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Spin relaxation in GaAs quantum dots
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The spin-relaxation time due to the electron-acoustic phonon scattering in GaAs quantum dots is studied
after the exact diagonalization of the electron Hamiltonian with the spin-orbit coupling. Different effects such
as the magnetic field, the quantum dot size, and the temperature on the spin-relaxation time are investigated in
detail. Moreover, we show that the perturbation method widely used in the literature is inadequate in account-
ing for the electron structure and therefore the spin-relaxation time.
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. INTRODUCTION discuss the SRT of a small QD @t=4 K where only the
lowest two energy levels of the total electron Hamiltonian

Spin-related phenomena in semiconductors have attractegfter the exact diagonalization account for the SRT. Never-
much attention recently as they are the key ingredient in théheless at least 12 energy levelsHf are needed to get these
field of spintronics: Among these, the spin-orbit coupling lowest two energy levels. We then turn to effects of the mag-
mechanisms in semiconductor quantum d@®’s) provide netic field, the temperature, and the quantum well width to
a basis for device applications such as qubits in quanturthe SRT in Secs. Il C—Ill E. We give our conclusions in Sec.
computers and have therefore caused much intérésbsk-  IV.
oboynikov et al. studied the electron structures of QD’s by
exactly diagonalizing the Hamiltonian with spin-orbit II. MODEL AND HAMILTONIAN
coupling® Governale studied the electron structure of few- o ) )
electron interacting QD’s with Rashba spin-orbit coupling by Ve set up a simplified model to study the spin relaxation
spin-density-functional theoRMalin-Rodrguezet al.inves- in the QD's 2Wh_'Ch are defined by parabolic potentials
tigated spin procession in QD’s with the spin-orbit coupfing. Ve(r)=3m* wgr? in a quantum well of widtre. A magnetic
Besides the effect of the spin mixing in the electron strucfield B is applied along the growtte) direction of the quan-
ture, the spin-orbit coupling also induces the spin relaxatiofum well. The total Hamiltonian is given by
via further coupling with phonons, which alone conserve the
spin and therefore are unable to cause any spin-relaxation. H=He+Hpnt+Hep, @)
Many works calculated the spin-relaxation tit®RT) due to  with the electron HamiltoniarH,=Hy+Hg,. Here Hg is
the spin-orbit coupling induced spin-flip electron-phononelectron Hamiltonian without the spin-orbit coupling:
scattering at zero or very low temperatufés:*°Unlike the
electron structure calculaticif® to the best of our knowl- p?
edge all works on the SRT are based on perturbation theory Ho=2— +Vc(r)+He, @)

. . L S 2m

where the spin-orbit coupling is treated as a perturbation in
the Hilbert space spanned by which does not include the in which P=—iAV+(e/c)A with A=(B/2)(—y,x,0)
spin-orbit coupling. Moreover only the lowest few energy stands for the electron momentum operatot. is the elec-
levels of H, are included in the theof"*®Whether the tron effective massHg=1gugBo, is the Zeeman energy
perturbation based on the lowest few level$igfis adequate  with o representing the Pauli matriced ,= vh- o is the
remains unchecked. spin-orbit coupling which is the key to the spin flip and spin

In the present paper, we investigate the SRT of GaAselaxation. h=[P,(P;—P2),Py(P;—P%),P,(P;—P?)] is
QD’s confined in the quantum well by parabolic potentialsthe Dresshauls effective magnetic field in the bulk matétial.
by exactly diagonalizing the total Hamiltonian. We calculate|n quantum well with small widthH,, can be simplified as
the SRT due to the scattering with the acoustic phonons by
the Fermi golden rule after getting the energy spectra and the Hso= vc( = Pxoy+Pyoy), ©)
e o i 722 (r1a)%. y=27.5 A &V iy i Eg. (1 i
SRT and therefore it is necessary to reinvestigate the accu_—e Hamiltonian for phonons and is given b

T . .
rate SRT via the exact diagonalization approach. We orga-_E‘Mm‘“a‘“"’lqA With @, standing for the phonon energy

nize the paper as follows. In Sec. Il we set up our model an&pectrum of brangm 'and momentumq. The electron-
the Hamiltonian. Then in Sec. Il we present our numericalphonon scattering is given by

results: We first compare the results obtained from our exact

diagonalization method with those from the perturbation ap- Hep= >, Mg (8 +ag ) expliq 1), (4)
proach and show that the perturbation method is inadequate a

in accounting for the SRT in Sec. IlIA. In Sec. IlIB we with Mg, being the scattering matrix element.
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We diagonalize the electron HamiltoniaH, in the TABLE |. Parameters used in the calculation.

Hilbert space|n,|,o) constructed byHy=P?/2m* +V(r)
+Hg:  |¥)=2,,C,Inl,0). Here Hgnlo) D 5.3x10° kg/n® K 12.9
=Ep 1 .In.l,0) with Ust 2.48<10° m/s g —0.44

h Vgl 5.29x 10° m/s E 7.0 eV

(r[n.1,0) =Ny (an)lle @2 [l(ar)D)ey,  (5)  ew 1.41x10° Vim m* 0.067no
and

Eni o=hQ(2n+|l|+1)—hwgl + oEg. (6) nalizing the HamiltonianH. for each given dot size: the

_ quantum well width a and the effective diameted
In these equationsa=0,1,2 ... andl=0,£1,£2,... are = z/m*w, as well as each given applied magnetic field
quantum numbers) = \wj+ wg andwg=eB/(2m*). N,;  B. To do so, we gradually increase the number of basis func-
=(a®n!/w(n+|I))Y? with a=m*Q/h. Eg=3gugB is  tion arranged in the order of energy in the Hilbert space
the Zeeman splitting energy.= = 1 refers to the spin polar- |n,l,o) to ensure the 0.1% precision of the converged energy
ization along thez axis. x,, represents the eigenfunction of ¢,. As an example for a QD witlB=1 T anda=5 nm,
;. L‘nI| is the generalized Laguerre polynomial. By solving when d=20 nm, in order to converge the lowest(200
levels, one has to use 1220) basis functions; nevertheless,
Hel W) =e(|¥), (7)  whend=60 nm, in order to converge the lowest(200)
levels, one has to use 2000 basis functions.

The electron-phonon scattering is composed of the fol-
lowing contributionsi(i) The electron-acoustic phonon scat-
tering due to the deformation potential witiM §s|
=E29/2DVy; (i) The electron-acoustic phonon scattering
(n,l,alHgn",1",0") due to the piezoelectric field for the longitudinal phonon

mode withM{ = (32m%e%el,/ k?Du))[ (30,aya,)%/q’] and
for the two transverse phonon modes Wm]:lszgptj
AL, =o' A?) AR ®  =(32m%e®e%/k*Dus0°)[aZq;+ 702+ 2% — (30,0 0,) Y

S e ~ g?%]. HereE stands for the acoustic deformation potential,

It is this mixing that makes the originally spin-conserving js the GaAs volume densitg, , represents the piezoelectric
elg)ctron—(pSTQnon scattering, E¢#), cause spin relaxation. constant, andc denotes the static dielectric constant. The
A to A_ in EqQ. (8) are given in detail in Appendix A acoustic-phonon spectia, are given bywq = v for the

The eigenfunction¥) obtained from Eq(7) contains longitudinal mode andvg,=v4q for the transverse mode
spin mixing for each staté. We assign an eigenstateto be  \yith ,, and v, representing the corresponding sound ve-
spin-up if o,=(¥|o,|¥,)>0 or spin-down ifo,<0. An |ocities. It is noted that notwithstanding the fact that we in-
electron at initial electron statewith energye; and a spin  clude all these acoustic phonons throughout our computa-
polarization can be scattered by the phonon into another statgn, for all the cases we have studied in this paper, the main
f with energye; and theoppositespin polarization. The rate contribution comes from the electron-phonon scattering due
of such scattering can be described by the Fermi golden ruleo the piezoelectric field for the transverse mode with the

5 later being at least one order of magnitude larger than the
oo_eT 2 Qi 2re o other phonon modes. Moreover, the contribution from LO

Fier=% % Mo [“I(Fe'T 1[I ngy 8 &1 — € — wqp) phonon is negligible in the temperature regime we are study-

_ ing. The parameters used in our calculation are listed in
TNyt 1) (e~ €+ wg) ], (9 Table I

one can determine the eigenenekgyand the eigenfunction
of the total electron systerH,. It is noted that due to the
presence of the spin-orbit couplifnds,, o is no longer a
good quantum number. Mixing occurs for opposite spins:

=i27T'yca5|/+(,1|5(,,,,,/[0'(wB/Q)

with th representing the Bose distribution of phonon with
modeX and momentuny at the temperaturé. Its expres- A. Comparison with previous works at T=4 K
sion after the integration is given in Appendix B. The SRT

can therefore be determined by We first compare our approach with the perturbation cal-

culations widely used in the literatr&*%at low temperature

1 to double check the validity of our method as well as that of

—=> > T, (10)  the perturbation method whett,, is treated as the pertur-

T 55 bation. Following the previous works'°we calculate the
in which f;=C exq —/(ksT)] denotes the Maxwell distri- SRT between the lowest two Zeeman splitting levels at
bution of theith level with C being a constant. =20 nm andT=4 K. Unless specified, the width of the
quantum wella is fixed to be 5 nm throughout the paper. To
the first order ofHg,, the energy difference of the lowest
two states with the opposite spins &E=2Eg (the first-

We perform a numerical investigation of the SIREq.  order correction is zejand the wave functions of these two

(10)] in GaAs quantum dots at low temperatures by diago-states are

III. NUMERICAL RESULTS
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order, is plotted as a function of the magnetic fi@ldn the
same figurgcurve with X). One notices that it exactly hits
on the curve from our diagonalization meth@zlirve with
0).

We notice that the diagonalization above includes only the
lowest four levels. If it is adequate in converging the lowest

105 g
12 P

11 |

10

10

1010 L

10° |

T (ps)

10°

10t} ] two levels remains unchecked. As mentioned in the begin-
o ] ning of this section, that for the size of the dot we are study-
o] m ing here, in order to converge the lowest two energy levels,
105 i e . 1 one has to use 12 basis functiomsalculated from the exact
Bl ey

diagonalization method is plotted in also Fig. 1 against the
magnetic field(curve with ). Strikingly, it is orders of
magnitudelarger than that from the perturbation.

In order to understand this huge difference, now we in-
clude six lowest-energy levels ofl,, i.e.,|0,0,7), [0,0,l),

FIG. 1. SRT vs the magnetic field. Curve wili—perturbation !0'1'T>’ 0,1.1), _|O'_1’T>’ and|0,~1]), as t_)aS'S functions
result without energy corrections; curve with—diagonalization '" the perturbation method. Thg wave functions of the lowest
result but with only the lowest four levels used as basis functionstWO States oH, are therefore given by
curve with X —perturbation result with the second-order ener
correction; curv% with 4 —exact diagonalization result with thegy \IfT:<r|O,O,T)—B<r|O,— 1’l>'
energy sufficiently converged; curve with—diagonalization re-

1'g -—g—m&——a-—&—*--&——a--—-&—-—T
S e

01 02 03 04 05 06 07 08 09 1
B (T)

sult with the lowest six levels used as basis functions; curve with W =(r[0,0, )= A(r[0,1]), (13
*—perturbation result with the lowest six levels &fy as basis i, \which
functions and with the second-order energy correction.
B=if (77 21+ eB/(2ha?®) (14
= =ihay| —| =——.
’\I,T <I’|0,0,T>, YC a EOy—]_’T_EO'Oi

‘I’l=<r|0,0¢>—A<rIO,1,T>, The energy difference betweeh, and¥ | now becomes

in  which  A=ify(m/a)’a[1-eB/(2ha?)]/(Epy; AE=2Eg+|A|*(Eq1;—Eoo,) —|Bl*(Eo,-1;—Eoo;)-
—Eg,,) - The SRTr is therefore given by (15)

(11)

The corresponding SRT is hence given by

1 _ /2

p =c|A|2nqq3f d@sira(sin*6+8 cod 9)
0

1 _ w2

;=C|A—B|2nqq3f désiré(sin’o+8 cods)
1 0
X exy{ - qusinza) 12(q cosb), (12
(16)

with q=AE/(fivga), c=9mae’es,(ADvik?), andl(q,)
=8m’sin@g/2)/{aq[4m>—(aq,)?]}. This is exactly the
same calculation used in the literatdre!°

In Fig. 1 we compare the SRT calculated from EtR)
(curve withl) with our exact diagonalization methgcurve

1
X exp{ - qusinza) 12(q cosb).

The numerical results of Eq16) are plotted by the curve
with * in Fig. 1. It is seen from the figure that the inclusion
of the additional basis functions in the perturbation method
also greatly enhances the SRT by orders of magnitude. The

with O) described in the preceding section, but with only theresults obtained from the exact diagonalization method with

lowest four levels of the Hilbert space, i.€0,00) and

the same lowest six levels as basis are given by the curve

|0,10) (0=1 or ), taken, corresponding to the same levelswith (1. The two curves are almost the same, and much
used in the perturbation method. It is seen from the figuresloser to the final converged resuftairve marked withe ).

that there is at least one order of magnitude difference be- It is clearly seen from the above calculation that the per-
tween the two curvesr obtained from the perturbation turbation approach widely used in the literaturensdequate
method is much larger than the one from the exact diagonain describing the SRT even with the second-order energy
ization method. Moreover, the trends of the magnetic-fieldcorrections included. In principal in order to use the pertur-
dependence are also different. We point out that these diffebbation method to calculate the SRT, one has to include suf-
ences arise from the fact that only the first order of the perficient number of the states in the basis instead of only the
turbation is applied. It can be fixed if one further includes thelowest four levels widely used in the literature. This is of
second-order correction iAE, i.e., AE=2Eg+ |A|2(E0,1,T course inapplicable especially for larger QD’s or higher tem-
—Eg,,). Itis noted that the second-order correction to theperature where one has to include a lot of basis functifors
energy difference is much larger thakg, the unperturbed a QD ofd=60 nm, one has to use 100 levels as basis func-
energy difference. The SRT calculated from the perturbatiortions) and the SRT is determined by many levéisstead of
method, modified with the energy correction to the secondnly the lowest twp of the total electron Hamiltoniahi,.
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FIG. 2. SRT vs the applied magnetic fielddt 20 nm andT
=4 K. The inset is the corresponding energy splittig between
the lowest two levels.

Even for the lowest two leveldor a QD withd=20 nm at 4
K, the SRT is determined by the lowest two levels of the
total electron Hamiltoniam,), one has to use a lot of basis
functions to converge the energy and the resulting SRT be-
tween these two levels is therefore strongly readjusted. This
is because the spin-orbit coupling is very strong in mixing
different energy levels ol .

In the following sections, we therefore reinvestigate the
properties of the SRT based on the exact diagonalization cal-
culation.

B. SRT of ad=20 nm QD at T=4 K
As pointed out in the preceding section that for a QD with
transition between the lowest two energy levels afteretke

act diagonalizationalthough at least 12 energy levels in the
Hilbert space oH are essential in getting these two levels.
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- : = FIG. 3. The SFT vs the magnetic field with different sizes of the
d=20 nm, atT=4 K the SRT is determined by the spin-flip quantum dots. W) d=20 nm, @) d=30 nm, (A) d=40 nm

and () d=60 nm forT=4 K (a) and 10 K(b).

In this section we focus on the effects of the external fielddures as shown in Fig. 3. Unlike the preceding section where

on the SRT determined by these two levels.

It is seen from Eqgs(12) and (16) that in a given basis
rate 1/ is determined by
competing trends as a function of the energy splittirigr (i)

q3nq, which increases witlAE in the present case arid)
exp(— igPsirt6)1%(q cosé), which decreases withE. There-
fore, the SRT can be uniquely determined by the en&gy
For smallAE, it is easy to see that the treriid dominates
when AE<7.0kvg/d, which is 0.57 meV atd=20 nm.
That is, the SRT decreases wilE whenAE=<0.57 meV.

the spin-relaxation

only the lowest two energy levels are important, here for
most cases one has to include many levels of the total elec-
tron Hamiltonian.

It is seen that the SRT decreases rapidly with the magnetic
field at each dot size and temperature. This feature is quite
opposite to the bulk? the two!® and the one-dimensioral
cases where the SRT always increases with the magnetic
field. This is because in the dot case there are only discrete
energy levels and the magnetic field helps to increase the
spin-flip scattering as discussed in the preceding section.

In Fig. 2 the SRT is plotted against the applied magnetidloreover, one notices that the SRT drops dramatically with
field B. It is seen from the figure that decreases with the the dot size. For a dot witd=60 nm, the SRT is more than
applied magnetic field. This is understood from the fact thasix orders of magnitude faster than the one veth 20 nm.
the energy splitting\E increases with the applied magnetic This is understood that for larger dots, more energy levels are
field as shown in the inset. Moreover, even for the largesengaged in the spin-flip scattering and hence sharply reduce

energy splitting 0.04 meV @&=1 T, itis one order of mag-

the SRT.

nitude smaller than 0.57 meV, energy splitting required to
have the opposite-B dependence.

C. Magnetic-field dependence of the SRT

D. Temperature dependence of the SRT

We plot the SRT as a function of the temperature in Fig. 4

We investigate the magnetic-field dependence of the SRfor a QD with d=40 nm under three different magnetic
for different diameters of the QD’s at two different tempera-fields. From the figure one finds that the SRT gets smaller
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FIG. 4. The SRT vs the temperature under different magnetic FIG. 5. The SRT vs the width of the quantum well in different
fields atd=40 nm. Curve withll—B=0.1 T; curve with@—B temperatures @=1 T. Curve withll—T=4 K; curve with@—
=0.5T; and curve withh—B=1 T. T=10 K; and curve withA—T=20 K.

. . IV. CONCLUSIONS
with the increase of the temperature. Moreover, the smaller

the magnetic field is, the faster the SRT drops with the tem- In conclusion, we have investigated the SRT in GaAs
perature. QD’s by the exact diagonalization method with applied mag-

These features can be understood as follows: With theetic fields. After comparing the exact diagonalization
increase of the temperature, the phonon numqur gets method with the perturbation appr.oach widely used in t_he
larger. This enhances the electron-phonon scattering ar{f&erature, we find that the latter is inadequate in accounting
leads to the larger transition probability. Moreover, unlike the or the electron structure and the SRT in QD's. This is be-

previous work® where the difference between zero tempera-.cause the energy splitting caused by the spin-orbit coupling

ture and finite temperatures is just the phonon Bose distribu> several times larger than the Zeeman splitting used in the
b J b erturbation approach. Moreover, a lot more energy levels of

:lr:)n,h\{vehstress thlat fcir h[;gh tempe'raturets, Ehe %cgtljpat!on(jt o are coupled by the spin-orbit coupling and therefore con-
€ high-energy levels becomes important and it IS INalyy e 1o the lowest-energy levels of the total QD Hamil-

equate _to 90n5|der only the lowest se_veral levels. For IOwe_tronian. We therefore reinvestigated the SRT from the exact
magnetic fields, the space between different energy levels i§iagonalization method to explore its dependence on the

smaller. Therefore, more levels are included in the energyagnetic field, the temperature, and the size of the QD. We
regime determined by; in Eq. (10) which leads to a faster find the SRT decreases with the magnetic field, which is

response to the temperature. This feature is more pronouncegite opposite to the bulk, the two- and one-dimensional
in the low-temperature regime. For high temperatures, agases. It also decreases with the diameter of the QD, but
there are already many levels included in the energy spaciicreases with the width of the quantum well on which the
adding a few more levels does not change the SRT signifiQD grows. For high temperature, the SRT becomes much
cantly. Consequently the rates of the decrease of the SRfBster due to the stronger electron-phonon scattering and the
with the temperature become similar for different magneticwider range of energy space the electron occupies. All our
fields whenT>16 K. investigations suggest the importance of the exact calculation
of the energy structure.

E. Well width dependence of the SRT ACKNOWLEDGMENTS
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noted that the SRT increases with the well widthThis is  sjon. The authors would like to acknowledge fruitful discus-
due to the fact that the spin-orbit couplity, [Eq. (3)] is  sions with M. Q. Weng.

proportional to 142. Smaller well width corresponds to

larger spin-orbit coupling and therefore smaller SRT. WeappENDIX A: THE EXPRESSIONS OF A A@ AND A®
point out here that the well width in the present calculation is

much smaller than the dot sizeand only the lowest subband ~ A®), A®), andA®) in Eg. (8) are given by

contributes to the SRT. For larger well width, more subbands B
are involved and hence there adds an opposite tendency for a Aﬁll)n, = af r2R, (MR, (r)dr, (A1)
shorter SRT with the increase of the well width. e 0
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A? L [TR (R (rdr (A2)
n,I,n’,I’_a, o n,l( n’,l’( y
(3) 1= G
Aninr =g |, Rui(N) 5o Ry p(n)dr, - (A3)
where Rn = VL& m(n+ 1)1 ](ar)lexq —(ar)Z

2]L1(a?r?) is the spatial part of the wave function, H§).

From the integration over the angular part, we get the rela-
with q=(Q cos6,Qsin6,q,) andq=|q|=|E;—E||/v, . Here
Ng=ngq if E;>E; orny+1 if E;<E;. Gj in Eq.(B1) is

tion || —1’|=1. Substituting this relation into Eq$Al)—
(A3), after carrying out the integration we have

A 1= an+lll+15n,nr—ﬁanr,n,u, (A4)

1 n'I'(in+[1H)r .
@) 22N N
Anln’l’ ™ n!(n +|| |)' (AS)

0 otherwise.
It is noted that due to the symmetry betwe@ml} and

{n’,I"}, in the above two equations we only give the results

with |I'|=|l|+ 1. Finally
(3) _ a2 (1)
An,l,n',l'_“ |An,|,n’|'+AnIn'I’
Vvn+|l .
( Il if |I’]=]1]—-1
o
and n’=n
|’ nt(n+|IHr .
WO MDY ey
7™ ¥t 1)
and n’=n
n .
£ if |I']=]I]+1
o
andn’'=n-1
\0 otherwise.

(AB)
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APPENDIX B: THE EXPRESSION OF T’

i—j

_ Q?
Mioim2 (277)2%\ fdQ_exp( 2a2)

2 Q2 2m )
XGi 2% ] dg|Mq /%, (B1)

Gi 1(Q?*/(4a%),q,)

= X

c! n
Nyl el o nl 10'( n2 20) < 2 2|

2
X exgi(gyx+ qyy)]lnl,lﬁem( %) (g, (B2)

in which

Q2
exp(_z)<nz,lzlexrii(qxx+qy>’)]|”l"l>
2a

al(l1=12)[(7/2)+ 6]

_\/ nyin,!
V(NI g+ 1D

[11=15]
X 59“'1"2)5)

N Ny 2
2 Z ng, “1\6”2 [P L“l IZ(Q—)’

(2a)?
(B3)

with sgnfx) denoting the sign function¢ ', =(—1)"/m!
(nm) andn=i-+j+ (|| + 15[ =]l = 1])2.
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