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Electron dynamics and dynamic localization in asymmetric periodic potentials
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We consider the dynamics of electrons in asymmetric periodic potentials in ac electric fields. It is shown that
the conditions for dynamic localization are not affected by the asymmetry of the potential and that the same ac
field yields dynamic localization for any potential. However, the asymmetry does affect the general dynamics
and must be included explicitly in dynamical calculations. We also show that the condition for dynamic
localization in any potential can be interpreted as the requirement that the electron spend equal time at every
point in the first Brillouin zone.
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Dynamic localization~DL! occurs when electrons in
periodic potential are localized in the presence of a perio
ac electric field. DL manifests itself through the return of t
electron to its initial state after integer numbers of periods
the applied field. For a sinusoidal electric field~period t,
amplitudeE0) it has been shown that for certain ratios ofE0
andt, the electrons are dynamically localized.1–3 In deriving
this result, the authors make the following approximatio
they ~1! employ the nearest-neighbor tight-binding~NNTB!
approximation,~2! include only a single band in the calcula
tion, and ~3! ignore decoherence and dephasing proces
that lead to homogeneous and inhomogeneous broade
In addition, these authors, as well as most authors calcula
ultrafast intraband dynamics in semiconductor superlattic4

~4! disregard the effects of any asymmetry in the perio
potential on electron dynamics.

More recently it was shown5–7 that under the same ap
proximations, many other periodic electric fields also lead
DL. In particular, Domachuket al.6 showed that almost al
fields that are symmetric under time inversion, including
sinusoidal field, lead to DL in the NNTB approximation fo
some field amplitudes. However, DL does not occur beyo
the NNTB approximation for almost any of these fields.8–10

In contrast, Zhuet al.7 showed that a periodicsquare-wave
field can lead to exact dynamic localization~EDL!: dynamic
localization for arbitrary band structures and thus not jus
the NNTB limit, thereby relaxing approximation~1!.

A systematic study of EDL,10 under the conditions~2!–
~4! above, showed that EDL can only occur in electric fie
that are discontinuous, such as the square wave menti
above.7 More generally, fields that lead to EDL must satisfy10

bp~t!50 ~1!

for all positive integerp, wheret is period of the ac electric
field E(t), and

bp~ t ![E
0

t

e2 ipg(t8)dt8, ~2!

where
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ed

\ E
0

t

E~ t8!dt8. ~3!

Here, e is the magnitude of the electron charge,d is the
spatial period of the potential, and\ is Planck’s constant.
The dimensionless quantityg(t) can be interpreted as th
area of the electric field. As shown below, it also correspo
to a displacement in reciprocal space. In the NNTB appro
mation, DL requires only thatb1(t)50. Previously,10 we
showed that requiring that Eq.~1! be satisfied forall pÞ0 is
equivalent to the condition

t52p(
m, j

uġ~ t jm!u21, ~4!

where the dot indicates a time derivative and the summa
is over all times within a periodt at which g(t jm)5x
12pm (2p<x,p). Here thej ’s count the roots of this
equation for fixedm, as illustrated in Fig. 1 for one value o
x. EDL thus requires that the sum of the absolute values

FIG. 1. Electric-field areag vs time for a general ac electri
field. Indicated are thet jm , that enter Eq.~4!, for one value ofg
5x ~modulo 2p) ~see dashed lines!. The gray region indicates the
first Brillouin zone.
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the inverses ofġ(t jm) at times whereg(t jm)5x ~modulo
2p) takes the valuet/(2p), independent ofx ~see Fig. 1!.
This leads to the requirement that the ac field must be
continuous at all changes in its sign and must have an
between adjacent discontinuities that is an integer multiple
2p\/ed.6,10

Here we generalize our previous results on EDL to pot
tials without inversion symmetry, thus dealing with conditio
~4!. We find that the condition for EDL is identical for sym
metric and asymmetric potentials, but that one must be c
ful when calculating the dynamics. Given the robustness
the results, it seems that there must be a simple phys
interpretation of the requirement for EDL. The interpretati
for the square-wave field was given previously.10,11 Here we
show that for general ac fields, if EDL is to occur, the ele
tron must spend the same amount of time at all points in
first Brillouin zone.

We now examine the electron dynamics in a gene
asymmetric potential. We consider an electron in a o
dimensional periodic potential without inversion symmet
We adopt a one-band model, ignore dephasing/decoher
effects@approximations~2! and ~3!#, and denote the Hamil
tonian byH0. We take the dispersion relation and Wann
functions for the lowest band ofH0 to be e(k) and uan&,
respectively, wherek is the electron’s crystal momentum an
n indicates the site where the Wannier function is center
The Wannier functionsuan& are expanded in terms of th
Bloch statesuck& of the band as

uan&5
1

AN
(

k
e2 iknduck&. ~5!

In the presence of the ac electric fieldE(t) the full Hamil-
tonian is H5H01eE(t)z. We now expand the state ke
uC(t)& for the electron in the basis of the Wannier function

uC~ t !&5(
n

Bn~ t !uan&. ~6!

Using this into the Schro¨dinger equation, we obtain evolu
tion equations for the expansion coefficientsBn(t),

i\Ḃn5(
m

Bm@«n2m1eE~ t !Wm2n#1nedE~ t !Bn . ~7!

Here, the«n are the Fourier coefficients of the band„«n
[(ke(k)exp@ikd#… andWp is the matrix element ofz,

Wp[^a0uzuap&. ~8!

It can be shown by direct substitution that the solution to E
~7! is

Bn~ t !5exp$2 i @«0t/\1~n1W0 /d!g~ t !#%

3(
m

An2m~ t !Bm~0!, ~9!

where
11330
s-
ea
f

-

e-
f
al

-
e

l
-

.
ce

r

d.

,

.

Am~ t !5E
2p

p dx

2p
expH imx2 i (

pÞ0

«2p

\
b̃p~ t !eipxJ , ~10!

and

b̃p~ t ![bp~ t !1 i
\Wp

pd«2p
@ḃp~ t !21#. ~11!

To our knowledge, this is the first time this general soluti
has been presented.

Because the phases of theuck& can be chosen arbitrarily
the Wannier functions are not unique, and Wannier functio
with widely differing properties may be constructed for
given band. The Wannier functions and the dipole mat
elements between different Wannier functions have been
amined by many authors.12–15For one-dimensional symmet
ric potentials, Kohn12 showed that Wannier functions wit
Wp50 can be constructed by choosing the Bloch funct
phase such that̂z50uck& is real, where the origin ofz is
chosen such thatW050. We refer to the Wannier function
that result from this procedure as the Kohn-recipe ba
~KRB!. In all previous works where symmetric potentia
were implicitly or explicitly considered, the authors hav
simply setWp50. If Wp50, thenb(t)5b̃(t), and we ob-
tain the solution reported previously for symmetr
potentials.7,10 More recently, it was shown that for a genera
asymmetric, one-dimensional system, one can const
Wannier functions for whichWp50, and that these function
are real and maximally localized.15 Here we review these
results, present a simple procedure for calculating this ba
and examine the effects of neglecting theWp in a basis that
is not the maximally localized basis~MLB !.

Using Eq.~5!, the matrix elementsWp are given by

Wp5
1

N (
k,k8

e2 ik8pd^ckuzuck8&. ~12!

Following Blount,13 the Bloch-function matrix element ofz
can be expressed as

^ckuzuck8&5 i
2p

L

]

]k
d~k2k8!1

2p

L
Z~k!d~k2k8!, ~13!

where

Z~k![ i E uk* ~z!
]

]k
uk~z!dz, ~14!

whereuk(z) is the periodic part of the Bloch function. W
now define a set of Bloch states,uc̃k&, that differ from the
original ones only by k-dependent phase factors:uc̃k&
[eif(k)uck&. Using this and Eqs.~12! and ~13!, we obtain
for the matrix elementW̃p of z in the new Wannier function
basis

W̃p5Wp2
d

2pE2p/d

p/d

dke2 ikpdf8~k!. ~15!

If we now choose

f~k!52 (
m51

`
Wm

md
sin~kmd!, ~16!
4-2
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thenW̃p50 for p.0. But, we can always choose our orig
nal Bloch functions such thatc2k(z)5ck* (z). From Eq.~5!
it then follows that theap(z) are real and that hence theWp
are real. Using this in Eq.~8!, we see thatW2p5Wp . Thus
using f(k) defined in Eq.~16!, we haveW̃p50 for pÞ0.
Finally, by choosing the appropriate origin forz, we can also
chooseW̃050.

Since the form of the evolution equation~7! is identical
for symmetric and asymmetric potentials if one uses
MLB ~whereW̃p50), EDL occurs in any potential~symmet-
ric or asymmetric! for exactly the same ac electric field.
Moreover, the procedure for finding electric fields that le
to dynamic localization10 applies equally to symmetricand
asymmetricpotentials: the fields must satisfy Eq.~4!. Thus
even if theWp in the dynamical equation were to be ignor
mistakenly, the equations would still yield EDL. Howeve
the dynamics of the electrons between the times at wh
they are localized would not be correct. We now address
issue.

The MLB is not an obvious one, and one may simp
want to use the KRB to calculate the dynamics. The dyna
ics of the electrons calculated using the MLB and KRB w
correspondingWp must be exactly the same if the same in
tial stateuC(0)& is used. However, one must not neglect t
Wp in the calculation using the KRB for an asymmetric p
tential. To demonstrate this, we consider an asymme
GaAs/GaxAl12xAs superlattice structure with a barrier thic
ness of 2.0 nm, and a well that has a 7.5 nm region a
potential 200 meV below the barrier and a 2.5 nm region
a potential 350 meV below the barrier. The effective elect
mass is 0.067 that of the free electron mass. We take th
field to be the minimum-amplitude square-wave ac field t
yields EDL,10 for which E052\v/ed, wherev52p/t, and
t5825 fs. We employ the KRB Wannier functions. In
symmetric potential this would yieldWp50 for all p, but for
this asymmetric structure, theWp are nonzero forpÞ0. In
Fig. 2~a! we present the evolution of the probability dens

FIG. 2. Probability density~log scale! vs time for the asymmet-
ric GaAs/GaxAl12xAs superlattice described in the text. The corre
evolution is shown in~a!, while the evolution using the KRB with
the Wp incorrectly set to zero is shown in~b!.
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with the Wp included for the initial condition that the elec
tron is in then50 Wannier function of the MLB. In Fig. 2~b!,
we present the evolution as calculated again in the KRB,
with the Wp incorrectly set to zero. This is the result on
would obtain if one ignored the asymmetry of the potent
and simply used the KRB. Note that the evolution is stron
affected by theWp . This demonstrates the importance of t
inclusion of theWp in any dynamical calculations. Similarly
if the calculation is done in the Bloch basis, one must cor
spondingly either choose the phases of the Bloch states
cording to Eq.~16! or else explicitly include theZ(k) in the
equations of motion.

Having shown that Eq.~4! is the requirement for dynamic
localization for any periodic potential, we now turn to its
physical interpretation. In the presence of an electric fie
the well-known semiclassical evolution equation for the a
erage crystal momentum of the wave packet,k, is \ k̇
5eE(t). Using Eq.~3!, we then obtain

k~ t !5k01g~ t !/d, ~17!

wherek0 is the value ofk at t50. Thus, apart from a facto
1/d, g(t) gives the electron displacement in reciprocal spa
An electron exactly traverses the Brillouin zone once, wh
g increases by 2p. Thus the differentm that arise in the
application of Eq.~4! correspond to positions in reciproca
space that differ by a reciprocal lattice vector. Sinceg(t)
gives the displacement of electrons in reciprocal space,ġ(t),
again apart from a factor 1/d, gives their ‘‘velocity’’ dk/dt in
reciprocal space. ThusDkd/ġ corresponds to the time re
quired to cross a reciprocal space interval of lengthDk.

The interpretation of Eq.~4! can now be understood b
referring to Fig. 1. The timest jm correspond to the times a
which g ~and hencek) takes a particular valuex ~modulo
2p). Hence, they correspond to the times that a particu
position in the Brillouin zone is visited during a period of th
ac field. These visits can be of two types: they may be du
the electron returning to the samek within the first Brillouin
zone~corresponding to differentj in tm j), or they may be due
to arrival of the electron at the positionk12mp in the m
11 Brillouin zone~corresponding to differentm in tm j). At
each visit, the time that the electron spends within an inter
Dk aboutk5g(t jm) is Dkd/uġ(t jm)u. Note that the absolute
value is taken since the direction in which the electron tr
els does not matter. AsDk→0, Eq. ~4! corresponds to the
requirement that, during one period of the applied ac elec
field, the electron spends an equal amount of time at e
position in the first Brillouin zone.

One can draw two conclusions from the requirement t
electrons spend equal time everywhere in the Brillouin zo
The first is that the initial condition does not matter. T
second is that, since the electron spends equal time at
position, the contribution to the electron dynamics associa
with a positionk in the Brillouin zone is exactly canceled b
that contribution at2k. Therefore, irrespective of the initia
condition, after an integer number of field periods each el
tron ends up at its initial position, andthe electronis thus
dynamically localized. This last point can be made mo
clear by a semiclassical analysis. Consider the small

t

4-3



a
on

a

y

-

i-
rn
lly

re
a

n
o

a
s

was

hat
osi-
si-

e at

rs

c-

ion
ence
eri-
lo-
it.
gly

ua-
ms
d,

wn
c-

first

tu-
ada
the
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placementDz that the electron undergoes while within
small rangeDk aboutk. The second semiclassical equati
of motion givesdz/dt5(1/\)]e/]k for the average position
of the electron. Using this relation and summing over
instances that the electron is withinDk of k, we obtain for
the displacementDz

Dz5
1

\ (
t jm

]e@k~ t jm!#

]k
Dt5

1

\

]e~k!

]k
Dk(

t jm

d

uġ~ t jm!u
.

~18!

Therefore, if the electric field satisfies the condition for d
namic localization@Eq. ~4!#, we find

Dz5
d

\v

]e~k!

]k
Dk, ~19!

wherev[2p/t. TakingDk to be an infinitesimal and inte
grating this from 0 tok, we obtain

z~k!5z01d
e~k!

\v
. ~20!

Sincek(t)5k(0), theelectron returns to its initial position
at t5t,2t, . . . irrespective of the band structure or the in
tial conditions. More generally, the electron actually retu
to its initial stateat these times and is therefore dynamica
localized.

Based on this interpretation of Eq.~4! we find that dy-
namic localization in a square-wave electric field cor
sponds to each position in the Brillouin zone being visited
equal number of times, and that each time the electro
traveling at the same speed in reciprocal space. For m
general fields leading to EDL, the velocity in reciproc
space may vary, or the number of times that different po
.W

.

ys
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tions are visited may vary, but thetotal time spent every-
where is nonetheless the same. The area condition that
noted earlier10 corresponds to requiring thatall positions in
the Brillouin zone are visited, not a subset. Note also t
when the electron has a stationary point at a particular p
tion in reciprocal space, the time spent within an infinite

mal rangeDk of this position is finite sinceġ→0. This
clearly prevents the electron from spending the same tim
each position in the Brillouin zone during a finite timet, and
dynamic localization thus cannot occur. Since by Eq.~3! we

have ġ}E, a stationary point in reciprocal space occu
when E(t)50. Note thatg in Fig. 1 doeshave stationary
points ~e.g., atk5x/d at t5t10) and thus cannot lead to
EDL.10 The conclusion that EDL only occurs when the ele
tric field has no zero crossings was noted earlier.10

In conclusion, we have considered dynamic localizat
assuming only the presence of a single band and the abs
of decoherence. We showed that the symmetry of the p
odic potential has no effect on the existence of dynamic
calization or on the electric fields required to achieve
However, the dynamics of the electrons can depend stron
on the inclusion of new terms that enter the evolution eq
tions when the potential is asymmetric. Although these ter
vanish if maximally localized Wannier functions are use
they are not negligible in general. Finally we have sho
that the condition for EDL corresponds to requiring that ele
trons spend the same amount of time everywhere in the
Brillouin zone, irrespective of the initial condition.
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