces the spin relaxat
via further coupling with phonons, which alone conserve
spin and therefore are unable to cause any spin-relaxa
Many works calculated the spin-relaxation time~SRT! due to
the spin-orbit coupling induced spin-flip electron-phon
scattering at zero or very low temperatures.4,6,7,10Unlike the
electron structure calculation,2,8,9 to the best of our knowl-
edge all works on the SRT are based on perturbation the
where the spin-orbit coupling is treated as a perturbation
the Hilbert space spanned byH0 which does not include the
spin-orbit coupling. Moreover only the lowest few ener
levels of H0 are included in the theory.4,6,7,10 Whether the
perturbation based on the lowest few levels ofH0 is adequate
remains unchecked.

In the present paper, we investigate the SRT of Ga
QD’s confined in the quantum well by parabolic potentia
by exactly diagonalizing the total Hamiltonian. We calcula
the SRT due to the scattering with the acoustic phonons
the Fermi golden rule after getting the energy spectra and
wave functions from the exact diagonalization. We find th
the perturbation approach is inadequate in calculating
SRT and therefore it is necessary to reinvestigate the a
rate SRT via the exact diagonalization approach. We o
nize the paper as follows. In Sec. II we set up our model
the Hamiltonian. Then in Sec. III we present our numeri
results: We first compare the results obtained from our ex
diagonalization method with those from the perturbation
proach and show that the perturbation method is inadeq
in accounting for the SRT in Sec. III A. In Sec. III B w
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discuss the SRT of a small QD atT54 K where only the
lowest two energy levels of the total electron Hamiltoni
after the exact diagonalization account for the SRT. Nev
theless at least 12 energy levels ofH0 are needed to get thes
lowest two energy levels. We then turn to effects of the m
netic field, the temperature, and the quantum well width
the SRT in Secs. III C–III E. We give our conclusions in Se
IV.

II. MODEL AND HAMILTONIAN

We set up a simplified model to study the spin relaxat
in the QD’s which are defined by parabolic potentia
Vc(r )5 1

2 m* v0
2r2 in a quantum well of widtha. A magnetic

field B is applied along the growth~z! direction of the quan-
tum well. The total Hamiltonian is given by

H5He1Hph1Hep , ~1!

with the electron HamiltonianHe5H01Hso . Here H0 is
electron Hamiltonian without the spin-orbit coupling:

H05
P2

2m*
1Vc~r !1HB , ~2!

in which P52 i\“1(e/c)A with A5(B/2)(2y,x,0)
stands for the electron momentum operator.m* is the elec-
tron effective mass.HB5 1

2 gmBBsz is the Zeeman energy
with s representing the Pauli matrices.Hso5gh•s is the
spin-orbit coupling which is the key to the spin flip and sp
relaxation. h5@Px(Py

22Pz
2),Py(Pz

22Px
2),Pz(Px

22Py
2)# is

the Dresshauls effective magnetic field in the bulk materia11

In quantum well with small width,Hso can be simplified as

Hso5gc~2Pxsx1Pysy!, ~3!

with gc5g(p/a)2. g527.5 Å3 eV.12 Hph in Eq. ~1! is
the Hamiltonian for phonons and is given byHph

5(ql\vqlaql
† aql with vql standing for the phonon energ

spectrum of branchl and momentumq. The electron-
phonon scattering is given by

Hep5(
ql

Mql~aql
† 1aql!exp~ iq•r !, ~4!

with Mql being the scattering matrix element.
©2004 The American Physical Society18-1



-
f
g

:

g
.

ta

u

ith

go

ld
nc-
ce
rgy

s,

fol-
t-

ng
on

ic
he

e-
in-
uta-
ain

due
the
the
O
dy-
in

al-

of
-

t
e
o
t

o
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We diagonalize the electron HamiltonianHe in the
Hilbert spaceun,l ,s& constructed byH05P2/2m* 1Vc(r )
1HB : uC,&5(nlsCnls

, un,l ,s&. Here H0un,l ,s&
5En,l ,sun,l ,s& with

^r un,l ,s&5Nn,l~ar ! u l ue2(ar )2/2Ln
u l u
„~ar !2

…eil uxs ~5!

and

En,l ,s5\V~2n1u l u11!2\vBl 1sEB . ~6!

In these equationsn50,1,2, . . . and l 50,61,62, . . . are
quantum numbers.V5Av0

21vB
2 andvB5eB/(2m* ). Nn,l

5(a2n!/p(n1u l u)!) 1/2 with a5Am* V/\. EB5 1
2 gmBB is

the Zeeman splitting energy.s561 refers to the spin polar
ization along thez axis. xs represents the eigenfunction o
sz . Ln

u l u is the generalized Laguerre polynomial. By solvin

HeuC,&5e,uC,&, ~7!

one can determine the eigenenergye, and the eigenfunction
of the total electron systemHe . It is noted that due to the
presence of the spin-orbit couplingHso , s is no longer a
good quantum number. Mixing occurs for opposite spins

^n,l ,suHsoun8,l 8,s8&

5 i2pgcad l 81s,lds,2s8@s~vB /V!

3An,n8,l ,l 8
(1)

2s l 8An,n8,l ,l 8
(2)

1An,n8,l ,l 8
(3)

#. ~8!

It is this mixing that makes the originally spin-conservin
electron-phonon scattering, Eq.~4!, cause spin relaxation
A(1) to A(3) in Eq. ~8! are given in detail in Appendix A.

The eigenfunctionuC,& obtained from Eq.~7! contains
spin mixing for each state,. We assign an eigenstate, to be
spin-up if s̄z5^C,uszuC,&.0 or spin-down ifs̄z,0. An
electron at initial electron statei with energye i and a spin
polarization can be scattered by the phonon into another s
f with energye f and theoppositespin polarization. The rate
of such scattering can be described by the Fermi golden r

G i→ f5
2p

\ (
ql

uMqlu2u^ f ueiq•ru i &u2@ n̄qld~e f2e i2vql!

1~ n̄ql11!d~e f2e i1vql!#, ~9!

with n̄ql representing the Bose distribution of phonon w
model and momentumq at the temperatureT. Its expres-
sion after the integration is given in Appendix B. The SRTt
can therefore be determined by

1

t
5(

i
f i(

f
G i→ f , ~10!

in which f i5C exp@2ei /(kBT)# denotes the Maxwell distri-
bution of thei th level with C being a constant.

III. NUMERICAL RESULTS

We perform a numerical investigation of the SRT@Eq.
~10!# in GaAs quantum dots at low temperatures by dia
11531
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nalizing the HamiltonianHe for each given dot size: the
quantum well width a and the effective diameterd
5A\p/m* v0 as well as each given applied magnetic fie
B. To do so, we gradually increase the number of basis fu
tion arranged in the order of energy in the Hilbert spa
un,l ,s& to ensure the 0.1% precision of the converged ene
e, . As an example for a QD withB51 T and a55 nm,
when d520 nm, in order to converge the lowest 2~100!
levels, one has to use 12~120! basis functions; nevertheles
when d560 nm, in order to converge the lowest 2~100!
levels, one has to use 20~200! basis functions.

The electron-phonon scattering is composed of the
lowing contributions:~i! The electron-acoustic phonon sca
tering due to the deformation potential withMqsl

2

5J2q/2DVsl ; ~ii ! The electron-acoustic phonon scatteri
due to the piezoelectric field for the longitudinal phon
mode withMqpl

2 5(32p2e2e14
2 /k2Dvsl)@(3qxqyqz)

2/q7# and
for the two transverse phonon modes with( j 51,2Mqptj

2

5(32p2e2e14
2 /k2Dvstq

5)@qx
2qy

21qy
2qz

21qz
2qx

22(3qxqyqz)
2/

q2#. HereJ stands for the acoustic deformation potential,D
is the GaAs volume density,e14 represents the piezoelectr
constant, andk denotes the static dielectric constant. T
acoustic-phonon spectravql are given byvql5vslq for the
longitudinal mode andvqpt5vstq for the transverse mode
with vsl and vst representing the corresponding sound v
locities. It is noted that notwithstanding the fact that we
clude all these acoustic phonons throughout our comp
tion, for all the cases we have studied in this paper, the m
contribution comes from the electron-phonon scattering
to the piezoelectric field for the transverse mode with
later being at least one order of magnitude larger than
other phonon modes. Moreover, the contribution from L
phonon is negligible in the temperature regime we are stu
ing. The parameters used in our calculation are listed
Table I.13

A. Comparison with previous works at TÄ4 K

We first compare our approach with the perturbation c
culations widely used in the literature6,7,10at low temperature
to double check the validity of our method as well as that
the perturbation method whereHso is treated as the pertur
bation. Following the previous works,6,7,10 we calculate the
SRT between the lowest two Zeeman splitting levels ad
520 nm andT54 K. Unless specified, the width of th
quantum wella is fixed to be 5 nm throughout the paper. T
the first order ofHso , the energy difference of the lowes
two states with the opposite spins isDE52EB ~the first-
order correction is zero! and the wave functions of these tw
states are

TABLE I. Parameters used in the calculation.

D 5.33103 kg/m3 k 12.9
vst 2.483103 m/s g 20.44
vsl 5.293103 m/s J 7.0 eV
e14 1.413103 V/m m* 0.067m0
8-2



he

els
ur
b

n
na
el
ffe
e
h

h

tio
n

the
st
in-

dy-
els,
t
the

in-

est

n
od
The
ith
rve
ch

er-

rgy
ur-
suf-
the
of
m-

nc-

n
gy
e

it

SPIN RELAXATION IN GaAs QUANTUM DOTS PHYSICAL REVIEW B69, 115318 ~2004!
C↑5^r u0,0,↑&,

C↓5^r u0,0,↓&2A^r u0,1,↑&, ~11!

in which A5 i\gc(p/a)2a@12eB/(2\a2)#/(E0,1,↑
2E0,0,↓) . The SRTt is therefore given by

1

t
5cuAu2n̄qq3E

0

p/2

du sin5u~sin4u18 cos4u!

3expS 2
1

2
q2sin2u D I 2~q cosu!, ~12!

with q5DE/(\vsta), c59pae2e14
2 /(\Dvst

2 k2), and I (qz)
58p2sin(aqz/2)/$aqz@4p22(aqz)

2#%. This is exactly the
same calculation used in the literature.6,7,10

In Fig. 1 we compare the SRT calculated from Eq.~12!
~curve withj) with our exact diagonalization method~curve
with s) described in the preceding section, but with only t
lowest four levels of the Hilbert space, i.e.,u0,0,s& and
u0,1,s& (s5↑ or ↓), taken, corresponding to the same lev
used in the perturbation method. It is seen from the fig
that there is at least one order of magnitude difference
tween the two curves:t obtained from the perturbatio
method is much larger than the one from the exact diago
ization method. Moreover, the trends of the magnetic-fi
dependence are also different. We point out that these di
ences arise from the fact that only the first order of the p
turbation is applied. It can be fixed if one further includes t
second-order correction inDE, i.e., DE52EB1uAu2(E0,1,↑
2E0,0,↓). It is noted that the second-order correction to t
energy difference is much larger than 2EB , the unperturbed
energy difference. The SRT calculated from the perturba
method, modified with the energy correction to the seco

FIG. 1. SRT vs the magnetic field. Curve withj—perturbation
result without energy corrections; curve withs—diagonalization
result but with only the lowest four levels used as basis functio
curve with 3—perturbation result with the second-order ener
correction; curve withl—exact diagonalization result with th
energy sufficiently converged; curve withh—diagonalization re-
sult with the lowest six levels used as basis functions; curve w
*—perturbation result with the lowest six levels ofH0 as basis
functions and with the second-order energy correction.
11531
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order, is plotted as a function of the magnetic fieldB in the
same figure~curve with3). One notices that it exactly hits
on the curve from our diagonalization method~curve with
s).

We notice that the diagonalization above includes only
lowest four levels. If it is adequate in converging the lowe
two levels remains unchecked. As mentioned in the beg
ning of this section, that for the size of the dot we are stu
ing here, in order to converge the lowest two energy lev
one has to use 12 basis functions.t calculated from the exac
diagonalization method is plotted in also Fig. 1 against
magnetic field~curve with l). Strikingly, it is orders of
magnitudelarger than that from the perturbation.

In order to understand this huge difference, now we
clude six lowest-energy levels ofH0, i.e., u0,0,↑&, u0,0,↓&,
u0,1,↑&, u0,1,↓&, u0,21,↑&, andu0,21,↓&, as basis functions
in the perturbation method. The wave functions of the low
two states ofHe are therefore given by

C↑5^r u0,0,↑&2B^r u0,21,↓&,

C↓5^r u0,0,↓&2A^r u0,1,↑&, ~13!

in which

B5 i\agcS p

a D 211eB/~2\a2!

E0,21,↑2E0,0,↓
. ~14!

The energy difference betweenC↑ andC↓ now becomes

DE52EB1uAu2~E0,1,↑2E0,0,↓!2uBu2~E0,21,↑2E0,0,↑!.
~15!

The corresponding SRTt is hence given by

1

t
5cuA2Bu2n̄qq3E

0

p/2

du sin5u~sin4u18 cos4u!

3expS 2
1

2
q2sin2u D I 2~q cosu!. ~16!

The numerical results of Eq.~16! are plotted by the curve
with * in Fig. 1. It is seen from the figure that the inclusio
of the additional basis functions in the perturbation meth
also greatly enhances the SRT by orders of magnitude.
results obtained from the exact diagonalization method w
the same lowest six levels as basis are given by the cu
with h. The two curves are almost the same, and mu
closer to the final converged results~curve marked withl).

It is clearly seen from the above calculation that the p
turbation approach widely used in the literature isinadequate
in describing the SRT even with the second-order ene
corrections included. In principal in order to use the pert
bation method to calculate the SRT, one has to include
ficient number of the states in the basis instead of only
lowest four levels widely used in the literature. This is
course inapplicable especially for larger QD’s or higher te
perature where one has to include a lot of basis functions~for
a QD of d560 nm, one has to use 100 levels as basis fu
tions! and the SRT is determined by many levels~instead of
only the lowest two! of the total electron HamiltonianHe .

s;

h
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Even for the lowest two levels~for a QD withd520 nm at 4
K, the SRT is determined by the lowest two levels of t
total electron HamiltonianHe), one has to use a lot of bas
functions to converge the energy and the resulting SRT
tween these two levels is therefore strongly readjusted. T
is because the spin-orbit coupling is very strong in mixi
different energy levels ofH0.

In the following sections, we therefore reinvestigate t
properties of the SRT based on the exact diagonalization
culation.

B. SRT of a dÄ20 nm QD at TÄ4 K

As pointed out in the preceding section that for a QD w
d520 nm, atT54 K the SRT is determined by the spin-fli
transition between the lowest two energy levels after theex-
act diagonalization, although at least 12 energy levels in th
Hilbert space ofH0 are essential in getting these two leve
In this section we focus on the effects of the external fie
on the SRT determined by these two levels.

It is seen from Eqs.~12! and ~16! that in a given basis
the spin-relaxation rate 1/t is determined by two
competing trends as a function of the energy splittingDE: ~i!
q3n̄q , which increases withDE in the present case and~ii !
exp(21

2q
2sin2u)I2(qcosu), which decreases withDE. There-

fore, the SRT can be uniquely determined by the energyDE.
For smallDE, it is easy to see that the trend~i! dominates
when DE&7.0\vst /d, which is 0.57 meV atd520 nm.
That is, the SRT decreases withDE whenDE&0.57 meV.

In Fig. 2 the SRT is plotted against the applied magne
field B. It is seen from the figure thatt decreases with the
applied magnetic field. This is understood from the fact t
the energy splittingDE increases with the applied magnet
field as shown in the inset. Moreover, even for the larg
energy splitting 0.04 meV atB51 T, it is one order of mag-
nitude smaller than 0.57 meV, energy splitting required
have the oppositet-B dependence.

C. Magnetic-field dependence of the SRT

We investigate the magnetic-field dependence of the S
for different diameters of the QD’s at two different temper

FIG. 2. SRT vs the applied magnetic field atd520 nm andT
54 K. The inset is the corresponding energy splittingDE between
the lowest two levels.
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tures as shown in Fig. 3. Unlike the preceding section wh
only the lowest two energy levels are important, here
most cases one has to include many levels of the total e
tron Hamiltonian.

It is seen that the SRT decreases rapidly with the magn
field at each dot size and temperature. This feature is q
opposite to the bulk,14 the two-15 and the one-dimensional16

cases where the SRT always increases with the magn
field. This is because in the dot case there are only disc
energy levels and the magnetic field helps to increase
spin-flip scattering as discussed in the preceding sect
Moreover, one notices that the SRT drops dramatically w
the dot size. For a dot withd560 nm, the SRT is more than
six orders of magnitude faster than the one withd520 nm.
This is understood that for larger dots, more energy levels
engaged in the spin-flip scattering and hence sharply red
the SRT.

D. Temperature dependence of the SRT

We plot the SRT as a function of the temperature in Fig
for a QD with d540 nm under three different magnet
fields. From the figure one finds that the SRT gets sma

FIG. 3. The SFT vs the magnetic field with different sizes of t
quantum dots. (j) d520 nm, (d) d530 nm, (m) d540 nm,
and (l) d560 nm forT54 K ~a! and 10 K~b!.
8-4
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SPIN RELAXATION IN GaAs QUANTUM DOTS PHYSICAL REVIEW B69, 115318 ~2004!
with the increase of the temperature. Moreover, the sma
the magnetic field is, the faster the SRT drops with the te
perature.

These features can be understood as follows: With

increase of the temperature, the phonon numbern̄ql gets
larger. This enhances the electron-phonon scattering
leads to the larger transition probability. Moreover, unlike t
previous work10 where the difference between zero tempe
ture and finite temperatures is just the phonon Bose distr
tion, we stress that for high temperatures, the occupatio
the high-energy levels becomes important and it is in
equate to consider only the lowest several levels. For lo
magnetic fields, the space between different energy leve
smaller. Therefore, more levels are included in the ene
regime determined byf i in Eq. ~10! which leads to a faste
response to the temperature. This feature is more pronou
in the low-temperature regime. For high temperatures,
there are already many levels included in the energy sp
adding a few more levels does not change the SRT sig
cantly. Consequently the rates of the decrease of the
with the temperature become similar for different magne
fields whenT.16 K.

E. Well width dependence of the SRT

As the QD’s are confined in the quantum well, it is ne
essary to study the quantum well width dependence of
SRT as shown in Fig. 5 wheret is plotted as a function o
the well width a for different temperatures atB51 T. It is
noted that the SRT increases with the well widtha. This is
due to the fact that the spin-orbit couplingHso @Eq. ~3!# is
proportional to 1/a2. Smaller well width corresponds t
larger spin-orbit coupling and therefore smaller SRT. W
point out here that the well width in the present calculation
much smaller than the dot sized and only the lowest subban
contributes to the SRT. For larger well width, more subba
are involved and hence there adds an opposite tendency
shorter SRT with the increase of the well width.

FIG. 4. The SRT vs the temperature under different magn
fields atd540 nm. Curve withj—B50.1 T; curve withd—B
50.5 T; and curve withm—B51 T.
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IV. CONCLUSIONS

In conclusion, we have investigated the SRT in Ga
QD’s by the exact diagonalization method with applied ma
netic fields. After comparing the exact diagonalizati
method with the perturbation approach widely used in
literature, we find that the latter is inadequate in account
for the electron structure and the SRT in QD’s. This is b
cause the energy splitting caused by the spin-orbit coup
is several times larger than the Zeeman splitting used in
perturbation approach. Moreover, a lot more energy level
H0 are coupled by the spin-orbit coupling and therefore c
tribute to the lowest-energy levels of the total QD Ham
tonian. We therefore reinvestigated the SRT from the ex
diagonalization method to explore its dependence on
magnetic field, the temperature, and the size of the QD.
find the SRT decreases with the magnetic field, which
quite opposite to the bulk, the two- and one-dimensio
cases. It also decreases with the diameter of the QD,
increases with the width of the quantum well on which t
QD grows. For high temperature, the SRT becomes m
faster due to the stronger electron-phonon scattering and
wider range of energy space the electron occupies. All
investigations suggest the importance of the exact calcula
of the energy structure.

ACKNOWLEDGMENTS

M.W.W. was supported by the ‘‘100 Person Project’’
Chinese Academy of Sciences and Natural Science Fou
tion of China under Grant Nos. 90303012 and 10247002.
would like to thank Dr. Marion Florescu for valuable discu
sion. The authors would like to acknowledge fruitful discu
sions with M. Q. Weng.

APPENDIX A: THE EXPRESSIONS OF A „1…, A „2…, AND A „3…

A(1), A(2), andA(3) in Eq. ~8! are given by

An,l ,n8,l 8
(1)

5aE
0

`

r 2Rn,l~r !Rn8,l 8~r !dr, ~A1!

ic FIG. 5. The SRT vs the width of the quantum well in differe
temperatures atB51 T. Curve withj—T54 K; curve withd—
T510 K; and curve withm—T520 K.
8-5
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An,l ,n8,l 8
(2)

5
1

aE0

`

Rn,l~r !Rn8,l 8~r !dr, ~A2!

An,l ,n8,l 8
(3)

5
1

aE0

`

rRn,l~r !
]

]r
Rn8,l 8~r !dr, ~A3!

where Rn,l5A@a2n!/p(n1u l u)! #(ar ) u l uexp@2(ar)2/
2#Ln

u l u(a2r 2) is the spatial part of the wave function, Eq.~5!.
From the integration over the angular part, we get the re
tion u l 2 l 8u51. Substituting this relation into Eqs.~A1!–
~A3!, after carrying out the integration we have

An,l ,n8,l 8
(1)

5
1

2p
~An1u l u11dn,n82Andn8,n21!, ~A4!

An,l ,n8,l 8
(2)

5H 1

2p
A n8! ~n1u l u!!

n! ~n81u l 8u!!
if n8.n

0 otherwise.

~A5!

It is noted that due to the symmetry between$n,l % and
$n8,l 8%, in the above two equations we only give the resu
with u l 8u5u l u11. Finally

An,l ,n8,l 8
(3)

5u l 8uAn,l ,n8,l 8
(2)

1An,l ,n8,l 8
(1)

2

¦

An1u l u
p

if u l 8u5u l u21

and n85n

u l 8u
p
A n8! ~n1u l u!!

n! ~n81u l 8u!!
if u l 8u5u l u11

and n8>n

An

p
if u l 8u5u l u11

and n85n21

0 otherwise.

~A6!
on

E

ys

al
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APPENDIX B: THE EXPRESSION OF G i\ j

G i→ f5(
l

1

~2p!2vl

NqE
0

q

dQ
qQ

qz
expS 2

Q2

2a2D
3Gi , f

2 S Q2

~2a!2
,qzD E

0

2p

duuMq,lu2, ~B1!

with q5(Q cosu,Qsinu,qz) andq5uqu5uEi2Ej u/vl . Here
Nq5n̄q if Ei.Ej or n̄q11 if Ei,Ej . Gi , f in Eq. ~B1! is

Gi , f„Q
2/~4a2!,qz…

5 (
n1 ,l 1 ,n2 ,l 2 ,s

Cn1 ,l 1 ,s
i ~Cn2 ,l 2 ,s

f !* ^n2 ,l 2u

3exp@ i ~qxx1qyy!#un1 ,l 1&expS Q2

2a2D I ~qz!, ~B2!

in which

expS Q2

2a2D ^n2 ,l 2uexp@ i ~qxx1qyy!#un1 ,l 1&

5A n1!n2!

~n11u l 1u!! ~n21u l 2u!!
ei ( l 12 l 2)[(p/2)1u]

3S sgn~ l 12 l 2!
Q

2a D u l 12 l 2u

3(
i 50

n1

(
j 50

n2

C n1 ,u l 1u
i C n2 ,u l 2u

j n!Ln
u l 12 l 2uS Q2

~2a!2D ,

~B3!

with sgn(x) denoting the sign function,C n,l
m 5(21)m/m!

(n2m
n1 l ) andn5 i 1 j 1(u l 1u1u l 2u2u l 12 l 2u)/2.
. B
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