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Longitudinal and Hall conductances in model alkali fullerides A3C60

David G. Steffen and Martin P. Gelfand
Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA

~Received 10 October 2003; revised manuscript received 19 December 2003; published 17 March 2004!

We have calculated the low-temperature, low-field longitudinal and transverse conductivities for various
tight-binding models intended to represent the conduction band inA3C60 compounds, by directly applying the
Kubo-Greenwood formula to finite clusters. It turns out that the ‘‘universal’’ dependence of Hall coefficient on
lattice constant found for K3C60 and Rb3C60 @L. Lu et al., Phys. Rev. Lett.74, 1637 ~1995!# cannot be
accounted for by appealing to two types of disorder, one of which~merohedral disorder! has an energy scale
that varies strongly with lattice constant and another of which~that we model as Anderson disorder! does not.
The calculations also reveal enormous violations of Matthiessen’s rule: it is even possible to decrease the
resistivity by introducing merohedral disorder into a system which had only Anderson disorder.
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I. INTRODUCTION

The discovery1–3 of metallicity and remarkably high
temperature superconductivity in theA3C60 family of alkali-
doped C60 solids ~with A5K, Rb, or in part Cs! was fol-
lowed in fairly short order by the emergence of a widespre
conventional wisdom regarding the low-energy normal-st
electronic properties of these compounds. Electronic st
ture calculations based on density-functional methods~see,
for example, Refs. 4 and 5! indicated that a narrow conduc
tion band was derived almost exclusively from the low
unoccupied C60 molecular orbitals, the triply degeneratet1u
orbitals, which became half filled upon the addition of thr
alkali-metal atoms per molecule. The results of such ca
lations were largely consistent with those from the simp
extended Hu¨ckel theory approach.6

As far as low-energy electronic properties were co
cerned, the various compounds in the family differed only
the width of the conduction band and thus the density
states atEF , which in turn was controlled by the lattic
spacinga. This picture was consistent with a variety of stri
ing experimental results, particularly the almost ‘‘universa
plot of superconducting transition temperatureTc versusa,
varying a by changing both cation species and pressure.

It also became evident early on that even the best sam
of K3C60 ~Ref. 7! and Rb3C60 ~Ref. 8! were not perfect crys-
tals. In these materials the hexagonal faces of the molec
point in ~111! directions so as to maximize the volume of t
tetrahedral interstices, and there are two orientations, rel
by p/2 rotation about a twofold axis, which accomplish th
These two orientations appeared to have equal populat
and no long-range order was evident; this peculiar type
restricted orientational disorder was denoted ‘‘merohedr
disorder. It was pointed out by Gelfand and Lu9 that such
disorder alone, if the orientations were strictly uncorrelat
could render these materials dirty metals.

Much of the experimental data produced during the fi
few years of intense study of theA3C60 compounds could be
readily accounted for by the ideas mentioned above. H
ever, they are not sufficient to account for all details
normal-state electronic transport.

If one takes for granted the results of the densi
0163-1829/2004/69~11!/115109~9!/$22.50 69 1151
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functional calculations, uncorrelated merohedral disor
alone, as assumed in Ref. 10, cannot account for the diffe
residual resistivities determined for K3C60 (r05180
660 mV cm) and Rb3C60 (r055706210 mV cm),11 which
should be compared with the calculatedr05300
615 mV cm for uncorrelated merohedral disorder, indepe
dent of a. There would seem to be substantial orientatio
correlations in at least K3C60 and quite possibly an additiona
scattering mechanism which has a strength that does
scale with the bandwidth, such as potential scattering du
alkali vacancies,12 which could lead to a largerr0 for larger
a. ~A cautionary note regarding the experimentalr0 values
quoted above is in order: these are not from direct meas
ments of the resistivity, and some of the assumptions tha
into those values may be in error. However, direct resistiv
measurements on crystals13 do suggest thatr0 for Rb3C60 is
greater than that for K3C60 by a factor of about 1.6, althoug
sample inhomogeneity makes it impossible to obtain relia
absolute values.!

The present work was motivated by a remarkable exp
mental finding by Luet al.,13 namely, that the low-field Hall
coefficientRH in high quality samples of K3C60 and Rb3C60

appeared to vary ‘‘universally’’ with lattice constant, rem
niscent ofTc . ~An earlier study of K3C60 thin films by Pal-
straet al.14 led to data consistent with theirs.! Unlike theTc
studies,a was varied by changing thetemperatureas well as
the chemical composition. If one makes the assumption
RH is dominated by zero-temperature physics, as is usu
the case in metals, then their finding seems on the face
to be yet another confirmation of the standard picture of
electronic structure, in which the lattice constant is the k
control parameter for electronic properties ofA3C60 com-
pounds because it in turn sets the conduction bandwidth

Let us for the moment take the universality ofRH versus
a for granted, and with it the assumption thatRH reflects
low-temperature properties.~Further support for that as
sumption is offered by the Boltzmann equation analysis
Schulz and Allen.15! Then there is something rather od
about the data. According to the conventional wisdom
only thing that can change at low temperature as a func
of a is the strength of~some kinds of! disorder relative to
©2004 The American Physical Society09-1
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the bandwidth, but Lu et al. find RH varying from
22.931029 m/C at a51.416 nm (K3C60 at 60 K! to
1.031029 m/C at a51.444 nm (Rb3C60 at 300 K!, with a
sign change ata51.435 nm. This sort of variation inRH for
a metal just as a function of disorder is, as far as we
aware, unprecedented. Schulz and Allen also note that
dependence ofRH on underlying scattering mechanism
should be weak in a generic metal. Luet al. suggest that the
interplay of merohedral disorder with other types of disord
~not described in detail, but assumed to have a stren
roughly independent ofa) could be responsible for the varia
tion of RH , and offer an argument based on Ong’s scatteri
length-surface construction applied to supercell Fermi s
faces to justify it. We found their argument less th
convincing, and felt it was worth trying to confirm their su
gestion by a direct calculation. That provided the initial m
tivation for the calculations to be presented below. In
end, the calculations suggest that something entirely diffe
must be responsible for the variation ofRH .

The plan of the paper is as follows. The tight-bindin
models used to represent conduction-band states are
scribed in Sec. II, followed by a discussion of the meth
applied to estimate the longitudinal and low-field transve
conductivities for these models in Sec. III. Results from
extensive set of numerical calculations are discussed in
IV, and conclusions are presented in Sec. V.

On the technical side, this paper is a continuation of
program of Gelfand and Lu9,10 to calculate electronic prop
erties of theA3C60 compounds through the direct applicatio
of the Kubo-Greenwood formula to tight-binding models f
the conduction-band states through exact diagonalizatio
finite systems. We have extended those calculations in
ways: first, we have extended the usual Kubo-Greenw
formalism to nonzero magnetic field and implemented cal
lations ofdsxy(B)/dBuB50 ~the first-order correction to the
Hall conductancesxy , which we denotesxy8 ), and second,
we have extended the tight-binding models to inclu
Anderson-type disorder.

II. TIGHT-BINDING MODELS FOR A3C60

In building tight-binding models for the conduction-ban
states ofA3C60 phases, we started with the class of mod
constructed by Gelfand and Lu9,10using simple Hckel theory
These models are characterized by a set of 333 matrices
that contain the intermolecular transfer-matrix elements
the t1u orbitals, and that depend on the relative position a
orientation of nearest-neighbor molecules. Those matrix
ments can, alternatively, be extracted fromab initio elec-
tronic structure calculations, as was done by Erwin a
Mele.16 Regardless of the source of the matrix elements
writing down such a model we are assuming that
conduction-band states are derived almost exclusively f
the lowest unoccupied molecular orbitals. All of the calcu
tions reported below used the Gelfand and Lu matrix e
ments; however, we did carry out a subset of them using
Erwin and Mele matrix elements and found no substan
differences.

Within the tight-binding models, merohedral disorder
11510
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accounted for exactly by generating finite clusters, with
molecular orientations drawn from a suitable distribution.
order to minimize the parameter space of our exploratio
and in the absence of precise experimental knowledge c
cerning orientational correlations in the materials, we cons
ered only two types of orientational distributions: fully o
dered, corresponding to theFm3̄ crystal structure assume
in mostab initio calculations, and uncorrelated random, w
each molecule taking either of the two low-energy orien
tions with equal probability independently of the orientatio
of its neighbors. The fully ordered systems are not exp
mentally realizable, but we initially included them becau
they permitted tests of Matthiessen’s rule, they made p
sible an exploration of the effects of differenttypesof disor-
der with similar strengths~as evidenced bysxx) on the Hall
coefficient, and they enabled a comparison with a calcula
of Erwin and Pickett17 of the Hall coefficient in orientation-
ally orderedA3C60 structures as a function of band filling. T
clarify the last remark, theab initio density-functional calcu-
lations all imply a half-filled conduction band, but one ca
take the band dispersions for such systems and then var
electron count by hand, assuming rigid bands. Thus one
determine the Fermi surfaces ‘‘as a function of band filling
and with some further assumptions evaluateRH . Hence one
of the parameters in the calculations presented below is
band fillingF, even though when we began this work had
reason to expect values other thanF51/2 to be relevant to
the actual materials.

To account for other kinds of disorder which can exist
these materials we employ a model which introduces o
one additional parameter: uncorrelated Anderson diso
with a common value for the three orbitals associated w
each molecule. Although this is hardly a realistic model
any kind of disorder in theA3C60 materials~for example,
alkali vacancies would certainly lead to short-range corre
tions between shifts in molecular-orbital energies, as wel
break the symmetry responsible for the threefold degene
of the t1u orbitals! it should be sufficient to test the hypoth
esis of Luet al.

To summarize, the models we will study have the form

H5 (
( im)( j n)

t ( im)( j n)cim
† cj n1(

im
Vicim

† cim , ~1!

wherei andj are indices that run over the C60 molecules, and
m and n are molecular-orbital indices. Merohedral disord
is manifested in the implicit dependence oft ( im)( j n) on the
orientations of moleculesi and j and on their relative posi-
tion. The second term in Eq.~1! is the Anderson disorder
with the Vi distributed uniformly on@2D/2,D/2#, and we
will refer to D as the strength of the Anderson disorder. W
will use the following nomenclature in referring to thes
models: ‘‘Anderson systems’’ are fully orientationally o
dered, and the special caseD50 will be denoted a ‘‘clean
system.’’ ‘‘Mixed systems’’ are merohedrally disordered, a
the special caseD50 will be denoted a ‘‘merohedral sys
tem.’’
9-2
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LONGITUDINAL AND HALL CONDUCTANCES IN MODEL . . . PHYSICAL REVIEW B 69, 115109 ~2004!
Magnetic fields are introduced via the London-Peie
approximation,18 in which the zero-field matrix elements a
modified by phase factors:

t ( im)( j n)5t ( im)( j n)
0 eiQ i j

Q i j 5
p

F0
~A i2A j !•~Ri1Rj !, ~2!

whereRi is the center of moleculei, A i is the vector poten-
tial at Ri , and the superscript ont0 indicates the zero-field
value. For the purposes of the Hall effect calculations
take a magnetic field in thez direction, for whichA5Bxŷ
~with B the magnetic-field strength! is a convenient gauge
choice.

There is also an effect of magnetic field on the molecu
orbitals themselves. Thet1u orbitals can be represente
by states that are symmetric with respect to 180° rota
about x, y, and z. The magnetic field has no effect on th
z-symmetric state, but mixes thex- and y-symmetric states
Within the usual Hu¨ckel theory for the C60 molecule~follow-
ing, for example, Elser and Haddon,19 and taking 1.2 as
the ratio of matrix elements for short versus long bon!
one finds low-field matrix elements t ( ix)( iy)
52 iB 1.7531023 eV/T, which are roughly a factor of 10
smaller than the other imaginary terms in the Hamilton
associated with the intermolecular matrix elements.
found that neglecting these intramolecular matrix eleme
typically leads to 10% or less effects on the transverse c
ductivity; in fact we did almost all calculations both with an
without them, and found that whether or not they were
cluded had no effect on our conclusions. Since including
intramolecular matrix elements introduces a third ene
scale into the problem, in addition to the scales oft0 andD,
for simplicity we will present here the results for calculatio
in which those matrix elements are ignored.

Finally, within the tight-binding formalism, note that cu
rent operators are simply expressed in terms of matrix
ments of the Hamiltonian:

j ( im)( j n)5
ie

\
t ( im)( j n)~Ri2Rj !. ~3!

III. FINITE-CLUSTER KUBO-GREENWOOD METHOD

Various approaches, all based ultimately on the Ku
Greenwood formula, have been used to numerically evalu
elements of the conductivity tensor in tight-binding mode
Examples include transfer-matrix methods20,21 and various
forms of the recursion method.22,23 Using these approache
calculations of off-diagonal elements ofs are rare, and we
are aware of only two references: Houari and Harris24 and
Czycholl.25

Our procedure is of a different nature, as we apply
Kubo-Greenwood equation directly to finite systems. The
of finite-cluster methods for density of states and longitu
nal conductivity has ample precedent and does not req
much discussion. The Hall effect is another matter. Fo
magnetic field along thez axis, the low-field Hall coefficient
11510
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can be expressed in terms of the conductivity tensor asRH

5sxy8 /sxx
2 , with sxy8 [dsxy /dBuB50. We know of no other

calculation ofsxy8 by direct evaluation on finite clusters, so
is appropriate to discuss some technical aspects of both
finite-cluster calculations themselves and the various
trapolations required to obtain values that can be compa
with experimental data on macroscopic samples.

One potential benefit of our approach is that the freque
dependentsxx andsxy8 ~or at least the intraband contributio
thereto! are obtained, not just the dc values. However, for
relevant frequency range inA3C60 experiments are rarely
carried out for the transverse conductivity because they
technically difficult.26

A. Formalism and boundary conditions

In three dimensions, theT50 Kubo-Greenwood formula
can be written in the form

sab~v!5
e2

âh

4p

vV
lim

h→01
(

en,eF,em

^nu j aum&

3^mu j bun&
2 i

v1en2em1 ih
. ~4!

Here we have introduced a length scaleâ and an energy
scale ê, redefined the angular frequency\v/ ê→v, and
pulled out all factors of the energy and length scales, as w
as all the prefactors from the current operators, so that ev
quantity to the right of the first fraction is individually di
mensionless. We takeâ to be half the conventional fcc lattic
constant, so that theRi have integer Cartesian coordinate
thenV is eight times the number of conventional unit cells
the cluster. For anA3C60 fcc lattice constant of 14.4 Å
e2/âh5536 (V cm)21, which we will adopt below when-
ever it is appropriate to produce numbers that can be c
pared with experiment. The energy scale does not enter
the dc conductivity at all. We will takeê to be the bandwidth
of a ‘‘merohedral system’’~roughly 0.5 eV!, and we will
quote all energies in terms of this unit. The London-Peie
phase factors into a dimensionless magnetic-field strengb

5Bâ2/F0 and a geometric partu i j 5p(xi2xj )(yi1yj ).
Boundary conditions on the clusters cannot be chosen

bitrarily. Periodic boundary conditions are generally used
finite-cluster calculations because they minimize finite-s
effects. However, periodic lattice boundary conditions a
impossible to satisfy for arbitrary values ofb; the allowed
values are given~for our choice of gauge! by b5q/Ny where
q is an integer andNy is the number of unit cells in theŷ
direction. For a typical calculation on a 63634 lattice the
minimum allowed value ofB amounts to roughly 400 T
Czycholl25 used periodic boundaries and proceeded in t
fashion; however, that calculation was explicitly high fiel
Since we are instead interested in the low-field Hall effe
we will employ open boundaries alongx andy and periodic
9-3
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DAVID G. STEFFEN AND MARTIN P. GELFAND PHYSICAL REVIEW B69, 115109 ~2004!
boundary conditions only alongz. Notwithstanding the peri-
odicity in z, we will refer to these as ‘‘open’’ boundary con
ditions.

Calculations of the conductivity may be carried out f
any magnetic-field strength with these boundary conditio
but we will go one step further and expand the Kub
Greenwood formula itself to first order in the magnetic fie
to obtain an expression forsxy8 . There are several advan
tages to doing so, rather that evaluatingsxy itself at nonzero
b. In the formula forsxy8 all numerical calculations can b
done with real numbers, while complex numbers are nee
for sxy . For finite clusters,sxy(b50)Þ0 except for realiza-
tions of disorder which by rare chance are invariant un
p/2 rotation about thez axis; hence to determinesxy8 for
even a single cluster requires either a calculation at two fie
or calculations of bothsxy andsyx , and in either case on
has to check thatb is small enough to be in the linear regim
but sufficiently large that the finite precision of numeric
calculations is not distorting the results.

Expanding the Kubo-Greenwood formula to first order
b requires expanding the current operators and the eigenf
tions to first order. The eigenvalues have no first-order c
rection except for the Zeeman effect, which affects all sta
of a given spin equally and gives no contribution to the co
ductivity and so is not even included in the model, Eq.~1!.

The first-order corrections to the Hamiltonian and curr
matrices are ibt ( im)( j n)8 5 ibu i j t ( im)( j n)

0 and ib j ( im)( j n)8
5 ibu i j j ( im)( j n)

0 , respectively. The first-order correction to th
eigenstateua& can be written as the usual result from pertu
bation theory,ibua8&5 ib(mÞaum&^mut8ua&/(ea2em).

The expansions for the current operators and eig
functions are then inserted into the matrix elements app
ing in Eq. ~4! and only terms of first order retained. Th
product of matrix elements then has six term
ib^n0u j x

0um0&^m0u j y
0un8& and so forth, with superscript zero

again denoting zero-field values. The resulting expression
sxy8 requires roughly ten times more computational eff
than that for the zero fieldsxx .

B. Extrapolations to dc and thermodynamic limits

For bothsxx andsxy8 , calculations on finite samples mu
be appropriately extrapolated in order to obtain results wh
can be compared with data on macroscopic samples.

Since we are considering disordered systems we ave
over realizations of the disorder. Ten to one hundred real
tions are typically used, and the sample-to-sample variat
lead to the statistical uncertainties in the results quoted
low.

The h→0 limit in the Kubo-Greenwood formula canno
be taken literally in finite systems, since that leads to a se
discreted functions~for sxx) or poles~for sxy8 ) rather than
smooth distributions. Instead, one can evaluate the con
tivity at some frequency as a function ofh. For h suffi-
ciently larger than the spacing between transition ener
the behavior is smooth, and that can be extrapolated th
50. In such extrapolations one should not take into acco
data forh so large that it is comparable to physical ener
11510
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scales such as the inverse relaxation time, but as there
typically several decades between the lower and upper lim
this can be arranged.

For clusters with periodic boundary conditions,sxx has a
maximum atv50; however, for the boundary conditions w
employ its maximum is at some other frequency which h
some sample-to-sample variation but is primarily size dep
dent. We will always take the values at the lowest-frequen
peaks of the ensemble-averaged data in bothsxx and sxy8
~the frequencies of which track each other nicely! for the
‘‘dc’’ value.

Finally, there is the matter of extrapolating the results a
function of system size, which in principle ought to be do
but, as will be seen, has been neglected. Unless other
stated, results shown below are for 63634 systems, which
have 1728 orbitals.

All of the various extrapolations, and other assumptio
in the data analysis, together lead to the ‘‘procedural’’ unc
tainties that are quoted subsequently. These can only
roughly estimated, so we have tried to be conservative. T
are typically about twice the statistical uncertainties.

Let us present here some concrete results to illustrate
extrapolation procedures and other assumptions.

C. Extrapolating h to 0

Figure 1 shows an example of fittingsxx as a function of
h using the form 1/(ph1q). This two-parameter fit for the
low-frequency peak value ofsxx was adopted for all ex-
trapolations inh. It works well, and it has the appropriat
large-h behavior. However, simple least-squares fitting p
cedures do not lead to appropriate error estimates for th
parameters. Weighting all points equally usually gives an
cellent fit, leading to error estimates in the fit parameters t
are too small, in the sense that modestly changing the ra
of h over which to fit leads to much larger variation in tho
parameters. Weighting points according to their statistical
rors is also unsatisfactory, as that tends to underweight
smaller-h data, which should have morea priori significance
than the larger-h data. In the end, we used unweighted fi
and examined the variation in the fit parameters with theh
range included in the fit. We always assigned at least a
procedural error to the fitting procedure.

For sxy8 , one expectssxy8 ;h22 at largeh. That indeed
holds in our data, but there are several reasonable choice

FIG. 1. Example of fittingsxx(h) data to 1/(ph1q). These
data are for a mixed system withD50.169 andF50.5.
9-4
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fitting functions for sxy8 —we considered 1/(ph21q),
1/(ph21qh1r ), and 1/(ph1q)2—none of which works as
well as the fit tosxx . We settled on 1/(ph1q)2 ~see Fig. 2!,
but note that the range ofh that can be used in the fits fo
sxy8 is narrower than forsxx , and there are greater associat
procedural errors. Figure 2 also demonstrates the necess
deciding which values ofh are useful: too small and th
results are not physically meaningful. Uncertainties in t
judgement as well as the statistical uncertainty insxy8
~greater than insxx) lead us to be more conservative, a
report at least a 7% error in the results of lim

h→01 sxy8 .

D. Boundary condition and finite-size effects

For periodic systems, the finite-size effects in the cond
tivity for merohedrally disorderedA3C60 are known to be
quite small. For example, periodic 43434 and 63636
systems yield almost indistinguishable results forsxx .10

However, data forsxy8 are only available for systems wit
open boundary conditions, for which one might anticipa
stronger finite-size effects. To gauge the finite-size a
boundary effects, in Fig. 3 we compare the results for
longitudinal conductivity in open and periodic merohed
system at various band fillings. It appears that the o
boundaries lead to a systematic underestimate of about 2
but the dependence onF is captured correctly. In Fig. 4, th
difference between the two boundary conditions is illustra
in more detail by plotting the frequency dependence ofsxx at
one particular value ofF. As one would expect, away from
v50 the curves are hardly distinguishable. With op

FIG. 2. Example of fittingsxy8 (h) to 1/(ph1q)2. This is a
merohedral system withF50.6.

FIG. 3. Extrapolated (h→0) sxx as a function of band filling,
for 63634 merohedral systems with periodic and open bou
aries.
11510
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boundaries the maximum in the Drude peak is pushed
finite frequency, and so the value at the maximum is less t
for periodic boundaries.

It is impossible to carry out a similar comparison forsxy8 .
However, considering the plots ofsxy8 (v) shown in Fig. 5, it
seems likely that open boundaries would again lead to s
tematic underestimates in the magnitude of the quantity,
thus the systematic errors associated with open bounda
may partially cancel in evaluatingRH .

E. Validation of the Hall effect calculation
for the square-lattice Anderson model

In order to validate our formalism for and implementatio
of the finite-cluster calculations ofsxy8 andRH , we applied
this method to the square lattice, single orbital Anderson
purity model at 2/3 filling. We considered systems up
50350, and we were careful to findD values~which turned
out to be 0.5<D<1) such that the systems were meso
copic, since the results for neither localized nor ballistic s
tems could be sensibly compared with the classical Dr
expression forRH . The results forRH were in the range 2.5
to 3â2/e, with roughly 30% uncertainties.~The data for the
two-dimensional systems have considerably larger statis
and procedural errors than for theA3C60 models.! This can
be compared with the classical Drude result of 1.5â2/e, and
with the value 0.989a2/e which was derived from Ong’s
construction27 together with the assumption that the scatt
ing rate is constant over the Fermi surface. We consider

-

FIG. 4. sxx(v) for merohedral systems at half filling with ope
and periodic boundary conditions. Here we seth50.01, rather than
carrying outh→0 extrapolations at every value ofv. Statistical
errors are roughly the width of the lines.

FIG. 5. sxy8 (v) for merohedral systems at several band filling
Here,h50.032. Statistical error bars are omitted for clarity.
9-5
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DAVID G. STEFFEN AND MARTIN P. GELFAND PHYSICAL REVIEW B69, 115109 ~2004!
agreement acceptable, and believe that the differences ca
ascribed to shortcomings of the latter theoretical approac

IV. RESULTS

A. Density of states

The density of states~DOS! can give one a rough idea o
the effect of disorder on electronic states, as detailed st
ture present in the DOS for clean systems will beco
washed out as disorder is introduced. We will present plot
DOS as a function of band fillingF rather than as a function
of energy, so the areas under DOS curves should no
equal. Since the actual value of the DOS coming out of th

calculations is not of particular interest~it will scale asê21),
the graphs will just show ‘‘arbitrary units’’ on the ordinate

The DOS for some Anderson and mixed systems
shown in Figs. 6 and 7, respectively. It is worth noting th
while Anderson disorder at the strengths considered h
largely washes out the prominent features in the cle
system DOS, adding Anderson disorder to a system w
merohedral disorder already present has hardly any effe
all on the shape of the DOS curve. The main effect of And
son disorder in the latter case is to broaden the band; Fi
shows how the bandwidth~which is 1ê, by definition, for a
merohedral system! depends onD for both Anderson and
mixed systems.

FIG. 6. Density of states as a function of band filling for Ande
son systems.

FIG. 7. Density of states as a function of band filling for seve
mixed systems:D50 ~solid!, D50.169 ~dashed!, and D50.338
~dotted!. The clean-system DOS~from Fig. 6! is shown for com-
parison as a solid line.
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B. Longitudinal conductivity and Matthiessen’s rule

The longitudinal conductivity is a necessary ingredient
the calculation ofRH , and there are some interesting resu
for the models we have explored. First, inspection of Figs
and 7 reveals that the conductivity in merohedral system
increasing over an interval in band filling where the dens
of states is decreasing slightly. This is not completely s
prising, as one does not expect the conductivity to be sim
proportional to the DOS since the scattering intensity c
depend onF as well, but it is a hint of things to come.

Let us now turn to Anderson systems. The correspond
results for conductivity as a function of band filling, for se
eral D values, are given in Fig. 9. We were interested
finding a value ofD which would give an Anderson system
with nearly the same conductivity as a merohedral system
that one could compare the effects of two distinct types
disorder of the same ‘‘strength’’ onRH , and apparentlyD
'0.2 is appropriate, at least forF'1/2. For the less strongly
disordered systems there is a dip insxx for F'2/3, corre-
sponding to the location of the minimum in the DOS. O
would expect thatsxx;1/D in these systems. That hold
quite well except for the smallest value ofD, where the
conductivity seems to be too small. This can be attributed
the finite size and open boundary conditions: asD is reduced
eventually the mean free path becomes comparable to
system size, and the width of the Drude peak is no lon
much greater than the finite-size induced peak frequenc
sxx(v).

l

FIG. 8. Bandwidth as a function of disorder parameterD for
both Anderson and mixed systems.

FIG. 9. sxx as a function of band filling for Anderson system
The curves are for disorder strengthsD50.085, 0.169, 0.253, and
0.338, from top to bottom.
9-6
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Finally, we present the results for mixed systems. T
plots of conductivity as a function of filling, Fig. 10, ar
similar to the merohedral case.

Since the models have two types of disorder, an obvi
question follows: does Matthiessen’s rule hold? Figure
shows that it does not, at least for the value ofD at which the
two types of disorder are roughly the same strength. T
violation of Matthiessen’s rule is quite striking. The devi
tion from Matthiessen’s rule shown in the figure isDr
5rmero1rAnd2rmixed; expressed as a fraction ofrmixed, this
is never less than 50% in the plot. In fact, the resistivity
mixed systems is, for the larger fillings, actuallylessthan the
resistivity for the corresponding Anderson systems, co
sponding to a fractional violation greater than 100%. Suc
reduction in resistivity with additional disorder takes place
half filling for sufficiently largeD, as seen in Fig. 12. The
significance of such grossly nonadditive resistivities will
discussed in the conclusions.

C. Transverse conductivity and Hall coefficient

For merohedral systems, the results of the calculati
and extrapolations forsxy8 andRH are given in Figs. 13 and
14, respectively. Note, most prominently, that there is no s
change as a function of band filling. This stands in contras
Fig. 2 from Erwin and Pickett,17 which shows a sign chang
near half filling in addition to other obvious structure inRH

FIG. 10. sxx as a function of band filling for mixed systems.

FIG. 11. Resistivity as a function of band filling for Anderso
merohedral, and mixed systems. The disorder parameter for An
son and mixed systems isD50.169. Error bars are omitted fo
clarity. Also plotted is the sum of the merohedral and Anders
resistivities. The difference between the sum curve and the m
system curve is the deviation from Matthiessen’s rule, labe
DMR.
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as a function of Fermi energy. These differences may no
too surprising, considering how much the DOS differs b
tween Anderson and merohedral systems, but it certainly
lates the conventional wisdom that disorder only weakly
fluences the low-field Hall effect. In contrast, the Ha
coefficient in Anderson systems~see Fig. 15! does exhibit
a sign change as a function of band filling. The value
half filling for low disorder, RH5(5.660.9)31029 m3/C,
may be compared with Erwin and Pickett’s17 result
7.031029 m3/C. With increasing disorder strength, on
finds only a weak dependence untilD exceeds 0.4, at which
point RH seems to rapidly decrease. This may reflect loc
ization at strong Anderson disorder; we did not investig
this regime closely.

Finally, we turn to the calculations for mixed system
which are most directly related to the original motivation f
this work. Figure 14 shows the dependences ofRH on filling
for two mixed systems. They are similar to the merohed
case, and show little of the structure seen in Anderson s
tems. The critical test of the hypothesis of Luet al. is pre-
sented in Fig. 16, which shows the Hall coefficient at h
filling as a function of Anderson disorder strength. There
little variation in RH , and certainly no sign change, even u
to D'(2/3)ê.

V. CONCLUSIONS

The deviations from Matthiessen’s rule seen in alkali m
als have led to some difficulty in the interpretation of low

er-

n
d

d

FIG. 12. Resistivity as a function of Anderson disorder stren
for mixed and Anderson systems at half filling. Deviations fro
Matthiessen’s rule are evident in that the curves are not sim
displaced vertically with respect to each other. As noted in the t
the resistivity for the cleanest Anderson system shown is likely
overestimate.

FIG. 13. sxy8 as a function of band filling for merohedral sys
tems.
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temperature conductivity data28 in those materials. The eno
mous violations of Matthiessen’s rule evident in the pres
calculations suggest that caution should be applied in
interpretation of conductivity data inA3C60 systems. While
extracting the electron-phonon coupling from hig
temperature resistivity data~as in Ref. 11! is probably safe,
since the residual resistivity is rather small compared to
high-temperature resistivity, extracting quantitative inform
tion from the low-temperatureT2 behavior~as in Refs. 29
and 30! may be more perilous.

Regarding the Hall effect, our results do not support
hypothesis presented by Luet al.13 to account for the ob-
served variation of the Hall conductance with lattice spac
in A3C60 systems. At half filling we findRH to be positive at
low D ~corresponding to small lattice constant! in mixed
systems, and with increasingD ~increasing lattice constant!
our calculations suggest no variation at all ofRH with D. It is
simply not the case that a generic model containing mero
dral disorder and some other kind of disorder will exhibit t
experimentally observed variations inRH as the strength o
the latter is varied.

How, then, to account for the discrepancies between
calculations and the behavior observed experimentally by
et al.? In other words, why doesRH behave as it does in
K3C60 and Rb3C60? There are several possibilities to co
sider.

First, the basic idea of Luet al. might be correct, excep
that the variation ofRH does not hold forgenericdisorder
which has strength increasing~relative to the bandwidth!
with a. Perhaps simple Anderson disorder lacks some cru

FIG. 14. Hall coefficient for merohedral (D50) and mixed sys-
tems as a function of band filling.

FIG. 15. Hall coefficient as a function of band filling for Ande
son systems with several values ofD. Error bars are only shown fo
D50.169, and are barely visible except forF50.4,0.5,0.6.
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property of the nonmerohedral disorder that is presen
A3C60 samples. This seems unlikely to us. It must be adm
ted, however, that we have found thatRH can have a strong
dependence on the type of disorder that is present: com
Figs. 14 and 15. Merohedral disorder is apparently strong
terms of its effects on the Hall coefficient, in a way th
Anderson disorder is not. This leads to another idea: perh
our treatment of orientational disorder is inadequate. We c
sidered only uncorrelated merohedral disorder, but there
theoretical analyses31,32 and experimental results33 which
suggest that there are correlations between orientation
neighboring molecules, and that they tend to have differ
orientations rather than the same one. It seems plausible
the degree of orientational correlations would have a mar
effect on RH , but it is not obvious that there should be
universal relationship between the lattice constant and
orientational correlations. This issue merits further explo
tion.

Second, perhaps the assumption that theRH versus a
curve reflectsT50 physics is faulty. This seems unlikely
Even at 50 K there is a substantial difference inRH between
K3C60 and Rb3C60, and there is no good reason to attribu
the observed behavior to thermal effects.

Third, other physics may be contributing in some fashi
to the Hall effect. Given their narrow conduction ban
widths, theA3C60 materials cannot be very far from a Mo
transition with increasinga ~see Sec. IV of Gunnarsson’
review34!, although as long as they are ‘‘ordinary metals’’ th
analysis of Schulz and Allen15 suggests that the electron
electron interactions should not significantly changeRH .
More dramatic effects of electron-electron and electro
phonon interactions, such as the intramolecular charge
proportionation proposed by Ceulemans, Chibotaru,
Cimpoesu,35 might account for the experimentalRH versusa
curve but the mechanism for such is hardly clear. Let us
say that the experimental results of Luet al.offer a challenge
to every theory of the low-energy electronic properties of
A3C60 materials.

Finally, let us make some observations concerning the
perimental results, our theoretical calculations, and one e
tronic structure calculation which are suggestive, but do
quite constitute an explanation of the data. It seems to
impossible to account for the experimental results in mod
containing uncorrelated merohedral disorder, with or witho
Anderson disorder: varying eitherD or F ~the latter being

FIG. 16. Hall coefficient for mixed systems at half filling as
function of Anderson disorder parameterD.
9-8
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unphysical, within the usual picture! cannot change the sig
of RH , which remains stubbornly positive, although less
magnitude and much closer to the experimental results a
largest values ofa than one obtains for Anderson systems
half filling. However, if one allowsF to vary with a, then
Anderson systems withF in the range 0.3–0.4 do give th
hoped-for results. This is oddly coincidental with an appro
mate Hartree-Fock calculation by Schulte and Bo¨hm,36 who
claim that the net charge transfer from the cations in K3C60
amounts to about 1.5 electrons per molecule~which we
might associate withF50.25), and that there is more charg
transfer from the octahedral cations~leading one to expec
greater charge transfer asa is increased!. One cannot take
this coincidence at face value. If there really is incompl
charge transfer, then it would be inaccurate to ignore
contribution of the outer alkalis orbitals to the conduction
band states, and one would need to include them on the s
footing as the molecular orbitals in a tight-binding mod
But suppose, for the sake of argument, that one could ign
the alkali orbitals except for their effect onF—one would
also have to worry about the implications of this picture
other electronic properties. At the levels of Anderson dis
der which would be needed to account for the residual re
tivity, the density of states has little dependence onF in the
.J
d

.H
re

.C
.

u

g

F

.

Li

s.

hy
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relevant range, so the universality of the density of states
a function of lattice constant~and the implications for super
conductivity, magnetic resonance, and so on! would hold just
as well as in the conventional picture. But it bears repeat
that this argument is not based on a consistent model of
electronic structure inA3C60.

In summary, we have implemented direct evaluation
the Kubo-Greenwood formula on finite-cluster tight-bindin
models for the low-field transverse conductivity. Th
method has been applied to a large set of models inspire
the A3C60 materials. We have found that the interplay
Anderson disorder and merohedral disorder is, by itself,
able to account for the remarkable experimental results of
et al. concerning the Hall coefficient in K3C60 and Rb3C60.
We have also encountered enormous deviations from M
thiessen’s rule, which may confound the analysis of the te
perature dependence of the conductivity in these materia
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