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First-principles approach to the electron-phonon interaction
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We present a first-principles approach to the calculation of the electron-phonon interaction. This approach
solves some theoretical difficulties in the standard derivation of the electron-phonon interaction. We do not
make a Born-Oppenheimer approximation from the outset but transform the electronic coordinates to a frame
attached to the nuclear framework. Subsequently coupled equations are derived which connect the nuclear
density-density correlation function to the electron Green function, the screened interaction, and the vertex.
This set of equations is completely equivalent to the full problem and therefore higher-order effects are
systematically included. The derived equations are further compared to those obtained from the Fro¨hlich
Hamiltonian. It is shown that careless use of this Hamiltonian leads to double counting but also insight is given
why use of this Hamiltonian has led to many useful results. Finally a simple method is presented that allows
for the inclusion of electron-phonon coupling within a density-functional context.

DOI: 10.1103/PhysRevB.69.115110 PACS number~s!: 71.15.Mb, 31.10.1z, 31.15.Ew
s
at
it

en
e
u
a
ts
e
in
e
l-
al
s
om

t
c
te
rin
og

a
y

p
ed
n

ra
e
lo
an
e
e
o

se
S

e-
rties
st-
ds.
he
n-

ich
uta-

in
e-
lid-

to
ar-

we
va-
we
le
ion
sult
for
ow
ter-
m-
of
t
the

ron-
la-

hat
in-

he
I. INTRODUCTION

The interaction between electrons and phonons play
key role in the description of many phenomena in solid-st
physics. A wide variety of properties of solids depend on
such as the resistivity of metals, the temperature depend
of optical spectra, and its most dramatic consequenc
maybe that it gives rise to the phenomenon of supercond
tivity. Also in molecular systems coupling between nucle
and electronic motion leads to variety of physical effec
such as rotational magnetism.1 A more spectacular exampl
is given by molecules in strong laser fields where coupl
between electronic and nuclear motion leads to the gen
tion of even harmonics2 where only odd harmonics are a
lowed within the Born-Oppenheimer approximation. In sm
molecules many of these phenomena can be studied u
accurate wave-function methods. For solids methods of c
parable accuracy are not yet available. However, owing
the development of computational techniques and resour
a clear increase can be observed in the number of sys
and types of properties that can be calculated from first p
ciples, i.e., without the need of adjustable or phenomenol
cal parameters. These calculations are usually based
many-body Green-function theory or density-function
theory. Green-function theory3,4 has been used by man
groups to calculate quasiparticle and excitonic properties
solids. Density-functional theory~DFT!,5–7 on the other
hand, has been mostly used to calculate ground-state pro
ties but the number of applications that calculate excit
state properties using time-dependent density-functio
theory8–10 ~TDDFT! is increasing steadily.11 By calculating
Born-Oppenheimer surfaces, DFT also allows for an accu
determination of phonon frequencies, which are very clos
the experimentally observed ones. In view of these deve
ments it would seem a natural next step to combine DFT
Green-function methods to calculate phenomena that dep
on the electron-phonon coupling in a first-principles mann
A first step towards this goal was taken by the group
Gross in which DFT and Green-function methods were u
to calculate the critical temperature of model BC
0163-1829/2004/69~11!/115110~20!/$22.50 69 1151
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superconductors.12 Inspired by these results we aimed to d
rive a general scheme that allows us to calculate prope
that depend on the electron-phonon coupling in a fir
principles manner, using Green-function and DFT metho
In doing so we found several conceptual difficulties with t
derivations of the electron-phonon coupling within the sta
dard literature. We subsequently found a derivation wh
resolves these difficulties and obtained a general comp
tional scheme to calculate the electron-phonon coupling
which electrons and nuclei are treated fully quantum m
chanically. This scheme could then be used to test the va
ity of model Hamiltonians. We furthermore found a way
incorporate electron-phonon interactions in TDDFT line
response calculations.

The paper is divided as follows. In the second section
explain the difficulties associated with the standard deri
tions of the electron-phonon coupling. In the third section
derive the form of the Hamiltonian that forms a suitab
starting point for our derivations. In the subsequent sect
we derive the coupled equations that form the central re
of this work. The equations are very general and are valid
general molecules and solids. In the fifth section we sh
how the phonons affect the effective electron-electron in
action, thereby confirming results found in more pheno
enological ways. In the sixth section we study the validity
the phenomenological Fro¨hlich Hamiltonian and show tha
careless use of this Hamiltonian leads to overscreening of
phonon frequencies. We subsequently show how elect
phonon coupling can be incorporated in TDDFT calcu
tions. We finally present our results and conclusions.

II. DIFFICULTIES IN STANDARD DERIVATIONS
OF THE ELECTRON-PHONON COUPLING

In this section we discuss some theoretical difficulties t
arise in the standard derivations of the electron-phonon
teraction. We start out from the complete Hamiltonian of t
electron-nuclear system

Ĥ5T̂n~R!1Ŵnn~R!1T̂e~r !1Ŵee~r !1Ŵen~R,r !, ~1!
©2004 The American Physical Society10-1
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where

T̂n5 (
a51

Nn

2
¹Ra

2

2Ma
, ~2!

T̂e5(
i 51

Ne

2
1

2
¹ i

2 , ~3!

Ŵnn5
1

2 (
aÞb

Nn ZaZb

uRa2Rbu
, ~4!

Ŵee5
1

2 (
iÞ j

Ne 1

ur i2r j u
, ~5!

Ŵen52(
i 51

Ne

(
a51

Nn Za

ur i2Rau
. ~6!

This Hamiltonian describes the interaction ofNe electrons
with Nn nuclei of massMa and chargeZa . HereT̂n and T̂e
are the nuclear and electronic kinetic-energy operators.
operatorsŴee, Ŵnn , andŴen describe the electron-electron
nuclear-nuclear, and electron-nuclear interaction, resp
tively. Preceding any discussion of the electron-phonon
teraction two approximations are made. First of all, t
purely electronic problem is approximately solved for fix
positions of the atomic nuclei. The corresponding electro
Hamiltonian is

Ĥe5T̂e~r !1Ŵen~r ,R0!1Ŵee~r !, ~7!

wherer denotes the electronic andR0 the nuclear positions
The kinetic energy is denoted byT̂e and the electron-electro
and electron-nuclear interaction are denoted byŴee and
Ŵen . The corresponding Schro¨dinger equation is

ĤeFe~r ,R0!5ee~R0!Fe~r ,R0!. ~8!

This problem is a complicated many-body problem in itse
Nevertheless, in the past decade large progress has
made towards a first-principles solution of this proble
mainly using many-body Green-function methods. With h
of the so-calledGW approximation13–15good band gaps an
spectral functions of many solids can be obtained. With
subsequent solution of the Bethe-Salpeter equation also g
description of optical spectra and excitonic effects
possible.11 Second, to calculate the phonons the electro
energy must be known for several fixed positions of the
clei from which we can calculate the Born-Oppenheim
~BO! energy surface. One usually writes, for a given solut
Fe of the clamped nuclei problem, the wave function of t
full problem as16,4

C~r ,R!5Fe~r ,R!x~R!. ~9!

If one now optimizesx(R) with help of the variational prin-
ciple one obtains forx the equation

@ T̂n~R!1eBO~R!#x~R!5Ex~R!, ~10!
11511
he

c-
-

ic

.
een

p

a
od

ic
-
r
n

where the Born-Oppenheimer energy surface is defined

eBO~R!5Wnn~R!1ee~R!1^FeuT̂nuFe&, ~11!

where in the last term only integration over electron coor
nates is implied.4 It should be noted that in making the varia
tion with respect tox also mixed first-order derivative term
with respect tox andFe appear. However, for systems wit
time-reversal invariance~as we will be discussing! the wave
functions can be chosen to be real and these terms are
readily seen to vanish.17 For the calculation of phonons it i
now assumed that the BO surface has well-defined min
R0 and that the energy surface close to these minima is w
described by a harmonic approximation. One introdu
deviations from equilibrium and rewrites the Born
Oppenheimer equation forx in terms of these coordinates
This gives a set of equations for coupled harmonic oscillat
which can be diagonalized in terms of new normal coor
natesQ. In these coordinates we obtain a set of independ
oscillators, known as phonons, which have characteristic
quenciesV i . The BO equation then attains the form

Ĥphx~Q!5 (
i 51

3Nn26 S 2
1

2

]2

]Qi
2 1

1

2
V i

2Qi
2D x~Q!

5@E2eBO~R0!#x~Q!, ~12!

whereV i is the phonon frequency corresponding to phon
coordinateQi . These frequencies are obtained from the m
trix of second derivatives of the energy at the minima of t
BO surface. With the use of density-functional theory acc
rate energy surfaces and phonon spectra can be obtain
this way.18

The difficulties arise when we want to go beyond t
Born-Oppenheimer approximation and calculate the effe
of the electrons on the phonons and vice versa. To do this
must split up the original Hamiltonian into an electron part
phonon part, and a remainder. This remainder is exactly
contribution that we are interested in. The usual approac
to simply replace the interaction between the nuclei and th
kinetic energy by the phonon Hamiltonian and to express
Coulombic electron-nuclear attraction in terms of phonon
ordinates. This yields4

Ĥ5Ĥph~Q!1T̂e~r !1Ŵee~r !1Wen~r ,Q!. ~13!

However, with this drastic step we obtain a Hamiltonian th
is not equivalent to the full original Hamiltonian, since th
electronic part of the Hamiltonian was already used to de
mine the phonon frequencies. We have therefore introdu
an ill-defined amount of double counting. Another way to s
that this Hamiltonian is not equivalent to the one we star
with is that it is not invariant anymore under rotations a
translations of all particles. This is because the coordinateQ
represent internal coordinates only, as six phonon coo
nates that represent the center-of-mass motion and an ov
rotation of the system have been eliminated~they have pho-
non frequency zero!. If we regard our system as being finit
this means that we neglect rovibrational couplings that
have important effects in molecules. The derivation of t
0-2
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Hamiltonian of Eq.~13! is therefore obviously not satisfac
tory. The question is therefore how to find a derivation of t
electron-phonon coupling that does not suffer from th
problems. An obvious way to avoid the double counti
would be to avoid the Born-Oppenheimer approximation
together and directly split the Hamiltonian in the followin
three terms:

Ĥ5Ĥe~r !1Ĥn~R!1Ĥen~r ,R!, ~14!

where, by adding and subtracting terms at nuclear equ
rium positionsR0, we have defined

Ĥe~r !5T̂e~r !1Ŵee~r !1Ŵen~r ,R0!1Ŵnn~R0!, ~15!

Ĥn~R!5T̂n~R!1Ŵnn~R!2Ŵnn~R0!, ~16!

Ĥen~r ,R!5Ŵen~r ,R!2Ŵen~r ,R0!. ~17!

The HamiltoniansHe andĤn are now purely electronic an
purely nuclear Hamiltonians and could be used to de
‘‘bare’’ electrons and phonons. The strategy would then be
treat the termĤen in perturbation theory. However, th
zeroth-order HamiltonianĤn for the nuclei is~apart from the
values of the masses and charges! identical to the Hamil-
tonian of the homogeneous electron gas and its only col
tive excitation mode is a plasmon mode. This Hamilton
therefore gives a completely unrealistic phonon spectr
which completely lacks the acoustic modes and is a
starting point for perturbation theory. One could, as is do
in several standard texts,19,20also consider a somewhat inte
mediate splitting in which ions, i.e., nuclei with rigid cor
electrons attached to them, are used as basic entities.
does, however, not solve the problem mentioned and in
duces a further approximation and an arbitrariness in
definition of a core electron. Some works21,22 start out from
the full Hamiltonian, Eq.~14!, to derive expressions fo
some physical quantities but subsequently assume a per
symmetry, in contradiction to the full translational and ro
tional invariance of Hamiltonian, Eq.~14!, and use an expan
sion of Ĥen in phonon coordinates which again assume
split-up of the Hamiltonian as in Eq.~13! leading back to the
double-counting problem. On the other hand, we know t
the Born-Oppenheimer approximation gives phonon spe
that are in excellent agreement with experimental resu
The Born-Oppenheimer Hamiltonian, Eq.~10!, should there-
fore be a good starting point to discuss the electron-pho
interaction. This brings us back to the Hamiltonian of E
~13!. In spite of the mentioned difficulties in its derivatio
this model Hamiltonian has found many fruitful applicatio
in the description of a wide range of effects where electr
phonon interaction plays a role. One usually expandsŴen to
first order in Q and treats this term, which is called th
electron-phonon interaction, in perturbation theory. Often
electron-phonon interaction is parametrized and the par
eters are determined either from experimental data or
physical considerations. This procedure accounts for a w
class of model Hamiltonians known as the Fro¨hlich Hamil-
tonian. Although these Hamiltonians can be very useful i
11511
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not clear what their range of validity is and they are unsu
able for first-principles predictions.

We conclude that from a theoretical point of view there
a need for a first-principles approach to the electron-pho
interaction that avoids the introduction of model Hamilt
nians. The aim of this work is therefore to provide a theor
ical approach to the electron-phonon interaction that can
used in first-principles calculations and that does not su
from the theoretical difficulties mentioned above. An impo
tant step in this direction has been taken by Hedin a
Lundqvist.14 Rather than attempting to separate the Ham
tonian in an electron and a phonon part, they use the
Hamiltonian to derive several equations that couple the e
tron Green function, the screened interaction, the vertex,
the nuclear density-density correlation function. By iterati
of these equations one obtains increasingly sophisticated
proximations of all the many-body quantities involved. Th
approach also has the important theoretical advantage o
lowing for an exact definition of phonons that is independ
of the Born-Oppenheimer approximation. The phonon sp
trum is then defined to be the spectrum corresponding to
spectral function of the exact nuclear density-density co
lation function and is as such an experimental observa
The work of Hedin and Lundqvist has, however, two dra
backs. First of all, they derive their equations for classi
nuclei, described by variables for which, at a certain poin
the derivation, quantum-mechanical commutation relatio
must be used. Second, they start out from a Hamiltonian
has full translational and rotational symmetry and theref
the reduced quantities, such as the Green function, do
reflect the crystal symmetry. In this work we will remov
these two drawbacks by dealing with quantum-mechan
nuclei from the outset and by referring the electronic coor
nates to a body-fixed coordinate frame.

III. THE TRANSFORMED HAMILTONIAN

Let us start with a general remark on the full Hamiltoni
of all electrons and nuclei of Eq.~1!. This Hamiltonian is
invariant under translations and rotations of all particl
This means that the ground-state wave function transfo
under a representation of the translation and rotation gro
Together with the inversion symmetry this implies that
one-body quantities such as the electron density are con
and that two-particle correlation functions, such as the e
tron Green function, only depend on the distance betw
their arguments. This is obviously not a convenient start
point to describe a periodic solid. The solution of the pro
lem is obvious: we have to transform to a coordinate sys
that reflects the internal properties of the system. We w
therefore carry out a coordinate transformation in which
electronic positions will be referred to a coordinate syst
attached to the nuclear framework.23 In doing so we will
assume that our system is finite but arbitrarily large so t
our approach will be generally valid for molecules and s
ids. We first define the center of mass of the nuclei:

RCMN5
1

Mnuc
(
a

Nn

MaRa , ~18!
0-3
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whereMnuc5(a
NnMa is the total mass of all nuclei. The ne

electronic coordinates are then defined to be

r i85R~a,b,g!~r i2RCMN!, ~19!

whereR is a rotation matrix and (a,b,g) are Euler angles
that specify the directions of the axes of the new coordin
system, which will be called the body-fixed frame~for de-
tails see Appendix A!. The Euler angles are functions of th
nuclear coordinates. The way they depend on the nuc
coordinates depends on the choice of our coordinate tr
formation. One could for instance choose the angles in s
a way that the nuclear inertia tensor in terms of the rota
nuclear variables

Ri85R~a,b,g!~Ri2RCMN! ~20!

becomes diagonal, where the nuclear inertia tensor is g
by

I pq~R!5(
a

Nn

Ma~ uRau2dpq2Rp
aRq

a!. ~21!

Note that if we write out a particle coordinate we use t
particle label as a superscript, i.e.,Ra5(R1

a ,R2
a ,R3

a). This
way of determining the Euler angles is a common choice
nuclear physics.24–26 However, for the description o
phonons it is more appropriate to make a choice which m
mizes the coupling between rotational and vibrational m
tion. This is most conveniently done by using the so-cal
Eckart conditions27,28 that are commonly used in molecula
physics to decouple nuclear and electronic motion.29–35

However, since they are rarely used in solid-state physics
will give a brief description of these conditions. LetR0,a be
the nuclear positions that minimize the total energy with
the Born-Oppenheimer approximation. These quantities
be used as parameters in our coordinate transformation
choose them in such a way that

(
a

Nn

MaR0,a50, ~22!

i.e., we refer these positions to their center of mass.
further choose these quantities in such a way that the ine
tensor I pq(R0) of Eq. ~21! evaluated for these equilibrium
positions becomes diagonal. Then we define the Euler an
as function of the nuclear coordinatesRa by the following
implicit equation:

05(
a

Nn

MaR0,a3Ra8 . ~23!

It is important to realize that the numbersR0,a are not vari-
ables but just conveniently chosen parameters in a coordi
transformation. The Coulomb potential in the electro
nuclear interaction now acquires the form
11511
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ur2Ru
5

1

uRCMN1R~a,b,g!21r 82Ru

5
1

uR~a,b,g!~R2RCMN!2r 8u
5

1

uR82r 8u
,

~24!

where one has to keep in mind that the Euler angles (a,b,g)
are functions of the nuclear coordinates (R1 , . . . ,RNn

). The
electron-nuclear interaction in the body-fixed frame is n
invariant under translations and rotations of the nuclear
ordinates. This is readily seen. First of all the quantitiesRa
2RCMN are invariant under a translationRa→Ra1a and
hence the Euler angles are invariant as well. Let us there
consider rotations. Suppose we have a set of Euler an
corresponding to nuclear positionsRa . Let us now apply a
rotationO to these coordinates, i.e., we have new coordina
R̃a5ORa . For these rotated coordinates we have new Eu
angles (ã,b̃,g̃) determined by the Eckart conditions

05(
a

N

MaR0,a3R~ ã,b̃,g̃ !O~Ra2RCMN!. ~25!

Now sinceR times O is again a rotation, it can be param
etrized by Euler angles, i.e., we can write

R~ ã,b̃,g̃ !O5R~ ā,b̄,ḡ ! ~26!

for some Euler angles (ā,b̄,ḡ). Now since the Eckart con
ditions determine the Euler angles uniquely we must h
(ā,b̄,ḡ)5(a,b,g) and we find

R~ ã,b̃,g̃ !~R̃i2R̃CMN!5R~a,b,g!~Ri2RCMN!. ~27!

We can therefore conclude that the coordinatesRa8 are so-
called internal or shape coordinates that are invariant un
rotations and translations of the nuclear framework, i.e., t
satisfy

Ra8 ~OR1a!5Ra8 ~R!. ~28!

~A very elegant discussion of such coordinates is given
Ref. 32.! Therefore the potential that the electrons in t
body-fixed frame experience from the nuclei is invariant u
der rotation and translation of the nuclear coordinates. T
is, of course, exactly the purpose of a body-fixed frame.
us now turn to the other terms in Hamiltonian. One can a
see that the electron-electron repulsion and the electronic
netic energy retain the same form in the primed as in
unprimed coordinates. This is simply becauseR represents a
rotation in which the Euler angles only depend on t
nuclear coordinates and are independent of the electronic
ordinates. However, for the same reason extra terms
appear in the nuclear kinetic energy. These terms hav
physical origin. If all nuclei vibrate around their equilibrium
position then also the axes of the body-fixed frame will
brate and therefore we are viewing the electrons from a m
ing frame in which fictitious or Coriolis forces appear. In
diatomic molecule, for instance, this means that there i
0-4
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coupling between rotational and vibrational modes. Fo
solid we will show in Appendix C that such rovibration
terms are usually vanishingly small. The transformed nuc
kinetic terms become

T̂n85(
a

Nn ¹̄Ra

2

2Ma
, ~29!

where we defined

“̄Ra
5“Ra

1(
j

Ne ]r j8

]Ra
“ r

j8
. ~30!

We define the mass-polarization and Coriolis terms now

T̂M PC5T̂n82T̂n . ~31!

We have now completely specified our coordinate sys
and Hamiltonian. In order not to overcrowd our formul
with superscripts we will from now on drop all primes fro
the electronic variables. In the new coordinate system
Hamiltonian is

Ĥ5Ĥn1Ĥe1T̂M PC1Ŵen , ~32!

where

Ĥe5(
i 51

Ne

2
1

2
¹ i

21
1

2 (
iÞ j

Ne 1

ur i2r j u
, ~33!

Ĥn5 (
a51

Nn

2
¹Ra

2

2Ma
1

1

2 (
a,b

Nn ZaZb

uRa2Rbu
, ~34!

Ŵen5(
i 51

Nn

(
j 51

Ne 2Zi

uR~a,b,g!~Ri2RCMN!2r j u
. ~35!

The termT̂M PC5T̂M P1T̂C is the sum of a Coriolis partT̂C

and mass-polarization partT̂M P which have the form~see
Appendix B!

T̂M P5(
r 51

3

~m r
†1m r !Pe,r1 (

rs51

3

b rsPe,r Pe,s , ~36!

T̂C5(
r 51

3

~n r
†1n r !Le,r1 (

rs51

3

a rsLe,rLe,s , ~37!

wherePe andLe are the total electronic momentum and a
gular momentum. The quantitiesm, n, a, b are functions of
the nuclear coordinates and are further specified in Appen
B where it is shown thatm andb are inversely proportiona
to the total nuclear mass. The form of these equation
independent of the way the body-fixed frame is chosen.
far our derivations are valid for any system of electrons a
nuclei, i.e., ranging from small molecules to solids. Let
now specify that we are dealing with solids. Obviously th
the mass-polarization terms can be neglected since they
inversely proportional to the total nuclear mass. If we use
Eckart conditions in the specification of the Euler angles th
also the Coriolis terms inT̂C will be negligible. In Appendix
11511
a

ar

y

m

e

-

ix

is
o
d
s

re
e
n

C it will be demonstrated that in that case these terms
inversely proportional to the diagonal elementsI qq(R0) of
the inertia tensor and therefore very small for large syste
This is a direct consequence of the Eckart conditions and
is exactly why these conditions are so suitable to define
transformation to the body-fixed frame. By neglect of t
mass-polarization and Coriolis terms we have now obtai
a Hamiltonian of the same form as the original Hamiltoni
of Eq. ~1! with the exception of the electron-nuclear attra
tion term which appears in the form of Eq.~35! and breaks
the full translational and rotational symmetry. This Ham
tonian will now be used as a basis of our derivations.

IV. DERIVATION OF SELF-CONSISTENT EQUATIONS

We will start our derivations from the Hamiltonian de
rived in the preceding section. For the moment we will n
glect the Coriolis and mass-polarization terms. The justifi
tion of this for solids is, as mentioned before, explained
more detail in Appendix C. In the case of molecular syste
these extra terms are often incorporated later using pertu
tion theory.33 With this approximation the transforme
Hamiltonian in second quantization is given by

Ĥ5T̂n1T̂e1Ŵee1Ŵnn1Ŵen , ~38!

where

T̂e52
1

2E dx ĉ†~x!¹2ĉ~x!, ~39!

Ŵee5
1

2E dx dx8ĉ†~x!ĉ†~x8!ĉ~x8!ĉ~x!w~r ,r 8!,

~40!

Ŵen5E dx dV ĉ†~x!ĉ~x!Ĝ~R1•••RNn
!(

i

2Zi

uRi82r u
,

~41!

wherex5(r ,s) denotes a space-spin coordinate andRi8 is a
function of the coordinatesRi as given by Eq.~20!. The
electronic field operators satisfy the usual anticommutat
relations.4,19 We further defined the nuclear density matrix

Ĝ~R1•••RNn
!5 (

s1 , . . . ,sNn

f̂1
†~R1s1!•••f̂Nn

† ~RNn
sNn

!

3f̂Nn
~RNn

sNn
!•••f̂1~R1s1!, ~42!

wheref̂ i
†(Rs) andf̂ i(Rs) are nuclear creation and annih

lation operators for nucleusi and where we summed over a
nuclear spin variabless i . We further defined

dV5dR1•••dRNn
. ~43!

The reason that in the electron-nuclear interactionŴen a den-
sity matrix appears is a consequence of our transformatio
the body-fixed frame which makes, as mentioned before,Ri8

a function of all the coordinatesRi . The operatorsT̂n and
Ŵnn are not written out in second-quantization form he
0-5
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The only property of these operators that we will need in t
section is that they commute with any operator that depe
only on electronic coordinates. Note that we have not defi
the commutation relations for the nuclear creation and a
hilation operatorsf̂ i

† andf̂ i . The reason is that this does n
only depend on the type of nucleus, i.e., either bosonic
fermionic, but also on the way the body-fixed frame is d
fined. For instance, if we choose the diagonalization of
inertia tensor to define the body-fixed frame then the Eu
angles are defined by a constraint that is invariant under
mutations of particles of the same type. In that casef̂ i

† and
f̂ i will have either bosonic or fermionic commutation rel
tions. However, if we define the body-fixed frame using t
Eckart conditions the commutation relations forf̂ i

† and f̂ i

will be more complicated. The reason is that the Eckart c
ditions are not invariant under permutations of particles
the same type as a consequence of the introduction of e
librium positionsRi ,0 . The true permutational symmetry o
the system is then masked by the choice of our coordin
system, but is of course not changed. Luckily we will n
have to use the commutation relations of the nuclear crea
and annihilation operators in this section and our results
be valid for any choice of body-fixed frame~apart from the
question whether or not the Coriolis terms are negligib!.
From a more physical point of view one might argue that
a solid in equilibrium the exchange probability of two nuc
is very small so that we may regard them as distinguisha
particles and thereby simplify the mentioned problem. Ho
ever, since in our analysis there is no absolute need for s
approximations we refrain from doing so. For further discu
sions on this point for molecules we refer to Refs. 34 and

We now define a potential operator by

V̂n~r !5E dVĜ~R1•••RNn
!(
i 51

Nn Zi

uRi82r u
. ~44!

The expectation value of this operator is the Coulomb pot
tial due to the nuclei felt by the electrons in the body-fix
frame. We further define a nuclear density operator by

N̂~r !5
1

4p
¹2V̂n~r !5E dVĜ~R1•••RNn

!(
i 51

Nn

Zid~r2Ri8!.

~45!

The expectation value of this operator is the nuclear cha
distribution in body-fixed frame coordinates that gives rise
the Hartree potential felt by the electrons. This is a smea
out density of nuclei, as opposed to thed peaks that would
arise from a clamped nuclei approximation. One clearly s
from Eq. ~45! that if we have the full density matrixG we
can rotate the nuclei to the body-fixed frame after calculat
of the density matrix, rather than doing the coordinate tra
formation in the Hamiltonian. The electronic density is
usual given by the expectation value of the density oper

n̂~r !5(
s

ĉ†~x!ĉ~x!. ~46!

We further define a total density by
11511
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r̂~r !5n̂~r !2N̂~r !. ~47!

With the above definitions the electron-nuclear interact
can be simplified to

Ŵen52E d3rd3R
n̂~r !N̂~R!

ur2Ru
. ~48!

If we evaluate the expectation value of this operator in
mean-field sense, we see that the electron cloud now in
acts with a smeared out nuclear charge, rather thand peaks
as in the clamped nuclei approximation. This reflects
quantum treatment of the nuclei.

Now we will follow the derivation of the Hedin
equations13 along the lines of Hedin and Lundqvist.14 The
strategy is to obtain self-consistent equations for we
defined objects such as the electron Green function,
screened interaction, and the vertex function. The advan
of this approach is that it does not depend on any pertu
tion expansion of the Hamiltonian. Approximations are ma
in the final self-consistent equations that contain phys
quantities such as dressed electron and phonon propaga
The self-consistent equations are derived by the functio
differentiation method. For this purpose we define an au
iary external fieldw(r t) coupling to the total charger̂. Our
Hamiltonian therefore becomes

Ĥ5T̂n1Ŵnn2
1

2E dx ĉ†~x!¹2ĉ~x!

1
1

2E dxdx8ĉ†~x!ĉ†~x8!ĉ~x8!ĉ~x!w~r ,r 8!

2E d3rd3R
n̂~r !N̂~R!

ur2Ru
1E d3r r̂~r !w~r t !. ~49!

This is the Hamiltonian we will use for all our derivation
First we derive the equation of motion of the electronic fie
operatorĉ in the Heisenberg picture~we use the same nota
tion as in the paper by Hedin13!,

ĉH~xt !5V~2T0 ,t !ĉ~x!V~ t,2T0!, ~50!

where2T0 is an initial time and

V~ t2 ,t1!5T expS 2 i E
t1

t2
Ĥ~ t !dtD ~51!

is the evolution operator@we use the time ordering sinc
Ĥ(t) contains the explicitly time-dependent external fie
w(r t)]. The equation of motion ofĉH follows from

i ] tĉH~xt !5@ĉH~xt !,Ĥ~ t !#. ~52!

Working out the commutator yields

i ] tĉH~xt !5S 2
1

2
¹21w~r t !1E d3r 8

r̂H~r 8t !

ur2r 8u
D ĉH~xt !,

~53!
0-6
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where we used thatĉH commutes with all nuclear operator
If we define the time-ordered product as usual,

T@ĉH~xt !ĉH
† ~x8t8!#5u~ t2t8!ĉH~xt !ĉH

† ~x8t8!

2u~ t82t !ĉH
† ~x8t8!ĉH~xt !,

~54!

whereu is the Heaviside function, then we obtain using t
commutation relations of the field operators anddu(t)/dt
5d(t)

S i ] t1
1

2
¹22w~r t ! DT@ĉH~xt !ĉH

† ~x8t8!#

5 id~x2x8!d~ t2t8!1E d3r 8
1

ur2r 8u

3T@ r̂H~r 8t !ĉH~xt !ĉH
† ~x8t8!#. ~55!

The equation of motion forĉH immediately yields an equa
tion of motion for the electron Green function defined as

G~xt,x8t8!

52 i
^CuU~2T0 ,T0!V~T0 ,2T0!T@ĉH~xt !ĉH

† ~x8t8!#uC&

^CuU~2T0 ,T0!V~T0 ,2T0!uC&
.

Here U is the evolution operator in absence of the exter
field w. This means that forw50 the definition of the Green
function reduces to the usual one. Note that we here w
with time-ordered Green functions in the zero-temperat
formalism. If one would be interested in finite temperature
nonequilibrium phenomena our derivations can be rea
extended by use of the Matsubara technique3 or Keldysh
Green functions.36,37Now the functional derivative ofV with
respect tow is

dV~ t,t8!

dw~r1t1!
52 isgn~ t2t8!V~ t,t1!r̂~r1!V~ t1 ,t8! ~56!

if t1 is inside the time interval determined byt and t8, oth-
erwisedV/dw is zero. Using this expression we can read
prove the following equation:

d

dw~3!
V~T0 ,2T0!T@ĉH~1!ĉH

† ~2!#

52 iV~T0 ,2T0!T@ r̂H~3!ĉH~1!ĉH
† ~2!#, ~57!

where we used the short notationi 5(xi ,t i). If the spin vari-
able is left out we writeī 5(r i ,t i). With this equation we
obtain the following equation for the electron Green fun
tion:

S i ] t1
1

1

2
¹1

22V~ 1̄! DG~1,2!

5d~122!1 i E d3̄w~ 1̄1,3̄!
dG~1,2!

dw~ 3̄!
, ~58!
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where 115(r1 ,t11D) with D a positive infinitesimal and
w(1̄,2̄)5d(t12t2)/ur12r2u. The potentialV that appears in
the equation above is

V~ 1̄!5w~ 1̄!1E d3̄w~ 1̄,3̄!^r̂H~ 3̄!&, ~59!

where we used the notation

^Â&5
^CuU~2T0 ,T0!V~T0 ,2T0!ÂuC&

^CuU~2T0 ,T0!V~T0 ,2T0!uC&
. ~60!

The potentialV(1̄) therefore corresponds to the external p
tential and the Hartree potential due to the electronic a
nuclear charge distributions. Now we define the self-ene
operatorS by the equation

S i ] t1
1

1

2
¹1

22V~ 1̄! DG~1,2!

5d~122!1E d3S~1,3!G~3,2!. ~61!

From the definition of the inverse Green function

E d3G~1,3!G21~3,2!5d~122! ~62!

follows the identity

dG~1,2!

dw~ 3̄!
52E d4d5G~1,4!

dG21~4,5!

dw~ 3̄!
G~5,2!. ~63!

We therefore see that we can writeS as

S~1,2!52 i E d3̄d4w~ 1̄1,3̄!G~1,4!
dG21~4,2!

dw~ 3̄!
. ~64!

In the next step we define a dielectric functione and a
screened interactionW by

e21~ 1̄,2̄!5
dV~ 1̄!

dw~ 2̄!
5d~ 1̄22̄!1E d3̄w~ 1̄,3̄!

d^r̂~ 3̄!&

dw~ 2̄!
,

~65!

W~ 1̄,2̄!5E d3̄w~ 1̄,3̄!e21~ 2̄,3̄!. ~66!

The dielectric function measures changes in the effective
tential due to charge changes induced by the external fi
Note that it contains both changes in the electronic a
nuclear charge densities. We wish to study them separa
The electronic polarization is defined as the electronic cha
response due to the effective field

Pe~ 1̄,2̄!5
d^n̂~ 1̄!&

dV~ 2̄!
. ~67!

The electronic charge can also be calculated directly fr
the Green function
0-7
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ROBERT van LEEUWEN PHYSICAL REVIEW B69, 115110 ~2004!
^n̂~ 3̄!&52 i(
s3

G~3,31!. ~68!

We therefore find

Pe~ 1̄,2̄!52 i(
s1

dG~1,11!

dV~ 2̄!

5 i(
s1

E d3d4G~1,3!G~4,1!
dG21~3,4!

dV~ 2̄!
.

~69!

If we define the vertex functionG by

G~34;2̄!52
dG21~3,4!

dV~ 2̄!
~70!

we obtain

Pe~ 1̄,2̄!52 i(
s1

E d3d4G~1,3!G~4,1!G~34;2̄!. ~71!

This is the first one of Hedin’s equations. A second one f
lows immediately from the definition of the self-energy a
the screened interaction,

S~1,2!52 i E d3̄d4d5̄w~ 1̄1,3̄!G~1,4!
dG21~4,2!

dV~ 5̄!

dV~ 5̄!

dw~ 3̄!

5 i E d4d5̄G~1,4!W~ 1̄1,5̄!G~42;5̄!. ~72!

A third equation follows directly from the definition of th
vertex function,

G~12;3̄!5d~122!d~ 1̄23̄!1
dS~1,2!

dV~ 3̄!

5d~122!d~ 1̄23̄!1E d4d5
dS~1,2!

dG~4,5!

dG~4,5!

dV~ 3̄!

5d~122!d~ 1̄23̄!

1E d4d5d6d7
dS~1,2!

dG~4,5!
G~4,6!G~7,5!G~67;3̄!.

~73!

This yields an integral equation for the vertex function.
order to proceed we investigate the relation betweenW and
Pe . From the definition ofW we see that

W~ 1̄,2̄!5w~ 1̄,2̄!1E d3̄d4̄w~ 1̄,3̄!
d^r̂~ 4̄!&

dw~ 3̄!
w~ 4̄,2̄!.

~74!

If we split ^r̂& in an electronic and a nuclear part and use
chain rule we obtain
11511
l-

e

W~ 1̄,2̄!5w~ 1̄,2̄!

1E d3̄d4̄d5̄w~ 1̄,3̄!
d^n̂~ 4̄!&

dV~ 5̄!

dV~ 5̄!

dw~ 3̄!
w~ 4̄,2̄!

2E d3̄d4̄w~ 1̄,3̄!
d^N̂~ 4̄!&

dw~ 3̄!
w~ 4̄,2̄!

5w~ 1̄,2̄!1E W~ 1̄,5̄!Pe~ 4̄,5̄!w~ 4̄,2̄!

2E d3̄d4̄w~ 1̄,3̄!
d^N̂~ 4̄!&

dw~ 3̄!
w~ 4̄,2̄!. ~75!

This looks like the usual definition of the screened inter
tion except for a part induced by the nuclear charge den
We analyze this last term of the equation:

2
d^N̂~ 4̄!&

dw~ 3̄!
5 i ^T@DN̂H~ 4̄!Dr̂H~ 3̄!#&, ~76!

whereDÂ5Â2^Â& defines the fluctuation of an operatorÂ.
If we split the total charge operator in its electronic a
nuclear part we see that

2
d^N̂~ 4̄!&

dw~ 3̄!
52 i ^T@DN̂H~ 4̄!DN̂H~ 3̄!#&

1 i ^T@DN̂H~ 4̄!Dn̂H~ 3̄!#&. ~77!

The first term in the last equation represents the nuc
density-density correlation function

D~ 1̄,2̄!52 i ^T@DN̂H~ 1̄!DN̂H~ 2̄!#&. ~78!

It is exactly this response function that interests us. It rep
sents a correction to the electronic screened interaction
to nuclear density fluctuations. We will later see that for
solid its spectral function represents the lattice vibrations.
therefore want to include this function as a variable in t
Hedin equations. This can be done with a method introdu
by Baym.38 We consider an extra term

Ĥ252E dRN̂~R!J~R,t ! ~79!

in the Hamiltonian that couples only to the nuclear dens
We then see that

d^r̂~ 1̄!&

dJ~ 2̄!
5 i ^T@DN̂H~ 2̄!Dr̂H~ 1̄!#&52

d^N̂~ 2̄!&

dw~ 1̄!
. ~80!

Furthermore we have
0-8
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d^r̂~ 1̄!&

dJ~ 2̄!
52

d^N̂~ 1̄!&

dJ~ 2̄!
1

d^n̂~ 1̄!&

dJ~ 2̄!
5D~ 1̄,2̄!

1E d3̄
d^n̂~ 1̄!&

dV~ 3̄!

d^V~ 3̄!&

dJ~ 2̄!
5D~ 1̄,2̄!

1E d3̄d4̄Pe~ 1̄,3̄!w~ 3̄,4̄!
d^r̂~4!&
dJ~2!

. ~81!

Solution of this integral equation yields

2
d^N̂~ 2̄!&

dw~ 1̄!
5

d^r̂~ 1̄!&

dJ~ 2̄!
5@~12Pew!21D# 1̄2̄ . ~82!

If we now insert this expression into Eq.~75! we find for W
the integral equation

W5w1WPew1w~12Pew!21Dw. ~83!

If we solve this equation forW we find

W~ 1̄,2̄!5We~ 1̄,2̄!1E d3̄d4̄We~ 1̄,3̄!D~ 3̄,4̄!We~ 4̄,2̄!,

~84!

where we defined the electronic partWe of the screened in-
teraction as

We5w~12Pew!21. ~85!

This completes our derivation of the Hedin equations. Let
summarize our results in the following set of Hedin equ
tions:

S~1,2!5 i E d3d4̄G~1,3!W~ 1̄1,4̄!G~32;4̄!, ~86!

W~ 1̄,2̄!5We~ 1̄,2̄!1E d3̄d4̄We~ 1̄,3̄!D~ 3̄,4̄!We~ 4̄,2̄!,

~87!

We5w~12Pew!21, ~88!

Pe~ 1̄,2̄!52 i(
s1

E d3d4G~1,3!G~4,1!G~34;2̄!, ~89!

G~12;3̄!5d~122!d~ 1̄23̄!

1E d4d5d6d7
dS~1,2!

dG~4,5!
G~4,6!G~7,5!G~67;3̄!.

~90!

If we put D50 in these equations we obtain the usual He
equations of the rigid lattice and iteration of these equati
leads to terms that are conveniently interpreted in terms
Feynman diagrams. As this is described clearly in the pap
of Hedin and Lundqvist we will not carry out such an ana
sis here. The coupled equations derived here describe a
eral quantum system of electrons and nuclei and can th
fore be used, as we will do below, to judge the range
validity of approximate Hamiltonians. To illustrate the ge
11511
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eral structure of these equations we have displayed them
Fig. 1. In this figure the interactionsw, We , andW are rep-
resented by a wiggly, zigzag, and doubly wiggly line, resp
tively. The Green functions are represented with black lin
with arrows and the bare vertex with a dot. Note that we
not have a determining equation forD itself. For this we
would have to study the equation of motion of the nucle
creation and destruction operators which, however, lead
rather complicated expressions. The reason is that suc
equation of motion will lead to taking commutators with th
Nn-body operatorĜ. The appearance of suchNn-body terms
is not surprising. After all, the commonly used Bor
Oppenheimer potential of Eq.~10! is also aNn-body quan-
tity. TheseNn-body terms make it difficult to find practica
equations for the nuclear density-density correlation funct
D. However, in view of the quality of the Born-Oppenheim
phonons, we can expect that in practice we can get a g
approximation for D from the Born-Oppenheimer wav
functions. This approximation can then be inserted in
Hedin equations above and be iterated to obtain s
consistent approximations for the electronic Green functi
The exact structure and the Born-Oppenheimer form of
nuclear density-density correlation functionD will be studied
in the following section.

V. THE PHONON-INDUCED INTERACTION
BETWEEN THE ELECTRONS

In this section we will analyze the phonon-induced inte
action between the electrons in more detail. Such an ana
provides us with more insight into the structure of t
nuclear-nuclear correlation function and its possible appro
mations. It will also enable us to make a connection with
phenomenological Fro¨hlich Hamiltonian and to judge its va
lidity.

In Eq. ~84! of the preceding section we saw that we c
write the screened interaction between the electrons as
sum of two terms,

W~ 1̄,2̄!5We~ 1̄,2̄!1Wph~ 1̄,2̄!, ~91!

FIG. 1. Diagrammatic representation of the Hedin equations.
0-9
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ROBERT van LEEUWEN PHYSICAL REVIEW B69, 115110 ~2004!
where we define

Wph~ 1̄,2̄!5E d3̄d4̄We~ 1̄,3̄!D~ 3̄,4̄!We~ 4̄,2̄!. ~92!

The first termWe in Eq. ~91! represents a purely electron
screening. This is the only term when we restrict ourselve
the approximation of clamped nuclei. The second termWph
describes an additional screening due to the motion of
nuclei and contains all the information on the electro
phonon interaction. The structure of this term becomes m
transparent if we introduce the operator

DV̂H~r t !52E dR
DN̂H~Rt !

ur2Ru
~93!

and define the electronic dielectric functionee by

We~1,2!5E d3w~1,3!ee
21~2,3!. ~94!

We can then write

Wph~ 1̄,2̄!5E d3̄d4̄ee
21~ 1̄,3̄!u~ 3̄,4̄!ee

21~ 4̄,2̄!, ~95!

where

iu~r1t1 ,r2t2!5^T@DV̂H~r1t1!DV̂H~r2t2!#&. ~96!

Inserting a complete set of eigenstates yields

iu~r1t1 ,r2t2!5u~ t12t2!(
s

e2 i (t12t2)VsFs* ~r1!Fs~r2!

1~1↔2!, ~97!

where

Fs~r !5^CsuDV̂~r !uC0&, ~98!

and whereC0 is the ground state with ground-state ener
E0 andCs an excited state of the system with energyEs . We
further definedVs5Es2E0 which represents an excitatio
energy. From this analysis we see thatu only depends on
time through the combinationt12t2. This is simply a con-
sequence of the time independence of the Hamiltonian
applies to all two-point quantities. We can therefore Four
transform with respect to the relative time coordinate a
write

Wph~r1 ,r2 ,v!5E dr3dr4ee
21~r1 ,r3 ,v!u~r3 ,r4 ,v!

3ee
21~r4 ,r2 ,v!. ~99!

Using the relation

u~t!5 lim
h→01

21

2p i E2`

1`

dv
e2 ivt

v1 ih
~100!

we can write
11511
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u~r1 ,r2 ,v!5 lim
h→01

(
s

S Fs* ~r1!Fs~r2!

v2Vs1 ih
2

Fs* ~r2!Fs~r1!

v1Vs2 ih D .

~101!

In a system with time-reversal invariance we can alwa
choose the eigenstates of the system real. We can there
assume that the functionsFs are real. Thenu simplifies to

u~r1 ,r2 ;v!5 lim
h→01

(
s

2VsFs~r1!Fs~r2!

v22~Vs2 ih!2
. ~102!

Using this expression we can write an expression of sim
structure forWph :

Wph~r1 ,r2 ;v!5 lim
h→01

(
s

2Vsgs~r1 ,v!gs~r2 ,v!

v22~Vs2 ih!2
,

~103!

where we defined

gs~r1 ,v!5E dr2ee
21~r1 ,r2 ,v!Fs~r2!. ~104!

Now the phonon-induced screened interaction is in a fo
suitable for analysis. Now we study the properties of t
functionsFs(r ) and demonstrate that the energiesVs are of
the order of phonon energies. The main observation is
the operatorDV̂(r ) only consists of creation and annihilatio
operators involving nuclear coordinates. If we treat the sta
C0 and Cs in the Born-Oppenheimer approximation
means thatDV̂ connects only states that differ with respect
excitations in the nuclear part of the wave function. In t
Born-Oppenheimer approximation these energies corresp
to phonon excitation energies. Let us discuss this in m
detail.

For Fs(r ) we have the expression

Fs~r !5E dR
^CsuDN̂~R!uC0&

ur2Ru

5(
j 51

Nn

ZjE dV
^CsuDĜ~R1 , . . . ,RNn

!uC0&

ur2Rj8u
,

~105!

where we used Eq.~45!. For sÞ0 this expression is nothing
more than the matrix element^CsuV̂n(r )uC0& of the poten-
tial V̂n(r ) of Eq. ~44!. This function represents the Coulom
potential due to the nuclei felt by the electrons in the bod
fixed frame. We know that for the ground state of the crys
this function is strongly peaked around equilibrium positio
Ri ,0 . This is a feature of the true ground state of the syst
and is independent of the BO approximation. For the fu
tions Fs(r ) we can therefore do an expansion around
equilibrium positions and write~we suppress the argumen
of DĜ)
0-10
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Fs~r !5(
j 51

Nn

ZjE dV
^CsuDĜuC0&

ur2R0,j u

1(
j 51

Nn

ZjE dV^CsuDĜuC0&

3~Rj82R0,j !•“R0,j

1

ur2R0,j u
1•••

5(
j 51

Nn

uj ,s•“R0,j

Zj

ur2R0,j u
1•••, ~106!

where we defined

uj ,s5E dV^CsuDĜuC0&~Rj82R0,j ! ~107!

and used that the integral over^CsuDĜuC0& vanishes. In a
similar way we can in Eq.~106! also include terms from
second order and higher in the deviations from equilibri
which will be necessary when we want to describe anh
monic effects. Until this point we did not need to use t
Born-Oppenheimer equation. We only needed the prop
that the nuclear density is strongly peaked in the body-fi
frame. However, to calculate the expectation value of
nuclear displacementuj ,s in Eq. ~107! we need approximate
forms for the excited statesCs . We will do this using the
Born-Oppenheimer approximation. However, since Eq.~107!
is expressed in coordinates with respect to the body-fi
frame @see Eq.~45!# we will have to transform the Born
Oppenheimer Hamiltonian of Eq.~10! to the body-fixed
frame and expand in normal coordinates. How this is don
explained in detail in Appendix D. We can then use the Bo
Oppenheimer approximation for the excited-state wave fu
tion in terms of normal coordinatesQ and write

Cs5Fe~r ,R0!xs~Q!. ~108!

If there areNn nuclei then there areN53Nn26 normal
coordinates. The nuclear wave function is explicitly given
terms of these coordinates by

xs5j i 1
~Q1!•••j i N

~QN! ~109!

and where the subindexi in Qi is a multi-indexi 5(q,l) for
a normal coordinate characterized by wave vectorq and po-
larization directionl. The indicesi 1 , . . . ,i N label the par-
ticular excited statexs , i.e., xs5u i 1••• i N& andjn is explic-
itly given by

jn~Qi !5Hn~Qi !e
2V iQi

2/2, ~110!

whereHn is a Hermite polynomial. For the ground state w
havei k50. The electronic wave functionFe in Eq. ~108! is
the ground-state wave function of the clamped nuclei Ham
tonian of Eq. ~8!. Excited-state electronic wave function
need not be considered since they have no overlap withC0
in the matrix element of Eq.~107!. To keep the presentatio
as simple as possible we will from now on only consid
11511
r-

ty
d
e

d
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-
c-

l-
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monoatomic lattices with one nucleus with massM and
chargeZ per unit cell. The normal coordinate is then defin
by the relation4,19

Rj82R0,j5
1

ANcM
(
q,l

Qq,leq,leiq•R0,j , ~111!

whereNc is the number of unit cells per unit volume andeql

is the polarization vector of the phonon. By inserting E
~111! into Eq. ~107! we find thatuj ,s is equal to

uj ,s5
1

ANcM
(

q8,l8
eq8,l8e

iq8•R0,iE dV^CsuDĜuC0&Qq8,l8 .

~112!

In Appendix D it is shown that

E dV^CsuDĜuC0&Qi5E dQxs* ~Q!Qix0~Q!,

~113!

where we defineddQ5dQ1•••dQN . The latter integral is
readily evaluated to be

E dQxs* ~Q!Qix0~Q!5E dQij1~Qi !Qij0~Qi !

5~2V i !
21/2 ~114!

wheneverxs5u0•••1•••0& with 1 at position i and zero
otherwise. We therefore only need to consider singly exci
modes. Ifxs now corresponds to a state in which modeql is
singly excited we obtain from Eqs.~112! and ~114!

uj ,ql5
1

A2NcMVq,l

eq,leiq•R0,j . ~115!

Inserting this expression into Eq.~106! we finally obtain

Wph~r1 ,r2 ,v!5(
q,l

Dql~v!gql~r1 ,v!gql* ~r2 ,v!

~116!

and where

Dql~v!5
2Vql

v22~Vql2 ih!2
. ~117!

We further defined

gql~r ,v!5~2MNcVql!21/2(
i
E dr1ee

21~r ,r1 ;v!

3eq,l•“
Z

ur12R0,i u
eiq•R0,i. ~118!

Expression~116! represents the effective interaction betwe
the electrons that plays such an important role in the the
of superconductivity and has been derived before by He
and Lundqvist. However, their derivation is inconsiste
since their final expression for the nuclear density-den
correlation function has the periodic lattice symme
0-11
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ROBERT van LEEUWEN PHYSICAL REVIEW B69, 115110 ~2004!
whereas their starting point is a completely rotationally a
translationally invariant system. This inconsistency is
paired in the current derivation.

VI. COMPARISON TO THE FRÖ HLICH HAMILTONIAN

Using the results of the preceding section we will no
discuss the validity of the Fro¨hlich Hamiltonian. This Hamil-
tonian was developed by Fro¨hlich in the 1950s~Refs. 39–
41! and has since then been widely used in different form
describe phenomena that depend on the electron-pho
interaction.20 We shall show here that the phenomenologi
Hamiltonian of Eq.~13! indeed leads to overscreening
phonon frequencies when higher-order terms are taken
account. To do this we will derive also some exact coup
equations for the Fro¨hlich Hamiltonian and compare them t
the exact equations derived in the preceding sections
make the discussion as simple as possible we again con
a monoatomic lattice of nuclei with massM and chargeZ.
The Fröhlich Hamiltonian is then given by

Ĥ5Ĥph1Ĥe1Ĥe-ph , ~119!

where the phonon Hamiltonian is given by

Ĥph5 (
m,qPBZ

1

2
P̂qm

† P̂qm1
1

2
Vqm

2 Q̂qm
† Q̂qm , ~120!

wherem designates the polarization direction and theq sum-
mation is restricted to the Brillouin zone denoted as BZ. T
operatorsP̂qm and Q̂qm satisfy the usual canonical commu
tation relations as well as the relationsP̂qm

† 5 P̂2qm and

Q̂qm
† 5Q̂2qm . Here we used a notation close to that of Re

4 and 19. The electron-phonon interaction is given by

Ĥe2ph5(
mq

E d3rgqm~r !n̂~r !Q̂qm , ~121!

where theq summation now extends over all wave vecto
In this expression the functiongqm(r ) is explicitly given by

gqm~r !5
i

V0AMNc

eiq•r ṽe2n~q!q•eqm , ~122!

whereV0 is the volume of the unit cell andṽe2n(q) is the
Fourier transform of the electron-nuclear interaction exp
itly given by

ṽe2n~q!52ZE d3r
e2 iq•r

ur u
52

4pZ

uqu2
. ~123!

The function gqm further satisfies the useful relationgqm*
5g2qm . Note that we will follow Ref. 42 by denoting ever
Hamiltonian of the form in Eq.~119! as Fröhlich Hamil-
tonian, although often this term is reserved for spec
cases20 of this expression. This nomenclature turned out
be most suitable for our general discussion. We now defin
nuclear charge density operator by
11511
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N̂~r !52
¹2

4p S (
qm

gqm~r !Q̂qmD . ~124!

In other words

(
qm

gqm~r !Q̂qm52E d3R
N̂~R!

ur2Ru
. ~125!

We then define alsor̂(r )5n̂(r )2N̂(r ) as the operator for
the total negative charge and we will introduce an exter
field w(r t) coupling to this charge. In this way the fu
Hamiltonian is given by

Ĥ5Ĥph2
1

2E dxĉ†~x!¹2ĉ~x!

1
1

2E dx dx8ĉ†~x!ĉ†~x8!ĉ~x8!ĉ~x!w~r ,r 8!

2E d3rd3R
n̂~r !N̂~R!

ur2Ru
1E d3r r̂~r !w~r t !. ~126!

This Hamiltonian is, apart from the replacement ofT̂n

1Ŵnn by Ĥph and a different interpretation of the nucle
density, of identical form as the Hamiltonian of Eq.~49!. The
derivation of the Hedin equations using the functional d
rivative method therefore proceeds completely analogou
as in Sec. IV and we obtain the identical Hedin equatio
~86!–~90!, albeit with a different interpretation of the nuclea
density-density correlation functionD which is now evalu-
ated with the density operator of Eq.~124! as

D~ 1̄,2̄!52 i ^T@DN̂H~ 1̄!DN̂H~ 2̄!#&. ~127!

We further define the equivalent of operatorDVH(Rt) of Eq.
~93! as

DV̂H~r t !52E dR
DN̂H~Rt !

ur2Ru
5(

qm
gqm~r !DQ̂qm,H~ t !,

~128!

where we also defined the fluctuation operatorDQ̂qm,H(t)
2^Q̂qm,H(t)&. In analogy with the preceding section we no
consider the time-ordered expectation value of this oper
given by

iu~r1t1 ,r2t2!5^T@DV̂H~r1t1!DV̂H~r2t2!#&

5 (
qq8,mm8

gqm~r1!

3^T@DQ̂qm~ t1!DQ̂q8m8
†

~ t2!#&gq8m8
* ~r2!.

~129!

We see thatu andD can be calculated if we have an expre
sion for the quantity

idqq8mm8~ t1 ,t2!5^T@DQ̂qm~ t1!DQ̂q8m8
†

~ t2!#& ~130!
0-12
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FIRST-PRINCIPLES APPROACH TO THE ELECTRON- . . . PHYSICAL REVIEW B 69, 115110 ~2004!
which we will refer to as the phonon propagator. We c
derive an equation of motion for this quantity if we consid
the equation of motion ofQ̂qm(t). In order to do this we will
also add an external field to the Hamiltonian of the form

Ĥext~ t !5 (
mqPBZ

Jqm~ t !Q̂qm1Jqm* ~ t !Q̂qm
† , ~131!

where Jqm* 5J2qm and where Jq1Gm5Jqm with G a
reciprocal-lattice vector. We then have

] tQ̂qm~ t !52 i @Q̂qm~ t !,Ĥ#5 P̂qm
† ~ t !. ~132!

The second derivative is then readily evaluated from
commutator withP̂qm

† (t) to give

] t
2Q̂qm~ t !5] t P̂qm

† ~ t !52Vqm
2 Q̂qm~ t !2E d3rgqm* ~r !n̂H~r t !

2@J2qm~ t !1Jqm* ~ t !#. ~133!

If we take the functional derivative with respect toJq8m8
*

~where we treatJ andJ* as independent! we obtain

~] t
21Vqm

2 !dqq8mm8~ t,t8!52d~ t2t8!d̃qq8dmm8

2E d3rgqm* ~r !
d^n̂H~r t !&

dJq8m8
* ~ t8!

,

~134!

whered̃qq851 if q andq8 differ by a reciprocal-lattice vec
tor and zero otherwise. Since the density is given by
diagonal of the Green function we can write the latter eq
tion as

~] t
21Vqm

2 !dqq8mm8~ t,t8!

52d~ t2t8!d̃qq8dmm82 i(
s

E d3rd3d4gqm* ~r !

3G~r ts,3!G~4,r ts!
dG21~3,4!

dJq8m8
* ~ t8!

. ~135!

This equation can be rewritten as

~] t
21Vqm

2 !dqq8mm8~ t,t8!

52d~ t2t8!d̃qq8dmm81 i(
q1a

(
s

E d3rdt1d3d4gqm* ~r !

3G~r ts,3!G~4,r ts!G̃~34;q1at1!dq1q8,am8~ t1 ,t8!,

~136!

where we defined the vertex function as

G̃~34;qat !52
dG21~3,4!

d^Q̂qa~ t !&
. ~137!
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This is a Dyson-like equation for the phonon propagator w
the ‘‘bubble’’ GGG̃. Now the electronic Green function sa
isfies

G21~1,2!5G0
21~1,2!2S~1,2!2d~122!

3E d3w~1,3!^r̂~3!&

5G0
21~1,2!2S~1,2!2d~122!

3E d3w~1,3!^n̂~3!&2d~122!

3(
qm

gqm~r1!^Q̂qm~ t1!&. ~138!

Therefore

G̃~12;qmt !5d~122!d~ t12t !gqm~r1!

1E d4d5
dS~1,2!

dG~4,5!

dG~4,5!

d^Q̂qm~ t !&

5d~122!d~ t12t !gqm~r1!

1E d4d5d6d7
dS~1,2!

dG~4,5!
G~4,6!G~7,5!

3G̃~67;qmt !, ~139!

where it should be noted that we will also regard the phon
propagatord to be a functional ofG.

Let us now discuss the results that we obtained. The c
tral equations of this section are summarized diagramm
cally in Fig. 2. The top line in this figure expresses t
nuclear density-density correlation function in terms of t
phonon propagator and is explicitly given by

D~ 1̄,2̄!5 (
qq8mm8

aqm~r1!dqq8mm8~ t1 ,t2!aq8m8
* ~r2!,

~140!

where we used Eqs.~127!, ~124!, and~130! and we defined

aqm~r !52
¹2

4p
gqm~r !. ~141!

FIG. 2. Diagrammatic representation of the self-consistent eq
tions that determine the phonon propagator for the Fro¨hlich Hamil-
tonian.
0-13
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ROBERT van LEEUWEN PHYSICAL REVIEW B69, 115110 ~2004!
In the figure the quantityaqm(r ) is denoted by a small circle
and the phonon propagator by a dotted line. In the sec
line of Fig. 2 we represent Eq.~136! in Dyson form where
the dashed line represents the bare propagatord0 that satis-
fies Eq.~144! and is discussed in more detail below. The la
line of the figure represents Eq.~139! in which the bare
vertexgqm is represented by a black dot. The equations r
resented in Figs. 1 and 2 completely determine all the pr
erties of the Fro¨hlich Hamiltonian. Before discussing itera
tive solutions of these equations we first study the struc
of the phonon propagator. The phonon propagator can
written in its Lehmann form as

idqq8mm8~ t1 ,t2!5(
s

u~ t12t2!e2 i (t12t2)Vs^C0uDQ̂qmuCs&

3^CsuDQ̂q8m8
† uC0&1~1↔2!. ~142!

If we take the phonon frequencies from a calculation of
Born-Oppenheimer surface and denote the correspon
propagator asd0 we find using Eq.~114! that

idqq8mm8
0

~ t1 ,t2!5 d̃qq8dmm8

1

2Vqm
u~ t12t2!e2 iVqm(t12t2)

1~1↔2!. ~143!

This propagator satisfies the equation of motion

~] t
21Vqm

2 !dqq8mm8
0

~ t,t8!52d~ t2t8!d̃qq8dmm8 .
~144!

If we Fourier transform with respect tot12t2 we obtain
simply

dqq8mm8
0

~v!5
d̃qq8dmm8

v22~Vqm2 ih!2
. ~145!

The functionu is then given in frequency space by

iu~r1 ,r2 ,v!5 (
qq8mm8

gqm~r1!
d̃qq8dmm8

v22~Vqm2 ih!2
gq8m8

* ~r2!

5 (
mqPBZ

2VqmFqm~r1!Fqm* ~r2!

v22~Vqm2 ih!2
, ~146!

where

Fql~r !5~2Vql!21/2(
G

gq1G,l~r !. ~147!

If we work out the latter term we have

Fql~r !5~2VqlMNc!
21/2

3
1

V0
(
G

eql•E d3r 8ei (q1G)•(r2r8)
“8

Z

ur 8u

5~2VqlMNc!
21/2eql•(

i
E d3r 8eiq•(r2r8)
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3d~r2r 82R0,i !“8
Z

ur 8u

5~2VqlMNc!
21/2(

i
eiq•R0,ieql•“

Z

ur2R0,i u
,

~148!

where we used thateq5eq1G . We see that with this approxi
mation we obtain for the functiongqm an identical expression
as in Eq.~118! of the preceding section.

Results will differ, however, as we sum the phonon prop
gator of the Fro¨hlich Hamiltonian to higher order. For in
stance, if we start iterating the coupled equations by tak
for G̃ the first term on the right-hand side of Eq.~139! we
obtain for the phonon propagator the equation

~] t
21Vqm

2 !dqq8mm8~ t,t8!

52d~ t2t8!d̃qq8dmm81 i(
q1a

(
s

E d3rd3gqm* ~r !

3G~r ts,3!G~3,r ts!gq1a~r3!dq1q8,am8~ t3 ,t8!.

~149!

This equation givesd as a functional ofG which can, using
Eq. ~140!, subsequently be inserted into the Hedin equatio
of the Fröhlich Hamiltonian to obtain higher-order approx
mations for the self-energyS and thus a newG̃ from Eq.
~139!. The first iteration in Eq.~149! amounts to summing al
diagrams for the phonon propagator that contain an e
tronic polarization bubblePe52 iGG which represents the
electronic screening. By this dressing of the phonon pro
gator one obtains new screened phonon frequencies from
poles. However, since we know that the Born-Oppenheim
phonon frequencies are very close to realistic phonon
quencies, this leads to overscreening. This illustrates
double-counting problem discussed in the Introduction.
therefore obtain an important result. If we use Bor
Oppenheimer phonon frequencies, then the exact cou
Hedin equations of Sec. IV and the Fro¨hlich Hamiltonian
yield identical resultsprovided that we do not dress the ph
non line in the Fro¨hlich model. What does this imply for the
results obtained with the Fro¨hlich Hamiltonian? First of all,
many results obtained with this model were aimed at qu
tative rather than quantitative agreement with experim
and often contain adjustable parameters that can be fitte
experimental data. On the other hand the calculations
used accurate frequencies and that aimed for quantita
agreement with experiment were often carried out in fir
order perturbation theory in which double counting cann
occur. Nevertheless, it is important to be aware of
double-counting problem when one studies simple case
the Fröhlich model that can be solved exactly.43 The problem
of double counting is, as explained, related to the fact t
the phonon frequencies were determined in a way that
ready used the electronic part of the Hamiltonian. Inde
several works introduced bare phonon frequencies on the
sis of a Hamiltonian as in Eq.~16! and one often consider
0-14
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FIRST-PRINCIPLES APPROACH TO THE ELECTRON- . . . PHYSICAL REVIEW B 69, 115110 ~2004!
effective interactions between ‘‘ions’’ which are loosely d
fined as nuclei to which core electrons are rigidly attach
The disadvantage of the latter approach is that it is diffic
to give it a rigorous basis since it involves the somew
arbitrary definition of a core electron. Moreover the ba
phonon frequencies one starts out with are very unphys
One has to do an infinite summation to go from unrealis
ionic to more realistic dressed phonon frequencies. Ap
from being a cumbersome procedure it is very unclear if
exact phonon frequencies~defined by the spectral function o
the exactD) can even be obtained by such a procedu
Another disadvantage of the Fro¨hlich model as compared t
the coupled equations of Sec. IV is that anharmonic effect
the electron-phonon coupling are absent. By using
coupled Hedin equations such effects can readily be inclu
by expanding Eq.~106! to higher orders inRj82R0,j . The
general point we like to make is that in first-principles c
culations the direct use of the coupled Hedin equations
gether with the BO approximation for the nuclear densi
density correlation function presents a simple and gen
way of generating self-consistent approximations for el
trons and phonons that are devoid from double-coun
problems.

VII. PHONONS IN TIME-DEPENDENT
DENSITY-FUNCTIONAL THEORY

Density-functional theory, as usually applied to electro
systems, expresses all observables as functionals of the
tron density. In the case that we deal with the coupling
tween electronic and nuclear motion one needs an exten
of electronic density-functional theory. Such an extens
has been provided by the multicomponent density-functio
approach of Kreibich and Gross23,44 and has been applied t
diatomic molecules in strong laser fields. This theory h
however, not yet been investigated for the case of phon
On the basis of the Hedin equations of Sec. IV one c
however, quite easily construct phonon corrections to res
found with electronic density-functional theory. For instan
the electronic density-response function is readily calcula
in time-dependent density-functional theory from9,10,45

x~1,2!5x0~1,2!1E d3d4x0~1,3!

3@w~3,4!1 f xc~3,4!#x~4,2!, ~150!

wherex0 is the noninteracting density-response function
the Kohn-Sham system andf xc is the so-called exchange
correlation kernel. From this function one can then read
constructWe5wxw andee . Therefore by calculation of the
phonon frequencies using the Born-Oppenheimer appr
mation, which can also be done within DFT,18 we can con-
struct the effective interaction

W~1,2!5We~1,2!1Wph~1,2! ~151!

from which the full dielectric functione(1,2) can be ob-
tained. This allows us then to calculate the phonon broad
ing of absorption spectra. The approach here is quite dif
ent from moread hocways to calculate the electron-phono
11511
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interaction within a DFT framework. Other works have do
this by calculating the change in the effective Kohn-Sh
potentialvs due to a shift of the nuclei.46–49This amounts to
usingvs rather thanee

21 in the expression forWph(1,2). No
justification for this procedure is given and from our resu
it appears that this procedure is indeed not justified and
only be regarded as an unfounded but simple approxima
to ee

21 . The results, however, show that this approximati
works quite well.

VIII. CONCLUSIONS

In this paper we have derived coupled equations
many-body Green functions, effective interactions, and v
tices for the full system of electrons and nuclei. This a
proach was inspired by existing theoretical difficulties
standard derivations of the electron-phonon interaction. T
involved ~a! the breaking of the full rotational and transla
tional symmetry of the original Hamiltonian and its corr
sponding neglect of rovibrational couplings and~b! the
double-counting problem due to the use of Bor
Oppenheimer phonon frequencies. The first problem w
solved using a coordinate transformation that refers the e
tronic motion to a frame fixed to the nuclear framework. T
second problem was solved by deriving coupled equati
for observable quantities such as Green functions, rather
to try to define bare electrons and phonons and to exp
parts of the Hamiltonian. We further showed a way to calc
late the electron-phonon coupling within a density-function
framework and pointed out some problems in earlier wo
that calculates the electron-phonon coupling within a D
context.

We hope that the work presented here will provide a u
ful basis for future first-principles approaches to the calcu
tion of the electron-phonon interaction. Work on applicatio
within a time-dependent density-functional context is
progress.

APPENDIX A: DEFINITIONS AND USEFUL RELATIONS

The Euler angles are specified by the fact that any rota
can be written as

R~a,b,g!5Rz~g!Ry~a!Rz~b!, ~A1!

whereRz andRy are rotations about thez andy axes. More
details can be found in Refs. 29, 33, and 50. Let the colu
vectors of this rotation matrix be denotede1 , e2 , e3, i.e.,
(ej ) i5Ri j . These vectors satisfy

]ei

]a
5ei3va , ~A2!

]ei

]b
5ei3vb , ~A3!

]ei

]g
5ei3vg , ~A4!

where we defined the following angular velocity vectors:
0-15
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ROBERT van LEEUWEN PHYSICAL REVIEW B69, 115110 ~2004!
va5S sing

cosg

0
D , vb5S 2sina cosg

sina sing

cosa
D , vg5S 0

0

1
D .

~A5!

Now all the angles depend on nuclear coordinatesRk

5(Rx
k ,Ry

k ,Rz
k) wherek labels the particle. Let us further in

troduce the short notation] i
k5]/]Ri

k . Then from the equa-
tions above we find

] i
k~el ! j5(

qr
e jqr~el !qV ri

k , ~A6!

wheree i jk is the antisymmetric Levi-Civita` tensor and where
we defined

V ri
k 5va,r] i

ka1vb,r] i
kb1vg,r] i

kg ~A7!

and wherev i ,r is ther th component of vectorv i . Since the
Euler angles are invariant under translation of all nucl
coordinates we can easily derive the useful condition

(
k51

Nn

V ri
k 50. ~A8!

If we now define

r j95(
jk

Rj l r l , ~A9!

Rj9
n5(

jk
Rj l Rl

n , ~A10!

then we find the relations

] i
kr j95(

qr
e jqr r q8V ri

k , ~A11!

] i
kRj9

n5Rj i dkn1(
qr

e jqrRq8
nV ri

k . ~A12!

These relations will be useful in the following sections.

APPENDIX B: GENERAL FORM FOR THE CORIOLIS
AND MASS-POLARIZATION TERMS

Here we will derive the general form of the mas
polarization and Coriolis terms presented in Sec. III. In t
section we rotated the electronic coordinates to a frame
is attached to the nuclei but left the nuclear coordinates
tact, i.e.,

r i85R~a,b,g!~r i2RCMN!, ~B1!

Ri85Ri . ~B2!

The wave functionC in the old coordinates is then related
wave functionF in the new coordinates by

F~r18•••rNe
8 ,R18•••RNn

8 !5C~r1•••rNe
,R1•••RNn

!.

~B3!
11511
r

t
at
-

If we use

] i
kr j85(

qr
e jqr r q8V ri

k 2Rj i

Mk

Mnuc
~B4!

we obtain

]C

]Ri
k

5
]F

]Ri
k8

1(
l 51

3

(
n51

Ne ]F

]r l
n8

]r l
n8

]Ri
k8

5
]F

]Ri
k8

2 i(
r

3

V ri
k Le,rF

2 i
Mk

Mnuc
(

l

3

Rl i Pe,lF, ~B5!

where we used relation~B4! and where we defined the tota
electronic momentum and angular momentum operator

Le5(
j 51

Ne

2 i r j83
]

]r j8
, ~B6!

Pe5(
j 51

Ne

2 i
]

]r j8
. ~B7!

The kinetic-energy operator therefore becomes

T̂n852 (
k51

Nn 1

2Mk
(

i

3 S ] i
k2 i(

r

3

V ri
k Le,r

2 i
Mk

Mnuc
(

l

3

Rl i Pe,l D 2

. ~B8!

Let us work this term out. Because of the condition of E
~A8! there are no couplings between theLe andPe operators.
We can then split the kinetic energy as

T̂n85T̂n1T̂M P1T̂C , ~B9!

where the mass-polarization terms are given by

T̂M P5(
r 51

3

~m r
†1m r !Pe,r1 (

rs51

3

b rsPe,r Pe,s , ~B10!

where

m r5 i
1

2Mnuc
(
k51

Nn

(
i 51

3

Rri ] i
k52

Pn,r8

2Mnuc
, ~B11!

b rs5
1

2Mnuc
2 (

k51

Nn

Mk(
i

3

Rri Rsi5
d rs

2Mnuc
, ~B12!

wherePn8 is the nuclear momentum in the body-fixed fram
The Coriolis terms are given by

T̂C5(
r 51

3

~n r
†1n r !Le,r1 (

rs51

3

a rsLe,rLe,s , ~B13!

where we defined

n r5 i (
k51

Nn 1

2Mk
(
i 51

3

V ri
k ] i

k , ~B14!
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a rs5 (
k51

Nn 1

2Mk
(
i 51

3

V ri
k Vsi

k . ~B15!

Our next task will be to provide more explicit expressio
for n r anda rs .

APPENDIX C: EXPLICIT FORM OF THE CORIOLIS
TERM FOR SPECIFIC CHOICE OF THE

BODY-FIXED FRAME

In this section we will demonstrate that for a large syst
the Coriolis terms become vanishingly small if we spec
the Euler angles using the Eckart conditions given in E
~23!. Since

05(
i 51

Nn

MiR0,i3R~a,b,g!RCMN ~C1!

the Euler angles are equivalently defined by the conditio

05(
i 51

Nn

MiR0,i3R~a,b,g!Ri . ~C2!

This simply means that the angles are invariant under tra
lations of the original coordinates. Classically the Eck
conditions enforce that in the rotated body-fixed frame
internal nuclear angular momentum with respect to the e
librium configurationRi ,0 is zero. This follows in a classica
system directly from differentiation of the Eckart conditio
with respect to time.29 We now calculate the angular velocit
vectorsV ri

k . An equation for these vectors can be obtain
from a differentiation of the Eckart conditions with respect
Rk . If we denoteRk95RRk we obtain

05] l
kS (

n js
Mne i jsR0,j

n Rs
n9D

5(
n js

Mne i jsR0,j
n S (

qr
esqrRq

n9V rl
k 1RsldknD

5(
js

Mke i jsR0,j
k Rsl1 (

n jqr
Mn~d iqd j r 2d ir d jq!R0,j

n Rq
n9V rl

k

5(
js

Mke i jsR0,j
k Rsl1(

n j
Mn~R0,j

n Ri
n9V j l

k 2R0,j
n Rj

n9V i l
k !

5ali
k 2(

j
Ji j ~R9!V j l

k , ~C3!

where the matrixJ(R) is defined as

Jpq~R!5 (
k51

Nn

Mk@~R0,k•Rk!dpq2R0,p
k Rq

k# ~C4!

and where

ali
k 5(

js
Mke i jsR0,j

k Rsl5Mk~R0,k3el ! i . ~C5!
11511
.
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t
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Note that the matrixJi j is symmetric because of the Ecka
conditions. Furthermore, the matrixJ(R0) is diagonal be-
cause of the conditions posed on theR0,i and corresponds to
the inertia tensor of the pointsR0,k . The angular momentum
vectorsV j l

k can now be obtained from

V j l
k 5(

p

3

~J21! jpalp
k . ~C6!

Using the explicit form ofalp
k and the fact that theR0,k are

defined in a frame with respect to the nuclear center of m
we can check that condition~A8! is indeed satisfied. Let us
now calculate the matrixa i j of Appendix B. For this we
need to evaluate

(
i

3

Vv i
k Vqi

l 5(
st

~J21!vs~J21!qt(
i

ais
k ait

l . ~C7!

The last term in this equation is readily calculated to be

(
i

ais
k ait

l 5 (
uvqr

esuve tqrMkMlR0,u
k R0,q

l (
i

Rv iRri

5(
uvq

esuve tqvMkMlR0,u
k R0,q

l

5dstS (
q

MkMlR0,q
k R0,q

l D 2MkMlR0,t
k R0,s

l ,

~C8!

where we used the orthogonality of the matrixR. With this
equation we obtain

avq5(
k

Nn 1

2Mk
(

i

3

Vv i
k Vqi

k

5(
st

~J21!vs~J21!qt(
k

Nn 1

2Mk
(

i
ais

k ait
k

5
1

2 (
s

~J21!vsI ss~R0!~J21!qs , ~C9!

whereI ss(R0) are the diagonal elements of the inertia tens
at the equilibrium positionsR0. Since this tensor is diagona
we can also writeavq as a matrix product~where we keep in
mind thatJ is a symmetric matrix and henceJ21 too!:

apq5 1
2 @J21~R9!I ~R0!J21~R9!#pq . ~C10!

Since the matrixJ is invariant under translations, i.e.,J(R
1a)5J(R), we can rewrite this as

apq5 1
2 @J21~R8!I ~R0!J21~R8!#pq , ~C11!

where we translated over the vector2RRCMN . It remains to
calculate a more explicit form for the operatorn r . For this
term we find
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n r5 i (
k51

Nn 1

2Mk
(
i 51

3

V ri
k ] i

k5 i (
k51

Nn 1

2Mk
(
ip

~J21!rpaip
k ] i

k

5
i

2 (
k

Nn

(
ipst

~J21!rpepstR0,s
k Rt i] i

k52
1

2 (
p

~J21!rpLN,p ,

~C12!

where we defined the vibrational angular momentum of
nuclei by

LN52 i(
k

Nn

R0,k3R ]

]Rk
. ~C13!

We see that ifR85R0 then apq is diagonal and inversely
proportional to the diagonal elements of the inertia ten
and alson r has the same proportionality. This is therefore
small quantity when the system is large. It is exactly t
property that makes the Eckart conditions useful for
study of small molecular vibrations.

APPENDIX D: NORMAL COORDINATES
IN THE BODY-FIXED FRAME

In this section we derive the body-fixed frame express
for the Born-Oppenheimer Hamiltonian that is used in Sec
to construct the phonon propagator. Suppose we consid
nuclear Hamiltonian of the form

Ĥ52 (
k51

N
1

2Mk
“Rk

2 1V~R1•••RN!. ~D1!

In our case the potentialV will describe the BO surface. We
now consider the new coordinates

Ri85R~a,b,g!~Ri2RCMN!, ~D2!

where the Euler angles are determined by the Eckart co
tions.

TheseRi8 are shape coordinates in the sense that they
invariant under rotations and translations of theRi . They
therefore span a (3N26)-dimensional space and are ther
fore dependent. If we removeRN8 andRN218 we are left with
at most 3N26 independent shape coordinates. We theref
have to select six coordinates spanning the space ‘‘ortho
nal’’ to the space of shape coordinates. One obvious ca
date is the nuclear center of massRCMN as defined in Eq.
~18!, which is not in the shape space since it is not trans
tionally invariant. For the remaining coordinates we choo
the Euler anglesa,b,g. These coordinates are translatio
ally invariant but not rotationally invariant. We are therefo
left with a choice of 3N26 shape coordinates. For this w
take the general form

Qi5 (
n51

N

(
j 51

3

bi j
n Rj

n8 . ~D3!
11511
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In order that the transformation from the old to the ne
coordinates be invertible the coefficientsbi j

k must be chosen
in such a way that the new coordinatesQi are orthogonal to
the conditions

05(
k

N

MkRk8 , ~D4!

05(
k

N

MkR0,k3Rk8 , ~D5!

which are the center-of-mass fixing and Eckart conditio
For details on this procedure we refer to Refs. 34 and 51.
now have a new wave functionF related to the old oneC
by

F~Q1 , . . . ,Q3N26 ,RCMN ,a,b,g!5C~R1 , . . . ,RN!.
~D6!

Then partial differentiation yields

]C

]Ri
k

5
]F

]a
] i

ka1
]F

]b
] i

kb1
]F

]g
] i

kg

1(
l 51

3
]F

]RCMN,l
] i

kRCMN,l1 (
j 51

3N26
]F

]Qj
] i

kQj ,

~D7!

where the derivatives of the Euler angles can be expresse
terms of the coefficientsV by inversion of Eq.~A7!. This
yields

] i
ka5singV1i

k 1cosgV2i
k , ~D8!

] i
kb52

cosg

sina
V1i

k 1
sing

sina
V2i

k , ~D9!

] i
kg5cotacosgV1i

k 2cotasingV2i
k 1V3i

k . ~D10!

We then have

]F

]a
] i

ka1
]F

]b
] i

kb1
]F

]g
] i

kg52 i (
j 51

3

V j i
k JjF, ~D11!

where we defined the operators

iJ15sing
]

]a
2

cosg

sina

]

]b
1cotacosg

]

]g
, ~D12!

iJ25cosg
]

]a
1

sing

sina

]

]b
2cotasing

]

]g
, ~D13!

iJ35
]

]g
, ~D14!

which represent the rovibronic angular momentum opera
relative to the body-fixed axes.33 Using
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] i
kRl

n85(
qr

e lqrRq
n8V ri

k 1Rl i S dnk2
Mk

Mnuc
D ~D15!

we further obtain

(
j 51

3N26
]F

]Qj
] i

kQj52 i(
r

3

LN,rV ri
k F1 i(

r

3

Rri pr
kF

2 i
Mk

Mnuc
(
r 51

3

(
m51

N

Rri pr
mF, ~D16!

where we defined

pr
m52 i (

j 51

3N26

bjr
m ]

]Qj
, ~D17!

LN52 i(
m

N

Rm83pm. ~D18!

Collecting our results together we obtain

]C

]Ri
k

52 i (
r 51

3

V ri
k ~Jr1LN,r !F2 i (

r 51

3

Rri pr
kF

1
Mk

Mnuc
S ]F

]RCMN,i
2 i (

r 51

3

(
m51

N

Rri pr
mF D .

~D19!

The transformed kinetic energy is therefore given by

T̂852 (
k51

N
1

2Mk
(
i 51

3 F i (
r 51

3

Rri pr
k2 i (

r 51

3

V ri
k ~Jr1LN,r !

1
Mk

Mnuc
S ]

]RCMN,i
2 i (

r 51

3

(
m51

N

Rri pr
mD G2

. ~D20!

Let us work out this expression. Because of condition,
~A8!, there are no mixed expressions between the terms
volving the angular momentumJ1LN and the center-of-
mass/polarization terms with prefactorMk /Mnuc . We obtain

T̂85T̂CMN1T̂R1T̂vib , ~D21!

where

T̂CMN52
1

2Mnuc
“RCMN

2 ,

T̂R5 (
k51

N

(
irs

3
1

2Mk
V ri

k ~Jr1LN,r !Vsi
k ~Js1LN,s!

2 (
k51

N
1

2Mk
(

ir l 51

3

V ri
k ~Jr1LN,r !Rl i pl

k1H.c.,

T̂vib5 (
k51

N
1

2Mk
pk
•pk2

1

2Mnuc
(
k,n

N

pk
•pn. ~D22!
11511
.
n-

The termT̂CMN is simply the kinetic energy of the center o
mass. The termsT̂R and T̂vib describe, loosely speaking, th
rotational and vibrational part of the kinetic energy. If final
we choose the matrixbi j

k in such a way that the vibrationa
kinetic energy becomes diagonal and that the potentialV has
a harmonic expansion inQi and neglect higher-order term
we obtain forĤvib5T̂vib1V̂ the form

Ĥvib5 (
i 51

3N26 S 2
1

2

]2

]Qi
2

1
1

2
V i

2Qi
2D , ~D23!

where theV i are identified with the vibrational phonon fre
quencies. The kinetic energy of the total nuclear center
mass can now be separated from the Hamiltonian. If we
glect Coriolis and mass-polarization terms and evaluateV i j

k

at the equilibrium positionsR0
i then T̂R can be replaced by

the rigid-rotor-type Hamiltonian

T̂R5(
r ,s

3

a rsJrJs , ~D24!

where a rs is given by expression in Eq.~B15!. Using the
Eckart conditions we then find thata rs is inversely propor-
tional to the diagonal elements of the inertial tensor. We c
now write the Hamiltonian as

Ĥ5T̂CMN1T̂R1Ĥvib . ~D25!

The eigenfunctions of this Hamiltonian are of the form

Fqls5hq~RCMN!w l~a,b,g!xs~Q!, ~D26!

where hq is a plane wave corresponding to the center-
mass motion

hq~RCMN!5
1

AV
eiq•RCMN, ~D27!

which is normalized in a volumeV that will cancel out of our
final equations. The functionw l is an eigenfunction of the
rigid-rotor Hamiltonian of Eq.~D24! andxs is an eigenfunc-
tion of the vibrational HamiltonianĤvib defined in Eq.
~D23!. We can now derive Eq.~113! for the transition matrix
element. This matrix element is within the BO approxim
tion given by

G i05C i* ~R1•••RN!C0~R1•••Rn!, ~D28!

where i labels an excited state of the BO Hamiltonian. W
note thatDG i05G i0 for iÞ0 and zero otherwise so that w
only need to considerG i0. Through Eq.~D6! we can express
G i0 in coordinates in the body-fixed frame. Therefore

E dVG i0Qj5E dVFqls* F0Qj . ~D29!

The volume elementdV has now to be expressed in bod
fixed frame coordinates. This yields, considering a Jacob
consistent with the approximations made in the derivation
Eq. ~D25!, the result32
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dV5dRCMNsina da db dg dQ, ~D30!

where dQ5dQ1•••Q3N26 . The integral in Eq.~D29! is
zero if q and l are nonzero. The ground-state center-of-m
v.

oc

ev

,

11511
s

and rigid-rotor wave functions can then be integrated ou
yield

E dV G i0Qj5E dQxs* ~Q!x0~Q!Qj ~D31!

which proves Eq.~113!.
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