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Photoconductance of quantum wires in a magnetic field

N. G. Galkin, V. A. Margulis, and A. V. Shorokhov
Mordovian State University, 430000 Saransk, Russia

~Received 20 January 2003; published 25 March 2004!

We have calculated the photoconductance of a parabolic quantum wire subject to a magnetic field. It is
shown that the photoconductance has maxima in the vicinity of a threshold of ballistic conductance steps.
Electromagnetic irradiation is found to decrease the resistance of the quantum wire. The dependence of the
photoconductance on the radiation frequency, on the magnetic field, and on the electron energy is investigated.
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Quantum wires are widely used to study the conducta
quantization in three-dimensional systems. As a rule
transport properties of such systems are studied ignoring
influence of a high-frequency electromagnetic field on
conductance. However, the use of microwave irradiat
with an applied magnetic field may provide a convenient t
to study quantum electron states in nanostructures. Th
fore, the influence of electromagnetic irradiation on the c
ductance is attracting a great deal of experimental1–5 and
theoretical6–9 interest.

Note that the electric current is more favorable to meas
than the absorption coefficient to study the electron sta
because a direct measurement of the absorption is restr
by the fact that the volume of the wire is much smaller th
the total volume of the electromagnetic resonator.8 The ab-
sorption of the electromagnetic field, polarized in the tra
verse direction~in this case there is no transfer of longitud
nal momentum!, can give a strong influence on th
conductance due to electron transitions between diffe
modes in the system.9 Only electrons above the Fermi su
face make a positive contribution to the photocurrent. In t
case the states below the Fermi surface are occupied b
electrons from the reservoir. Hence the ordinary ballis
conductance, which is conditioned by the electrons be
Fermi surface, does not change. Since only photoelect
make a contribution to the photocurrent it is necessary
count the number of electrons above the Fermi surface
calculate the photoconductance. Thus one of the criteria
nonzero photocurrent is as follows: average time of elect
transitions from the reservoir to the wire must be less th
average time of electron transitions from the one reservo
the other. Additionally, the condition for the conductance
be ballistic is as follows: the average transition time from
one reservoir to the other must be less than the average
of the phase-breaking process.10 Thus in our case the tota
conductance of the system is a sum of the ordinary cond
tance and photoconductance. The latter is due to the ph
electron above Fermi surface~i.e., due to the electrons in
excited levels!.

The purpose of this work is to investigate the influence
a high-frequency electromagnetic field on the conducta
quantization in the three-dimensional anisotropic quant
wire. To model the confinement of the quantum wire we u
the parabolic potential. This potential is widely employed
theoretical investigations to study the physical properties
quantum wires.11,12 Note also that in many experiments th
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confining potential is of the parabolic form to a very goo
approximation. The choice of the parabolic potential to d
scribe electron properties of quantum wires is justified b
number of factors.13 However, this potential has one mor
advantage, namely, even in the presence of an external m
netic field, a parabolic potential gives the quadratic Ham
tonian. This circumstance lets us reduce the quadratic Ha
tonian to the canonical form~in our case it is a sum o
squares of momenta and positions! with the help of a linear
canonical transformation of the phase space. The direct
culation of matrix elements of electromagnetic perturbat
operators to find the photoconductance of the quantum w
is a complicated computational problem. Method of cano
cal transformation of the phase space lets us simplify
problem. It will be shown below that using this method w
can bring the Hamiltonian of a quantum wire with magne
field to the Hamiltonian of a quantum wire without magne
field but with other frequencies namedhybrid frequencies.

The spinless one-particle Hamiltonian of an electron
the three-dimensional anisotropic quantum wire has the fo

H5
1

2m*
S p2

e

c
AD 2

1
m*

2
~Vx

2x21Vz
2z2!, ~1!

where A is the vector potential of a magnetic fieldB,
V i ( i 5x,z) are the characteristic frequencies of the pa
bolic potential, andm* is the effective electron mass.

In the case of a longitudinal magnetic field it is conv
nient to choose the following gauge for the vector potent

A5~ 1
2 Bz,0,2 1

2 Bx!.

By means of linear canonical transformation of the pha
space, we find the new phase coordinates (P,Q) such thatH
has the following canonical form:

H~P,Q!5
1

2m*
~P1

21P2
21P3

2!1
m*

2
~v1

2Q1
21v2

2Q3
2!,

~2!

wherev i ( i 51,2) are the hybrid frequencies. They have t
form14

v1,25
1
2 @A~Vx1Vz!

21vc
26A~Vx2Vz!

21vc
2#, ~3!

wherevc is the cyclotron frequency.
©2004 The American Physical Society12-1
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The spectrum of the Hamiltonian Eq.~2! has the form

EnmP2
5\v1S n1

1

2D1\v2S m1
1

2D1
P2

2

2m*
, ~4!

where n,m50,1, . . . . Thecorresponding wave function
are as follows:

CnmP2
5

1

A2p\
exp~ iP2Q2 /\!Fn~Q1!Fm~Q3!, ~5!

whereFk are the oscillator functions.
The transition matrixL5(ai j ) ( i , j 51, . . . ,4) from the

initial phase coordinates (px ,pz ,x,z) to the new ones
(P1 ,P3 ,Q1 ,Q3) has the form (P25py ,Q25y)

S p1

p3

q1

q3

D 5LS P1

P3

Q1

Q3

D , ~6!

where the matrix elementsai j are

a135
m* v1~Vz

21vc
22v1

2!

A~Vz
22v1

2!21Vz
2vc

2
, a145

m* v2~Vz
21vc

22v2
2!

A~Vz
22v2

2!21Vz
2vc

2
,

~7!

a2152
1

2

vc

v1

~v1
21Vz

2!

A~Vz
22v1

2!21Vz
2vc

2
,

a2252
1

2

vc

v2

~Vz
21v2

2!

A~Vz
22v2

2!21Vz
2vc

2
, ~8!

a315
1

m* v1

~Vz
22v1

2!

A~Vz
22v1

2!21Vz
2vc

2
,

a325
1

m* v2

~Vz
22v2

2!

A~Vz
22v2

2!21Vz
2vc

2
, ~9!

a435
vcv1

A~Vz
22v1

2!21Vz
2vc

2
, a445

vcv2

A~Vz
22v2

2!21Vz
2vc

2
.

~10!

To first order in perturbation theory, the photoconductanc
given by the following formula that is analogous to Refs
and 9:

Gph~v!52
4pe2

\ (
a,b

] f a
0

]m
u^auV̂vub&u2@d~Ea2Eb2\v!

2d~Ea2Eb1\v!#, ~11!

where f a
0 is the Fermi-Dirac distribution function,m is the

chemical potential, andv is the phonon frequency. The op
erator V̂v of the interaction of electrons with the high
frequency electromagnetic field has the form
11331
is

Vv5
e«v

m* vS pz2
m*

2
vcxD , ~12!

where «v is the amplitude of the applied electromagne
field which is assumed to be polarized in thez direction~the
y direction corresponds to the axis of the wire!. The states
ua& andub& are characterized by the mode numbersn,m and
n8,m8, respectively.

The physical meaning of Eq.~11! is quite straightforward.
It is clear that the photocurrent is determined by the tran
tion probability from the state below the Fermi surface to t
state above Fermi surface and the inverse process. Unde
below assumptions and the temperature close to zero, the
process conditioned by emission of a quantum of elec
magnetic field is small.

We calculate the matrix elements ofVv in the new phase
coordinates. In this case, using the transition matrixL, one
can obtain the squares of the matrix elements of the oper
Vv on the analogy of Ref. 15:

u^nmpuV̂vun8m8p8&u2

5
e2«v

2 \

2m* v2 H X1Fn8

2
dn,n8212

n811

2
dn,n811Gdm,m8

1X2Fm8

2
dm,m8212

m811

2
dm,m811Gdn,n8J dp,p8 ,

~13!

where

Xi5
Vz

4vc
2

v i@~Vz
22v i

2!21Vz
2vc

2#
, i 51,2.

Substituting Eq.~13! into Eq.~11! and taking into accoun
the smearing of the energy levels caused by collisions,

FIG. 1. Photoconductance as a function of the magnetic fielB
and the frequency of the electromagnetic radiationv. T51 K,
Vx51.231013 s21, Vz51.731013 s21, «v5100 V/cm, and m
50.41310213 erg.
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obtained the following expression for the photoconductan

Gph~v!

G0
52

pe2«v
2 t

2m* v2 (
a

] f a
0

]m
F X1S n1

1

2D
11~v1v1!2t2

2

X1S n1
1

2D
11~v2v1!2t2

1

X2S m1
1

2D
11~v1v2!2t2

2

X2S m1
1

2D
11~v2v2!2t2

G , ~14!

whereG0 is the conductance quantum.
As is clear from Eq.~14!, there are two resonance pea

at pointsv5v1,2 which correspond to the transition betwe
the neighboring hybrid levels. Note that the amplitudes
the resonance peaks depend strongly on the magnitud
magnetic field and the characteristic frequencies~Fig. 1!.

Let us consider the case of equal characteristic frequ
ciesVz5Vx5V. In this case the frequenciesv1,2 have the
form v1,25(A4V21vc

26vc)/2. Then the resonance pea
have a doublet structure in this case of a weak magnetic
(vc!V). We stress that the amplitudes of the peaks
approximately equal. The distance between the doublet c
ponents is equal to the cyclotron frequencyvc @v1,2.V
6vc/21O(vc

2/V)#. In the case of a strong magnetic fie
(vc@V) the frequenciesv1,2 can be represented in the for
v1.vc , v2.V2/vc . Note that the amplitude of the peak
the frequencyV2/vc is appreciably smaller than at the fre
quencyvc . Hence, a strong absorption is observed at
cyclotron frequency in the case of strong magnetic quant
tion.

In the limit B50 we have the following formula for the
conductance of the quantum wire:

FIG. 2. Ballistic conductance and photoconductance as fu
tions of the chemical potential (z5m/\Vz). T52 K, B50, Vx

50.931013 s21, Vz54.1231013 s21, v50.931013 s21, and «v

5100 V/cm.
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Gph~v!

G0
52

4pe2«v
2 \t

m* 2v2l 1
2 F 1

11~v1Vz!
2t2

2
1

11~v2Vz!
2t2G(a ] f a

0

]m
~n11/2!, ~15!

where l 15A\/m* v1. In this case there is only one reso
nance pointv5Vz associated with electron transitions b
tween neighboring levelsn→n11. The transition accompa
nied by a change in the quantum numberm is forbidden.

We stress that electromagnetic irradiation has a strong
fect on the transport properties only in the neighborhood
the resonance points. Hence, it is interesting to consider
ballistic conductance and the photoconductance togethe
Fig. 2 we display the conductance and the photoconducta
as functions of the electron energy. As can be seen from
2 the photoconductance has maxima in the vicinity of
threshold of conductance steps. As is clear from Eqs.~14!
and ~15!, and Fig. 2, electromagnetic irradiation always d
creases the resistance of the parabolic quantum wire.
dependence of the conductance on the electron energ
shown in Fig. 3. It is seen from Fig. 3 that the photocondu
tance undergoes nonperiodic oscillations. The distance
tween oscillation peaks is determined by the relationship
tween characteristic frequencies as was shown above. N
that the temperature strongly smears the oscillating pe
~Fig. 3!.

In conclusion, we have theoretically investigated the
fluence of electromagnetic irradiation on the transport pr
erties of quantum wire. We have shown that irradiation ha
strong effect on the transport properties only in the neighb
hood of the resonance points; namely, electromagnetic i
diation always increases the conductance of systems.
amplitude and position of resonance peaks are found.
shown that the resonance peaks have a doublet structu
the case of a weak magnetic field.

The present work was supported by the Russian Minis
of Education~Grant No. E02-3.4-370!.

c- FIG. 3. Photoconductance as a function of the chemical po
tial (z5m/\Vz). B5104 Oe, Vx51.131013 s21, Vz51.8
31013 s21, v51.08231013 s21, and«v5130 V/cm.
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