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Electron affinities and ionization energies in Si and Ge nanocrystals
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~Received 2 October 2003; published 17 March 2004!

We present calculations for electron affinities, ionization potentials, and quasiparticle gaps for hydrogenated
silicon and germanium nanocrystals~quantum dots! with radii up to 14 Å or about 800 atoms using real-space
ab initio pseudopotentials constructed within the local-density approximation. We show that electron affinities
and ionization energies exhibit a strong size dependence characteristic of quantum confinement, and remain
significantly different from corresponding bulk values even for the largest nanocrystals studied. Both Si and Ge
nanocrystals have very close values of ionization and affinity energies, while quasiparticle and single-particle
gaps for silicon dots are slightly larger (;0.2 eV) than those computed for germanium nanocrystals. Our
calculated affinities and ionization potentials scale with radiusR of the nanocrystal asR2 l , where l 51.1
60.2, in contrast to the scaling factorl 52 predicted by simple effective-mass models.
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Owing to their potential applications in optoelectronic
the study of semiconductor nanocrystals~quantum dots! is a
very active field of research. Optical properties of these c
fined systems are known to be quite different from their b
counterparts. In particular, quantum confinement can cha
the optical characteristics of nanocrystals resulting in su
rior properties for device applications when compared
those of bulk materials.1 As such, researchers have sought
develop accurate methods for computing excitation spe
and, specifically, the optical gaps of quantum dots. Of
these methods first compute the energy necessary to cre
noninteracting electron-hole pair, and then include the C
lomb energy of the pair~exciton energy!. Examples of this
procedure can be found inGW-Bethe-Salpeter2 and in
density-functional approaches.3 In this paper, we focus on
calculations of the energy to create a noninteracting elect
hole pair, also called the quasiparticle gap. This gap can
be defined as the difference between theionization energy
and theelectron affinity.

At present, there exist several published calculations
ionization potentials and electron affinities for small hydr
genated semiconductor systems. For example,GW and
quantum Monte Carlo~QMC! approaches have been used2,4

to determine these quantities for hydrogenated silicon c
ters SinHm . While these methods can be very accurate, t
are computationally intensive. Even with state of the
computational platforms, the total number of atoms is on
order of 100.2,4 In contrast, the utilization of pseudopote
tials constructed within the local-density approximati
~LDA ! of the density-functional theory is much less comp
tationally demanding. When this procedure is implemen
in real space, quantum dots with over 1 000 atoms have b
explored.3 Also, real-space methods allow charged states
be examined in a straightforward fashion. In contrast, sup
cell methods5 must invoke anad hoc compensating back
ground for charged systems; otherwise, the Coulomb en
diverges.

While real-space methods have been used for SinHm
nanocrystals,3 the ionization and affinity energies were n
presented for large dots. For small systems, these calc
0163-1829/2004/69~11!/113305~4!/$22.50 69 1133
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tions agree quite well with results of a QMC approach, e
QMC ~LDA ! give 12.7–12.9 ~12.1–12.5! and 20.2
(20.3–0) eV for ionization and affinity in SiH4.4,5 For very
large dots, one expects the quasiparticle gap to approach
bulk limit. In the case of silicon or germanium, this shou
be close to the optical gap as exciton effects are small, p
vided one uses an ‘‘exact’’ exchange-correlation functio
within density-functional theory. Since LDA is not exact, th
optical gap limit is not met. Rather one expects a quasip
ticle gap to be equal to the LDA eigenvalue difference b
tween the highest occupied molecular orbital~HOMO! and
the lowest unoccupied molecular orbital~LUMO!. In both Si
and Ge, the HOMO-LUMO gap calculated within LDA i
known to be only about half of the optical gap.6 However,
how the bulk gap limit is reached within LDA is unknow
and untested.

Here we perform explicit calculations of the electron a
finity and ionization energy for ‘‘large’’~with radius up to
14 Å or 800 atoms total! semiconductor nanocrystals usin
real-spaceab initio pseudopotential calculations.5,7 We con-
sider Si and Ge nanocrystals, as they are two of the m
widely studied types of the quantum dots. Our nanocrys
were modeled as spherical bulk-terminated Si or Ge clus
with surface dangling bonds saturated by hydrogen ato
We employ Troullier-Martins pseudopotentials8 for all ele-
ments. Details of the pseudopotential construction for both
and Ge can be found elsewhere.3,9 The real-space grid spac
ing was taken to be 0.9 a.u. (1 a.u.50.529 Å) as in previous
work.3 Convergence tests were made with grid spacing
small as 0.6 a.u. The domain containing the quantum d
was taken to be a sphere whose radius was chosen to b
about 10 a.u. larger than the radius of the quantum dot.
Kohn-Sham wave functions were required to vanish at
boundary of the domain. A generalized Davidson algorith
was used to diagonalize the resulting Hamiltonian mat
The Hartree potential was obtained using a conjugate gr
ent method to solve the Poisson equation. We discretized
Poisson equation and matched the boundary potential
that of a multipole expansion of the charge density. Ty
©2004 The American Physical Society05-1
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cally, six to ten diagonalizations were needed to obtain
self-consistent charge density from the solution of Sch¨-
dinger and Poisson equation.5

For ann-electron system, the electron affinity and ioniz
tion energies can be expressed in terms of the ground-
total energiesE of the n, (n11), and (n21) electron sys-
tems as follows:10

I 5E~n21!2E~n!, ~1!

A5E~n!2E~n11!. ~2!

It is straightforward within real space to compute the to
energies as a function of the number of electrons. To ca
late ionization energies and affinities, we need to know s
consistent solutions of three different charge configurati
for each quantum dot. The computational demand for
approach can be reduced significantly by utilizing cha
density of the neutral cluster to provide a good initial gue
for self-consistent calculations for the charged systems.

The ionization energiesI and electron affinitiesA for Si
and Ge quantum dots as a function of the nanocrystal’s
diusR are shown in Figs. 1~a! and 1~b!. At small values ofR,
the electron affinities are small in comparison with the io
ization energies. Small affinity values are consistent wit
weak localization of the lowest unoccupied state. As rad
increases, the ionization energy gradually decreases whe
the affinity energy increases. We found ionization energie
be larger for Si than for Ge at small radii by about;0.4 eV.
For larger dots, the situation reverses; the ionization ene
for Ge becomes larger. With respect to the electron affinit
they coincide at small sizes and become slightly larger in
nanocrystals with an increase ofR.

We find that the ionizationI and affinityA scale with the
radiusR of the nanocrystal as

I Si(Ge)~R!5I bulk
Si(Ge)1

I 0
Si(Ge)

~R/aB! l I
Si(Ge) ~3!

and

ASi(Ge)~R!5Abulk
Si(Ge)2

A0
Si(Ge)

~R/aB! l A
Si(Ge), ~4!

whereaB is Bohr radius~1 a.u.! and the scaling paramete
I 0 , A0 , l I , andl A are given in Table I. We used experiment
values for the ionization energy to fix the bulk limit. Th
measured ionization energiesI bulk in bulk Si and Ge have
similar values. Depending on the experimental condition11

the bulk values for the ionization energy and work functi
range from 4.6 eV to 4.9 eV. We fixed values forI bulk

Si(Ge)

54.8(4.8) eV. We assigned values ofAbulk
Si(Ge)54.1(4.4) eV,

as our pseudopotential calculations gave an indirect ga
0.7 ~0.4! eV for crystalline Si~Ge!.

The scaling factorsl I and l A in Eqs. ~3! and ~4! yield
values,2, contrary to what one would have expected fro
the effective-mass approximation~EMA!. Effective-mass
theory predicts that both electron affinity and ionization e
ergy should scale as (MR)22, whereM is the effective elec-
11330
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tron or hole mass, respectively.12,13Large differences in elec
tron and hole effective masses should result in a differ
scaling of the ionization energy and electron affinity. Ho
ever, we found that the differences between the compu
values of the ionization and affinity energies for Si and Ge
be small, typically 0.1–0.4 eV over the size range cons
ered. The similar values of the ionization/affinity energies
Si and Ge quantum dots and their almost equal deviati
from the respective bulk limits~indicated by straight dashe

FIG. 1. ~a! Ionization energy (h) and electron affinity (n) of
Si nanocrystals as functions of nanocrystal’s radiusR. Solid lines
are the best fits to the calculated data. Straight dashed lines c
spond to bulk values of ionization energy~4.8 eV! and affinity at
4.1 eV for Si.~b! Ionization energy (.) and electron affinity (m)
of Ge nanocrystals. Solid lines are the best fits to the calcula
data. Bulk values of Ge ionization energy and electron affinity
taken to be 4.8 and 4.4 eV, respectively.

TABLE I. Scaling parameters in fitting expressions for ioniz
tion energyI and electron affinityA @Eqs.~3! and~4!#, quasiparticle
Eqp and HOMO-LUMO gapsEHL , and self-energyS for Si and Ge
nanocrystals. ParametersA0 and I 0 are in eV, all others are dimen
sionless.

A0 I 0 l A l I l qp l HL l S

Si 23.5 44.4 0.9 1.2 1.1 1.3 0.9
Ge 30.8 24.2 1.0 1.0 1.0 1.1 0.9
5-2
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lines in Fig. 1! can be reconciled with EMA only by assum
ing equal values for both electron and hole effective mas
in these systems. This would be inconsistent with the kno
differences between Si and Ge band masses in the
limit,14 i.e., the band masses of Si are roughly twice as la
as Ge. Of course, it is hard to justify the concept of t
effective mass in the range of sizes~between 5 and 15 Å in
radius! considered in the present work.

We note that ionization energy and affinity are about 1
removed from the bulk values even for the largest nanoc
tal considered here. From the fitting functions~3! and~4!, it
is possible to deduce that bothI (R) andA(R) will be within
10% from their bulk values atR'50 Å corresponding to a
quantum dot with'20 000 atoms. In the opposite limit o
silane SiH4 ~or germane GeH4) molecule, our calculations
give ionization potential and electron affinity equal to 12
~12.3! and 0.0 eV, respectively. These numbers are o
slightly different from those obtained earlier.2 The differ-
ences are likely due to technical issues such as diffe
pseudopotentials and/or a different basis set. The ioniza
potentials should be compared with experimental values
12.6 ~12.3! eV for silane ~germane! determined from the
photoelectron spectrum.15,16The results shown in Fig. 1 als
indicate that atR55 Å electron affinities are only about
eV larger than their values for germane / silane, while io
ization energies are already 4 eV smaller than their co
sponding limits for those molecules. This explains why t
fitting function of the form given by Eqs.~3! and~4!, which
obviously diverges asR→0, works better for the ionization
energy than for the affinity.

Within LDA, it is possible to relate the quasiparticle ga
Eqp to the HOMO-LUMO gapEHL by writing

Eqp5I 2A5EHL1SLDA , ~5!

whereSLDA is the self-energy correction. The dependenc
of Eqp together with the single-particle gapEHL and SLDA
for Si and Ge nanocrystals are presented in Fig. 2. Owin
quantum confinement, all these quantities are enhanced
stantially with respect to their bulk valuesEqp

bulk5Eband
bulk

FIG. 2. Quasiparticle gaps (j), HOMO-LUMO gaps (m), and
self energy corrections (d) vs nanocrystal’s radiusR. Open sym-
bols are for Si and closed are for Ge nanocrystals. Solid lines
the best fits to the data.
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50.7 (0.4) eV,SLDA
bulk50 ~within LDA, the bulk quasiparti-

cle gapEqp
bulk should be equal6 to to the bulk value of the

HOMO-LUMO gap,EHL
bulk). The quasiparticle and HOMO

LUMO gaps have similar values in Si and Ge nanocrysta
In general, we find that Si gaps are larger by about 0.25
compared to those in Ge. This is consistent with the cal
lated bulk band gap differences of about 0.3 eV. The qua
tiesEqp2Eqp

bulk , EHL2EHL
bulk , andSLDA scale with radius of

the nanocrystalR asR2 l qp, R2 l HL andR2 l S with the corre-
sponding factorsl qp , l HL , andl S listed in Table I. Note that
these factors are also less thanl 52 predicted by the EMA.

Previous work on the optical gaps of Si and G
nanocrystals13,17 suggests that Si might not retain a larg
gap at small nanocrystals size. In particular, effective-m
theory13 and tight-binding calculations17 predict that at small
sizes the optical gaps in Si quantum dots are smaller tha
Ge systems. In the EMA this is attributed to the differenc
between electron and hole effective masses in Si and Ge
effective masses in Ge are smaller than in Si.14 In contrast,
recent pseudopotential calculations based on the delta-
consistent approach gave optical gaps in Si dots larger
in Ge ones for systems with radius as large as;10 Å.18

Also, empirical pseudopotential calculations indicated
absence of crossing for the single-particle gaps for Si and
quantum dots which was interpreted in terms of anL to X
transition in the germanium conduction band as the size
the dot decreased.19

It is hard to make direct comparisons with this body
work since we do not calculate the optical gaps directly. T
optical gapEopt can be related to the quasiparticle gap by
simple relationship

Eopt5Eqp1Ecoul , ~6!

whereEcoul is the Coulomb interaction between the electro
hole pair.12 We note that unless the Coulomb contribution
the optical gap markedly changes for Si versus Ge dots,
would not expect the optical gaps in Si to fall below that
Ge as function of nanocrystal size based on our calculat
for Eqp .

We have implicitly assumed in Eq.~6! that the optical
transition is allowed. Owing to the indirect nature of bu
optical gaps Si and Ge, the oscillator strengths of the low
energy transitions have very small values. In the bulk limit
a perfect crystal, the transition is rigorously forbidden
wave-vector conservation. This is reflected in the oscilla
strength of our nanocrystals considered as a function of s
For example, for the largest Ge nanocrystal that we exa
ined, the oscillator strength of the lowest transition~as deter-
mined from EHL) is about 1025 of the total oscillator
strength. This value decreases exponentially as the size o
nanocrystal increases.

In summary, we have performed calculations for electr
affinities, ionization potentials, and quasiparticle gaps for
drogenated Si and Ge nanocrystals up to systems conta
about 800 atoms using real-spaceab initio pseudopotentials
constructed within the local-density approximation. W
found that electron affinities and ionization energies exhib
strong size dependence characteristic of quantum con

re
5-3
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ment, and remain significantly different from correspondi
bulk values even for the largest nanocrystallites studied.
estimations show that even for nanocrystals containing o
20 000 atoms that the quasiparticle gaps exceed the op
gap of the bulk material by more than 10%. It was a
demonstrated that both Si and Ge nanocrystals have sim
values of ionization and affinity energies: for Si, the qua
particle and single-particle gaps for Si dots are slightly lar
(;0.2 eV) than those computed for Ge. Our calculated
n

e

d
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finities and ionization potentials scale with radiusR of the
nanocrystal asR2 l , wherel 51.160.2 in contrast to the scal
ing factor l 52 predicted by simple effective-mass models
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