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Longitudinal and Hall conductances in model alkali fullerides A;Cg
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We have calculated the low-temperature, low-field longitudinal and transverse conductivities for various
tight-binding models intended to represent the conduction badd @3, compounds, by directly applying the
Kubo-Greenwood formula to finite clusters. It turns out that the “universal” dependence of Hall coefficient on
lattice constant found for §Cgy and RRCy [L. Lu et al, Phys. Rev. Lett.74, 1637 (1995] cannotbe
accounted for by appealing to two types of disorder, one of whicerohedral disord¢thas an energy scale
that varies strongly with lattice constant and another of wifibht we model as Anderson disorgieloes not.

The calculations also reveal enormous violations of Matthiessen’s rule: it is even possible to decrease the
resistivity by introducing merohedral disorder into a system which had only Anderson disorder.
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I. INTRODUCTION functional calculations, uncorrelated merohedral disorder
alone, as assumed in Ref. 10, cannot account for the different
The discovery™ of metallicity and remarkably high- residual resistivities determined for ;& (po=180
temperature superconductivity in thgCs, family of alkali- =60 xQ cm) and RBCg, (po=570+210 £ cm),** which
doped G solids (with A=K, Rb, or in part Cs was fol-  should be compared with the calculateg,=300
lowed in fairly short order by the emergence of a widespread: 15 ;,() cm for uncorrelated merohedral disorder, indepen-
conventional wisdom regarding the low-energy normal-statjent ofa. There would seem to be substantial orientational
electronic properties of these compounds. Electronic struGsgyrelations in at least 4Cso and quite possibly an additional
ture calculations based on density-functional meth®®®,  gcattering mechanism which has a strength that does not

for example, Refs. 4 and) ndicated that a narrow conduc- .6 yith the bandwidth, such as potential scattering due to
tion band was derived almost exclusively from the lowest

. . . alkali vacancie$? which could lead to a larges, for larger
unoccupied g, molecular orbitals, the triply degenerdatg, i ' . ;
orbitals, which became half filled upon the addition of three™ (A cautionary note regarding the experimenpglvalues

alkali-metal atoms per molecule. The results of such caleyduoted above is.in.o.rder: these are not from diref:t measure-
lations were largely consistent with those from the simpleﬂnentS of the resistivity, an_d some of the assumptlons .thgt.go
extended Hakel theory approach. into those values may be in error. However, direct resistivity

As far as low-energy electronic properties were con-Méasurements on crystalslo suggest thapo for RbyCeo is
cerned, the various compounds in the family differed only ingréater than that for 4Ce, by a factor of about 1.6, although
the width of the conduction band and thus the density ofample inhomogeneity makes it impossible to obtain reliable
states atEq, which in turn was controlled by the lattice absolute values.
spacinga. This picture was consistent with a variety of strik-  The present work was motivated by a remarkable experi-
ing experimental results, particularly the almost “universal” mental finding by Luet al,'® namely, that the low-field Hall
plot of superconducting transition temperatdigversusa,  coefficientRy in high quality samples of ¥Cqy and RRCgg
varying a by changing both cation species and pressure. appeared to vary “universally” with lattice constant, remi-

It also became evident early on that even the best samplesscent of T . (An earlier study of KCgq thin films by Pal-
of K5Cqo (Ref. 7 and RBCqy, (Ref. 8 were not perfect crys- straet all led to data consistent with theirdJnlike the T,
tals. In these materials the hexagonal faces of the moleculetudiesa was varied by changing themperatureas well as
point in (111) directions so as to maximize the volume of the the chemical composition. If one makes the assumption that
tetrahedral interstices, and there are two orientations, relate®,, is dominated by zero-temperature physics, as is usually
by /2 rotation about a twofold axis, which accomplish this. the case in metals, then their finding seems on the face of it
These two orientations appeared to have equal populatiorie be yet another confirmation of the standard picture of the
and no long-range order was evident; this peculiar type o&lectronic structure, in which the lattice constant is the key
restricted orientational disorder was denoted “merohedral’control parameter for electronic properties A§Cg, com-
disorder. It was pointed out by Gelfand and®Lihat such  pounds because it in turn sets the conduction bandwidth.
disorder alone, if the orientations were strictly uncorrelated, Let us for the moment take the universality Rf, versus
could render these materials dirty metals. a for granted, and with it the assumption tHa, reflects

Much of the experimental data produced during the firsiow-temperature propertiegFurther support for that as-
few years of intense study of the;,Cgqo compounds could be sumption is offered by the Boltzmann equation analysis of
readily accounted for by the ideas mentioned above. HowSchulz and Allert®) Then there is something rather odd
ever, they are not sufficient to account for all details ofabout the data. According to the conventional wisdom the
normal-state electronic transport. only thing that can change at low temperature as a function

If one takes for granted the results of the density-of a is the strength ofsome kinds of disorder relative to
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the bandwidth, but Luetal. find Ry varying from accounted for exactly by generating finite clusters, with the
—2.9x10 °m/C at a=1.416 nm (KCs at 60 K) to  molecular orientations drawn from a suitable distribution. In
1.0x10 ° m/C ata=1.444 nm (RBCg at 300 K), with a  order to minimize the parameter space of our explorations,
sign change aa=1.435 nm. This sort of variation iR, for ~ and in the absence of precise experimental knowledge con-
a metal just as a function of disorder is, as far as we ar@erning orientational correlations in the materials, we consid-
aware, unprecedented. Schulz and Allen also note that thered only two types of orientational distributions: fully or-
dependence oRy on underlying scattering mechanisms dered, corresponding to tHem3 crystal structure assumed
should be weak in a generic metal. etial. suggest that the  in mostab initio calculations, and uncorrelated random, with
interplay of merohedral disorder with other types of disordereach molecule taking either of the two low-energy orienta-
(not described in detail, but assumed to have a strengthions with equal probability independently of the orientations
roughly independent af) could be responsible for the varia- of its neighbors. The fully ordered systems are not experi-
tion of Ry, and offer an argument based on Ong’s scatteringmentally realizable, but we initially included them because
length-surface construction applied to supercell Fermi surthey permitted tests of Matthiessen’s rule, they made pos-
faces to justify it. We found their argument less thansible an exploration of the effects of differetypesof disor-
convincing, and felt it was worth trying to confirm their sug- der with similar strengthgas evidenced by,) on the Hall
gestion by a direct calculation. That provided the initial mo-coefficient, and they enabled a comparison with a calculation
tivation for the calculations to be presented below. In theof Erwin and Pickett’ of the Hall coefficient in orientation-
end, the calculations suggest that something entirely differerilly orderedA;Cq structures as a function of band filling. To
must be responsible for the variation |f; . clarify the last remark, thab initio density-functional calcu-
The plan of the paper is as follows. The tight-binding lations all imply a half-filled conduction band, but one can
models used to represent conduction-band states are dgdke the band dispersions for such systems and then vary the
scribed in Sec. II, followed by a discussion of the methodelectron count by hand, assuming rigid bands. Thus one can
applied to estimate the longitudinal and low-field transversejetermine the Fermi surfaces “as a function of band filling,”
conductivities for these models in Sec. Ill. Results from anand with some further assumptions evalugte. Hence one
extensive set of numerical calculations are discussed in Segf the parameters in the calculations presented below is the
IV, and conclusions are presented in Sec. V. band fillingF, even though when we began this work had no
On the technical side, this paper is a continuation of theeason to expect values other thar1/2 to be relevant to
program of Gelfand and 1°%4° to calculate electronic prop- the actual materials.
erties of theA;Cgq compounds through the direct application  To account for other kinds of disorder which can exist in
of the Kubo-Greenwood formula to tight-binding models for these materials we employ a model which introduces only
the conduction-band states through exact diagonalization afne additional parameter: uncorrelated Anderson disorder
finite systems. We have extended those calculations in twwith a common value for the three orbitals associated with
ways: first, we have extended the usual Kubo-Greenwoo@ach molecule. Although this is hardly a realistic model for
formalism to nonzero magnetic field and implemented calcuany kind of disorder in theA;Cgy materials(for example,
lations ofdo(B)/dB|g_ (the first-order correction to the alkali vacancies would certainly lead to short-range correla-
Hall conductancer,,, which we denotery,), and second, tions between shifts in molecular-orbital energies, as well as
we have extended the tight-binding models to includebreak the symmetry responsible for the threefold degeneracy

Anderson-type disorder. of thet,, orbitalg it should be sufficient to test the hypoth-
esis of Luet al.
II. TIGHT-BINDING MODELS FOR  A4Cqp To summarize, the models we will study have the form

In building tight-binding models for the conduction-band
states ofA3;Cgo phases, we started with the class of models
constructed by Gelfand and 2:tf using simple Hckel theory. H =(i;;(jv) t(il*)(l'V)CiTﬂCivJr % ViCiTuCiw @
These models are characterized by a set ®f33matrices
that contain the intermolecular transfer-matrix elements for
thet,, orbitals, and that depend on the relative position andvherei andj are indices that run over thes@mnolecules, and
orientation of nearest-neighbor molecules. Those matrix elex and v are molecular-orbital indices. Merohedral disorder
ments can, alternatively, be extracted frah initio elec- is manifested in the implicit dependence tgf,);,) on the
tronic structure calculations, as was done by Erwin andrientations of moleculesandj and on their relative posi-
Mele !® Regardless of the source of the matrix elements, irtion. The second term in Eq1) is the Anderson disorder,
writing down such a model we are assuming that thewith the V; distributed uniformly on —D/2,D/2], and we
conduction-band states are derived almost exclusively fromwill refer to D as the strength of the Anderson disorder. We
the lowest unoccupied molecular orbitals. All of the calcula-will use the following nomenclature in referring to these
tions reported below used the Gelfand and Lu matrix eleimodels: “Anderson systems” are fully orientationally or-
ments; however, we did carry out a subset of them using thdered, and the special caBe=0 will be denoted a “clean
Erwin and Mele matrix elements and found no substantiabystem.” “Mixed systems” are merohedrally disordered, and
differences. the special cas®=0 will be denoted a “merohedral sys-
Within the tight-binding models, merohedral disorder istem.”
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Magnetic fields are introduced via the London-Peierlscan be expressed in terms of the conductivity tensoR,as
approximatior? in which the zero-field matrix elements are =o'>,<y/0'>2(x, with o), =do,/dB|g-o. We know of no other

modified by phase factors: calculation ofa, by direct evaluation on finite clusters, so it
o o is appropriate to discuss some technical aspects of both the
Yiwin=twin € " finite-cluster calculations themselves and the various ex-
trapolations required to obtain values that can be compared
™ with experimental data on macroscopic samples.
=— (A —A)-(R.+R. . . .
9ij dDO(A' AD-(Ri+Ry), @ One potential benefit of our approach is that the frequency

whereR. is the center of molecule A. is the vector boten dependentr, anda;y (or at least the intraband contribution
tial at R-I and the superscriot on’?einaicates the zer%—field theretg are obtained, not just the dc values. However, for the
L P P relevant frequency range iA3zCgy experiments are rarely

value. For the purposes of the Hall effect calculatlorls Wearried out for the transverse conductivity because they are

take a magnetic field in the direction, for whichA=BXy  technically difficult?®
(with B the magnetic-field strengths a convenient gauge
choice.

There is also an effect of magnetic field on the molecular A. Formalism and boundary conditions
orbitals themselves. The;, orbitals can be represented In three dimensions. the=0 Kubo-Greenwood formula
by states that are symmetric with respect to 180° rotatioQ:am be written in the fo'rm
aboutx, y, andz. The magnetic field has no effect on the
z-symmetric state, but mixes the andy-symmetric states.
Within the usual Hakel theory for the G, molecule(follow- e? A
ing, for example, Elser and Hadddh,and taking 1.2 as Oap(®)= == — lim E (N]j o/ M)
the ratio of matrix elements for short versus long bonds a ‘*’V,,_,0+fn<fp<fm
one finds low-field matrix elements tyiy)
=—iB 1.75x 10 % eV/T, which are roughly a factor of 10
smaller than the other imaginary terms in the Hamiltonian
associated with the intermolecular matrix elements. We
found that neglecting these intramolecular matrix elements R
typically leads to 10% or less effects on the transverse con- Here we have introduced a length scaland an energy
ductivity; in fact we did almost all calculations both with and scale €, redefined the angular frequendyw/e— w, and
without them, and found that whether or not they were in-pulled out all factors of the energy and length scales, as well
cluded had no effect on our conclusions. Since including theis all the prefactors from the current operators, so that every
intramolecular matrix elements introduces a third energyquantity to the right of the first fraction is individually di-

scale into the problem, in addition to the scales*.ooandD,_ mensionless. We taketo be half the conventional fcc lattice
for simplicity we will present here the results for calculations oqnstant. so that thR, have integer Cartesian coordinates:

in which those matrix elements are ignored. thenV is eight times the number of conventional unit cells in
Finally, within the tight-binding formalism, note that cur- o cjuster. For am,Cy, fec lattice constant of 14.4 A,

rent operators are simply expressed in terms of matrix ele-, ~ 1 . .
ments of the Hamiltonian: e“/ah=536 (2 cm)~*, which we will adopt below when-

ever it is appropriate to produce numbers that can be com-
ie pared with experiment. The energy scale does not enter into

Jiwin= 7 Lima »(Ri—Rj). (3)  the dc conductivity at all. We will take to be the bandwidth
of a “merohedral system(roughly 0.5 eV, and we will
quote all energies in terms of this unit. The London-Peierls
. FINITE-CLUSTER KUBO-GREENWOOD METHOD phase factors into a dimensionless magnetic-field strelmgth

Various approaches, all based ultimately on the Kubo=Ba%/®g and a geometric pai; = m(x;—X;)(Y; +Y;).-
Greenwood formula, have been used to numerically evaluate Boundary conditions on the clusters cannot be chosen ar-
elements of the conductivity tensor in tight-binding models.Pitrarily. Periodic boundary conditions are generally used for
Examp|es inc|ude transfer-matrix methé%l%l and Various finite-cluster calculations because they minimize finite-size
forms of the recursion methdd:?® Using these approaches, effects. However, periodic lattice boundary conditions are
calculations of off-diagonal elements of are rare, and we impossible to satisfy for arbitrary values bf the allowed
are aware of only two references: Houari and Hatrand ~ values are giveffor our choice of gaugeby b=q/N, where
Czycholl® g is an integer andN, is the number of unit cells in thg

Our procedure is of a different nature, as we apply thedirection. For a typical calculation on ax@& x4 lattice the
Kubo-Greenwood equation directly to finite systems. The useninimum allowed value oB amounts to roughly 400 T.
of finite-cluster methods for density of states and longitudi-Czycholf® used periodic boundaries and proceeded in this
nal conductivity has ample precedent and does not requirashion; however, that calculation was explicitly high field.
much discussion. The Hall effect is another matter. For &ince we are instead interested in the low-field Hall effect,
magnetic field along the axis, the low-field Hall coefficient we will employ open boundaries alongandy and periodic

x(mlj g[n) (4)

wt+e—entin’
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boundary conditions only along Notwithstanding the peri- 4.8 ; . . . , .
odicity in z, we will refer to these as “open” boundary con-
ditions.

Calculations of the conductivity may be carried out for
any magnetic-field strength with these boundary conditions,
but we will go one step further and expand the Kubo-
Greenwood formula itself to first order in the magnetic field
to obtain an expression fary, . There are several advan-
tages to doing so, rather that evaluating, itself at nonzero

b. In the formula foray, all numerical calculations can be

o, (6%/8h)

0 0.01 0.02 0.03
done with real numbers, while complex numbers are needed n@

for o, . For finite clustersy, (b=0)+0 except for realiza- FIG. 1. Example of fittingoy(7) data to 1/p7+q). These
tions of disorder which by rare chance are invariant undeg,ia are for a mixed system with=0.169 andF=0.5.

w/2 rotation about the axis; hence to determine,, for

even a single cluster requires either a calculation at two fieldscales such as the inverse relaxation time, but as there are
or calculations of bothr,, and oy, and in either case one typically several decades between the lower and upper limits
has to check thdt is small enough to be in the linear regime this can be arranged.

but sufficiently large that the finite precision of numerical  For clusters with periodic boundary conditions,, has a
calculations is not distorting the results. maximum atw = 0; however, for the boundary conditions we

Expanding the Kubo-Greenwood formula to first order inemploy its maximum is at some other frequency which has
b requires expanding the current operators and the eigenfungome sample-to-sample variation but is primarily size depen-
tions to first order. The eigenvalues have no first-order cordent. We will always take the values at the lowest-frequency
rection except for the Zeeman effect, which affects all statepeaks of the ensemble-averaged data in hath and U;y
of a given spin equally and gives no contribution to the CON-(the frequencies of which track each other nigeligr the
ductivity and so is not even included in the model, EL). “de” value.

The first-order corrections to the Hamiltonian and current Finally, there is the matter of extrapolating the results as a
matrices  are ibt(;,;,)=ib0;tG,y 5,y and ibji, i,  function of system size, which in principle ought to be done
=ib¢9ijj?w (j» » respectively. The first-order correction to the but, as will be seen, has been neglected. Unless otherwise
eigenstatga) can be written as the usual result from pertur-stated, results shown below are fok6x 4 systems, which
bation theoryjbla’)=ibZ..m){m|t'|a)/(e.— €m). have 1728 orbitals.

The expansions for the current operators and eigen- All of the various extrapolations, and other assumptions
functions are then inserted into the matrix elements appeain the data analysis, together lead to the “procedural” uncer-
ing in Eqg. (4) and only terms of first order retained. The tainties that are quoted subsequently. These can only be
product of matrix elements then has six terms,roughly estimated, so we have tried to be conservative. They
ib(n°[j2Im®)(mP|j9In") and so forth, with superscript zeros are typically about twice the statistical uncertainties.
again denoting zero-field values. The resulting expression for Let us present here some concrete results to illustrate the
oy requires roughly ten times more computational effortextrapolation procedures and other assumptions.
than that for the zero field-y.

C. Extrapolating » to 0

Figure 1 shows an example of fitting,, as a function of
n using the form 1/6»+q). This two-parameter fit for the
For botha,, andoy,, calculations on finite samples must low-frequency peak value of,, was adopted for all ex-
be appropriately extrapolated in order to obtain results whichrapolations in#. It works well, and it has the appropriate
can be compared with data on macroscopic samples. large- behavior. However, simple least-squares fitting pro-
Since we are considering disordered systems we averagedures do not lead to appropriate error estimates for the fit
over realizations of the disorder. Ten to one hundred realizaparameters. Weighting all points equally usually gives an ex-
tions are typically used, and the sample-to-sample variationsellent fit, leading to error estimates in the fit parameters that
lead to the statistical uncertainties in the results quoted beare too small, in the sense that modestly changing the range
low. of » over which to fit leads to much larger variation in those
The »—0 limit in the Kubo-Greenwood formula cannot parameters. Weighting points according to their statistical er-
be taken literally in finite systems, since that leads to a set ofors is also unsatisfactory, as that tends to underweight the
discreteé functions(for o,) or poles(for a')’(y) rather than  smaller+ data, which should have moaepriori significance
smooth distributions. Instead, one can evaluate the conduthan the larger data. In the end, we used unweighted fits
tivity at some frequency as a function of. For » suffi- and examined the variation in the fit parameters with the
ciently larger than the spacing between transition energiesange included in the fit. We always assigned at least a 5%
the behavior is smooth, and that can be extrapolateg to procedural error to the fitting procedure.
=0. In such extrapolations one should not take into account For oy, one expectsry,~ 7”2 at large. That indeed
data for » so large that it is comparable to physical energyholds in our data, but there are several reasonable choices for

B. Extrapolations to dc and thermodynamic limits
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FIG. 2. Example of fittingoy,(7) to 1/(pn+ q)2. This is a FIG. 4. o,,(w) for merohedral systems at half filling with open
merohedral system witk=0.6. and periodic boundary conditions. Here we et0.01, rather than

carrying outn—0 extrapolations at every value af. Statistical
fittihg functions for o), —we considered 1f{n°+q),  €rors are roughly the width of the lines.
1(pn?+qn+r), and 1/p 75+ q)>—none of which works as _ _ _ _
well as the fit too,. We settled on 17+ q)? (see Fig. 2. bp_undanes the maximum in the Drude pea_k is p_ushed to a
but note that the range af that can be used in the fits for finite frgqgency, and so the value at the maximum is less than
o}, is narrower than fow,,, and there are greater associatedor periodic boundaries. o _ ,
procedural errors. Figure 2 also demonstrates the necessity of 't 1S Impossible to carry out a similar comparison telf, .
deciding which values ofy are useful: too small and the However, considering the plots ‘?ﬁy(w) shown in Fig. 5, it
results are not physically meaningful. Uncertainties in thiss€ems likely that open boundaries would again lead to sys-
judgement as well as the statistical uncertainty dtjgy tematic underestlmates in the magnltude_of the quantity, ar_wd
(greater than inr,,) lead us to be more conservative, andthus the systematic errors associated with open boundaries

report at least a 7% error in the results of 7I7|m)+ Tyy- may partially cancel in evaluating, .

. . E. Validation of the Hall effect calculation

D. Boundary condition and finite-size effects for the square-lattice Anderson model
For periodic systems, the finite-size effects in the conduc-
tivity for merohedrally disordered\;Cq, are known to be

quite small. For example, periodicx44 X4 and 6<6X6

In order to validate our formalism for and implementation

of the finite-cluster calculations Qf)'(y andRy, we applied

. o R this method to the square lattice, single orbital Anderson im-

10 7

sHystems y(;el:j ?Imgst |nd|st:ngwshlag:e fresultst 0y ith purity model at 2/3 filling. We considered systems up to
owe\éer, da a oraxé.tgre onfy av;?le:] e for s.yitems;.m.n ‘ 50%x 50, and we were careful to fild values(which turned

open boundary conditions, for which on€ might anticipat€, ;4 5 e 0.5D=1) such that the systems were mesos-

stronger finite-size effects. To gauge the finite-size an opic, since the results for neither localized nor ballistic sys-

bour)dar_y effects, in. F.ig..3 We compare t.he_results for th‘%ems could be sensibly compared with the classical Drude
longitudinal conductivity in open and periodic merohedralexpression foRy, . The results foRy were in the range 2.5
system at various band fillings. It appears that the open

boundaries lead to a systematic underestimate of about 200}9, 332_/ &, W'_th roughly 30% uncertalntles{]’he data for th_e .

but the dependence dhis captured correctly. In Fig. 4, the two-dimensional systems have considerably Iarger statistical

difference between the two boundary conditions is illustrated"d Procedural errors than for t#eCe, models) This can

in more detail by plotting the frequency dependencegfat ~ be compared with the classical Drude result ofd’ke, and

one particular value oF. As one would expect, away from With the value 0.988%/e which was derived from Ong's

w=0 the curves are hardly distinguishable. With openconstructioﬁ7 together with the assumption that the scatter-
ing rate is constant over the Fermi surface. We consider the

AP — {35
Periodic —— +}+ ' 6 108
g °r | s % =4 {06 _
N; i ’ o »e? ‘ 4 0.4 [
E5T 2 8 2 "5
6 {125 % ‘o 102 g
4t ¥ 0 o E
. . . 12 5 1 -02
02 04 06 08 e
F 0 02 04 06 08 1

o ()
FIG. 3. Extrapolated —0) o, as a function of band filling,
for 6X6X4 merohedral systems with periodic and open bound- FIG. 5. a;y(w) for merohedral systems at several band fillings.

aries. Here, »=0.032. Statistical error bars are omitted for clarity.
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FIG. 6. Density of states as a function of band filling for Ander-  FIG. 8. Bandwidth as a function of disorder paramedefor
son systems. both Anderson and mixed systems.

agreement acceptable, and believe that the differences can be B. Longitudinal conductivity and Matthiessen’s rule
ascribed to shortcomings of the latter theoretical approaches. The longitudinal conductivity is a necessary ingredient in

the calculation oRy, and there are some interesting results

for the models we have explored. First, inspection of Figs. 3
IV. RESULTS and 7 reveals that the conductivity in merohedral systems is
A. Density of states increasing over an interval in band filling where the density

. . . of states is decreasing slightly. This is not completely sur-
The density of statetDOS) can give one a rough idea of rising, as one does not expect the conductivity to be simply

the effect of dllsorder on electronic states, as de§a|led stru sroportional to the DOS since the scattering intensity can
ture present in the DOS for clean systems will becom&yenend orF as well, but it is a hint of things to come.
washed out as Q|sorder is |nt.r(.)duced. We will present plpts of et us now turn to Anderson systems. The corresponding
DOS as a function of band filling rather than as a function regyits for conductivity as a function of band filling, for sev-
of energy, so the areas under DOS curves should not bgra| D values, are given in Fig. 9. We were interested in
equal. Since the actual value of the DOS coming out of thesginding a value ofd which would give an Anderson system
calculations is not of particular intere@t will scale ase ),  with nearly the same conductivity as a merohedral system, so
the graphs will just show “arbitrary units” on the ordinate. that one could compare the effects of two distinct types of
The DOS for some Anderson and mixed systems arglisorder of the same “strength” oRy, and apparentlyd
shown in Figs. 6 and 7, respectively. It is worth noting that~0.2 is appropriate, at least fér~1/2. For the less strongly
while Anderson disorder at the strengths considered herdisordered systems there is a dipdy, for F~2/3, corre-
largely washes out the prominent features in the cleansponding to the location of the minimum in the DOS. One
system DOS, adding Anderson disorder to a system withwvould expect thato,,~1/D in these systems. That holds
merohedral disorder already present has hardly any effect guite well except for the smallest value &f, where the
all on the shape of the DOS curve. The main effect of Anderconductivity seems to be too small. This can be attributed to
son disorder in the latter case is to broaden the band; Fig. e finite size and open boundary conditionsbeis reduced
shows how the bandwidttwhich is e, by definition, for a ~ €ventually the mean free path becomes comparable to the

merohedral systemdepends orD for both Anderson and System size, and the width of the Drude peak is no longer
mixed systems. much greater than the finite-size induced peak frequency in

Ty ).
—_ 10
[7]
> 8 r a
3 5
a 4r ]
2 C 1 1 L 1 1 ]
0.2 0.4 . 0.6 0.8
FIG. 7. Density of states as a function of band filling for several
mixed systemsD =0 (solid), D=0.169 (dashe@l and D=0.338 FIG. 9. oy, as a function of band filling for Anderson systems.
(dotted. The clean-system DOSrom Fig. 6 is shown for com-  The curves are for disorder strengihs=0.085, 0.169, 0.253, and
parison as a solid line. 0.338, from top to bottom.
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FIG. 10. g,y as a function of band filling for mixed systems. FIG. 12. Resistivity as a function of Anderson disorder strength

for mixed and Anderson systems at half filling. Deviations from
Finally, we present the results for mixed systems. TheMatthiessen’s rule are evident in that the curves are not simply
plots of conductivity as a function of filling, Fig. 10, are displaced vertically with respect to each other. As noted in the text,
similar to the merohedral case. the resistivity for the cleanest Anderson system shown is likely an

Since the models have two types of disorder, an obvioug§verestimate.

guestion follows: does Matthiessen’s rule hold? _Figure 1]as a function of Fermi energy. These differences may not be
shows that it does not, at least for the valuéddt which the to0 surprising, considering how much the DOS differs be-

two types of disorder are roughly the same strength. The,een Anderson and merohedral systems, but it certainly vio-
violation of Matthiessen's rule is quite striking. The devia- |ates the conventional wisdom that disorder only weakly in-
tion from Matthiessen's rule shown in the figure &0  flyences the low-field Hall effect. In contrast, the Hall
= Pmero™ PAnd™ Pmixed; €XPressed as a fraction pfxeq, this  coefficient in Anderson systenfsee Fig. 15 does exhibit

is never less than 50% in the plot. In fact, the resistivity ina sign change as a function of band filling. The value at
mixed systems is, for the larger fillings, actudigsthan the  half filling for low disorder, Ry=(5.6+0.9)x10 ° m°/C,
resistivity for the corresponding Anderson systems, corremay be compared with Erwin and Picketfs result
sponding to a fractional violation greater than 100%. Such &.0x 10 ° m®/C. With increasing disorder strength, one
reduction in resistivity with additional disorder takes place atfinds only a weak dependence urililexceeds 0.4, at which
half filling for sufficiently largeD, as seen in Fig. 12. The point Ry seems to rapidly decrease. This may reflect local-
significance of such grossly nonadditive resistivities will beization at strong Anderson disorder; we did not investigate

discussed in the conclusions. this regime closely.
Finally, we turn to the calculations for mixed systems,
C. Transverse conductivity and Hall coefficient which are most directly related to the original motivation for

. this work. Figure 14 shows the dependenceRgfon filling
For merohedral systems, the results of the calculationgy o mixed systems. They are similar to the merohedral
and extrapolations fow,, andRy are given in Figs. 13 and c5se, and show little of the structure seen in Anderson sys-
14, respectively. Note, most prominently, that there is no sigfems. The critical test of the hypothesis of ktial. is pre-
change as a function of band ;illing. This stands in contrast tQented in Fig. 16, which shows the Hall coefficient at half
Fig. 2 from Erwin and Pickett] which shows a sign change filling as a function of Anderson disorder strength. There is

0.55 . | . | to D~ (2/3)e.
| merohedral — ]
Anderson - ; . V. CONCLUSIONS
045 sum — a
— P mixed — 1 The deviations from Matthiessen’s rule seen in alkali met-
L 035 T T als have led to some difficulty in the interpretation of low-
«© L ]
=} 025 | - _ 25 [ T T T T 4
F ] o0 |
0.15 | - = | 13_
! . ! . ! . I »9? 15 + g [
0.2 0.4 0.6 0.8 &‘R | 15 5
F 2 q0t G
Fo| L
FIG. 11. Resistivity as a function of band filling for Anderson, © 5L 11
merohedral, and mixed systems. The disorder parameter for Ander-
son and mixed systems B=0.169. Error bars are omitted for 0 ' ' — 0
clarity. Also plotted is the sum of the merohedral and Anderson 02 0.4 E 0.6 08

resistivities. The difference between the sum curve and the mixed
system curve is the deviation from Matthiessen’s rule, labeled FIG. 13. U)’(y as a function of band filling for merohedral sys-
DMR. tems.
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FIG. 14. Hall coefficient for merohedraD(=0) and mixed sys- FIG. 16. Hall coefficient for mixed systems at half filling as a
tems as a function of band filling. function of Anderson disorder parameter

temperature conductivity d&fbin those materials. The enor- property of the nonmerohedral disorder that is present in
mous violations of Matthiessen’s rule evident in the preseni\,C,, samples. This seems unlikely to us. It must be admit-
calculations suggest that caution should be applied in theed, however, that we have found ti&y canhave a strong
interpretation of conductivity data iA;Cgo systems. While  dependence on the type of disorder that is present: compare
extracting the electron-phonon coupling from high- Figs. 14 and 15. Merohedral disorder is apparently strong in
temperature resistivity dai@s in Ref. 11 is probably safe, terms of its effects on the Hall coefficient, in a way that
since the residual resistivity is rather small compared to thé\nderson disorder is not. This leads to another idea: perhaps
high-temperature resistivity, extracting quantitative informa-our treatment of orientational disorder is inadequate. We con-
tion from the low-temperatur@? behavior(as in Refs. 29  sidered only uncorrelated merohedral disorder, but there are
and 30 may be more perilous. theoretical analysé5®? and experimental resufts which

Regarding the Hall effect, our results do not support thesuggest that there are correlations between orientations of
hypothesis presented by Let al*® to account for the ob- neighboring molecules, and that they tend to have different
served variation of the Hall conductance with lattice spacingrientations rather than the same one. It seems plausible that
in A3Cgo Systems. At half filling we findRy to be positive at  the degree of orientational correlations would have a marked
low D (corresponding to small lattice constarh mixed  effect onRy, but it is not obvious that there should be a
systems, and with increasirig (increasing lattice constant universal relationship between the lattice constant and the
our calculations suggest no variation at alRyf with D. Itis  orientational correlations. This issue merits further explora-
simply not the case that a generic model containing meroheton.
dral disorder and some other kind of disorder will exhibit the ~ Second, perhaps the assumption that Bye versusa
experimentally observed variations Ry as the strength of curve reflectsT=0 physics is faulty. This seems unlikely.
the latter is varied. Even at 50 K there is a substantial differenceRin between

How, then, to account for the discrepancies between ouk;C,, and RRCgy, and there is no good reason to attribute
calculations and the behavior observed experimentally by Lighe observed behavior to thermal effects.
et al? In other words, why doeRy behave as it does in Third, other physics may be contributing in some fashion
K3Cso and RBCqy? There are several possibilities to con-to the Hall effect. Given their narrow conduction band-
sider. widths, theA;Cq, materials cannot be very far from a Mott

First, the basic idea of Let al. might be correct, except transition with increasinga (see Sec. IV of Gunnarsson’s
that the variation oRy; does not hold forgenericdisorder  review??), although as long as they are “ordinary metals” the
which has strength increasingelative to the bandwidth analysis of Schulz and Allén suggests that the electron-
with a. Perhaps simple Anderson disorder lacks some cruciatlectron interactions should not significantly charigg.

More dramatic effects of electron-electron and electron-
phonon interactions, such as the intramolecular charge dis-
proportionation proposed by Ceulemans, Chibotaru, and
Cimpoesu?® might account for the experimentgl, versusa
curve but the mechanism for such is hardly clear. Let us just
say that the experimental results of eual. offer a challenge

to every theory of the low-energy electronic properties of the
A3zCgo materials.

Finally, let us make some observations concerning the ex-
perimental results, our theoretical calculations, and one elec-
tronic structure calculation which are suggestive, but do not
quite constitute an explanation of the data. It seems to be

FIG. 15. Hall coefficient as a function of band filling for Ander- impossible to account for the experimental results in models
son systems with several valuesdfError bars are only shown for containing uncorrelated merohedral disorder, with or without
D=0.169, and are barely visible except for=0.4,0.5,0.6. Anderson disorder: varying eithé or F (the latter being
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unphysical, within the usual pictureannot change the sign relevant range, so the universality of the density of states as
of Ry, which remains stubbornly positive, although less ina function of lattice constarfaind the implications for super-
magnitude and much closer to the experimental results at theonductivity, magnetic resonance, and sdwould hold just
largest values o0& than one obtains for Anderson systems atas well as in the conventional picture. But it bears repeating
half filling. However, if one allowsF to vary with a, then  that this argument is not based on a consistent model of the
Anderson systems witk in the range 0.3—-0.4 do give the electronic structure iM;Cgq.

hoped-for results. This is oddly coincidental with an approxi- In summary, we have implemented direct evaluation of
mate Hartree-Fock calculation by Schulte anchBg® who  the Kubo-Greenwood formula on finite-cluster tight-binding
claim that the net charge transfer from the cations 4§ models for the low-field transverse conductivity. This
amounts to about 1.5 electrons per molecakhich we  method has been applied to a large set of models inspired by
might associate witl =0.25), and that there is more charge the A;Cg, materials. We have found that the interplay of
transfer from the octahedral catiofleading one to expect Anderson disorder and merohedral disorder is, by itself, un-
greater charge transfer asis increasefl One cannot take able to account for the remarkable experimental results of Lu
this coincidence at face value. If there really is incompleteet al. concerning the Hall coefficient in 4Cg and RRCgp.
charge transfer, then it would be inaccurate to ignore th&\Ve have also encountered enormous deviations from Mat-
contribution of the outer alkab orbitals to the conduction- thiessen’s rule, which may confound the analysis of the tem-
band states, and one would need to include them on the sarperature dependence of the conductivity in these materials.
footing as the molecular orbitals in a tight-binding model.

But suppose, for the sake of argument, that one could ignore

the alkali orbitals except for their effect dh—one would ACKNOWLEDGMENTS
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