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Effective interaction in two-dimensional electron systems
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A fully microscopic derivation is proposed for an effective interaction operator between electrons in the
two-dimensional electron gas~2DEG!, which represents multiple-scattering processes in the medium. The
obtained interaction features short-range behaviors between electrons, and is presented in a simple form which
allows applications in various systems. Short-range correlation in the 2DEG is discussed in detail in terms of
the effective interaction with special emphasis on the nonlocal aspect of the correlation.
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I. INTRODUCTION

Recent developments of experimental devices1 allowed
one to obtain plenty of information on static as well as d
namic properties of various finite and bulk two-dimension
electron systems. At the same time much effort has b
devoted to theoretical investigations of these systems.

Ground-state properties of the bulk systems, especi
the correlation energies, have been studied for a long tim
a variety of many-body theories, including random-phase
proximation~RPA!,2 perturbation theory,3 local-field theory,4

coupled-cluster theory,5 quantum kinetic theory,6 and ladder
approximation.7 The importance of the short-range corre
tion has been repeatedly emphasized in these different t
retical schemes, which is now realized also in the study
experimentally accessible phenomena.8 In this situation we
believe that it is important to investigate the short-range c
relation directly by realizing it as an effective interactio
operator.

In this paper we construct an effective electron-elect
interaction which takes into account the effect of the sho
range correlations. On one hand, our work is based on
analysis of the multiple-scattering processes in the medi
and is similar in concept to that of Nagano, Singwi, a
Ohnishi,7 which calculated the correlation energy by su
ming up all the ladder processes. On the other hand,
method is closely related to the derivation of an effect
interaction operator, which is a well-known concept in t
field of nuclear physics,9–12 and has been applied to thre
dimensional~3D! electron systems.13,14

It is well known that the ladder processes are expresse
the G operator defined by the Bethe-Goldstone equation
is, however, a very long way to express theG operator as a
tractable two-body interaction operator, which is conventio
ally given by a certain prescription which has only a vag
physical basis with no way of checking its validity.15

In this work, we propose a fully microscopic derivation
an effective interaction operator from the Bethe-Goldsto
equation with the newly introduced exact Pauli operator, a
examine the short-range correlation directly.

The plan of the work is the following. In Sec. II we ex
plain in detail the derivation of the momentum-depend
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zero-range effective interaction of Skyrme-type.16 The calcu-
lated interaction is shown to be applicable to the descript
of the ground and low-lying excited states. In Sec. III w
give numerical results and discussions. All the parameter
the effective interaction are given explicitly as functions
the Wigner-Seitz parameterr s . The properties of the effec
tive interaction are discussed in detail in connection with
local and nonlocal features of the correlation effects and a
with the competition between thes- andp-wave correlations.
We also estimate the importance of the three-body corr
tion compared to the two-body correlation. Finally, the sho
range correlation is discussed in terms of the pair-correla
function g(r ) and the correlation energy. We also compa
the exact and the angle-averaged Pauli operators using t
physical quantities. In Sec. IV we give a brief summary.

II. EFFECTIVE ELECTRON-ELECTRON INTERACTION

The concept of the effective interaction has been wid
used in nuclear physics, because it significantly simplifies
description of many-body systems by transferring a part
the complexities from the wave function to the Hamiltonia
In this section we derive an effective interaction which re
resents the short range correlation in the two-dimensio
electron gas~2DEG! with a neutralizing positive back
ground. We adopt the atomic units where\5me5e~minus
of electron charge! 51. The densityr of the system is speci
fied by the Wigner-Seitz parameterr s by 1/r5pr s

2 . Our
system has no spin polarization, and the Fermi momentum
given by kf5A2/r s . In the following we suppress the spi
indices for simplicity.

A. g matrix

In order to construct a two-body effective interaction, w
concentrate on the two-body correlations between electr
that are represented by multiple-scattering processes in
medium. These processes are described by theG operator
which is the solution to the Bethe-Goldstone equation,9–13

G5V1V
Q

v2H0
G, ~1!
©2004 The American Physical Society05-1
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wherev is the starting energy of the two interacting ele
trons in the initial state andQ is the Pauli operator which
excludes all the occupied single-particle levels from the
termediate states of the multiple-scattering processes.

Because it is convenient for many applications to treat
first-order termV separately, we define the second- a
higher-order terms of theG operator as an effective interac
tion and refer to as theg matrix hereafter as shown in Fig. 1
Then theg matrix in momentum space is described by

^k1Puguk2P&5^k1PuV
Q

v2H0
Vuk2P&

1^k1PuV
Q

v2H0
guk2P&, ~2!

whereP is the center-of-mass momentum of the two int
acting particles, andk1 and k2 are the final and the initia
relative momenta as shown in Fig. 1, andv is taken to be
P2/41k2

2 so that the ket vector is on its energy shell.
Note that theg matrix represents an attractive interactio

which is understood as follows. The multiple-scattering p
cesses induce distortions in the uncorrelated many-b
wave function in order to reduce the repulsive potential
tween electrons. Theg matrix translates this effect into a
effective interaction for uncorrelated states, and therefor
is necessarily an attractive interaction.

B. Partial-wave decomposition

Here we present how to solve Eq.~2! using the partial-
wave decomposition for the 2D system17 to fix the notation.
Because the center-of-mass momentumP is a conserved
quantity, the solution to Eq.~2! may be written as
^k1ugPuk2&. We interpretgP as an effective interaction whic
operates on the relative wave function with the fixedP.

Now we perform the partial-wave decomposition
Eq. ~2! by using the expansion exp(ik•r)
5(n52`

` i nJn(kr)exp@in(u2f)# of the 2D plane wave,
wherek5(k,u) andr5(r ,f), andJn is the Bessel function
The anglesu and f are measured from the fixed directio
of P.

The Coulomb interaction is given by

FIG. 1. Graphical representation of Eqs.~1! and~2!. The dashed
lines represent the bare Coulomb interaction V, andg is the correc-
tion due to the multiple-scattering processes. The relative mom
for the final and the initial states are given byk15(p12p18)/2 and
k25(p22p28)/2, respectively. The center-of-mass momentumP
5p11p185p21p28 is a conserved quantity.
11510
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d~r12r2!exp~2mr 1!/r 1

in the ~relative! coordinate space. Here we have introduce
cutoff parameterm(.0) which can be chosen to be sma
enough ~typically &0.1kf) not to affect our final results
Then we can express the matrix element of the Coulo
interaction in momentum space as

^k1uVuk2&5 (
n1 ,n252`

`

~2 i !n1
ein1u1

A2p

3^k1n1uVuk2n2& i
n2

e2 in2u2

A2p
, ~3!

where the partial-wave components are calculated as

^k1n1uVuk2n2&5dn1n2

4p

Ak1k2

Qun1u21/2S k1
21k2

21m2

2k1k2
D ,

~4!

with the Legendre function of the second kindQn .
Next, the partial-wave decomposition of the Pauli ope

tor, which has an explicit dependence on the center-of-m
momentumP, is given by

^k1uQPuk2&5~2p!2d~k12k2!uS UP2 1k1U2kf D
3uS UP2 2k1U2kf D

5~2p!2
d~k12k2!

k1
(

n1 ,n2

~2 i !n1
ein1u1

A2p

3^n1uQP~k1!un2& i
n2

e2 in2u2

A2p
, ~5!

where

^n1uQP~k!un2&

55
dn1 ,n2

, kf<UP2 2kU
11~21!N

2

2g

p

sinNg

Ng
, UP2 2kU <kf<AP2

4
1k2

0, otherwise.

~6!

In the above expression, we have defined

g5sin21S P2

4
1k22kf

2

Pk
D , N5n12n2 , ~7!

and it is assumed that sinNg/Ng51 for N50.
Finally we expand theg-matrix elements in the same wa

as Eq.~3! for V. With all the partial-wave decompositions i
the above, Eq.~2! reduces to the following one-dimension
integral equation:

ta
5-2
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EFFECTIVE INTERACTION IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 69, 115105 ~2004!
^k1n1ugPuk2n2&5 (
n,n8

E
0

` kdk

~2p!2
^k1n1uVukn&

3
^nuQP~k!un8&

k2
22k21 ih

^kn8uVuk2n2&

1 (
n,n8

E
0

` kdk

~2p!2
^k1n1uVukn&

3
^nuQP~k!un8&

k2
22k21 ih

^kn8ugPuk2n2&, ~8!

which can be solved by the matrix inversion method.10 Pro-
vided that the two particles in the initial states are below
Fermi surface, the energy denominator of Eq.~8! cannot van-
ish, and therefore theg-matrix elements are real and satis
^k1n1ugPuk2n2&5^k12n1ugPuk22n2&.

In order to remove the dependence onP of the g-matrix
elements and to obtain an effective interaction as a func
only of the relative coordinates, we fix in Eq.~8! the magni-
tude of the center-of-mass momentum asP5A2kf because
of the following reasons. First,P5A2kf is the average for
all the two-particle states below the Fermi level with vanis
ing relative momentum, which shall be shown later to
relevant for the derivation of the effective interaction. Se
ond, we have found that the dependence of the matrix
ment ^k1ugPuk2& on P is moderate, and also that its avera
over P can be approximated well by its value atP5A2kf .
Next, we take the average over the direction ofP to make the
resultant interaction to be rotationally invariant. After the
manipulations, we obtain the followingg matrix, which is
rotationally invariant and is a function ofk1 andk2 only:

^k1uguk2&5
1

2p (
n50

`

en^k1nuguk2n&cosn~u12u2!, ~9!

whereen51 or 2 according ton50 or nÞ0.
At the end, we make a remark on the Pauli operator. N

that the exact Pauli operator of Eq.~6!—which we have in-
troduced in the present work—is not rotationally invaria
and therefore couples different angular momentan, as can be
seen in Eq.~8!. In the market, however, the angle-averag
Pauli operator is widely used,10,13 which is obtained by re-
taining only then15n2 terms in the exact Pauli operator o
Eq. ~6!, and therefore neglects the couplings between dif
ent partial waves. The difference between the exact and
angle-averaged Pauli operators is discussed in Ref.11 for the
medium-energy nucleon scatterings off nuclei. They ha
found that the difference is small, which originates mo
probably from the short-range nature of the nucleon-nucl
interaction. We shall see, however, that a sizable differe
can be produced by these two Pauli operators in the cas
the 2DEG.

C. Separable potential

By taking the Fourier transform of Eq.~9!, we may arrive
at the effective interaction in the coordinate space^r1ugur2&.
11510
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It is, however, of finite range and nondiagonal with respec
the initial and the final relative coordinatesr2 andr1 ~nonlo-
cal interaction!, which is not very useful for practical appli
cations. In order to obtain a usable interaction, we prop
two new steps. The first step could be referred to as a s
rable approximation which we now explain and justify. Th
second step is an expansion around a zero-range pote
that will be introduced in the following section.

In our separable approximation, we assume that
g-matrix elements of Eq.~9! can be approximated by a prod
uct of a nonlocal partu(p) and a local partv(q) as follows:

^k1uguk2&⇒u~ 1
2 uk11k2u!v~ uk12k2u!5u~p!v~q!, ~10!

where we have introducedp5upu5uk11k2u/2 and q5uqu
5uk12k2u. This expression assumes that thep andq depen-
dences of theg matrix is separable. Note that the separabl
approximation in the usual sense assumes the separa
with respect tok1 andk2.18 Taking the Fourier transform o
Eq. ~10!, we obtain the separable potential in the coordin
space:

^r1ugur2&⇒ũ~ ur12r2u!ṽ~ 1
2 ur11r2u!5ũ~s!ṽ~r !, ~11!

wheres5usu5ur12r2u andr 5uru5ur11r2u/2 are introduced.
In case ofũ(ur12r2u)}d(r12r2), the above interaction re
duces to the familiar two-body local interaction which
diagonal with respect to the relative coordinates.

In the separable approximation,v(q) and u(p) of Eq.
~10! are calculated in the following way. First, we remov
the ambiguity in the normalization ofv(q) andu(p) defined
in Eq. ~10! by requiring u(0)51. Then by using the
forward- and the backward-scattering kinematics in Eqs.~9!
and ~10!, we obtain

u~p!5
1

v~0!

1

2p (
n50

`

en^pnugupn&, ~12!

v~q!5
1

2p (
n50

`

en~21!nK q

2
nUgUq2 nL . ~13!

In Fig. 2 we plot how each partial wave contributes
Eqs.~12! and~13! for p andq up to several times the Ferm
momentum in order to show the global structure of the c
culation for r s55. It can be seen that all the partial-wav
contributions show a rapid increase in magnitude arounp
;kf for u(p) and q;2kf for v(q). This is explained as
follows. As p increases towardkf , both of the interacting
particles come close to the Fermi level. These particles
be excited from the Fermi sea with a large amplitude beca
only a small momentum transfer is necessary, which res
in the rapid increase of̂pnu g upn& for p;kf . It is clear
that the same argument explains the increase of each pa
wave component aroundq;2kf for v(q). The numerical
results show also thatu(p) in the rangep&0.6kf andv(q)
in the rangeq&1.2kf can be reproduced only by thes andp
waves within a error of 5% forr s<20. This derives from the
fact that^knugukn&}k2n for small k, as can be easily show
by examining the second-order term of Eq.~8!. The above
5-3
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observation shows that most of the correlations can be
scribed by thes- andp-wave processes for the particles b
low the Fermi level.

From the figure, we can extract the following informatio
on the separable potentialũ(s) ṽ(r ) in coordinate space. Th
figure indicates thatu(p) can be expressed as a differen
between a slowly decreasing function which dominates
large p region and a rapidly decreasing function}exp
(2p2/kf

2) which controls the smallp behaviors. This observa

tion shows that the nonlocal partũ(s) in coordinate space
has a rangeau;1/kf . Using a similar argument, we ca
recognize thatv(q) behaves as}exp(2q2/2kf

2) in the small

q region, and therefore that the local partṽ(r ) in coordinate
space has a rangeav;1/2kf . Note that the above argumen
is valid for any value ofr s .

Now we are to justify the separable approximation.
order to show how the separable potentialu(p)v(q) fits the
original g-matrix element̂ k1uguk2&, we list x2 parameters
for the goodness of the separable potential fitting atr s51, 5,
10, and 20 in Table I. Comparisons are made for the ki
matics with k15k25k<kf /A2 and u5u12u2 5 0, p/4,
p/2, 3p/4, andp. This range ofk guarantees that there is n
real scattering. From the table, we recognize that the s
rable potential reproduces theg-matrix elements with high
precision for any kinematics in the ranger s<20. Especially
theg-matrix elements foru50, p are used to calculateu(p)
and v(q), and hence can be reproduced by the separ
potential exactly. The range of the validity,r s<20, of the
separable potential originates from the rapidly increasing
ror aroundr s;20 for the extreme kinematicsk;kf /A2, u
5p/4.

FIG. 2. ~Color online! Partial-wave contributions tou(p) and
v(q) of Eqs.~12! and ~13! at r s55 in atomic unit.
11510
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From all these inspections, we conclude that theg-matrix
element^k1uguk2& is approximated in an excellent way b
the separable potentialu(p)v(q) for the particles below the
Fermi surface in the ranger s<20.

D. Skyrme potential

The separable potentialu(p)v(q) in momentum space
definesũ(s) ṽ(r ) of Eq. ~11! in coordinate space. Here w
show that ũ(s) ṽ(r ) assumes a very simple form
~momentum-dependent zero-range interaction
Skyrme-type16! for the particles below the Fermi level.

The method we adopt here is closely related to
density-matrix expansion19,20 used in the field of nuclea
physics. The most microscopic derivation of the Skyrme
teraction from theG operator is presented in Ref. 20, whic
treats the medium-energy proton scattering off nuclei. Th
first expand the nonlocal~one-body! density matrix in the
target nucleus to construct an~one-body! optical potential for
the projectile proton by folding the nonlocalG operator of
finite range. Then they can define the zero-range effec
nucleon-nucleon interaction in such a way that it gives
same optical potential by the folding procedure. Th
method obviously assumes the zero rangeness at the
stage, which may be justified in anad hocmanner for the
nucleon-nucleon effective potential.

Though their procedure worked out well, we propose
different method, first because we are not treating a hi
energy electron which corresponds to the projectile proton
several hundred MeV, and second because we want a d
and fully microscopic definition of the effective interactio
without resorting to the one-body~optical! potential.

The matrix element of theg matrix between arbitrary
statesuc& anduw& can be expressed in the separable appro
mation as

^cuguw&5E dr1dr2c* S r1
s

2D ũ~s!ṽ~r !wS r2
s

2D
5E drc* ~r!g~r,“ !w~r!. ~14!

Here we have translated the separable~nonlocal! potential
into the local, but momentum-dependent interaction

TABLE I. x2 parameters for the goodness of the separable
tential fitting atr s51, 5, 10, and 20 foru5u12u2 being 0,p/4,
p/2, 3p/4, andp.

u r s51 r s55 r s510 r s520

0 0.0 0.0 0.0 0.0
p/4 0.00227 0.109 0.856 4.30
p/2 0.0209 0.0190 0.0433 0.414
3p/4 0.0115 0.0269 0.0256 0.0112
p 0.0 0.0 0.0 0.0
5-4
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g~r,“ !5E dsexpS s

2
•“

Q D ũ~s!ṽ~r !expS 2
s

2
•“

W D ,

~15!

where“5]/]r operates on the relative coordinate.
First, let us note that we can assume in Eq.~15! that the

maximum value that“ takes on is of the order ofkf for
particles in the ground and low-lying excited states. Seco
we have seen in the preceding section that the range o
nonlocal part ũ(s) in coordinate space is given byau
;1/kf . This means thatu“•s/2u&1 is satisfied in Eq.~15!,
and therefore we can evaluate Eq.~15! by expanding the
exponential. Note that the above procedure is different fr
the density-matrix expansion19,20 in that it is an expansion
with respect to the nonlocality for the relative coordinate
the initial and the final wave functions. Using a similar a
gument based on the fact that the range ofṽ(r ) is av

;1/2kf , we can expandṽ(r ) around a zero-range interac
tion. By collecting all the terms of the expansion up to se
ond order in“, we arrive at the following final expressio
for the effective interaction:

gskm~r,“ !5ad~r!1b$¹Q 2d~r!1d~r!¹W 2%12g“Q d~r!•“W .
~16!

Here the coefficientsa, b, andg are given by

a5v0 , b5 1
16 v0u21 1

4 v2 , g52 1
16 v0u21 1

4 v2 ,
~17!

in terms of the momentsui andv j of ũ(s) and ṽ(r ) defined
by

ui52pE
0

`

sdssi ũ~s!, i 50,2, . . . , ~18!

v j52pE
0

`

rdrr j ṽ~r !, j 50,2, . . . . ~19!

The effective interaction of Eq.~16! is a zero-range
momentum-dependent Skyrme-type interaction which
been extensively used in nuclear physics.16,19 The moments
ui andv i can be calculated numerically from the potential
momentum space as

u05u~0!51, v05v~0!,

u2522
d2

dp2
u~p!U

p50

, v2522
d2

dq2
v~q!U

q50

.

The above expressions, together with Eqs.~12! and ~13!,
show that we need only the diagonalg-matrix elements
^knugukn& in the low-energy limit (k;0) to obtain the ef-
fective interactiongskm(r,“) of Eq. ~16!. Let us recall that
^knugukn&}k2n for small k, which shows that only then
50,1 terms contribute to the above coefficients. This i
direct consequence of the fact that the first two terms on
right-hand side~rhs! of Eq. ~16! represent thes-wave (n
50) interaction and the third thep-wave (n51) interaction.
11510
d,
he

f

-

s

a
e

The matrix element ofgskm(r,“) in momentum space is
given by

^k1ugskmuk2&5a2b~k1
21k2

2!12gk1•k2 . ~20!

Let us compare Eq.~20! with the originalg-matrix elements
^k1uguk2& for r s<20, using the same kinematics as for t
separable potential. We have found that the simple effec
interactiongskm(r,“) represents the originalg-matrix ele-
ments^k1uguk2& as a whole at a satisfactory level. This
understandable because the separable potentialu(p)v(q) in
the relevant range can be reproduced mostly by thes andp
waves only.

To summarize, we have presented a fully microsco
derivation of the effective interaction operatorgskm(r,“),
which is expressed in terms of the three parameters onlya,
b, andg), and represents the multiple-scattering proces
in the medium very well in the ranger s<20.

III. RESULTS AND DISCUSSION

A. Skyrme potential

The Skyrme-type interactiongskm(r,“) of Eq. ~16! char-
acterizes the short-range correlation in terms of thes- and
p-wave scattering processes, and is convenient also to s
the momentum dependence of the correlation.

We present the numerical results for the coefficientsa, b,
andg in Table II for several values ofr s , and also in Fig. 3
in the range 0<r s<10. Let us examine ther s dependences
of a, b, andg. As shown in Fig. 3, numerical results sho
that they can be reproduced qualitatively by

a;a~r s51!3r s
1.5;20.8 r s

1.5,

b;b~r s51!3r s
3.4;10.1 r s

3.4, ~21!

g;g~r s51!3r s
3.7;20.06 r s

3.7.

In order to explain the abover s dependences, we examin
the g-matrix elementŝ knugukn& for n50 and 1 for small
values ofk, which is given by the following expansion usin
a, b, andg:

TABLE II. Interaction strengthsa, b, andg in atomic unit of
the effective interactiongskm(r ,“) of Eq. ~16!.

r s a b g

0.1 20.1036231021 0.1981031024 20.6888331025

0.3 20.8908431021 0.1424531022 20.5408531023

0.5 20.2304031010 0.9844131022 20.4035631022

1 20.7803431010 0.1247831010 20.5987731021

3 20.4362531011 0.5458431011 20.3778931011

5 20.8840831011 0.2880631012 20.2405831012

10 20.2131531012 0.2599031013 20.2724731013

15 20.3453531012 0.9234231013 20.1079431014

20 20.4811431012 0.2258831014 20.2818731014
5-5
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1

2p
^knugukn&5H a22bk2, n50

gk2, n51.
~22!

By looking into the second-order~leading! term of Eq.~8!
for small values ofk, and by comparing it with the abov
expression, we obtain

a (2);2r s
2 , b (2);0.2 r s

4 , g (2);20.07 r s
4 , ~23!

wherea (2), b (2), andg (2) are the second-order results fora,
b, andg, respectively. In Fig. 3 we can see that the seco
order terms reproduce qualitative behaviors ofa, b, andg
especially in the smallr s region. Because an iterative solu
tion to Eq. ~8! makes an alternate series because of

FIG. 3. ~Color online! Coefficientsa, b andg of the effective
interactiongskm(r ,“) in atomic unit. The dotted lines denoted byx
square stand for the formulas~24!, ~25! and~26!. The dotted-dashed
lines represent the simple formulas in Eq.~21!. a (2), b (2), andg (2)

represent the second-order results of Eq.~23!. Solid crossesb loc

and g loc represent the calculation without the nonlocal effect, o
tained by settingu250.
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negative-energy denominator, the convergent results fora,
b, andg of Eq. ~21! show slightly weakerr s dependences
than those in Eq.~23!.

We recognize thatb andg grow much more rapidly than
a with decreasing density. Note that theb and g terms in
gskm(r,“) are momentum dependent, and express the in
action which put emphasis on high-momentum compone
of the relative wave function. Then it is naturally understo
that the increasing importance of the short-range correla
with decreasing density manifests itself in the rapidly gro
ing strengthsb andg.

If we look into b andg more closely, we recognize tha
they satisfyb;23g in the smallr s region as indicated by
the second-order results, and also thatg}r s

3.7 increases faste
than b}r s

3.4 in the larger s regime, showing explicitly the
growing importance of thep-wave contribution with increas
ing r s .

In order to show the strong nonlocal aspect of the eff
tive interaction, we have presentedb loc and g loc that are
calculated without the nonlocality by settingu(p)51 (u2
50⇒b loc5g loc5 1

4 v2) in Fig. 3. We can see clearly from
the figure that the momentum-dependent termsb and g of
the effective interaction represent mostly the effect of
nonlocality of theg matrix.

Finally, we fit a, b, andg by thex-square method in the
following form:

a5a1x4
11a2x

11a2x1a3x21a4x3
, ~24!

b5b1x8
11b2x

11b2x1b3x21b4x3
, ~25!

g5c1x8
11c2x

11c2x1c3x21c4x3
, ~26!

wherex5Ar s. All the coefficients in the above expression
are given in Table III. They are obtained using 15 data poi
for r s ranging from 0.1 to 20. The above formulas reprodu
the original data very well, as shown by theirx2 parameters
1.2331024, 7.0931024, and 3.9231026 for a, b, andg,
respectively.

The above expressions assume that theg matrix vanishes
as r s→0, because the Pauli operator in the rhs of Eq.~2!
suppresses all the multiple-scattering processes in the h
density limit. We also notice that the effective interactio
becomes significantly larger in the low-density limit. This
understandable because theg matrix in this limit describes

-

TABLE III. Parameters of the fitting formulas~24!, ~25!, and
~26! for the strengthsa, b, andg in atomic unit.

a1 21.1533 b1 0.24796 c1 20.071295
a2 0.25643 b2 0.076771 c2 0.21673
a3 0.50131 b3 0.93833 c3 0.20596
a4 0.094028 b4 0.038957 c4 0.021031
5-6
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the Coulomb scattering in free space which gives a diverg
T matrix in the low-energy limit.17

At the end of this subsection, let us think of an implic
tion of the above interaction in real 2D systems such
quantum dots. It is straightforward to show the express
1/m* 512r(b23g)/21exchange contribution, for the ef
fective massm* in the Brueckner-Hartree-Fock~BHF! cal-
culation in the same way as for 3D systems.21 The HF theory
takes into account only the exchange contribution that
duces the effective mass, which in turn makes large ene
spacings around the Fermi level. On the other hand, in
BHF calculation, the short-range correlation realized by thg
matrix tends to cancel the exchange contribution to red
the energy spacings of the HF theory, as is clear from
above expression. This implies, for example, that the sys
is softer in the BHF theory than in the HF theory, as is t
case for 3D clusters.14 We expect, therefore, that the polari
ability, for example, would be an appropriate observable
discuss the effects of theg matrix.

B. Separable potential

Here we examine the properties of the separable pote

ũ(s) ṽ(r ) in the coordinate space, which features the lo
and nonlocal aspects of the short-range correlation. As st
before, numerical results show thatu(p)v(q) can be mostly
reproduced only by thes andp waves for the particles below
the Fermi level. This allows us to discuss the separable
tential in terms of thes- andp-wave contributions.

Let us start with the second momentv252(b1g) of the

local partṽ(r ), which comes out of the cancellation betwe
thes andp waves. Whiler s is small, the lowest-order results
b;23g, of Eq. ~23! holds, and thereforev2 is positive. As
r s increases, thep-wave termg grows faster than thes-wave
term b, ultimately to makev2 negative aroundr s;8.5, and
thenv2 decreases rapidly. Let us recall that the second m
mentv2 puts more stress on the long-range part ofṽ(r ) than
the zeroth momentv0 which is negative. Then the abover s

dependence ofv2 means thatṽ(r ) is attractive at short dis
tances, but behaves as a repulsive potential for large sep
tions in the smallr s region.

Next, we come to the second momentu2 of the nonlocal
part ũ(s). We can easily realize that the magnitude ofu2
58(b2g)/v0 is a strongly increasing function ofr s , be-
causeb and g contribute coherently, in contrast with th
case ofv2. This means that the nonlocal aspect featured
u2 of the short-range correlations grows much faster w
increasingr s than the local counterpart characterized byv2.

Let us look into the momentum dependence
gskm(r,“). For r s*10, thep-wave termg dominates over
the s-wave term b. Then we obtainv2>2g and u2v0
>28g, and can drop theb term in gskm(r,“) of Eq. ~16!.
In this case, the momentum dependence ofgskm(r,“) origi-
nates solely from the nonlocal partũ(s) of the separable
potential, and stands only for thep-wave scattering processe
in the medium.
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C. Healing property

Theg matrix treats only the two-body correlation, and th
three- or many-body dynamical correlations are not tak
into account. Here we examine the importance of the thr
body correlation by investigating the wave function in t
medium.

It is well known that the two-body wave functionc for
the relative motion in the medium can be obtained from E
~1! as

c5f1
Q

v2H0
Vc, ~27!

where the first termf stands for the uncorrelated plane wa
and the second term represents the distortion inc which is
localized around the origin in the relative coordinate spa
due to the Pauli operator. This means that the relative w
function c approaches the uncorrelated plane wavef for
large separations, which is known as thehealingproperty of
the two-body wave function in the medium.22,23

It is straightforward to decompose the above equation i
partial waves as in Sec. II to obtain thenth partial-wave
componentcn(r ). It is conventional to define the healin
distanceh ~for the s wave! as the first crossover point o
c0(r ) and the free wave, which is shown in Fig. 4 for seve
values ofr s . Then the ratio (h/d)2 measures the size of th
woundof the wave functionc0(r ) in 2D systems, whered
52a (1/r5pa2) is the average interparticle distance.

Because the three-body correlation becomes impor
when three particles come to the area of the wound simu
neously, it gives a correction of the order of (h/d)4 to the
two-body correlation,22,23which is given in Table IV. In~3D!
nuclear systems, the corresponding ratio is estimated to
(h/d)6;0.15, which is believed to justify the Brueckne
theory as a good starting point to describe nucl
systems.22,23From Table IV, we notice that (h/d)4;0.08 for
r s51, and therefore that the two-body correlation is dom
nant. As the density decreases, the wound of the wave fu
tion becomes larger, and the ratio (h/d)4 shows a rapid in-
crease with decreasing density forr s*20, giving (h/d)4

FIG. 4. ~Color online! The Bethe-Goldstone wave functio
c0(r ) for an s-wave pair withP5A2kf ~center-of-mass momen
tum! and k50 ~relative momentum in the asymptotic region!
for several values ofr s . The crossover point ofc0(r ) with the
free wave functionJ0(0)51 ~note kr50) defines the healing
distanceh.
5-7
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;0.26 atr s520 and (h/d)4;0.38 atr s540. We then realize
that the two-body correlation alone is not in control of t
system any more forr s*20, and the many-body correlatio
becomes important. From the standpoint of theg-matrix
theory, such many-body correlations are to be incorpora
explicitly in the wave function of a many-body system inte
acting via theg matrix.

From the above observation, we conclude that the tw
body correlation loses its dominance aroundr s;20, where
the separable potential was found to cease to be an exce
approximation in Sec. II.

D. Pair-correlation function

In order to clarify the physics represented by theg-matrix
theory from another point of view, we calculate the pa
correlation function g(r ) from the Bethe-Goldstone
equation.13 In Fig. 5, we plotg(r ) of the g-matrix theory
together with the RPA and the quantum Monte Carlo~QMC!
calculations forr s51,5, and 10. We immediately realize th
g(r ) of the g-matrix theory approaches the QMC values
the limit r→0, while the RPA fails. This shows explicitly th
importance of the ladder processes at short distances.

The difference between theg-matrix theory and the QMC
should be attributed to the correlations beyond the lad
processes, which could be expressed, in principle, by th
or many-body interactions. Let us look into the case ofr s
51. The figure shows that the ladder processes reprod
the QMC results very well forr s51 in the whole range ofr.
In the case ofr s55, the figure indicates that the ladder pr
cesses could be supplemented by the RPA-type process
the ranger *a. The figure forr s510 shows that the corre
lations beyond the ladder processes are not under the co
of the RPA any more, and also that the difference betw
the g-matrix theory and the QMC becomes sizable as
density decreases especially forr *a. This means that the
many-body correlations beyond the ladder~and the RPA!
processes become important forr *a in the larger s regime.

Let us consider how to describe low-lying excited sta
of the 2DEG using the effective interaction derived from t
g matrix. The problem is how to treat the dynamical cor
lations beyond the ladder processes incorporated by thg
matrix. The above observation suggests that a hybrid mod13

might work well in the smallr s region, which interpolates
the g-matrix theory for small separations and the RPA

TABLE IV. Healing properties for several values ofr s shown in
Fig. 4. The ratio (h/d)4 is a measure of the three-body correlati
compared with the two-body correlation, whered52a is the aver-
age interparticle distance.

r s h/d (h/d)4

1 0.53 0.08
5 0.61 0.14
10 0.65 0.18
20 0.71 0.26
40 0.78 0.38
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large separations. In the larger s region, on the other hand, i
is strongly indicated that we need to go beyond the R
description of the state vector, which may be the second R
~Ref. 24! or the extended RPA.25

FIG. 5. ~Color online! Pair-correlation functionsg(r ) and
g↑↓(r ) for r s51,5, and 10. The unit of length isa which is defined
by the densityr as 1/r5pa2. The QMC results forr s51,10 and
r s55 are taken from Refs. 26 and 27, respectively. Note that
RPA gives negative values in the smallr region.
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Finally we compare the exact and the angle-avera
Pauli operators usingg↑↓(r ) in Fig. 5, which is free from the
Pauli principle and represents the pure dynamical correla
between electrons. The numerical results forr s55 shows
that g↑↓(r ) with the exact Pauli operator is slightly closer
the QMC than that with the angle-averaged Pauli opera
We can see also that the difference is visible in the rangr
&a and increases with decreasing density. This indicates
importance of the couplings of different angular mome
described by the exact Pauli operator especially for sm
separations in the low-density region.

E. Correlation energy

The correlation energy per electron in the ladder appro
mation can be expressed as

«c5
1

r
^0ugskmu0&5rS a

4
2

b

8
kf

21
3g

8
kf

2D , ~28!

in terms of the effective interaction of Eq.~16! in the
g-matrix theory,9 whereu0& stands for the ground state of
noninteracting system.

The correlation energy of Eq.~28! is shown in Fig. 6 and
in Table V as^gskm&, together with the RPA and the QMC
results.26,27 We can see that Eq.~28! underestimates the cor
relation energy of the QMC by about 20%, which is the sa
order of the magnitude as the estimated contribution of

FIG. 6. ~Color online! Correlation energy~eV/electron! of the
2DEG. NSO represents the results of Ref. 7.^gskm& represents the
correlation energies of Eq.~28! with the exact Pauli operator.^a&,
^b&, and^g& represent the contributions of the corresponding ter
of the Skyrme interaction of Eq.~16!. ^gloc& represents the result
obtained by dropping the nonlocal effect in Eq.~28!.

TABLE V. Correlation energies of the 2DEG in different the
ries in unit of eV/electron.̂gskm& expresses the correlation energi
of Eq. ~28!, while ^gskm&aa represents the results with the angl
averaged Pauli operator.

r s ^gskm& ^gskm&aa QMC RPA

1 22.35 22.43 22.99 25.39
3 21.50 21.63 21.83 23.83
5 21.11 21.26 21.33 23.12
10 20.694 20.834 20.82 22.24
20 20.405 20.524 20.47 21.61
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three-body correlation, (h/d)4, in Table IV. The discrepancy
between the QMC and Eq.~28! could be removed, in prin-
ciple, if we can include an effective interaction in Eq.~28!
whose origin is the many-body correlation, as discussed
the preceding section. It is, however, beyond the scope of
present work.

In the table we have also presented the results for Eq.~28!
with the angle-averaged Pauli operator as^gskm&aa . We can
realize that the difference between the exact and the an
averaged Pauli operators becomes sizable with decrea
density. The fact that̂gskm&aa is closer to the QMC than
^gskm& does not mean that the angle-averaged Pauli oper
is better than the exact one, as can be seen in the
correlation function.

In Fig. 6, we plot also the three terms on the rhs of E
~28! separately aŝa&, ^b&, and ^g&. The line denoted by
^gloc& stands for the results obtained by dropping the non
cality effect by replacingb⇒b loc and g⇒g loc in Eq. ~28!
~see Fig. 3!. From the figure we recognize~i! that thea term
is most important in the correlation energy and~ii ! that the
relative importance of thep-wave contribution (g term! be-
comes appreciable as the density decreases. Becauseb
andg terms stem mostly from the nonlocality of theg matrix
(^gloc&'^a& in this r s region!, it is clear that the nonloca
feature of the short-range correlation plays an important r
in the calculation of the correlation energy. The line deno
by NSO represents the ladder results of Nagano, Singwi,
Ohnishi.7 It is, however, difficult to compare our results wit
theirs. First, this is because they assume about 10% erro
the results and second because we have expressed the l
processes as an effective interaction as our first step be
calculating«c .

IV. SUMMARY

First, we presented in detail a fully microscopic derivati
of an effective electron-electron interaction which represe
the short-range correlations in the 2DEG. We started fr
the Bethe-Goldstone equation for theg matrix which stands
for the multiple-scattering processes in the medium. Thg

matrix is presented first by the separable potentialũ(s) ṽ(r ),
and second it is translated into the momentum-depend
zero-range effective interactiongskm(r,“) of the Skyrme-
type with three parameters only. The Skyrme interact
gskm(r,“) has been shown to be valid for the particles bel
the Fermi surface forr s<20, and is presented as an explic
function of r s .

Second, we examined the short-range correlation in de
using the obtained effective interaction. We have shown t
the short-range correlation is highly nonlocal, which orig
nates from boths- and p-wave processes forr s&10, and
solely from thep wave for r s*10.

Third, we compared the pair-correlation function and t
correlation energy in theg-matrix theory with those of the
QMC calculation to show the physics realized as the eff
tive interaction operator. The importance of the many-bo
correlations beyond the ladder processes in the low-den
region is stressed explicitly, which is responsible for the d
ference between theg-matrix theory and the QMC. If one

s
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uses theg matrix as an effective interaction in the descripti
of a many-body system, one has to incorporate such ma
body correlations in the wave function of the system. W
have also compared the newly introduced exact Pauli op
tor with the widely used angle-averaged Pauli operator us
these physical quantities. We have shown explicitly that
difference becomes sizable in the low-density region, in c
trast with the nuclear systems.

Let us stress that the effective interaction represents
correlations in a very simple fashion, and at the same tim
is a very useful tool which can be applied to the descript
of both the ground and the low-lying excited states. In thr
dimensional systems, a similar effective interaction has b
applied successfully to the metal cluster in the framework
the Brueckner-Hartree-Fock theory.14 We believe that our
t,

ys
.
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microscopic effective interaction will be useful in the sam
way in examining various two-dimensional electron syste
such as quantum dots.

Finally we make a comment on experimentally realiza
systems, which are different from the pure 2DEG, in th
they cannot be free from defects and have some finite wi
The effects of the finite width is well under control usin
form factors.28 On the other hand, the 2D systems with d
fects comprise a large field of current research.29 The incor-
poration of these two effects in the effective interaction is
open problem for the future.
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