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Effective interaction in two-dimensional electron systems

Takeshi Suwa and Kazuo Takayanagi
Department of Physics, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan

Enrico Lipparini
Department of Physics, University of Trento, Povo(Trento) 38050, Italy
(Received 27 December 2002; revised manuscript received 10 November 2003; published 10 March 2004

A fully microscopic derivation is proposed for an effective interaction operator between electrons in the
two-dimensional electron ga@DEG), which represents multiple-scattering processes in the medium. The
obtained interaction features short-range behaviors between electrons, and is presented in a simple form which
allows applications in various systems. Short-range correlation in the 2DEG is discussed in detail in terms of
the effective interaction with special emphasis on the nonlocal aspect of the correlation.
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[. INTRODUCTION zero-range effective interaction of Skyrme-ty3&he calcu-
lated interaction is shown to be applicable to the description
Recent developments of experimental devicabowed of the ground and low-lying excited states. In Sec. Il we
one to obtain plenty of information on static as well as dy-give numerical results and discussions. All the parameters of
namic properties of various finite and bulk two-dimensionalthe effective interaction are given explicitly as functions of
electron systems. At the same time much effort has beefe Wigner-Seitz parameteg. The properties of the effec-
devoted to theoretical investigations of these systems. tive interaction are discussed in detail in connection with the
Ground-state properties of the bulk systems, especialljocal and nonlocal features of the correlation effects and also
the correlation energies, have been studied for a long time bYith the competition between thee andp-wave correlations.
a variety of many-body theories, including random-phase apYVe also estimate the importance of the three-body correla-
proximation(RPA),? perturbation theorylocal-field theory?  tion compared to the two-body correlation. Finally, the short-
coupled-cluster theoyyquantum kinetic theor§,and ladder ~ range correlation is discussed in terms of the pair-correlation
approximatior’. The importance of the short-range correla- functiong(r) and the correlation energy. We also compare
tion has been repeatedly emphasized in these different the§€ exact and the angle-averaged Pauli operators using these
retical schemes, which is now realized also in the study oPhysical quantities. In Sec. IV we give a brief summary.
experimentally accessible phenoména. this situation we
believe that it is important to investigate the short-range cortl. EFFECTIVE ELECTRON-ELECTRON INTERACTION

relation directly by realizing it as an effective interaction o ) .
operator. The concept of the effective interaction has been widely

In this paper we construct an effective electron-electrortSed in nuclear physics, because it significantly _simplifies the
interaction which takes into account the effect of the shortd€scription of many-body systems by transferring a part of
range correlations. On one hand, our work is based on thi1® complexities from the wave function to the Hamiltonian.
analysis of the multiple-scattering processes in the mediun? this section we derive an effective interaction which rep-
and is similar in concept to that of Nagano, Singwi, angresents the short range correlation in the tw_o_—d|men3|onal
Ohnishi/ which calculated the correlation energy by sum-€l€ctron gas(2DEG) with a neutralizing positive back-
ming up all the ladder processes. On the other hand, od#found. We adopt the atomic units whefre=me=e(minus
method is closely related to the derivation of an effective®f €lectron charge=1. The density of the system IS speci-
interaction operator, which is a well-known concept in thefied by the Wigner-Seitz parameteg by 1/p=mrg. Our
field of nuclear physic&;*? and has been applied to three- System has no spin polarization, and the Fermi momentum is
dimensional(3D) electron system&:14 given by k;= \/Elrs. In the following we suppress the spin

It is well known that the ladder processes are expressed agdices for simplicity.
the G operator defined by the Bethe-Goldstone equation. It
is, however, a very long way to express Beoperator as a A. g matrix
tractable two-body interaction operator, which is convention-

ally given by a certain prescription which has only a vague In or;je: to Cotrr]]StrtJCt at)tv(\j/o—bodyle?ectlvg |tn teractu?n, twe
physical basis with no way of checking its validify. concentrate on the fwo-body correlations between electrons

In this work, we propose a fully microscopic derivation of that are represented by multiple-scat'gering processes in the
an effective interaction operator from the Bethe—GoIdstonéne.d'ur.n' These processes are described byGhm%ﬁator
equation with the newly introduced exact Pauli operator, anef\'h":h is the solution to the Bethe-Goldstone equatort,
examine the short-range correlation directly.

The plan of the work is the following. In Sec. Il we ex- G=V+V Q G, (1)
plain in detail the derivation of the momentum-dependent w—Ho
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P=p1+p1 S(ry—rp)exp —ury)/ry
I PR
ki=3(p1- p1) in the (relative) coordinate space. Here we have introduced a
Py p; cutoff parametem(>0) which can be chosen to be small
_ . - X enough (typically <0.1k) not to affect our final results.
f \ == t Ve Then we can express the matrix element of the Coulomb
P2 P2 v interaction in momentum space as
k2=%(p2- p2) o  ema
P =p2+p2 (keVIkp)= > (=)™
Ny,Np=—= 2

FIG. 1. Graphical representation of E4$) and(2). The dashed

lines represent the bare Coulomb interaction V, gnsl the correc- - —iny6,
tion due to the multiple-scattering processes. The relative momenta X<k1n1|V|k2n2>| \/ﬂ ) )

for the final and the initial states are given ky=(p,—p;)/2 and
k,=(p,—p5)/2, respectively. The center-of-mass momentiin where the partial-wave components are calculated as

=p,+p;=p.+p; is a conserved quantity.

A k%"‘ k%'ﬁ‘ /.LZ
Where_w is the_ ;tarting energy of the twp interacting glec- <k1n1|V|k2”2>:5n1n2 \/@anll_llz 2k.K, '
trons in the initial state an@® is the Pauli operator which (4)
excludes all the occupied single-particle levels from the in- _ _
termediate states of the multiple-scattering processes. ~ With the Legendre function of the second kit .

Because it is convenient for many applications to treat the Next, the partial-wave decomposition of the Pauli opera-
first-order termV separately, we define the second- andtor, which has an explicit dependence on the center-of-mass
higher-order terms of th& operator as an effective interac- momentumP, is given by
tion and refer to as thg matrix hereafter as shown in Fig. 1.

i ; ; P
Then theg matrix in momentum space is described by (k| Qp|ky) = (27)28(ky — ky) 0 ‘§+k1 —kf)
Q
k,P|g|k,P)=(k,P|V V|k,P
<1|9|2><1|w_H0|2> xe’g—kl—kf)
Q
+(kePIV = IkzP> ) 5(k1 K,) en
=(2m)? > (i)
whereP is the center-of-mass momentum of the two inter- f1n2 ‘/ﬁ
acting particles, and; andk, are the final and the initial e in2bs
relative momenta as shown in Fig. 1, andis taken to be X (N1|Qp(kq)|ny)im ) (5)
P2/4+ k§ so that the ket vector is on its energy shell. \/Z
Note that theg matrix represents an attractive interaction, yhere
which is understood as follows. The multiple-scattering pro-
cesses induce distortions in the uncorrelated many-bodgn,|Qp(k)|n,)
wave function in order to reduce the repulsive potential be-
tween electrons. Thg matrix translates this effect into an S . K <‘E—k‘
effective interaction for uncorrelated states, and therefore it M2 ™2
is necessarily an attractive interaction. ={ 14(=1)N 2y sinNy =) p2
5 m Ny 5k skfs\/ZJrkz
B. Partial-wave decomposition
0, otherwise.

Here we present how to solve E@) using the partial-
wave decomposition for the 2D systéhto fix the notation. (6)
Becagse the cente_r of-mass momentinis a cqnserved In the above expression, we have defined
guantity, the solution to EQ.(2) may be written as
(ki1|gp|ks). We interpretgp as an effective interaction which p2 .
operates on the relative wave function with the fijed 7 Tk

Now we perform the partial-wave decomposition of y=sin\ ————], N=n;—n,, 7

; ; ; Pk
Eq. (2 by using the expansion exf(r)
=3 __.i"Jn(kr)exdin(6—¢)] of the 2D plane wave, and itis assumed that $in/Ny=1 for N=0.

wherek=(k, 8) andr=(r,¢), andJ, is the Bessel function. Finally we expand thg-matrix elements in the same way

The anglesd and ¢ are measured from the fixed direction as Eq.(3) for V. With all the partial-wave decompositions in

of P. the above, Eq(2) reduces to the following one-dimensional
The Coulomb interaction is given by integral equation:
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» kdk It is, however, of finite range and nondiagonal with respect to
(kinq|gplkon,) = > f ———(kyna|V[kn) the initial and the final relative coordinatesandr; (nonlo-
nn’ J0 (27) cal interaction, which is not very useful for practical appli-
(n|Qp(k)|n") cations. In order to obtain a usable interaction, we propose
X P —=(kn'|V[k,n,) two new steps. The first step could be referred to as a sepa-
ke—K*+i7 rable approximation which we now explain and justify. The
second step is an expansion around a zero-range potential
> f = kdk (ko |VIKn) that will be introduced in the following section.
i Jo (2m)2 S In our separable approximation, we assume that the
(nlos (ol g-ma;crix eIerInenlts of E(c{.)g) ce(ljn ble aplproxir(nz;ted t?y”a prod-
njQp(K)iN , uct of a nonlocal panti(p) and a local part(q) as follows:
X K2t iy (kn'|gplkanz),  (8) 1
" (kilglkz)=u(z |k + k) v (|ks—ko[) =u(p)v(q), (10)
which can be solved by the matrix inversion mettioéro- . o .
vided that the two particles in the initial states are below thevi/hire IlNe _Fs_ve mtrodu_ced— p) —|k1‘;kz|/2 adnd((jq— d]
Fermi surface, the energy denominator of Ej.cannot van- =|ki—k,|. This expression assumes that fhandq depen-
ish, and therefore thg-matrix elements are real and satisfy dence; of t.h@ matrix is separable Note that the separable_ .
(KyN1lGp| ko) = (ks — Ny |gp|Ko— ). approxmatlon in the uslléjal sense assumes the separability
In order to remove the dependence Rrof the g-matrix with respect tdk, _and k,.™® Taking the Fo_urle_:r transform _of
elements and to obtain an effective interaction as a functior|15q' (10), we obtain the separable potential in the coordinate

only of the relative coordinates, we fix in E(?)_the magni- space-
tude of the center-of-mass momentumRss /2k; because ~ o WYL T
of the following reasons. FirsP=/2k; is the average for (ralglray=u(|ry—rv(z[ri+ra))=u(s)v(r), (12)

all the two-particle states below the Fermi level with vanish-wheres=|g=|r,;—r,| andr =|r|=|r,+r,|/2 are introduced.
ing relative momentum, which shall be shown later to bejy ¢case ofu(|r,—ry|) < 8(r;—r,), the above interaction re-
relevant for the derivation of the effective interaction. Sec-qyces to the familiar two-body local interaction which is
ond, we have found that the dependence of the matrix e'jSagonaI with respect to the relative coordinates.
ment(k,|gp|kz) on P is moderate, and also that its average | the separable approximation(q) and u(p) of Eq.
over P can be approximated well by its value Rt=y2k¢.  (10) are calculated in the following way. First, we remove
Next, we take the average over the directiorPdd make the the ambiguity in the normalization @f(q) andu(p) defined
resultant interaction to be rotationally invariant. After thesein Eq. (10) by requiring u(0)=1. Then by using the

manipulations, we obtain the following matrix, which is  forward- and the backward-scattering kinematics in .

rotationally invariant and is a function & andk, only: and (10), we obtain
ki|glks)= ! i k k 0,— 0 9 ot 1 i 12
(kilglka)= 2w 2 en(kin|glkzn)cosn(61—6,), (9) u(p)= 0(0) 27 & enx{Pnlglpn), (12)
wheree,=1 or 2 according tam=0 orn#0. 1= q q
At the end, we make a remark on the Pauli operator. Note o(q)=— > en(—l)n<—n g —n>. (13
that the exact Pauli operator of E@)—which we have in- 27 =0 2 2

troduced in the present work—is not rotationally invariant,
and therefore couples different angular momentas can be
seen in Eq(8). In the market, however, the angle-average
Pauli operator is widely used;'® which is obtained by re-

In Fig. 2 we plot how each partial wave contributes in
qus.(lZ) and(13) for p andq up to several times the Fermi
momentum in order to show the global structure of the cal-

taining only then;=n, terms in the exact Pauli operator of culatllon forrs=5. It can 'be' seen thgt al thg partial-wave
Eq. (6), and therefore neglects the couplings between di1’“fer-00nt”bunons show a rapid increase n m_agmtudg aropind
ent partial waves. The difference between the exact and thg Xr for u(p) and g~2k; for v(q). This is explained as
angle-averaged Pauli operators is discussed in-Ref.the ~ [ollows. As p increases toward, both of the interacting
medium-energy nucleon scatterings off nuclei. They hav artlclgs come close to t_he Ferm| level. Thesen particles can
found that the difference is small, which originates most e excited from the Fermi sea W|th alarge amphtud_e because
probably from the short-range nature of the nucleon-nucleo@N!y @ small momentum transfer is necessary, which results
interaction. We shall see, however, that a sizable differenc) the rapid increase ofpn| g |pn) for p~k;. It is clear

can be produced by these two Pauli operators in the case that the same argument explains the increase of each partial-
the 2DEG. wave component around~2k; for v(q). The numerical

results show also that(p) in the rangep=<0.6k; andv(q)

in the rangeq=<1.2; can be reproduced only by tilseandp

waves within a error of 5% forg=<20. This derives from the
By taking the Fourier transform of E9), we may arrive  fact that(kn|g|kn)o<k?" for smallk, as can be easily shown

at the effective interaction in the coordinate spécég|r,). by examining the second-order term of E8). The above

C. Separable potential
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7F TABLE I. x? parameters for the goodness of the separable po-
6l  ulp)xi/e tential fitting atrg=1, 5, 10, and 20 fo®= 6,— 6, being 0,7/4,
5 s w2, 3m7/4, andr.
u(p) 41 0 rs=1 rs=5 rs=10 rs=20
(a.u) 3} 0 0.0 0.0 0.0 0.0
2t 4 0.00227 0.109 0.856 4.30
14 é ] /2 0.0209 0.0190 0.0433 0.414
0' - ‘_‘__.,_ur._ pas 2 2 A (—n=8 3ml4 0.0115 0.0269 0.0256 0.0112
V] 1 2 K 3 4 5} T 0.0 0.0 0.0 0.0
P/K
@)
5 + D_ n=3 . . .
10f Us= o From all these inspections, we conclude thatghaatrix
n<t * o ,, ‘\”=5 element(k,|g|k,) is approximated in an excellent way by
S5 \ O o ,a %07 ] the separable potentialp)v(q) for the particles below the
v(g) 0 P, W=~ - Fermi surface in the rangg=<20.
(a.u)_5 v(q\ 5% =8
%
10f ~ +n=6 D. Skyrme potential
5 n=0/ n=o"* = “n=4 The separable potential(p)v(g) in momentum space
e 3 3 % 5 definesu(s)v(r) of Eq. (11) in coordinate space. Here we
®) ala show that U(s)v(r) assumes a very simple form
FIG. 2. (Color online Partial-wave contributions ta(p) and (momentum-éjependent ~ Zero-range Interaction of
v(q) of Egs.(12) and(13) atr,=>5 in atomic unit. Skyrme-typé®) for the particles below the Fermi level.

The method we adopt here is closely related to the

density-matrix expansidft?® used in the field of nuclear

observation shows that most of the correlations can be despysics The most microscopic derivation of the Skyrme in-
scribed by thes- and p-wave processes for the particles be- teraction from theG operator is presented in Ref. 20, which

low the Fermi level. o __treats the medium-energy proton scattering off nuclei. They
From the figure, we Ciln eftract the following information first expand the nonlocalone-body density matrix in the
on the separable potentia(s)v(r) in coordinate space. The target nucleus to construct &mne-body optical potential for
figure indicates thati(p) can be expressed as a differencethe projectile proton by folding the nonloc& operator of
between a slowly decreasing function which dominates théinite range. Then they can define the zero-range effective
large p region and a rapidly decreasing functionexp  nucleon-nucleon interaction in such a way that it gives the
(—p2/kf2) which controls the smalb behaviors. This observa- same optical potential by the folding procedure. Their
tion shows that the nonlocal pau(s) in coordinate space Method obviously assumes the zero rangeness at the final
has a rangea,~1/k;. Using a similar argument, we can Stage, which may be justified in ad hocmanner for the
recognize thab (q) behaves as-exp(—g%/2k?) in the small ~ nucleon-nucleon effective potential.

q region, and therefore that the local par) in coordinate Though their procedure worked out well, we propose a

space has a range~ 1/2; . Note that the above argument different method, f[rst because we are not treating a high-
) : energy electron which corresponds to the projectile proton of
is valid for any value of .

oo . . several hundred MeV, and second because we want a direct
Now we are to justify the separable approximation. In

: , and fully microscopic definition of the effective interaction
g:%?;;?g%&ogrizog;gz:t? E?gﬁli p\(/)vteer;it:;(:ﬂ))g ﬁaqezrg::ettz ?s without resorting to the one-bodpptical) potential.
for the goodness of the se[;arabzle' potentiai(fitting atl, 5 The matrix element of they ma'grix between arbitrary .
10 and 20 in Table I. Compari d fs ' 1. statedy) and|¢) can be expressed in the separable approxi-
, . parisons are made for the kmemation as
matics withk;=k,=k=<k;/\/2 and 6=6,—6, = 0, /4,
/2, 3mw/4, andw. This range ok guarantees that there is no
real scattering. From the table, we recognize that the sepa-
rable potential reproduces tlgematrix elements with high <1p|g|¢>:f drodryg*
precision for any kinematics in the rangge<20. Especially
theg-matrix elements fof=0, = are used to calculaig(p)
andv(qg), and hence can be reproduced by the separable zf dry* (r)g(r,V)e(r). (14
potential exactly. The range of the validity,<20, of the
separable potential originates from the rapidly increasing er-
ror aroundr¢~20 for the extreme kinematids~ kf/\/i, 0 Here we have translated the separafslenloca) potential
= /4. into the local, but momentum-dependent interaction

~ o~ S
U(s)o(nel -3

s
r+ =
2

115105-4



EFFECTIVE INTERACTION IN TWO-DIMENSIONA. . .. PHYSICAL REVIEW B 69, 115105 (2004

s _\. . s . TABLE II. Interaction strengthsy, 8, and+y in atomic unit of
g(r,V)= f dsex;{z . V) u(s)v(r)ex;{ 5 V), the effective interactioyg(r,V) of Eq. (16).
15
(19 Is a B Y
e B o e fpe 01 010902107 O1smiocio’ —0gaaeacio
) _ —1 -2 _ —3
maximum value thaW takes on is of the order df; for 0'2 78'2283$ igﬂ, 8'é2§3i 18,2 78'igggz 18,2
particles in the ground and low-lying excited states. Second” ' o A o ' .
we have seen in the preceding section that the range of tl"f[e —0.78034<10 0.12478<10 —0.59877%<10
nonlocal partu(s) in coordinate space is given by 8 ~043625¢10° " 054584107 —0.37789¢10"7
; . P u —0.88408<10"* 0.2 10"  —0.2405810"2
~1/k; . This means thafV-s/2|<1 is satisfied in Eq(15), io _g gisgz 18+2 gzgggi 18+3 _8 2722§ 18*3
and therefore we can evaluate H45) by expanding the c _0'34535< 102 0'9234% 1073 _0'107%( 10+
exponential. Note that the above procedure is different front ' o : 4 ' .
20 —0.48114x 10 0.22588 10 —0.2818% 10

the density-matrix expansiot?’ in that it is an expansion
with respect to the nonlocality for the relative coordinate of
the initial and the final wave functions. Using a similar ar-

gument based on the fact that the rangeuvgf) is a,

The matrix element of.(r,V) in momentum space is

~ given by
~1/2;, we can expand(r) around a zero-range interac-
tion. By co_llectlng all the terms of the expansion up to sec- (Ka|Gsnl ko) = a—,B(k§+ k§)+2ykl- ks . (20)
ond order inV, we arrive at the following final expression
for the effective interaction: Let us compare Eq20) with the originalg-matrix elements
- ., _ . (ki|glks) for rg=20, using the same kinematics as for the
Uskn 1, V) =ad(r)+ B{V=3(r)+ &6(r) V3 +2yV 5(r)-V1-6) separable potential. We have found that the simple effective
s ’ 2 -
( interactiongg(r,V) represents the originai-matrix ele
Here the coefficients, 8, andy are given by ments(k,|g|k,) as a whole at a satisfactory level. This is
understandable because the separable poterfiigb (q) in
a=vg, B=1voUt+iVy, Y=—1is0oUpt V2, the relevant range can be reproduced mostly bysthad p

(A7) waves only.
, ~ ~ . To summarize, we have presented a fully microscopic
in terms of the moments; andv; of u(s) andv(r) defined  gerivation of the effective interaction operatggq{r,V),

by which is expressed in terms of the three parameters anly (
. B, and y), and represents the multiple-scattering processes
uizzﬂf sdséu(s), i=02,..., (18)  in the medium very well in the range=<20.
0
- Ill. RESULTS AND DISCUSSION
= iy =
o 2’7TJO rdrriv(r), j=0,2,.... (19 A. Skyrme potential

The Skyrme-type interactiogg{r,V) of Eq. (16) char-
gcterizes the short-range correlation in terms of ¢hand
p-wave scattering processes, and is convenient also to study
the momentum dependence of the correlation.

We present the numerical results for the coefficients,
andvy in Table Il for several values afs, and also in Fig. 3
Up=u(0)=1, wve=0(0), in the range 6<ry=<10. Let' us 'examine th:?s dependences
of @, B, andy. As shown in Fig. 3, numerical results show
that they can be reproduced qualitatively by

The effective interaction of Eq.16) is a zero-range
momentum-dependent Skyrme-type interaction which ha
been extensively used in nuclear physitt’ The moments
u; ando; can be calculated numerically from the potential in
momentum space as

d? d?
Up=—2—U(p)| , vz2=—2—v(q)
dp? p=0 dg? 4=0 a~a(rg=1)xrl°>~-0.8rk>,
The above expressions, together with E¢k2) and (13),
show that we need only the diagongimatrix elements B~B(rs=1)xr3*~+0.1r3*, (21)
(kn|g|kn) in the low-energy limit k~0) to obtain the ef-
fective interactiongg{(r,V) of Eq. (16). Let us recall that y~y(re=1)Xrd’~-0.06 r37,

(kn|g|kn)ok?" for small k, which shows that only the

=0,1 terms contribute to the above coefficients. This is dn order to explain the above; dependences, we examine
direct consequence of the fact that the first two terms on théhe g-matrix elementgkn|g|kn) for n=0 and 1 for small
right-hand side(rhs of Eq. (16) represent theswave (0 values ofk, which is given by the following expansion using
=0) interaction and the third thewave (n=1) interaction. «, 8, andvy:
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FIG. 3. (Color onling Coefficientsa, 8 and y of the effective
interactiongg(r, V) in atomic unit. The dotted lines denoted jy
square stand for the formulé®4), (25) and(26). The dotted-dashed
lines represent the simple formulas in Eg1). «®, B, andy?
represent the second-order results of E2f). Solid crossesB,¢

and vy, represent the calculation without the nonlocal effect, ob-

tained by settingi,=0.

a—2Bk% n=0

'ykz, n=1. (22

1
o (knlglkn)=

By looking into the second-orddfeading term of Eq.(8)
for small values ofk, and by comparing it with the above
expression, we obtain

a@~—r2  pg@~02r H@P~-007rs, (23

wherea®, p?, andy(® are the second-order results for

PHYSICAL REVIEW B 69, 115105 (2004

TABLE lll. Parameters of the fitting formulag4), (25), and
(26) for the strengthsy, B, andy in atomic unit.

a ~1.1533 b, 024796 ¢,  —0.071295
a, 0.25643 b,  0.076771 ¢, 0.21673
as 050131 b, 093833 0.20596
a, 0.094028 b,  0.038957 «c, 0.021031

negative-energy denominator, the convergent resultsyfor
B, and y of Eq. (21) show slightly weaker dependences
than those in Eq(23).

We recognize thaB andy grow much more rapidly than
a with decreasing density. Note that tifeand y terms in
Osknl 1, V) are momentum dependent, and express the inter-
action which put emphasis on high-momentum components
of the relative wave function. Then it is naturally understood
that the increasing importance of the short-range correlation
with decreasing density manifests itself in the rapidly grow-
ing strengthsB and .

If we look into 8 and y more closely, we recognize that
they satisfyB~ — 3y in the smallrg region as indicated by
the second-order results, and also that 3 increases faster
than Bocr'j‘" in the largerg regime, showing explicitly the
growing importance of the-wave contribution with increas-
ing rs.

In order to show the strong nonlocal aspect of the effec-
tive interaction, we have present@,. and y,,. that are
calculated without the nonlocality by settingp)=1 (u,
=0=B10c= Yioc=7U2) in Fig. 3. We can see clearly from
the figure that the momentum-dependent tegnand y of
the effective interaction represent mostly the effect of the
nonlocality of theg matrix.

Finally, we fita, B, andy by the y-square method in the
following form:

4 1+ayx
a=aX y (24)
1+ a x+agx®+axe
B—bx® 1+byx (25
=pb,X ,
1+ byx+ bax+ b3
1+coX
y=c® : , (26)
1+ CoX+ Cax2+Cyx°

wherex= .. All the coefficients in the above expressions
are given in Table Ill. They are obtained using 15 data points
for rg ranging from 0.1 to 20. The above formulas reproduce
the original data very well, as shown by thgif parameters
1.23x10 4, 7.09<10 4, and 3.9% 10 © for «, B, andy,
respectively.

The above expressions assume thatghmeatrix vanishes
asr,—0, because the Pauli operator in the rhs of &j.

B, andvy, respectively. In Fig. 3 we can see that the secondsuppresses all the multiple-scattering processes in the high-
order terms reproduce qualitative behaviorsaofB, andy  density limit. We also notice that the effective interaction
especially in the smalts region. Because an iterative solu- becomes significantly larger in the low-density limit. This is
tion to Eq. (8) makes an alternate series because of theinderstandable because tipanatrix in this limit describes
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the Coulomb scattering in free space which gives a divergent 1.2
T matrix in the low-energy limit’
At the end of this subsection, let us think of an implica-

tion of the above interaction in real 2D systems such as 0.8

guantum dots. It is straightforward to show the expression, “’0(%6 =10

1/m* =1-p(B—37v)/2+exchange contribution, for the ef- '

fective masan* in the Brueckner-Hartree-FodlBHF) cal- 0.4 \rs=20

culation in the same way as for 3D systethhe HF theory 0.2 a0

takes into account only the exchange contribution that re-

duces the effective mass, which in turn makes large energy 05 05 1 15 5 55
spacings around the Fermi level. On the other hand, in the r/a

BHF calculation, the short-range correlation realized bygthe 5 4. (Color online@ The Bethe-Goldstone wave function
matrix tends to (_:ancel the exchange contrl_butlon to reducg, (1) for an swave pair withP= 2k, (center-of-mass momen-
the energy spacings of the HF theory, as is clear from th@um) and k=0 (relative momentum in the asymptotic regjon
above expression. This implies, for example, that the systeror several values of,. The crossover point ofy(r) with the
is softer in the BHF theory than in the HF theory, as is thefree wave functionJy(0)=1 (note kr=0) defines the healing
case for 3D cluster¥ We expect, therefore, that the polariz- distanceh.

ability, for example, would be an appropriate observable to

discuss the effects of thg matrix. C. Healing property

The g matrix treats only the two-body correlation, and the
three- or many-body dynamical correlations are not taken

B. Separable potential into account. Here we examine the importance of the three-
Here we examine the properties of the separable potenti@ody correlation by investigating the wave function in the
u(s)v(r) in the coordinate space, which features the Iocalmed'um'

It is well known that the two-body wave functiop for
e relative motion in the medium can be obtained from Eq.
(1) as

and nonlocal aspects of the short-range correlation. As state[H

before, numerical results show thatp)v(q) can be mostly

reproduced only by theandp waves for the particles below

the Fermi level. This allows us to discuss the separable po-

tential in terms of thes- and p-wave contributions. =+
Let us start with the second momeart=2(8+ ) of the

local partv (r), which comes out of the cancellation betweenwhere the first terng stands for the uncorrelated plane wave
thesandp waves. Whiler s is small, the lowest-order results, and the second term represents the distortiog ivhich is

B~ —3v, of Eq.(23) holds, and therefore, is positive. As  localized around the origin in the relative coordinate space
rs increases, thp-wave termy grows faster than thewave  due to the Pauli operator. This means that the relative wave
term 8, ultimately to makev, negative around,~8.5, and  function ¢ approaches the uncorrelated plane wavéor
thenv, decreases rapidly. Let us recall that the second molarge separations, which is known as trealingproperty of

= L 2223
mentu, puts more stress on the long-range pai f) than (e two-body wave function in the mediufh’ o
the zeroth moment, which is negative. Then the above It is straightforward to decompose the above equation into

~ ) . . artial waves as in Sec. Il to obtain tlmh partial-wave
dependence af, means thav(r) is attractive at short dis- P P

. . componenty,(r). It is conventional to define the healing
tances, but behaves asa repulsive potential for large SePAGstanceh (for the s wave as the first crossover point of
tions in the small ¢ region.

Next, we come to the second momentof the nonlocal Yo(r) and the free wave, which is shown in Fig. 4 for several
7 . . . values ofrs. Then the ratio l¢/d)? measures the size of the
partu(s). We can easily realize that the magnitudewf \youndof the wave functiong,(r) in 2D systems, where
=8(B—)/vo is a strongly increasing function af, be-  —23 (1/p=7a?) is the average interparticle distance.
causeB and y contribute coherently, in contrast with the  Because the three-body correlation becomes important
case ofv,. This means that the nonlocal aspect featured byyhen three particles come to the area of the wound simulta-
u, of the short-range correlations grows much faster Withneously, it gives a correction of the order df/@)* to the
increasingr s than the local counterpart characterizeduhy  two-body correlatiorf>?which is given in Table IV. I3D)

Let us look into the momentum dependence ofnyclear systems, the corresponding ratio is estimated to be
Uskn(1, V). Forrg=10, thep-wave termy dominates over (h/d)®~0.15, which is believed to justify the Brueckner
the swave term 8. Then we obtainv,=2y and Uvo  theory as a good starting point to describe nuclear
=—8y, and can drop th@ term ings.(r,V) of Eq. (16).  system$??*From Table IV, we notice thath{d)*~0.08 for
In this case, the momentum dependenceQf(r,V) origi-  r =1, and therefore that the two-body correlation is domi-
nates solely from the nonlocal panfs) of the separable nant. As the density decreases, the wound of the wave func-
potential, and stands only for tipewave scattering processes tion becomes larger, and the ratib/¢)* shows a rapid in-
in the medium. crease with decreasing density fog=20, giving (h/d)*

Q
v 20 (27)
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TABLE IV. Healing properties for several values rfshown in 1.2
Fig. 4. The ratio h/d)* is a measure of the three-body correlation
compared with the two-body correlation, whete 2a is the aver-
age interparticle distance.

re h/d (h/d)*
1 0.53 0.08
5 0.61 0.14
10 0.65 0.18
20 0.71 0.26
40 0.78 0.38

~0.26 atr ;=20 and f/d)*~0.38 atr ;=40. We then realize
that the two-body correlation alone is not in control of the
system any more forg=20, and the many-body correlation
becomes important. From the standpoint of tipenatrix
theory, such many-body correlations are to be incorporated
explicitly in the wave function of a many-body system inter-
acting via theg matrix.

From the above observation, we conclude that the two-
body correlation loses its dominance around- 20, where !
the separable potential was found to cease to be an excellent (b) r/a
approximation in Sec. Il.

D. Pair-correlation function

In order to clarify the physics represented by thmatrix B8
theory from another point of view, we calculate the pair- g(r) 0.6}
correlation function g(r) from the Bethe-Goldstone
equation*® In Fig. 5, we plotg(r) of the g-matrix theory 0.4¢
together with the RPA and the quantum Monte C&€dC) 02l
calculations forg=1,5, and 10. We immediately realize that

g(r) of the g-matrix theory approaches the QMC values in 0
the limitr — 0, while the RPA fails. This shows explicitly the )
importance of the ladder processes at short distances.

The difference between tlggematrix theory and the QMC 1.2
should be attributed to the correlations beyond the ladder
processes, which could be expressed, in principle, by three-

or many-body interactions. Let us look into the caser of 0.8

=1. The figure shows that the ladder processes reproduce

the QMC results very well fors=1 in the whole range aof. 9 (ro.6

In the case of ;=5, the figure indicates that the ladder pro- 0.4 gematrix

cesses could be supplemented by the RPA-type processes in .

the ranger =a. The figure forr ;=10 shows that the corre- 0.2 (an le?;\‘/’:‘rt:xeg;éai) 1
lations beyond the ladder processes are not under the control 0 d g

of the RPA any more, and also that the difference between r)a "

the g-matrix theory and the QMC becomes sizable as the (d)

density decreases especially foea. This means that the

many-body correlat!ons beyond th.e laddend the RPA g;,(r) forrg=1,5, and 10. The unit of length &which is defined
processes become important feea in the larger s regime. by the densityp as 1p=ra’. The QMC results for.=1,10 and

Let us consider how to describe low-lying excited states. _ 5 are taken from Refs. 26 and 27, respectively. Note that the
of the 2DEG using the effective interaction derived from therpa gives negative values in the smaltegion.

g matrix. The problem is how to treat the dynamical corre-

lations beyond the ladder processes incorporated bygthe large separations. In the largeregion, on the other hand, it
matrix. The above observation suggests that a hybrid fdelis strongly indicated that we need to go beyond the RPA
might work well in the smallrg region, which interpolates description of the state vector, which may be the second RPA
the g-matrix theory for small separations and the RPA for(Ref. 24 or the extended RPA

FIG. 5. (Color onling Pair-correlation functionsg(r) and
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three-body correlationh{d)*, in Table IV. The discrepancy
between the QMC and E@28) could be removed, in prin-
ciple, if we can include an effective interaction in E@8)
whose origin is the many-body correlation, as discussed in
the preceding section. It is, however, beyond the scope of the
present work.

In the table we have also presented the results foZg).
with the angle-averaged Pauli operatorK gScmaa- We can
realize that the difference between the exact and the angle-
averaged Pauli operators becomes sizable with decreasing
density. The fact tha{gsymaa is closer to the QMC than
(gskm does not mean that the angle-averaged Pauli operator

FIG. 6. (Color onling Correlation energyeV/electron of the  is better than the exact one, as can be seen in the pair-
2DEG. NSO represents the results of Ref(Jsy represents the correlation function.
correlation energies of E@28) with the exact Pauli operatofa), In Fig. 6, we plot also the three terms on the rhs of Eq.
(B), and(y) represent.the contributions of the corresponding termg28) separately a$a), (), and(y). The line denoted by
of th_e Skyrme interaction of Eq16). <g|oc>_ represents the results (Qioc) Stands for the results obtained by dropping the nonlo-
obtained by dropping the nonlocal effect in Eg8). cality effect by replacingd= 8,0 and y= . in Eq. (28)

ee Fig. 3 From the figure we recogniZe that thea term

most important in the correlation energy afiid that the
relative importance of the-wave contribution ¢ term) be-
Qomes appreciable as the density decreases. Becauge the
andy terms stem mostly from the nonlocality of thenatrix
¢<g|oc>~<a> in this rg region, it is clear that the nonlocal
eature of the short-range correlation plays an important role
in the calculation of the correlation energy. The line denoted
Sy NSO represents the ladder results of Nagano, Singwi, and

hnishi’ It is, however, difficult to compare our results with
heirs. First, this is because they assume about 10% error in
the results and second because we have expressed the ladder
processes as an effective interaction as our first step before
calculatinge.; .

The correlation energy per electron in the ladder approxi-
mation can be expressed as IV. SUMMARY

1 B, 3v, First, we presented in detail a fully microscopic derivation
8c=;<0|gskn40>zp a4 §kf +?kf : (28) of an effective electron-electron interaction which represents
the short-range correlations in the 2DEG. We started from
in terms of the effective interaction of Eq16) in the the Bethe-Goldstone equation for thematrix which stands
g-matrix theory? where|0) stands for the ground state of a for the multiple-scattering processes in the medium. §he

noninteracting system. _ o matrix is presented first by the separable potent{a)v(r),

~ The correlation energy of E§28) is shown in Fig. 6 and  ang second it is translated into the momentum-dependent
in Table V as(Jgskm, together with the RPA and the QMC  z¢ro-range effective interactiogsy(r,V) of the Skyrme-
results™*"We can see that Eq28) underestimates the cor- tyne with three parameters only. The Skyrme interaction

relation energy of the QMC by about 20%, which is the same; . (r v) has been shown to be valid for the particles below
order of the magnitude as the estimated contribution of th€ e Fermi surface for,<20, and is presented as an explicit

ec[eV/electron]

Finally we compare the exact and the angle-average
Pauli operators using; | (r) in Fig. 5, which is free from the
Pauli principle and represents the pure dynamical correlatio
between electrons. The numerical results fgr5 shows
thatg, (r) with the exact Pauli operator is slightly closer to
the QMC than that with the angle-averaged Pauli operato
We can see also that the difference is visible in the range
=a and increases with decreasing density. This indicates th
importance of the couplings of different angular moment
described by the exact Pauli operator especially for sma
separations in the low-density region.

E. Correlation energy

function ofrg.
Second, we examined the short-range correlation in detail
using the obtained effective interaction. We have shown that

TABLE V. Correlation energies of the 2DEG in different theo-
ries in unit of eV/electron{gsyy expresses the correlation energies
of Eq. (28), while (gskmaa represents the results with the angle-

averaged Pauli operator. the short-range correlation is highly nonlocal, which origi-
nates from boths- and p-wave processes far,<10, and
solely from thep wave forr=10.

fs (Gt (Gskmaa QuMc RPA Third, we compared the pair-correlation function and the

1 -2.35 —2.43 —2.99 —5.39 correlation energy in thg-matrix theory with those of the

3 -1.50 -1.63 -1.83 —-3.83 QMC calculation to show the physics realized as the effec-

5 -1.11 -1.26 -1.33 -3.12 tive interaction operator. The importance of the many-body

10 —0.694 —0.834 -0.82 -2.24 correlations beyond the ladder processes in the low-density

20 —0.405 —0524 —0.47 —161 region is stressed explicitly, which is responsible for the dif-

ference between thg-matrix theory and the QMC. If one
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uses they matrix as an effective interaction in the description microscopic effective interaction will be useful in the same
of a many-body system, one has to incorporate such manyway in examining various two-dimensional electron systems
body correlations in the wave function of the system. Wesuch as quantum dots.
have also compared the newly introduced exact Pauli opera- Finally we make a comment on experimentally realizable
tor with the widely used angle-averaged Pauli operator usingystems, which are different from the pure 2DEG, in that
these physical quantities. We have shown explicitly that thehey cannot be free from defects and have some finite width.
difference becomes sizable in the low-density region, in conThe effects of the finite width is well under control using
trast with the nuclear systems. form factors?®® On the other hand, the 2D systems with de-
Let us stress that the effective interaction represents thiects comprise a large field of current reseditiihe incor-
correlations in a very simple fashion, and at the same time iporation of these two effects in the effective interaction is an
is a very useful tool which can be applied to the descriptionropen problem for the future.
of both the ground and the low-lying excited states. In three-
dimensional systems, a similar effective interaction has been
applied successfully to the metal cluster in the framework of
the Brueckner-Hartree-Fock thedfyWe believe that our We thank Francesco Pederiva for reading the manuscript.
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