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First-principles approach to the electron-phonon interaction
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We present a first-principles approach to the calculation of the electron-phonon interaction. This approach
solves some theoretical difficulties in the standard derivation of the electron-phonon interaction. We do not
make a Born-Oppenheimer approximation from the outset but transform the electronic coordinates to a frame
attached to the nuclear framework. Subsequently coupled equations are derived which connect the nuclear
density-density correlation function to the electron Green function, the screened interaction, and the vertex.
This set of equations is completely equivalent to the full problem and therefore higher-order effects are
systematically included. The derived equations are further compared to those obtained fromhiieh Fro
Hamiltonian. It is shown that careless use of this Hamiltonian leads to double counting but also insight is given
why use of this Hamiltonian has led to many useful results. Finally a simple method is presented that allows
for the inclusion of electron-phonon coupling within a density-functional context.
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[. INTRODUCTION superconductor¥ Inspired by these results we aimed to de-
rive a general scheme that allows us to calculate properties
The interaction between electrons and phonons plays that depend on the electron-phonon coupling in a first-
key role in the description of many phenomena in solid-statérinciples manner, using Green-function and DFT methods.
physics. A wide variety of properties of solids depend on it,In dpin_g so we found several conceptual_difficglti.es with the
such as the resistivity of metals, the temperature dependenégrivations of the electron-phonon coupling within the stan-
of optical spectra, and its most dramatic consequence idard literature. We subsequently found a derivation which
maybe that it gives rise to the phenomenon of supercondud’esowes these difficulties and obtained a general computa-
tivity. Also in molecular systems coupling between nucleartional scheme to calculate the electron-phonon coupling in
and electronic motion leads to variety of physical effectsWhich electrons and nuclei are treated fully quantum me-
such as rotational magnetisn more spectacular example chanically. This scheme could then be used to test the valid-
is given by molecules in strong laser fields where couplingty of model Hamiltonians. We furthermore found a way to
between electronic and nuclear motion leads to the generddcorporate electron-phonon interactions in TDDFT linear-
tion of even harmoniéswhere only odd harmonics are al- fesponse calculations.
lowed within the Born-Oppenheimer approximation. In small ~ The paper is divided as follows. In the second section we
molecules many of these phenomena can be studied usi@(plain the difficulties associated with the standard deriva-
accurate wave-function methods. For solids methods of conflons of the electron-phonon coupling. In the third section we
parab|e accuracy are not yet available. However, owing t@erive the form of the Hamiltonian that forms a suitable
the development of computational techniques and resourcegtarting point for our derivations. In the subsequent section
a clear increase can be observed in the number of systerf4 derive the coupled equations that form the central result
and types of properties that can be calculated from first prinof this work. The equations are very general and are valid for
ciples, i.e., without the need of adjustable or phenomenologigeneral molecules and solids. In the fifth section we show
cal parameters. These calculations are usually based dpw the phonons affect the effective electron-electron inter-
many-body Green-function theory or density-functional@ction, thereby confirming results found in more phenom-
theory. Green-function theot§ has been used by many enological ways. In the §ixth section we study the validity of
groups to calculate quasiparticle and excitonic properties o€ phenomenological Hntich Hamiltonian and show that
solids. Density-functional theoryDFT),>~" on the other careless use of this Hamiltonian leads to overscreening of the
hand, has been mostly used to calculate ground-state propdttonon frequencies. We subsequently show how electron-
ties but the number of applications that calculate excitedPhonon coupling can be incorporated in TDDFT calcula-
state properties using time-dependent density-functiondfons. We finally present our results and conclusions.
theory~2° (TDDFT) is increasing steadiff} By calculating
Born-Oppenheimer surfaces, DFT also allows for an accurate ||, DIEFICULTIES IN STANDARD DERIVATIONS
determination of phonon frequencies, which are very close to OF THE ELECTRON-PHONON COUPLING
the experimentally observed ones. In view of these develop- ] ) _ ] o
ments it would seem a natural next step to combine DFT and _In t_h|5 section we d|scu_ss some theoretical difficulties th_at
Green-function methods to calculate phenomena that depertiise in the standard derivations of the electron-phonon in-
on the electron-phonon coupling in a first-principles mannertéraction. We start out from the complete Hamiltonian of the
A first step towards this goal was taken by the group ofélectron-nuclear system
Gross in which DFT and Green-function methods were used | | N N . .
to calculate the critical temperature of model BCS H=T,(R) +W,n(R) + To(r) +Wedr) +We(R,r), (1)
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where where the Born-Oppenheimer energy surface is defined as

L 2 ea0(R)=Wnr(R)+ €o(R)+(D| Ty @e), (1)
" 2My where in the last term only integration over electron coordi-
nates is implied.It should be noted that in making the varia-
tion with respect tgy also mixed first-order derivative terms
with respect toy and®. appear. However, for systems with
time-reversal invariancés we will be discussinghe wave
A 1N S5 functions can be chosen to be real and these terms are then
W,== _Tamh (4 readily seen to vanish. For the calculation of phonons it is
now assumed that the BO surface has well-defined minima
R, and that the energy surface close to these minima is well
1 described by a harmonic approximation. One introduces
-y ) deviations from equilibrium and rewrites the Born-
Oppenheimer equation foy in terms of these coordinates.
) Ne Np 7 This gives a set of equations for coupled harmonic oscillators
Wep=—2 > (6)  which can be diagonalized in terms of new normal coordi-
natesQ. In these coordinates we obtain a set of independent
This Hamiltonian describes the interaction f electrons ~ ©Scillators, known as phonons, which have characteristic fre-
- - quencied);. The BO equation then attains the form

~ 1 )
Te:_ _Evl y (3)

with N, nuclei of masM , and chargeZ,. HereT,, and T,

are the nuclear and electronic kinetic-energy operators. The 3N, 6 2

WNee, W dW,, describe the el | ¥ S AP
operatorslee, Wny, andWe, describe the electron-electron, Honx(Q)= ———+-0%Q? | x(Q)
nuclear-nuclear, and electron-nuclear interaction, respec- i=1 29Q7 2

tively. Preceding any discussion of the electron-phonon in- _
teraction two approximations are made. First of all, the =[E—e€so(Ro)Ix(Q), (12

purely electronic problem is approximately solved for ﬁxedwhereﬂi is the phonon frequency corresponding to phonon
posit!ons.of t_he atomic nuclei. The corresponding eleCtrO”iQ:oordinateQi . These frequencies are obtained from the ma-
Hamiltonian is trix of second derivatives of the energy at the minima of the
BO surface. With the use of density-functional theory accu-
rate energy surfaces and phonon spectra can be obtained in

. . H 18
wherer denotes the electronic am}, the nuclear positions. this way.

The kinetic energy is denoted ﬁ—)é and the electron-electron The d|fr|cult|_es arise when we want to go beyond the

) . 4 Born-Oppenheimer approximation and calculate the effects
and electron-nuclear interaction are denoted Wy, and . .
-~ . i L of the electrons on the phonons and vice versa. To do this we
Wen. The corresponding Scfumger equation is must split up the original Hamiltonian into an electron part, a
~ _ phonon part, and a remainder. This remainder is exactly the
He®e(r,Ro) = €e(Ro) Pe(T,Ro). ®) contribution that we are interested in. The usual approach is

This problem is a complicated many-body problem in itself.to simply replace the interaction between the nuclei and their
Nevertheless, in the past decade large progress has bekifetic energy by the phonon Hamiltonian and to express the
made towards a first-principles solution of this problemCoulombic electron-nuclear attraction in terms of phonon co-
mainly using many-body Green-function methods. With helpordinates. This yields

of the so-calledsW approximation®~*°good band gaps and . . .

spectral functions of many solids can be obtained. With a H=Hn(Q)+ Te(r) +Weer) +Wey(r,Q). (13

subsgqqent SO'““O'? of the Bethe-Salpeter _equ_ation also gp?—?owever, with this drastic step we obtain a Hamiltonian that
desc.rk')ﬁgﬁns of odpt|tcal slpelcttra ﬂ?nd hexcnomtcr:] efflectts 'Sis not equivalent to the full original Hamiltonian, since the
POSSIDIE. fgonk’ 0 C? culate Ief' P donon.st. € efet(ri rONIG | ectronic part of the Hamiltonian was already used to deter-
energy must beé known for several Tixed positions of the Ny, o 1q phonon frequencies. We have therefore introduced
clei from which we can calculate the Born-Oppenheimer

an ill-defined amount of double counting. Another way to see

EII;%O) fetr;]erg)l/ surfa(;:e. Olng us'“éal‘”y Wtrrl]tes, for afglvet.n So'?tt'r? "that this Hamiltonian is not equivalent to the one we started
e O IN€ clamped nucler problem, the wave function ot tNe, iy, is that it is not invariant anymore under rotations and

6,4
full problem as translations of all particles. This is because the coordirnates
W(r,R)=d(r,R)x(R). 9) represent internal coordinates only, as six phonon coordi-
nates that represent the center-of-mass motion and an overall
If one now optimizesy(R) with help of the variational prin- rotation of the system have been eliminatétey have pho-

He=Te(r) +Wen(r,Ro) +Wed(r), (7)

ciple one obtains foy the equation non frequency zeo If we regard our system as being finite,
R this means that we neglect rovibrational couplings that can
[Ta(R)+ ego(R) Ix(R)=Ex(R), (10 have important effects in molecules. The derivation of the
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Hamiltonian of Eq.(13) is therefore obviously not satisfac- not clear what their range of validity is and they are unsuit-
tory. The question is therefore how to find a derivation of theable for first-principles predictions.
electron-phonon coupling that does not suffer from these We conclude that from a theoretical point of view there is
problems. An obvious way to avoid the double countinga need for a first-principles approach to the electron-phonon
would be to avoid the Born-Oppenheimer approximation al-interaction that avoids the introduction of model Hamilto-
together and directly split the Hamiltonian in the following nians. The aim of this work is therefore to provide a theoret-
three terms: ical approach to the electron-phonon interaction that can be
L R . used in first-principles calculations and that does not suffer
H=Hg(r)+H,(R)+Hgy(r,R), (14 from the theoretical difficulties mentioned above. An impor-
tant step in this direction has been taken by Hedin and
Lundquist** Rather than attempting to separate the Hamil-
tonian in an electron and a phonon part, they use the full
Hamiltonian to derive several equations that couple the elec-
tron Green function, the screened interaction, the vertex, and
the nuclear density-density correlation function. By iteration

where, by adding and subtracting terms at nuclear equilib
rium positionsR,, we have defined

He(r)=Te(F) +Wed ) +Wer(r,Ro) + Wan(Ro), (15)

Hn(R)=Tn(R) +W;n(R) = Win(Ro), (16)  of these equations one obtains increasingly sophisticated ap-
R ~ R proximations of all the many-body quantities involved. This
Hen(r,R)=Wg(r,R) —Wey(r,Rg). (17) approach also has the important theoretical advantage of al-

o - . lowing for an exact definition of phonons that is independent
The HamiltoniandH, andH, are now purely electronic and of the Born-Oppenheimer approximation. The phonon spec-
purely nuclear Hamiltonians and could be used to defingrym is then defined to be the spectrum corresponding to the
“bare” electrons and phonons. The strategy would then be t@pectral function of the exact nuclear density-density corre-
treat the termHg, in perturbation theory. However, the lation function and is as such an experimental observable.
zeroth-order Hamiltoniaki , for the nuclei is(apart from the  The work of Hedin and Lundqvist has, however, two draw-
values of the masses and chajgientical to the Hamil- backs. First of all, they derive their equations for classical
tonian of the homogeneous electron gas and its only collecauclei, described by variables for which, at a certain point in
tive excitation mode is a plasmon mode. This Hamiltonianthe derivation, quantum-mechanical commutation relations
therefore gives a completely unrealistic phonon spectrunmust be used. Second, they start out from a Hamiltonian that
which completely lacks the acoustic modes and is a bathas full translational and rotational symmetry and therefore
starting point for perturbation theory. One could, as is dondghe reduced quantities, such as the Green function, do not
in several standard text€?also consider a somewhat inter- reflect the crystal symmetry. In this work we will remove
mediate splitting in which ions, i.e., nuclei with rigid core these two drawbacks by dealing with quantum-mechanical
electrons attached to them, are used as basic entities. Thisiclei from the outset and by referring the electronic coordi-
does, however, not solve the problem mentioned and intronates to a body-fixed coordinate frame.
duces a further approximation and an arbitrariness in the
definition of a core electron. Some wofkg? start out from IIl. THE TRANSFORMED HAMILTONIAN
the full Hamiltonian, Eq.(14), to derive expressions for
some physical quantities but subsequently assume a periodic Let us start with a general remark on the full Hamiltonian
symmetry, in contradiction to the full translational and rota-of all electrons and nuclei of Eq1). This Hamiltonian is
tional invariance of Hamiltonian, E@14), and use an expan- invariant under translations and rotations of all particles.
sion of |:|en in phonon coordinates which again assumes g'his means that the_ ground-state wave function t_ransforms
split-up of the Hamiltonian as in EqL3) leading back to the under a representation o_f the translation _an_d rotation group.
double-counting problem. On the other hand, we know that °9€ther with the inversion symmetry this implies that all
the Born-Oppenheimer approximation gives phonon Spectrgne—body quantities such as _the electron density are constant
that are in excellent agreement with experimental resultsa"d that two-particle correlation functions, such as the elec-
The Born-Oppenheimer Hamiltonian, E40), should there- tron Green funct|on_, o_nly dgpend on the dlstance betwgen
fore be a good starting point to discuss the electron-phonol{1€ir arguments. This is obviously not a convenient starting
interaction. This brings us back to the Hamiltonian of Eg.PCint to describe a periodic solid. The solution of the prob-
(13). In spite of the mentioned difficulties in its derivation, '€ IS obvious: we have to transform to a coordinate system
this model Hamiltonian has found many fruitful applications that reflects the internal properties of the system. We will
in the description of a wide range of effects where electronlherefor? carry out a qoordlnate transformauon_ in which the
phonon interaction plays a role. One usually expa\ﬁ@g to electronic positions will be referr(%j( to a poordmate system
first order in Q and treats this term, which is called the attached to the nuclear ffa'.“‘?w In d(l)lng.so we will
electron-phonon interaction, in perturbation theory. Often thSSUme that our system Is finite b.Ut arbitrarily large so that
electron-phonon interaction is parametrized and the paramQur apprpach W.'” be generally valid for molecules 'z.;md sol-
eters are determined either from experimental data or biﬂs' We first define the center of mass of the nuclei:
physical considerations. This procedure accounts for a wide Ny,
class of model Hamiltonians known as the lflich Hamil- :i

; > ke . Rewn > MR, (18

tonian. Although these Hamiltonians can be very useful it is Mhuc “a
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whereMnuc=E:”Ma is the total mass of all nuclei. The new 1 1
electronic coordinates are then defined to be

Ir=Rl" |Reyn+ R(@,8,7) ' —R|

ri=R(a,B,7)(ri—Rcun). (19 B 1 1
whereR is a rotation matrix andd,3,y) are Euler angles [R(@.8,7)(R=Rewn) 1’| [R"—r|
that specify the directions of the axes of the new coordinate (24

system, which will be called the body-fixed franifer de- L
tails see Appendix A The Euler angles are functions of the \;Vrze;fn%ginhsazft?h';eﬁgég 2:'22;?;:\22?&? ler alggh)aﬁ'l('z)e
nuclear coordinates. The way they depend on the nuclear T NG/

coordinates depends on the choice of our coordinate tran§l€ctron-nuclear interaction in the body-fixed frame is now
formation. One could for instance choose the angles in suclpvariant under translations and rotations of the nuclear co-

a way that the nuclear inertia tensor in terms of the rotate@rdinates. This is readily seen. First of all the quantifies
nuclear variables —Rcun are invariant under a translaticR,—R,+a and

hence the Euler angles are invariant as well. Let us therefore
consider rotations. Suppose we have a set of Euler angles
corresponding to nuclear positioRs,. Let us now apply a

rotationO to these coordinates, i.e., we have new coordinates

eH(,=ORQ. For these rotated coordinates we have new Euler

R/=R(a,B,7)(Ri—Rcmn) (20

becomes diagonal, where the nuclear inertia tensor is giv

b ~ -
Y angles @,8,y) determined by the Eckart conditions
Np N
1pa(R)= 2 Mal[Ral*85q~ RRY). 1) 0= M,Ro X R(@B,7)O(R,~Reyn).  (25)

Note that if we write out a particle coordinate we use theNow sinceR times O is again a rotation, it can be param-
particle label as a superscript, i.®,=(R¢,R%,R3). This  etrized by Euler angles, i.e., we can write

way of determining the Euler angles is a common choice in -~ _—

nuclear physicé*~2® However, for the description of R(a,B,y)O=R(a,B,7) (26)
phonons it is more appropriate to make a choice which MiNizor some Euler anglesa 8,7). Now since the Eckart con-

mizes the coupling between rotational and vibrational MOyiions determine the Euler angles uniquely we must have
tion. This is most conveniently done by using the so-called——— _ }
a,B,7)=(a,B,y) and we find

Eckart condition§’?® that are commonly used in moflﬁe;%lélar
physics to decouple nuclear and electronic motiomn: ~ =D B _ _
However, since they are rarely used in solid-state physics we R(@.,7)(Ri=Reun) =R(a.B,)(Ri=Remn)- (27)
will give a brief description of these conditions. LRy, be ~ We can therefore conclude that the coordind®gsare so-
the nuclear positions that minimize the total energy withincalled internal or shape coordinates that are invariant under
the Born-Oppenheimer approximation. These quantities wilkotations and translations of the nuclear framework, i.e., they
be used as parameters in our coordinate transformation. Waatisfy
choose them in such a way that

R.(OR+a)=R/(R). (28

(A very elegant discussion of such coordinates is given in
Ref. 32) Therefore the potential that the electrons in the
body-fixed frame experience from the nuclei is invariant un-
i.e., we refer these positions to their center of mass. Wéjel’ rotation and translation of the nuclear coordinates. This
further choose these quantities in such a way that the inerti@, of course, exactly the purpose of a body-fixed frame. Let
tensorl,(Ro) of Eq. (21) evaluated for these equilibrium US now turn to the other terms in Hamﬂtoman. One can alsq
positions becomes diagona|_ Then we define the Euler ang|@e that the electron-electron repulsmn and the electronic ki-
as function of the nuclear coordinatBs, by the following ~ netic energy retain the same form in the primed as in the

Nn
> M,Rp.=0, (22)

implicit equation: unprimed coordinates. This is simply beca@i&eepresents a
rotation in which the Euler angles only depend on the
N nuclear coordinates and are independent of the electronic co-
0= M,Rg.XR.. (23  ordinates. However, for the same reason extra terms will
a ’ appear in the nuclear kinetic energy. These terms have a

physical origin. If all nuclei vibrate around their equilibrium
It is important to realize that the numbeRg , are not vari-  position then also the axes of the body-fixed frame will vi-
ables but just conveniently chosen parameters in a coordinateate and therefore we are viewing the electrons from a mov-
transformation. The Coulomb potential in the electron-ing frame in which fictitious or Coriolis forces appear. In a
nuclear interaction now acquires the form diatomic molecule, for instance, this means that there is a
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coupling between rotational and vibrational modes. For &C it will be demonstrated that in that case these terms are
solid we will show in Appendix C that such rovibrational inversely proportional to the diagonal elemengg(Ro) of
terms are usually vanishingly small. The transformed nucleathe inertia tensor and therefore very small for large systems.
kinetic terms become This is a direct consequence of the Eckart conditions and this
_ is exactly why these conditions are so suitable to define the
Véa transformation to the body-fixed frame. By neglect of the
T=2 M (29 mass-polarization and Coriolis terms we have now obtained
a Hamiltonian of the same form as the original Hamiltonian
where we defined of Eqg. (1) with the exception of the electron-nuclear attrac-
tion term which appears in the form of E(5) and breaks

— - the full translational and rotational symmetry. This Hamil-
VRa:VRJL; (9_Rjavrj" (30 tonian will now be used as a basis of our derivations.

Ne ’

We define the mass-polarization and Coriolis terms now by |\, pERIVATION OF SELF-CONSISTENT EQUATIONS

'AI'MPC:'AI'r’,—'Arn. (3D We will start our derivations from the Hamiltonian de-

We have now completely specified our coordinate systenﬁ'ved in the pre_cedlng section. F(_)r the moment We_W'"_ ne-
and Hamiltonian. In order not to overcrowd our formulasgleCt the Coriolis and mass-polarization terms. The justifica-

: . . . tion of this for solids is, as mentioned before, explained in
with superscripts we will from now on drop all primes from - .
. . . more detail in Appendix C. In the case of molecular systems
the electronic variables. In the new coordinate system th

Hamiltonian is these extra terms are often incorporated later using perturba-
tion theory®® With this approximation the transformed

|:|:|:|n+|:|e+%MPc+\7Ven, (32) Hamiltonian in second quantization is given by
where |:|:-’|\—n'|':|\—e+ ! ee+\7vnn+\7ven: (39
- Ng 1V2+1 Ne 4 - where
e 2 2& - . 1 ny o
Te=—§ dx ' (X)Vih(x), (39
Noo VR, 1M zz
0= ST el
Hn_a:]_ 2Ma+2;ﬁ|Ra_R,B|, (34) " _E rAT AT "y "Ny !
Wee=25 | dxdx" ¢ ()¢ (X") (X" ) p(x)w(r,r"),
Np  Ne _Zi (40)

Wep= .
e 1121|R(C¥,ﬂ,)’)(Ri_RCMN)_rJ’| ) L -z

- - A A Wep= | dxdV ¢! I'(Ry---R ,

The termTypc=Tup+ Tc is the sum of a Coriolis paffc en f xdV ¢ (x)$OT (R, N”)Ei: IR/ —r|
and mass-polarization pafty,p which have the form(see (42
Appendix B

(39

wherex=(r,o) denotes a space-spin coordinate &jds a
A 3 3 function of the coordinate®; as given by Eq.20). The
Tup= 2> () + Mr)Pert > BrsPerPes, (36 elect_ronifl:lgield operators satisfy the usual anticommutation
r=1 rs=1 relations®~ We further defined the nuclear density matrix

3 3
c™ 2 (V:"' ve)lert 2 arsberles, (37) TRy RNn): 2 ¢I(R10-1)' . (bLn(RNnO-Nn)
r=1 rs=1 g

Lroos N,

—>

whereP, andL, are the total-electronic momentum and an- X :ﬁNn(RNnUNn). . ';ﬁl(thTl)' (42)
gular momentum. The quantities, v, «, B are functions of R R

the nuclear coordinates and are further specified in AppendiwhereqﬁiT(Ro) and ¢;(Ro) are nuclear creation and annihi-
B where it is shown thaf. and 8 are inversely proportional lation operators for nucleusand where we summed over all
to the total nuclear mass. The form of these equations isuclear spin variables;. We further defined

independent of the way the body-fixed frame is chosen. So

far our derivations are valid for any system of electrons and dV=dR;---dRy . (43
nuclei, i.e., ranging from small molecules to solids. Let us . ) -

now specify that we are dealing with solids. Obviously thenThe reason that in the electron-nuclear interacthy a den-
the mass-polarization terms can be neglected since they apdly matrix appears is a consequence of our transformation to
inversely proportional to the total nuclear mass. If we use thdhe body-fixed frame which makes, as mentioned befefe,
Eckart conditions in the specification of the Euler angles thera function of all the coordinateR; . The operatorsT, and

also the Coriolis terms ifi - will be negligible. In Appendix W, are not written out in second-quantization form here.
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The only property of these operators that we will need in this S =A(r =N (47)
- . p(r)=n(r)—=N(r).

section is that they commute with any operator that depends

only on electronic coordinates. Note that we have not definedlVith the above definitions the electron-nuclear interaction

the commutation relations for the nuclear creation and anniean be simplified to

hilation operatorsz;s;r and¢; . The reason is that this does not
only depend on the type of nucleus, i.e., either bosonic or W — _j 43rd°R 49)
fermionic, but also on the way the body-fixed frame is de- en [r—R| ~

fined. For instance, if we choose the diagonalization of the

inertia tensor to define the body-fixed frame then the Euleff We evaluate the expectation value of this operator in the
angles are defined by a constraint that is invariant under peffean-field sense, we see that the electron cloud now inter-

mutations of particles of the same type. In that cageand ~ acCts Wti:]h a Ismeargd O“} nuclear qharge, ra_lt_k;‘(.ar wg;laalfs "
¢; will have either bosonic or fermionic commutation rela- as In e clampec nuciel approximation. This retiects the

tions. However, if we define the body-fixed frame using thequantum treatment of the nuclei.

" _ . ~ Now we will follow the derivation of the Hedin
Eckart conditions the commutation relations fqbf and ¢, equation¥ along the lines of Hedin and Lundqviét.The

will be more complicated. The reason is that the Eckart CONgirategy is to obtain self-consistent equations for well-

ditions are not invariant under permutations of particles ofygfined objects such as the electron Green function, the
the same type as a consequence of the introduction of €U reened interaction, and the vertex function. The advantage
librium positionsR; . The true permutaponal symmetry 'of of this approach is that it does not depend on any perturba-
the system is then masked by the choice of our coordinatgyn expansion of the Hamiltonian. Approximations are made
system, but is of course not changed. Luckily we will notj, the final self-consistent equations that contain physical
have to use the commutation relations of the nuclear Creat'oauantities such as dressed electron and phonon propagators.
and annihilation operators in this section and our results Willkha self-consistent equations are derived by the functional
be valid for any choice of body-fixed franfepart from the  giterentiation method. For this purpose we define an auxil-

question whether or not the Coriolis terms are negligible jary external fieldg(rt) coupling to the total chargp. Our
From a more physical point of view one might argue that inggmiltonian therefore becomes

a solid in equilibrium the exchange probability of two nuclei

is very small so that we may regard them as distinguishable o 1 ~ R

particles and thereby simplify the mentioned problem. How- H=T,+W,,— Ef dx T (X) V2i(X)

ever, since in our analysis there is no absolute need for such

approximations we refrain from doing so. For further discus- 1 . . . .

sions on this point for molecules we refer to Refs. 34 and 35. + Ef dxdx’ () ¢ (X ) (X" ) pOOw(r 1)
We now define a potential operator by

A(rN(R)
—

A(NN(R)
Zi —f d3rd3RW

3.~
. " +J drp(r)e(rt). (49
IR/ —r]

er
vn<r>=J dVI(Ry---Ry) >,

i=

_ _ _ This is the Hamiltonian we will use for all our derivations.
The expectation value of this operator is the Coulomb potenrirst we derive the equation of motion of the electronic field

tial due to the nuclei felt by the electrons in the bOdy'ﬁxedoperatorw in the Heisenberg pictur@ve use the same nota-
frame. We further define a nuclear density operator by tion as in the paper by Hed#,

N, . R
N(r)z%VZ\A/n(r)zJ’ dvf‘(Rl...RNn)E Z;5(r—R)). (X =V(=To, ) p(X)V(t,—To), (50)
- (45) where — T is an initial time and

The expectation value of this operator is the nuclear charge ty ~

distribution in body-fixed frame coordinates that gives rise to V(to,t)=T eXD( =i J't H(t)dt> (52)
the Hartree potential felt by the electrons. This is a smeared !

out density of nuclei, as opposed to thepeaks that would is the evolution operatofwe use the time ordering since
arise from a clamped nuclei approximation. One clearly seeﬁ(t) contains the explicitly time-dependent external field

from Eq. (45) that if we have the full density matrik we rt)]. The equation of motion ofs. follows from
can rotate the nuclei to the body-fixed frame after calculationgo( - a On

of the density matrix, rather than doing the coordinate trans- L —r "
formation in the Hamiltonian. The electronic density is as O =[Pn(xt), HO] (52)
usual given by the expectation value of the density operatojvorking out the commutator yields

(=2, P99, 49 iath<xt>=(—%v2+cp(rt>+ | dsr’—T“(r t|) )wH(xt>,
r—r

We further define a total density by (53
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where we used thaty, commutes with all nuclear operators. Where 1" =(ry,t;+A) with A a positive infinitesimal and

If we define the time-ordered product as usual, w(1,2)=8(t;—t,)/|r;—r,|. The potentiaV that appears in
- ~ - ~ the equation above is
TLpn(X) gy (X"t") ] = Ot —t") hy (XO) (X' t")
— 0t =) Pl (X ) a(x1), V(T)=¢(T)+f d3w(1,3)(pu(3)), (59

(54

where 6 is the Heaviside function, then we obtain using the A
commutation relations of the field operators amék(t)/dt (P|U(=To,To)V(To,—To)A|F)

~8(t) A= O (=T TOV(To, — To) [ W)

where we used the notation

(60

1 ~ - The potentiaV(1) therefore corresponds to the external po-
P T v2_ Tyt
1o+ 2V ‘P(rt)>T[¢H(Xt)’pH(X ] tential and the Hartree potential due to the electronic and
nuclear charge distributions. Now we define the self-energy
operator>, by the equation

=i5(x—x’)5(t—t’)+f d3r’

|r —r' | 1 ) o
. - - id, +=Vi—V(1)|G(1,2
XTLp(F O I X)X ). (55 Iy * VTVl )) (1.2
The equation of motion fopr immediately yields an equa- _ B
tion of motion for the electron Green function defined as =8(1-2)+ [ d3%(1,3G(3,2). (61)
G(xt,x't") From the definition of the inverse Green function
:_i<‘I’|U(—To,To)V(To,—To)T[z/fH(xt)wL(X’t’)]l‘I’> f d3G(1,9G %3,2=58(1-2) (62

(PIU(=To, To)V(To,—To)|¥)

. . . ollows the identit
Here U is the evolution operator in absence of the externaf y

field ¢. This means that fop= 0 the definition of the Green 5G(1,2) 5G~ (4,5
function reduces to the usual one. Note that we here work _ :_f d4d5G(1,49 ———G(5,2). (63
with time-ordered Green functions in the zero-temperature o¢(3) o¢(3

formalism. If one would be interested in finite temperature or,

L S - We therefore see that we can wriieas

nonequilibrium phenomena our derivations can be readily

extended by use of the Matsubara techniqoe Keldysh 5G1(4.2)

Green functiong®3’ Now the functional derivative of with 3(1,2)=—i | d3d4w(1*,3)G(1,4 ———. (64)
op

respect top is

SV(t,t) . In the next step we define a dielectric functienand a

————=—isgnt—t")V(t,t))p(r)V(ty,t’) (56)  screened interactiow by

op(raty)
if t; is inside the time interval determined byndt’, oth- = 6V(T) e - 5(,3(§)>
erwise 8V/ 8¢ is zero. Using this expression we can readily € (1,2)= 5@(5) =46(1=-2)+ | d3w(1,3) 5@(5) '
prove the following equation: (65)

- ~ - o o
—5()0(3)V(TOa_TO)T[(/fH(l)'/’H(Z)] W(l’z):f d3w(1,3)e 4(2,3). (66)

= —iV(To,~ To)TLAu(3) (1) ¢1(2)], (57  The dielectric function measures changes in the effective po-
. . . tential due to charge changes induced by the external field.
Wherg we used the sher_notatmn(xi _’t‘)' IT the SPIN VAl Note that it contains both changes in the electronic and
able is left out we write =(r;,t;). With this equation we pclear charge densities. We wish to study them separately.
obtain the following equation for the electron Green func-Thg glectronic polarization is defined as the electronic charge

tion: response due to the effective field
1 — -
iy, + Evi—V(l))G(l,z) P17 5<n(1_)>_ 67
)
= — i | d3w(1t.3) 56(1_’2) The electronic charge can also be calculated directly from
8(1—2)+i | d3w(1",3) , (59 -
S¢(3) the Green function
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(A(3))=—i2 G(3,3"). (69)
a3
We therefore find
- ) 6G(1,1)
P 1,2 = - _—
(12 '% 8V(2)
5G%(3,4)
=j d3d4G(1,3G(4,) ——.
u% (13641 ="
(69)
If we define the vertex functiol’ by
— 5G1(3,4)
34;,2)=— ———— (70
oV(2)

we obtain

Po(1,2)=—i> | d3d4G(1,3G(4,)I'(34;2). (71)

PHYSICAL REVIEW B9, 115110(2004

W(1,2)=w(1,2)
8(Nn(4)) 8V(5) y
8V(5) ¢(3)

+ f d3d4d5w(1,3)

(4,2)

6<N<4>>W

5¢(3)

(4,2)

- [ dzda3
~w(T2)+ [ WAEP@5W(2)

. j a3 5;'“(4”

w(4,2). (79

¢

This looks like the usual definition of the screened interac-
tion except for a part induced by the nuclear charge density.
We analyze this last term of the equation:

_NMA))

5¢(3)

i(TLANW(4)Apu(3)]), (76)

This is the first one of Hedin’s equations. A second one fOI'\NhereAA: A-<A> defines the fluctuation of an operaﬁbr

lows immediately from the definition of the self-energy and
the screened interaction,
5G (4,2 5V(5)

oV(5)

3(1,2=—i | d3d4d5w(1*,3)G(1,4)

o¢(3)
=i | d4d5G(1,4W(1",5)'(42;5). (72)

A third equation follows directly from the definition of the
vertex function,

62.(1,2
8V(3)

[(12;3)=8(1-2)8(1—3)+

53(1,2 8G(4,5
3G(4,9 sVv(3)

=8(1-2)8(1-3)+ f d4ds

=8(1-2)8(1-3)

62(1,2
+ j d4d5d6d7—=——

5G(a,5 C(4OCG(7.9T(67:3).

(73

This yields an integral equation for the vertex function. In
order to proceed we investigate the relation betwdééand
P.. From the definition oWV we see that

5<;3@>

w(4,2).
d¢(3)

(74)

W(TL,2)=w(1,2)+ j d3daw(1.3)

If we split the total charge operator in its electronic and
nuclear part we see that

_ NG
0¢(3)

—i(T[ANL(4)ANK(3)])

+I(TIANG(@)ARL()]).  (77)
The first term in the last equation represents the nuclear
density-density correlation function

D(1,2)=—i{T[AN{(1)ANL(2)]). (78

It is exactly this response function that interests us. It repre-
sents a correction to the electronic screened interaction due
to nuclear density fluctuations. We will later see that for a
solid its spectral function represents the lattice vibrations. We
therefore want to include this function as a variable in the
Hedin equations. This can be done with a method introduced
by Baym3® We consider an extra term

ﬁzz—f dRN(R)J(R,t) (79

in the Hamiltonian that couples only to the nuclear density.
We then see that

5(N(2)

d¢(1)

8(p(1))
83(2)

=I(TIANW(2)Apu(D)])=— . (80

If we split{p) in an electronic and a nuclear part and use the

chain rule we obtain

Furthermore we have
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Xp(D) __ &ND) &A1)

= = =-=D(1,2)
8J(2) 6J(2) 6J(2)
[ A
SV(3) 8J(2)
+ f d3d4P(1,3)w(3,4) 5§§E2>. (81)
Solution of this integral equation yields
S(N(2))  &(p(1)
_AN@) _ & )>=[(1—Pew)*1D]E- (82

Se(1)  83(2)

If we now insert this expression into E(/5) we find forW

the integral equation
W=w+WPw+w(1—P.w) Dw. (83

If we solve this equation fowV we find

d3d4W,(1,3)D(3,4)W,(4,2),
(84)

where we defined the electronic p&, of the screened in-
teraction as

W(1,2)=W,(1,2)+

We=w(1—P.w) L. (85)

PHYSICAL REVIEW B 69, 115110(2004

T o=
W=’\vwmw:MMNW\M+www\@wNM
We=www=w+
P, =

FIG. 1. Diagrammatic representation of the Hedin equations.

eral structure of these equations we have displayed them in
Fig. 1. In this figure the interactions, W,, andW are rep-
resented by a wiggly, zigzag, and doubly wiggly line, respec-
tively. The Green functions are represented with black lines
with arrows and the bare vertex with a dot. Note that we do
not have a determining equation f@r itself. For this we
would have to study the equation of motion of the nuclear
creation and destruction operators which, however, leads to
rather complicated expressions. The reason is that such an

This completes our derivation of the Hedin equations. Let ugquation of motion will lead to taking commutators with the
summarize our results in the following set of Hedin equa-y -body operatof The appearance of sudh,-body terms
n :

tions:

2(1,2)=if d3d4G(1,3W(1*,4)'(32;4), (86)

W(TL,2)=W(T,2) + f d304W.(1,3)D(3,4)We(4,2),
(87

We=w(1-P.w) 1, (89)

Po(1,2)=—i> | d3d4G(1,3G(4,1)I'(34;2), (89)

[(12;3)=68(1-2)8(1—3)

f 53(1,2) _
+ | d4d5ded7 o 775 G(4.6/G(751'(67:3).

(90

is not surprising. After all, the commonly used Born-
Oppenheimer potential of E@10) is also aN,-body quan-
tity. TheseN,-body terms make it difficult to find practical
equations for the nuclear density-density correlation function
D. However, in view of the quality of the Born-Oppenheimer
phonons, we can expect that in practice we can get a good
approximation forD from the Born-Oppenheimer wave
functions. This approximation can then be inserted in the
Hedin equations above and be iterated to obtain self-
consistent approximations for the electronic Green function.
The exact structure and the Born-Oppenheimer form of the
nuclear density-density correlation functibrwill be studied

in the following section.

V. THE PHONON-INDUCED INTERACTION
BETWEEN THE ELECTRONS

In this section we will analyze the phonon-induced inter-
action between the electrons in more detail. Such an analysis
provides us with more insight into the structure of the

If we putD =0 in these equations we obtain the usual Hedinnuclear-nuclear correlation function and its possible approxi-
equations of the rigid lattice and iteration of these equationsnations. It will also enable us to make a connection with the
leads to terms that are conveniently interpreted in terms ophenomenological Fidich Hamiltonian and to judge its va-
Feynman diagrams. As this is described clearly in the papeidity.

of Hedin and Lundqvist we will not carry out such an analy-

In Eq. (84) of the preceding section we saw that we can

sis here. The coupled equations derived here describe a gewrite the screened interaction between the electrons as the
eral quantum system of electrons and nuclei and can thergum of two terms,
fore be used, as we will do below, to judge the range of

validity of approximate Hamiltonians. To illustrate the gen-

W(1,2) = We(1,2)+Wpy(1,2), (92)
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where we define

Woi(1,2)= J d3d4W(1,3)D(3,4)We(4,2). (92

PHYSICAL REVIEW B9, 115110(2004

FS(ro)Fy(ra) B FS(ra)Fg(ry)
w—Q+in w+Qe—in )’
(101

u(rq,rp,w)= lim 2

n—0* S

The first termW, in Eq. (91) represents a purely electronic In a system with time-reversal invariance we can always
screening. This is the only term when we restrict ourselves t¢hoose the eigenstates of the system real. We can therefore

the approximation of clamped nuclei. The second t¥vi,

assume that the functioris; are real. Theru simplifies to

describes an additional screening due to the motion of the

nuclei and contains all the information on the electron-
phonon interaction. The structure of this term becomes more

transparent if we introduce the operator

AVy(rt)= JdRAN“(Rt) 93
H(rt)y=— T—R (93

and define the electronic dielectric functiep by
We(1,2)=J d3w(1,3 €, %(2,3). (94)

We can then write
Wo(12)= | d3dae, (L3uE 9 (@2, (99
where
iU(rity,Foty) =(TIAV(rit)AVu(rat)]).  (96)
Inserting a complete set of eigenstates yields
iUty Foty) = 0t —tp) X, e " DUEE (1) F(ry)
S

+(12), (97)

where

Fe(r)=(WAV(r)| W), (99)

ZQst(rl)Fs(rz)

o (102

u(rq,ro; )= lim 2

p—0t S

Using this expression we can write an expression of similar
structure forWp, :

20 rq, ro,
Won(ry,rz;0)= lim X oe(T1,0)3(12,0)

ot T @ (Qemin)?

(103

where we defined

01,00 [ droeg s wF i) (108

Now the phonon-induced screened interaction is in a form
suitable for analysis. Now we study the properties of the
functionsF4(r) and demonstrate that the energieésare of
the order of phonon energies. The main observation is that
the operatoAV(r) only consists of creation and annihilation
operators involving nuclear coordinates. If we treat the states
W, and Vs in the Born-Oppenheimer approximation it
means thafAV connects only states that differ with respect to
excitations in the nuclear part of the wave function. In the
Born-Oppenheimer approximation these energies correspond
to phonon excitation energies. Let us discuss this in more
detail.

For F4(r) we have the expression

and whereW, is the ground state with ground-state energy

Ey andV¥¢ an excited state of the system with enekyy We
further defined()s=Es— E, which represents an excitation
energy. From this analysis we see thabnly depends on
time through the combinatioh, —t,. This is simply a con-
sequence of the time independence of the Hamiltonian and
applies to all two-point quantities. We can therefore Fourier
transform with respect to the relative time coordinate and

write

th(rler!w): f dr3dr46g1(r1,r3,(,())u(r3,r4,(,())
Xee_l(l’4,r2,w). (99)
Using the relation

e*in

e
9(7’)2 lim ﬁf—w dww+i7; (100)
7—0"

we can write

[ o{PJANR) (W)
FS(I')—J’ dRT

<\PS|Af(R11 e vRNn)|\If0>
Ir=Rj|

Nn
:,Zl z; J dv
(105

where we used Ed45). Fors# 0 this expression is nothing
more than the matrix elemeq® ¢|V,(r)|¥,) of the poten-
tial V,(r) of Eq. (44). This function represents the Coulomb
potential due to the nuclei felt by the electrons in the body-
fixed frame. We know that for the ground state of the crystal
this function is strongly peaked around equilibrium positions
Rio. This is a feature of the true ground state of the system
and is independent of the BO approximation. For the func-
tions F4(r) we can therefore do an expansion around the
equilibrium positions and writéwe suppress the arguments
of AT")
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Np (¥ |Af|\lf0) monoatomic lattices with one nucleus with malsk and
Fs(r)= 2 Z,-f dV|S_—RI chargeZ per unit cell. The normal coordinate is then defined
=1 = Roj by the relatioft*®
Nn
+Ez-de‘If|Af|\If> : _ 1 @ Re.
2y 5] AVEIATIYo Ri—Ra=Nm > Quuegre® ™ (11D
X(R/—Ry;)- Vg ;Jr .. whereN_, is the number of unit cells per unit volume aag
' ! 0§ [r =Ry is the polarization vector of the phonon. By inserting Eq.
N, 2 (111) into Eq.(107) we find thatu; s is equal to
=D U Vg Tt (106
=1 0yJ|r—R0'j| 1 iq-Ro; -
uj,S:\/= E Gq/')\/e 0. dV<\I’S|AF|\I,0>qu,)\r.
where we defined NeM g7
(112
- , In Appendix D it is shown that
Uj 5= f dV(V AT W) (R —Rop)  (107) PP
N - _ *
and used that the integral ovéW JAT'|W,) vanishes. In a j dV(lPSmFWO)Qi_f dQxs (Q)Qixo(Q).
similar way we can in Eq(106) also include terms from (113

second order and higher in the deviations from equilibriumw
which will be necessary when we want to describe anhar
monic effects. Until this point we did not need to use the
Born-Oppenheimer equation. We only needed the property

that the nuclear density is strongly peaked in the body-fixed f dQX;(Q)QiXO(Q):J dQié1(Q)Qiéo(Qi)
frame. However, to calculate the expectation value of the

nuclear displacement; ¢ in Eq. (107) we need approximate =(20Q;) 2 (114
forms for the excited state® ;. We will do this using the
Born-Oppenheimer approximation. However, since @§7)

is expressed in coordinates with respect to the body-fixe
frame [see Eq.(45)] we will have to transform the Born-
Oppenheimer Hamiltonian of Eq10) to the body-fixed
frame and expand in normal coordinates. How this is done is

here we definedlQ=dQ;---dQy. The latter integral is
readily evaluated to be

wheneverys=[0---1---0) with 1 at positioni and zero
8therwise. We therefore only need to consider singly excited
modes. Ifys now corresponds to a state in which mageis
singly excited we obtain from Eq$112) and (114)

. . - . 1 .
explained in detail in Appendix D. We can then use the Born- U n=—— e @Ry, (115
Oppenheimer approximation for the excited-state wave func- hax V2N M Qg ) o

tion in terms of normal coordinated and write Inserting this expression into E¢LO6) we finally obtain

V= ®(r,Ro)xs(Q). (108 > .
Won(ri,rr,w)= Dy (w r,w ry,w
If there areN,, nuclei then there aré&dl=3N,—6 normal oh(F1,2.) a.x ()0 (11,0)Ga(T2, )
coordinates. The nuclear wave function is explicitly given in (116
terms of these coordinates by and where
Xs™ §i1(Q1)' : '§iN(QN) (109 204,
and where the subindéxn Q; is a multi-indexi = (q,\) for 0= (Qg—in)
a normal cqordl_nate charqcte_nzgd by wave vegtand po- We further defined
larization direction\. The indicesiq, ...,y label the par-
ticular excited statg, i.e., xs=|i1- - -iy) and§&, is explic- i .
itly given by g (r,@)=(2MNQg )~ E. f driee “(rri;m)
2
&n(Q) = Hn(Qi)eiﬂiQi /21 (110 iq-Rg;
XE‘“'VIrl—Ro,ile oi, (118

whereH,, is a Hermite polynomial. For the ground state we
havei, ,=0. The electronic wave functio, in Eq.(108 is  Expression(116) represents the effective interaction between
the ground-state wave function of the clamped nuclei Hamilthe electrons that plays such an important role in the theory
tonian of Eq.(8). Excited-state electronic wave functions of superconductivity and has been derived before by Hedin
need not be considered since they have no overlapWigh and Lundqvist. However, their derivation is inconsistent
in the matrix element of Eq107). To keep the presentation since their final expression for the nuclear density-density
as simple as possible we will from now on only considercorrelation function has the periodic lattice symmetry
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whereas their starting point is a completely rotationally and . V2 .
translationally invariant system. This inconsistency is re- N(f)=—5<2 'qu,(r)QqM)- (124
paired in the current derivation. aw
In other words
VI. COMPARISON TO THE FRO HLICH HAMILTONIAN R
N(R)
Ir=R[’

Using the results of the preceding section we will now > 7q#(r)QqM:—f d°R
discuss the validity of the Frdich Hamiltonian. This Hamil- qu

tonian was developed by Hifich in the 19505 Refs. 39—
41) and has since then been widely used in different forms t
describe phenomena that depend on the electron-phon
interaction?® We shall show here that the phenomenological
Hamiltonian of Eq.(13) indeed leads to overscreening of
phonon frequencies when higher-order terms are taken into 1

account. To do this we will derive also some exact coupled = |Z|ph_ _f dxbT(x) V2 (%)

equations for the Fidich Hamiltonian and compare them to 2

the exact equations derived in the preceding sections. To 1 A A A A

make the discussion as simple as possible we again consider + _f dx dx’ T (x) T (X)) (X)) p(x)W(r,r")
a monoatomic lattice of nuclei with mas4 and chargez. 2

(129

JWe then define als@(r)=n(r)—N(r) as the operator for
éHe total negative charge and we will introduce an external
leld ¢(rt) coupling to this charge. In this way the full
Hamiltonian is given by

The Frdilich Hamiltonian is then given by _ ﬁ(r)N(R) L
-~ - -~ - —f d°rd R—+J d>rp(r)e(rt). (126
A=+ Ao+ Feon, (119 Ir=R|

where the phonon Hamiltonian is given by This Hamiltonian is, apart from the replacement %ﬁ

+W,, by Hp, and a different interpretation of the nuclear
- > Ay o 1, .4 density, of identical form as the Hamiltonian of E49). The
th_ﬂ,quz §Pqupfm+ EQQMQQMQQM’ (120 gerivation of the Hedin equations using the functional de-
rivative method therefore proceeds completely analogously
whereu designates the polarization direction andgheum-  as in Sec. IV and we obtain the identical Hedin equations
mation is restricted to the Brillouin zone denoted as BZ. The(86)—(90), albeit with a different interpretation of the nuclear
operatorsﬁ’qﬂ and Qq# satisfy the usual canonical commu- density-density correlation functio which is now evalu-
tation relations as well as the relatiort?t{”=l5,qﬂ and ated with the density operator of E(124) as

Qf,=Q-q. . Here we used a notation close to that of Refs.

4 and 19. The electron-phonon interaction is given by D(1,2)=~I{TIANW(1)ANK(2)]). (127

We further define the equivalent of operatov(Rt) of Eq.

" PPN 93) as
Aempn=2, f Fryg(ninQq,, a2y 3
M ~
. ANL(RY) R
where theq summation now extends over all wave vectors. AVy(rt)= —f deZE Yau(NAQqu H(t),
au

In this expression the functiof,,(r) is explicitly given by (128

where we also defined the fluctuation operamchqMH(t)
—(QqM,H(t)) In analogy with the preceding section we now
consider the time-ordered expectation value of this operator

whereV,, is the volume of the unit cell and._,(q) is the  given by
Fourier transform of the electron-nuclear interaction explic-

[ L
Yq#(f):mem'rvefn(qm'qu (122

itly given by iU(r1t1,72t2) = (TIAVR(r1t) AVR(12to)])
~ e 4" 4xZ — r
Ue—n(q): —Zf dsl’TI - W (123) qq%u’ ’qu“( 1)
- AT *
>< ! ! ’ ! -
The function y,, further satisfies the useful relatiog, (TIAQqu(t)AQq, (t2) 1) Vg (12)
=7y_qu.- Note that we will follow Ref. 42 by denoting every (129

Hamiltonian of the form in Eq(119 as Frdilich Hamil- .
tonian, although often this term is reserved for speciaIV\./e see thati andD can be calculated if we have an expres-

case®’ of this expression. This nomenclature turned out to>'on for the quantity
be most suitable for our general discussion. We now define a

i ~ At
nuclear charge density operator by g (t1,t2) =(T[AQqu(t) AQq, . (t2)]) (130
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which we will refer to as the phonon propagator. We can D

derive an equation of motion for this quantity if we consider

the equation of motion otf?qﬂ(t). In order to do this we will
also add an external field to the Hamiltonian of the form

Hext(V)= 2 Jg,(1Qqu+ 35, (0QL,, (13D
nqeBzZ
where Jg#:J__q,L and where Jg.g,=Jq, With G a
reciprocal-lattice vector. We then have
Qqu(t) =—i[Qqu(t),H]=P{, (1) (132

PHYSICAL REVIEW B 69, 115110(2004

Oeoseces D

d = 00000000000 = m==m=== + ———<>oooooo
P |> e 4 % X

FIG. 2. Diagrammatic representation of the self-consistent equa-
tions that determine the phonon propagator for thenkeb Hamil-
tonian.

The second derivative is then readily evaluated from therh|s isa Dyson_"ke equation for the phonon propagator with

commutator withP! (t) to give

FQuu(t) =Pl (1) =—02 ,Qq.(1) — f d3r v, (NNy(rt)

—[J-qu(D+ g, (D],

If we take the functional derivative with respect ﬁq,M
(where we treal andJ* as independepive obtain

(133

(f?tz"'ﬂz )dqq ppr (L) =—6(t—t! ) aa’ Oun’

jdg 5<nH(rt >
535, (1)
(134

where3qq/ 1 if g andq’ differ by a reciprocal-lattice vec-

tor and zero otherwise. Since the density is given by the
diagonal of the Green function we can write the latter equa-

tion as

(37 + Q%) dgqr e (11)
= 8(t=t") Suq Spur

"2

5G1(3,9
ot

drd3d4y;,(r)

X G(rto,3)G(4 o) (135

This equation can be rewritten as
(37 + Q%) dgqr e (11)

G Ou i 2

Jqra o

=—8(t—t")3, d3rdt,d3d4y; (1)

X G(rto,3)G(4rto)T(34iqrats)dg qr,ap (t1,t),

(136

where we defined the vertex function as
T(34:qat) 0G4 (137

Qal)=— ——X——.

the “bubble” GGI'. Now the electronic Green function sat-
isfies

“11,2=G,1(1,2-3(1,2-8(1-2)

« [ dawia ()

=Gy (1,2 -3(1,2— 8(1-2)

xf d3w(1,3(A(3))— 8(1—2)

x% Yau(11){Qqu(ty))- (139

Therefore

T(12;0ut) = 8(1—2) 8(t;—1) Yqu(r1)
E52(1,2) 6G(4,5
+f d4dJ5G(4,5) X Ou()
=08(1=2)6(t1—1) yqu(ra)

53(1,2)
5G(4,5)

f d4d5d6d7 G(4,6/G(7,5)

xT(67;qut), (139

where it should be noted that we will also regard the phonon
propagatord to be a functional ofG.

Let us now discuss the results that we obtained. The cen-
tral equations of this section are summarized diagrammati-
cally in Fig. 2. The top line in this figure expresses the
nuclear density-density correlation function in terms of the
phonon propagator and is explicitly given by

D(1,2)= 2,

aq’ up'

(T2),
(140
where we used Eq$127), (124), and(130 and we defined

*
aqﬂ(rl)qu,MM,(tl,tz)aq,ﬂ

V2

a7 Yaul(D). (149

agu(r)=—
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In the figure the quantity,,(r) is denoted by a small circle

and the phonon propagator by a dotted line. In the second X&(r—r'—Rp))V'—

line of Fig. 2 we represent Eq136) in Dyson form where ' Ir']

the dashed line represents the bare propagiftdhat satis- z

fies EQ.(144) and is discussed in more detail below. The last =(2QuM Nc)*1/22 eiq'Ro,ieq)\.V—,
line of the figure represents E@139 in which the bare i =R
vertexyq, is represented by a black dot. The equations rep- (149
resented in Figs. 1 and 2 completely determine all the prop-

erties of the Frblich Hamiltonian. Before discussing itera- where we used tha,= €4, ¢ . We see that with this approxi-
tive solutions of these equations we first study the structurénation we obtain for the functiog,,, an identical expression

of the phonon propagator. The phonon propagator can bas in Eq.(118) of the preceding section.

written in its Lehmann form as

idqq’,u,,u,’(tl 1t2) = z 0(t1_tZ)e_i(tl_tz)Qs<\P0|AQq/.L|\I,S>

X(WYAQL, W) +(12). (142

If we take the phonon frequencies from a calculation of the
Born-Oppenheimer surface and denote the corresponding

propagator asl® we find using Eq(114) that

1
5qq S’ ZQ

+(1<2).

- 40
quq,ﬂﬂ,(tl,tz) O(t,—t,)e” iQq,(t1—1p)

(143

This propagator satisfies the equation of motion

(7 +05,) ey (L) == 8(t—t')83q: 6,
(144)

If we Fourier transform with respect tb—t, we obtain
simply

5QQ’ 5##’

©* = (Qq,—in)*
The functionu is then given in frequency space by

()= (145

qq !

. )
IU(rl,rz,w)=qq%M, Yaul(r1 )%w (12)
_ 2 ZQQMFQM(H)F;/LUZ) 146
= T (146
udqeBZ (Qq# i)
where
qu<r>=<2ﬂqu-1’2§ Yaronll). (147
If we work out the latter term we have
Fau(1)=(204,MNy) 2
1 ) Z
- . 31 Al (q+G)-(r—t")gr_—
XVO% €gn Jd r'e \% v
= (20 MNy) ™2, - E fd3r’e'q (=

Results will differ, however, as we sum the phonon propa-
gator of the Fralich Hamiltonian to higher order. For in-
stance, if we start iterating the coupled equations by taking

for T the first term on the right-hand side of E4.39 we
obtain for the phonon propagator the equation

(37 + Q%) dgqr e (1,1)

== 8(t—t")8qq Bup +i2 2

qa o

drd3y},(r)

X G(rta,3)G(310) ¥q,a(r3)dg g7 aur (ta ).
(149

This equation givesl as a functional ofs which can, using
Eq. (140, subsequently be inserted into the Hedin equations
of the Frdhlich Hamiltonian to obtain higher-order approxi-

mations for the self-energy and thus a new from Eq.
(139). The first iteration in Eq(149 amounts to summing all
diagrams for the phonon propagator that contain an elec-
tronic polarization bubbld®.= —iGG which represents the
electronic screening. By this dressing of the phonon propa-
gator one obtains new screened phonon frequencies from its
poles. However, since we know that the Born-Oppenheimer
phonon frequencies are very close to realistic phonon fre-
quencies, this leads to overscreening. This illustrates the
double-counting problem discussed in the Introduction. We
therefore obtain an important result. If we use Born-
Oppenheimer phonon frequencies, then the exact coupled
Hedin equations of Sec. IV and the TRlich Hamiltonian
yield identical resultgrovided that we do not dress the pho-
non line in the Frailich model What does this imply for the
results obtained with the Fintich Hamiltonian? First of all,
many results obtained with this model were aimed at quali-
tative rather than quantitative agreement with experiment
and often contain adjustable parameters that can be fitted to
experimental data. On the other hand the calculations that
used accurate frequencies and that aimed for quantitative
agreement with experiment were often carried out in first-
order perturbation theory in which double counting cannot
occur. Nevertheless, it is important to be aware of the
double-counting problem when one studies simple cases of
the Frdnlich model that can be solved exactiyThe problem

of double counting is, as explained, related to the fact that
the phonon frequencies were determined in a way that al-
ready used the electronic part of the Hamiltonian. Indeed
several works introduced bare phonon frequencies on the ba-
sis of a Hamiltonian as in Eq16) and one often considers
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effective interactions between “ions” which are loosely de- interaction within a DFT framework. Other works have done
fined as nuclei to which core electrons are rigidly attachedthis by calculating the change in the effective Kohn-Sham
The disadvantage of the latter approach is that it is difficultpotentialv s due to a shift of the nucléf~*°This amounts to

to give it a rigorous basis since it involves the somewhatsingv, rather thare, * in the expression fow,n(1,2). No
arbitrary definition of a core electron. Moreover the barejustification for this procedure is given and from our results
phonon frequencies one starts out with are very unphysicalt appears that this procedure is indeed not justified and can
One has to do an infinite summation to go from unrealisticonly be regarded as an unfounded but simple approximation
ionic to more realistic dressed phonon frequencies. Aparo .. The results, however, show that this approximation
from being a cumbersome procedure it is very unclear if theyorks quite well.

exact phonon frequenciédefined by the spectral function of

the exactl_)) can even be qbte}ined by such a procedure. VIIl. CONCLUSIONS

Another disadvantage of the Fiach model as compared to

the coupled equations of Sec. IV is that anharmonic effects in In this paper we have derived coupled equations for
the electron-phonon coupling are absent. By using thenany-body Green functions, effective interactions, and ver-
coupled Hedin equations such effects can readily be includetices for the full system of electrons and nuclei. This ap-
by expanding Eq(106) to higher orders irRj —Rg;. The proach was inspired by existing theoretical difficulties in
general point we like to make is that in first-principles cal- standard derivations of the electron-phonon interaction. They
culations the direct use of the coupled Hedin equations toinvolved (a) the breaking of the full rotational and transla-
gether with the BO approximation for the nuclear density-tional symmetry of the original Hamiltonian and its corre-
density correlation function presents a simple and generdponding neglect of rovibrational couplings artl) the
way of generating self-consistent approximations for elecdouble-counting problem due to the use of Born-
trons and phonons that are devoid from double-counting?ppenheimer phonon frequencies. The first problem was

problems. solved using a coordinate transformation that refers the elec-
tronic motion to a frame fixed to the nuclear framework. The

VII. PHONONS IN TIME-DEPENDENT second problem was solved by deriving coupled equations

DENSITY-FUNCTIONAL THEORY for observable quantities such as Green functions, rather than

to try to define bare electrons and phonons and to expand
Density-functional theory, as usually applied to electronicparts of the Hamiltonian. We further showed a way to calcu-
systems, expresses all observables as functionals of the eldate the electron-phonon coupling within a density-functional
tron density. In the case that we deal with the coupling beframework and pointed out some problems in earlier work
tween electronic and nuclear motion one needs an extensiqnat calculates the electron-phonon coupling within a DFT
of electronic density-functional theory. Such an extensiorcontext.
has been provided by the multicomponent density-functional We hope that the work presented here will provide a use-
approach of Kreibich and GraSs* and has been applied to ful basis for future first-principles approaches to the calcula-
diatomic molecules in strong laser fields. This theory hastion of the electron-phonon interaction. Work on applications

however, not yet been investigated for the case of phononsyithin a time-dependent density-functional context is in
On the basis of the Hedin equations of Sec. IV one canprogress.

however, quite easily construct phonon corrections to results

found with electronic density-functional theory. For instance, AppeNDIX A: DEEINITIONS AND USEFUL RELATIONS

the electronic density-response function is readily calculated

in time-dependent density-functional theory froth*® The Euler angles are specified by the fact that any rotation
can be written as

X(1.2)=xo(1.2+ f d3d4xo(1.3 R(a,B,7)=Ra ) Ry(@)RAB), (A1)

X[W(3,4) + fro(3,4]x(4,2), (150  whereR, andR, are rotations about theandy axes. More
) . i ) . details can be found in Refs. 29, 33, and 50. Let the column
where x, is the noninteracting density-response function ofyectors of this rotation matrix be denoteg, e,, e, ie.,
the Kohn-Sham system arfg, is the so-called exchange- (6)i=TR;; . These vectors satisfy

correlation kernel. From this function one can then readily

constructW,=wyw ande.. Therefore by calculation of the e
phonon frequencies using the Born-Oppenheimer approxi- gquwa’ (A2)
mation, which can also be done within DE¥we can con-
struct the effective interaction e
—=eXuwg, (A3)
W(1,2)=Wq(1,2) +W,(1,2) (151) B
from which the full dielectric functione(1,2) can be ob- o8
tained. This allows us then to calculate the phonon broaden- —-=6Xw,, (A4)

ing of absorption spectra. The approach here is quite differ- 9y

ent from moread hocways to calculate the electron-phonon where we defined the following angular velocity vectors:

115110-15



ROBERT van LEEUWEN PHYSICAL REVIEW B9, 115110(2004

siny —sina cosy 0 If we use
w,=| COSY |, wg=| sinasiny | o =|0 M
“ k.r__ rok _ k
0 cosa 1 Ji i‘% €jqrl qflri Rji_Mnuc (B4)
(A5) .
we obtain

Now all the angles depend on nuclear coordinalgs
=(R%,R,RY) wherek labels the particle. Let us further in- g 5 2 Ne g o

troduce the short notatiosf=3/JR¥. Then from the equa-
tions above we find

3
oD
ok ok P = —o—i >, QL@
JRE GRY ELiSL gt gRY GRY T

3
k

k _ k —i :
(@)= 2 €jor(@)ali, (A6) 2 RiPer®, (B5)
wheree;, is the antisymmetric Levi-Civitéensor and where Where we used relatiofB4) and where we defined the total
we defined electronic momentum and angular momentum operator
k=0, Fatw, dB+aw, i A7 Ne J
ri= Wa,rdf &T Wgr iB Wy 0y (A7) L. E _irj,x_/, (B6)
and wherew; , is therth component of vecto®; . Since the =1 ar;
Euler angles are invariant under translation of all nuclear N
coordinates we can easily derive the useful condition S .9
Pe=> —i—. (B7)
Nn =1 or
k _
kzl 2 =0. (A8) The kinetic-energy operator therefore becomes
If we now define . Noo g 3 3
Th=-2 ML 2 =12 OfiLe,
k=1 k i r
I’E'ZE R“r,, (Ag) 3 2
Ik - My
Iy > Rlipe,l) : (B8)
nuc |
nn__ X n
Ri _% RyRi (A10) | et us work this term out. Because of the condition of Eq.
i , (A8) there are no couplings between thgandP, operators.
then we find the relations We can then split the kinetic energy as
K= €l (O (A11) To=TatTwe+Tc, (B9)
& where the mass-polarization terms are given by
FRI"=R. St D €qRINQK . (A12) . 3 3
ji “kn jqr
H ar - TMP:rg1 (M:+Mr)Pe,r+rsz:l ,Brspe,rpe,Sa (B10)
These relations will be useful in the following sections.
where
APPENDIX B: GENERAL FORM FOR THE CORIOLIS 1 N, 3 p’
AND MASS-POLARIZATION TERMS =i S Rydk=— =1 (B1D)
. . 2Mpyc k=1 =1 2M e
Here we will derive the general form of the mass-
polarization and Coriolis terms presented in Sec. lll. In that 1 M 3 5
section we rotated the electronic coordinates to a frame that Brs==— O RiRsi==c—, (B12
is attached to the nuclei but left the nuclear coordinates in- My k=1 i 2Mnye
tact, 1.e., whereP;, is the nuclear momentum in the body-fixed frame.
' =R(a,B,7)(ri—Reun), (B1) The Coriolis terms are given by
3 3
Ri=R;. (B2) TC:rZ:l (V;r+ Vr)l-e,r+rs§=:1 arsberles, (BL3
The wave functionV in the old coordinates is then related to ]
wave functiond in the new coordinates by where we defined
O} 1l Rl R )=W(r Ty, Re- Ry U R
l'.. N y 1.'. N = l.'. NEY l.'. Nn . :_ k k
e n 53 v, @ M, 2 QK ok, (B14)
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Np 3 Note that the matrixJ;; is symmetric because of the Eckart
E E “ (B15 conditions. Furthermore, the matri(R,) is diagonal be-
k= - cause of the conditions posed on fRg and corresponds to
the inertia tensor of the poiniy, . The angular momentum

Our next task will be to provide more explicit expresslonsvectorSQ can now be obtained from

for v, and a5

3
APPENDIX C: EXPLICIT FORM OF THE CORIOLIS 0= (371,88 (C8)
TERM FOR SPECIFIC CHOICE OF THE 5 P

BODY-FIXED FRAME v
Using the explicit form ofa;, and the fact that th&g are

In this section we will demonstrate that for a large systemgefined in a frame with respect to the nuclear center of mass,
the Coriolis terms become vanishingly small if we specifywe can check that conditiofA8) is indeed satisfied. Let us
the Euler angles using the Eckart conditions given in Eqnow calculate the matrixy; of Appendix B. For this we
(23). Since need to evaluate

Np

3
0= 2, MiRopXR(@,8.9)Reun (v > 0505=2 03 e alal.  (€7)

the Euler angles are equivalently defined by the cond|t|ons.|.he last term in this equation is readily calculated to be

Nn
= R~ X .
0 i;l MiRo;i X R(a,B,7)R; (C2 2 a|sa|t E €sw €rqrM M R Rlo,qzi RyiRyi

This simply means that the angles are invariant under trans-

lations of the original coordinates. Classically the Eckart = eswetqawMkMRE Ry,

conditions enforce that in the rotated body-fixed frame the uvq

internal nuclear angular momentum with respect to the equi-

librium configurationR, 4 is zero. This follows in a classical = 5st( > MkM|RS‘qR'O’q) —MMR;Ros,
system directly from differentiation of the Eckart conditions q

with respect to timé&® We now calculate the angular velocity (C8)
vectorsQ . An equation for these vectors can be obtained

from a differentiation of the Eckart conditions with respect towhere we used the orthogonality of the matRx With this
Ry. If we denoteR]=RR, we obtain equation we obtain

N, 3
0= a,(Z M e,JSROIR” ) % Z Q508

njs

—E M EusRO](E Esqun Q +Rs|5kn) :2 1)vs N )qtz 2 alsalt
s

njs

— k 1
=2 MkfnsRo,szlﬁ%Mn<5iq5jr—5n5jq> 0Rq € =5 2 (I Dl sdRo)(3 Mg, (9
S
:2 Mkfistg’jRSﬁE M (RG; Ri””Q —R;R! ”) wherel s R,) are the diagonal elements of the inertia tensor

at the equilibrium position&,. Since this tensor is diagonal
we can also writey,, as a matrix produdtwhere we keep in

—a“ 2 Jij( R”)Q” , (C3) mind thatJ is a symmetric matrix and hende ! too):
—1lrq-1 " -1/ pr
where the matrixJ(R) is defined as @pq=2[J"(RD)I(Ro)I™(R") Jpg. (C10
Np Since the matrixJ is invariant under translations, i.el(R
Jpq(R):k; ML (Rox- Ri) 8pq— ngpRg] (C4) +a)=J(R), we can rewrite this as
—_1rq—1 ’ -1 ’
and where apg=3[3RII(R)I MR, (CLD
where we translated over the vectofRRc . It remains to
a.ZZ MkfistlészF M(RoxX8); - (C5) calculate a more explicit form for the operatar. For this
term we find
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Nnoq 3 Noo g In order that the transformation from the old to the new
v=i>, M Qkok=i> e > (I7Ypak K coordinates be invertible the coefficiet$ must be chosen
k=1 Wk i=1 k=1 <%k ip in such a way that the new coordina®@s are orthogonal to
i N 1 the conditions
:E ; ipESt (J_l)rpepstRl((J,thi(gik: Y % (J_l)rpLN,pu N
(12 0:; MR, (D4)
where we defined the vibrational angular momentum of the N
nuclei by 0= Ek: M Rox X Ry, (D5)
Nn
. J which are the center-of-mass fixing and Eckart conditions.
Ln= 'z RO"‘XR&RK' (€13 For details on this procedure we refer to Refs. 34 and 51. We

now have a new wave functio® related to the old on&
We see that ifR'=R, then aq is diagonal and inversely by
proportional to the diagonal elements of the inertia tensor
and alsov, has the same proportionality. This is therefore a  P(Q1, - .. .Qan-6.Remn.a.8,7)=V(Ry, ... Ry).
small quantity when the system is large. It is exactly this (D6)
property that makes the Eckart conditions useful for therpan partial differentiation yields
study of small molecular vibrations.

o 9o 9P 9D
APPENDIX D: NORMAL COORDINATES R dadiat g Bt g Ay
IN THE BODY-FIXED FRAME '
3 3N-6
. . . ) . b
In this section we derive the body-fixed frame expression + J R + 77 5o,
for the Born-Oppenheimer Hamiltonian that is used in Sec. V IZl IRcmn, CMN jzl 9Q; Qi
to construct the phonon propagator. Suppose we consider a (D7)
nuclear Hamiltonian of the form
where the derivatives of the Euler angles can be expressed in
. Nooq terms of the coefficient§) by inversion of Eq.(A7). This
H=—> -—V2 +V(R;---Ry). (D1)  vyields
k=1 2My Tk
o _ Xa=sinyQk +cosyQk; (D8)
In our case the potentidl will describe the BO surface. We
now consider the new coordinates .
p cosy ., siny
GB= " sina it sina P2 09
Ri=R(a,B,7)(Ri—=Rcun), (D2)
k. _ k _ ; k k
where the Euler angles are determined by the Eckart condi- d; y= Colarcosy(dy; — Cotasin ylly + {15 . (D10)
tions. We then have
TheseR| are shape coordinates in the sense that they are
invariant under rotations and translations of tRe. They b 0D, 9D 3 )
therefore span a (8—6)-dimensional space and are there- Sl ﬁﬁ B+ Wai Y= —i;l Q;J;®, (D1))

fore dependent. If we remowvey; andR},_, we are left with
at most N —6 independent shape coordinates. We thereforgyhere we defined the operators

have to select six coordinates spanning the space “orthogo-

nal” to the space of shape coordinates. One obvious candi- _ 9 cosy d J

date is the nuclear center of maRs,,y as defined in Eq. 1Jy=siny——— siﬁ@*'co'facosvﬁ—y, (D12
(18), which is not in the shape space since it is not transla-

tionally invariant. For the remaining coordinates we choose

) ) d siny 4 d

the Euler anglesy,3,y. These coordinates are translation- iJ,=cosy— + .—y——cotasiny—, (D13)

ally invariant but not rotationally invariant. We are therefore da sina Jfp J

left with a choice of 3\—6 shape coordinates. For this we
Jd

take the general form i,=— (D14)
dy

N 3
Q= 2 z b"R" . (D3) which represent the rovibronic angular momentum operators
= D= TR relative to the body-fixed axés.Using
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M
Su——|  (D15)
M nuc,

IR :% €iqrRy Q5+ Ry,

we further obtain
3%6 8(1)
0Q

=1

3

|Z LNrQ”<D+|2 Ry pK®
J

M, 3 N
. My
—i rEl mEl Ruipld, (D16)
nuc r= =
where we defined
3N-6 J
m_ _j 21 b”aQ (D17)
N
Ly=—i> R™xp™ (D18)
m
Collecting our results together we obtain
3 3
av
— =12 QR+ Ly )P —i Y, Ripfd
(9R| r=1 ' r=1
M ( i % pr®
Muucl dRemn,i =1 m= R
(D19

The transformed kinetic energy is therefore given by

N

3 3 3
R T N [DENTED W CERTIe

3

M N 2
: i3 3 R p” (D20)

+_
Mnuc( IRcmni  f=1

PHYSICAL REVIEW B 69, 115110(2004

The termT¢yy is simply the kinetic energy of the center of
mass. The term$y andT,;, describe, loosely speaking, the
rotational and vibrational part of the kinetic energy. If finally
we choose the matriiza!‘j in such a way that the vibrational

kinetic energy becomes diagonal and that the pote¥tlzs

a harmonic expansion i; and neglect higher-order terms
we obtain forH;,= T, +V the form

1
+ EQiZQiZ),

where the(); are identified with the vibrational phonon fre-
quencies. The kinetic energy of the total nuclear center of
mass can now be separated from the Hamiltonian. If we ne-
glect Coriolis and mass-polarization terms and evalmsﬁe

at the equilibrium position&; then T can be replaced by
the rigid-rotor-type Hamiltonian

3N—-6

Hyip= 2

i=1

1 42

- E (9_Q|2 (D23)

3

TRerS arsd Js, (D24)

where «a,¢ is given by expression in EJB15). Using the
Eckart conditions we then find that, is inversely propor-
tional to the diagonal elements of the inertial tensor. We can
now write the Hamiltonian as

ﬁ:-’l\-CMN+-’I\-R+ F'Vib' (D25)
The eigenfunctions of this Hamiltonian are of the form
(I)qlsz Wq(RCMN)QDI(aaBy'y}Xs(Q);

where 74 is a plane wave corresponding to the center-of-
mass motion

(D26)

(D27)

7q(R ):ieiQ'RCMN
q CMN \/v ’

Let us work out this expression. Because of condition, Eqwhich is normalized in a volum¥ that will cancel out of our
(A8), there are no mixed expressions between the terms irfinal equations. The functiog, is an eigenfunction of the

volving the angular momenturd+L, and the center-of-
mass/polarization terms with prefactdr, /M .. We obtain

:I\—,::I\—CMNJF%R—’—:I\-Vib’ (D21)

where

2
Remn?

— sV
2M nuc

k k
‘Jr + LN,r)Qsi(Js+ LN,s)

Qir(i (Jr+ I-N,r)7zli plk+ H'C'!

N

> phpn

nuc k,n

(D22)

rigid-rotor Hamiltonian of Eq(D24) and x, is an eigenfunc-
tion of the vibrational HamiltonianH,;, defined in Eq.
(D23). We can now derive Eq113) for the transition matrix
element. This matrix element is within the BO approxima-
tion given by
Tio=Y{(Ry--

‘RN WPo(Ry- -+ Rp), (D28)

wherei labels an excited state of the BO Hamiltonian. We
note thatAI';,,=T";, for i #0 and zero otherwise so that we
only need to considdr;,. Through Eq(D6) we can express
I';o in coordinates in the body-fixed frame. Therefore

The volume elementdV has now to be expressed in body-
fixed frame coordinates. This yields, considering a Jacobian
consistent with the approximations made in the derivation of
Eq. (D25), the resuft?
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dV=dR¢cypsinadadpdydQ, (D30) and rigid-rotor wave functions can then be integrated out to
yield

- | | avrio= [ dox@u@q @3
where dQ=dQ;---Qzn_g. The integral in Eq.(D29) is
zero if g andl are nonzero. The ground-state center-of-massvhich proves Eq(113).
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