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Electron dynamics and dynamic localization in asymmetric periodic potentials
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We consider the dynamics of electrons in asymmetric periodic potentials in ac electric fields. It is shown that
the conditions for dynamic localization are not affected by the asymmetry of the potential and that the same ac
field yields dynamic localization for any potential. However, the asymmetry does affect the general dynamics
and must be included explicitly in dynamical calculations. We also show that the condition for dynamic
localization in any potential can be interpreted as the requirement that the electron spend equal time at every
point in the first Brillouin zone.
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Dynamic localization(DL) occurs when electrons in a ed rt
periodic potential are localized in the presence of a periodic y(t)= 7[ E(t")dt’. 3
ac electric field. DL manifests itself through the return of the 0
electron to its initial state after integer numbers of periods ofHere, e is the magnitude of the electron chargkjs the
the applied field. For a sinusoidal electric fiperiod 7, spatial period of the potential, anfd is Planck’s constant.
amplitudeE,) it has been shown that for certain ratioskef ~ The dimensionless quantity(t) can be interpreted as the
andr, the electrons are dynamically localizEdIn deriving  area of the electric field. As shown below, it also corresponds
this result, the authors make the following approximationsig g displacement in reciprocal space. In the NNTB approxi-
they (1) employ the nearest-neighbor tight-bindifl§NTB)  mation, DL requires only thag;(7)=0. Previously® we
approximation(2) include only a single band in the calcula- showed that requiring that E€l) be satisfied foall p#0 is
tion, and (3) ignore decoherence and dephasing processesguivalent to the condition
that lead to homogeneous and inhomogeneous broadening.
In addition, these authors, as well as most authors calculating

. . . . 3 — . -1
ultrafast intraband dynamics in semiconductor superlatfices, T—ZWmEj |7(tim)| ' (4)
(4) disregard the effects of any asymmetry in the periodic ’
potential on electron dynamics. where the dot indicates a time derivative and the summation

More recently it was shown’ that under the same ap- is over all times within a periodr at which Y(tjm) =X
proximations, many other periodic electric fields also lead to+ 27m (— 7<x<m). Here thej’s count the roots of this
DL. In particular, Domachulet al® showed that almost all equation for fixedn, as illustrated in Fig. 1 for one value of
fields that are symmetric under time inversion, including thex. EDL thus requires that the sum of the absolute values of
sinusoidal field, lead to DL in the NNTB approximation for
some field amplitudes. However, DL does not occur beyond
the NNTB approximation for almost any of these fiefds’ x+2r
In contrast, Zhwet al.” showed that a periodisquare-wave
field can lead to exact dynamic localizatiBDL): dynamic
localization for arbitrary band structures and thus not just in
the NNTB limit, thereby relaxing approximatiaii).

A systematic study of EDE? under the condition$2)—  —
(4) above, showed that EDL can only occur in electric fields \E:
that are discontinuous, such as the square wave mentione
above’ More generally, fields that lead to EDL must satiSfy

S N

Bp(7)=0 ()
for all positive integeip, wherer is period of the ac electric ; P ; : P
field E(t), and 0 t, L A S T |
t/t
t H !
Bp(t)zf e P(t)dt, 2) FIG. 1. Electric-field areay vs time for a general ac electric
0 field. Indicated are the;,, that enter Eq(4), for one value ofy

=X (modulo 27) (see dashed lingsThe gray region indicates the
where first Brillouin zone.
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the inverses of'y(tjm) at times wherey(t;,)=x (modulo T dX i ) & p~ .

21) takes the value/(2), independent ok (see Fig. 1 Am(t)= 5% Imx—lg0 —Bp(e™ |, (10
This leads to the requirement that the ac field must be dis-

continuous at all changes in its sign and must have an aredd

between adjacent discontinuities that is an integer multiple of 5 AW .
2mhiled.®10 Bo(1)=Bp(1) +i ods P 1Bp(t)—1]. (12)
-p

Here we generalize our previous results on EDL to poten-
tials without inversion symmetry, thus dealing with condition To our knowledge, this is the first time this general solution
(4). We find that the condition for EDL is identical for sym- has been presented.
metric and asymmetric potentials, but that one must be care- Because the phases of thg) can be chosen arbitrarily,
ful when calculating the dynamics. Given the robustness othe Wannier functions are not unique, and Wannier functions
the results, it seems that there must be a simple physicafith widely differing properties may be constructed for a

interpretation of the requirement for EDL. The interpretationdiven band. The Wannier functions and the dipole matrix
for the square-wave field was given previoudy! Here we elements between different Wannier functions have been ex-

. _15 . .
show that for general ac fields, if EDL is to occur, the elec-2Mined by many authof$™**For one-dimensional symmet-

tron must spend the same amount of time at all points in thél'\(/: E(Z)te;;lr?lf),e ﬁ%ﬁfﬂﬂ?&e% thc‘ﬁo\é\lse;r?n'?ﬁgué‘lzté%n?ur‘:‘gg:)n
first Brillouin zone. P y g

We now examine the electron dynamics in a generaphase such thafz=0]4) is real, where the ongin of IS
asymmetric potential. We consider an electron in a onephosen such thaNO_:o' We refer to the Wannier fu_nct|ons_
dimensional periodic potential without inversion symmetry.that result from thls procedure as the Kohn_-rempe pa3|s
We adopt a one-band model, ignore dephasing/decoheren@éRB): In.a.II prewous_vyorks Wh.ere symmetric potentials
effects[approximations2) and (3)], and denote the Hamil- Were implicitly or explicitly conS|deredL the authors have
tonian byH,. We take the dispersion relation and WannierSimply setW,=0. If W,=0, thenps(t)=p(t), and we ob-
functions for the lowest band dfi, to be e(k) and |a,), tain the7lsoolut|on reporte_d previously for symmetric
respectively, wher& is the electron’s crystal momentum and Potentials.~~More recently, it was shown that for a general,

n indicates the site where the Wannier function is centered@Symmetric, one-dimensional system, one can construct
The Wannier functionga,) are expanded in terms of the Wannier functions for whichW,=0, and that these functions

Bloch stateg,) of the band as are real and maximally localizéd.Here we review these
results, present a simple procedure for calculating this basis,
1 and examine the effects of neglecting ¥ in a basis that
la,)=— 2 e 'knq| ). (5) is not the maximally localized basi8ILB).
VN % Using Eq.(5), the matrix element8V, are given by

In the presence of the ac electric fidiqt) the full Hamil- 1 iK'

tonian is H=Hy+eE(t)z. We now expand the state ket Wo=N E e " PUdzl ). (12
| W (t)) for the electron in the basis of the Wannier functions, kk

Following Blount,” the Bloch-function matrix element af
can be expressed as

t13

|\P(t>>=§ Ba(t)|ay). (6)

2 0 2
. L L . . <’pk|z|‘/’k’>=|T%5(k_k’)+ 2k é(k=k), (13
Using this into the Schiinger equation, we obtain evolu-
tion equations for the expansion coefficieB(t), where

Jd
i1By= 2, Bulen_m+eE(t)Wy_n]+nedEt)B,. (7) Z(k)Eif Uk (2) - ud(2)dz, (14

whereu,(z) is the periodic part of the Bloch function. We
now define a set of Bloch statdil/k), that differ from the
original ones only byk-dependent phase factor$¢~pk)
W,=(a,|Zay). @  =e"M|y). Using this and Eqs(12) and (13), we obtain

) o . for the matrix eIemen\‘7Vp of zin the new Wannier function
It can be shown by direct substitution that the solution to Eqpggis

Here, thee, are the Fourier coefficients of the bard,
=2 e(k)exdikd]) andW, is the matrix element of,

(7) i
) o~ d ld kpd 17
Bn(t) = exp{—ileqt/f +(n+Wo/d) (1)1} W= W, Ef_ﬂddke ¢'(k). (19
X > Ay m(t)Br(0), ) If we now choose
m k —2§ W Kk 16
where d(k)= m:lm_dsm( md), (16)
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with the W,, included for the initial condition that the elec-
tron is in then=0 Wannier function of the MLB. In Fig. ®),

we present the evolution as calculated again in the KRB, but
with the W, incorrectly set to zero. This is the result one
would obtain if one ignored the asymmetry of the potential
and simply used the KRB. Note that the evolution is strongly
affected by then,. This demonstrates the importance of the
inclusion of theW,, in any dynamical calculations. Similarly,

if the calculation is done in the Bloch basis, one must corre-
spondingly either choose the phases of the Bloch states ac-
cording to Eq.(16) or else explicitly include th&(k) in the
equations of motion.

, , , Having shown that Eq4) is the requirement for dynamic

n n 1 L " " n 1 L n n L
0.0 0.2 04 06 08 1000 02 04 06 08 1.0 localization forany periodic potential, we now turn to its
t/1 t/t physical interpretation. In the presence of an electric field,
the well-known semiclassical evolution equation for the av-

erage crystal momentum of the wave packkt,is ik
=eE(t). Using Eq.(3), we then obtain

FIG. 2. Probability densitylog scal¢ vs time for the asymmet-
ric GaAs/GaAl,_,As superlattice described in the text. The correct
evolution is shown ina), while the evolution using the KRB with
the W, incorrectly set to zero is shown ). k(t)=ko+ y(t)/d, 17

_ wherek, is the value ok att=0. Thus, apart from a factor
thenW,=0 for p>0. But, we can always choose our origi- 1/d, y(t) gives the electron displacement in reciprocal space.
nal Bloch functions such that_,(z) = ¢ (z). From Eq.(5)  An electron exactly traverses the Brillouin zone once, when
it then follows that thea,(z) are real and that hence thg, v increases by 2. Thus the differenim that arise in the
are real. Using this in E¢8), we see thaW_,=W,. Thus  application of Eq.(4) correspond to positions in reciprocal
using ¢(k) defined in Eq.(16), we have\7vp:0 for p#£0.  space that differ by a reciprocal lattice vector. Si_ny(e)
Finally, by choosing the appropriate origin farwe can also  gives the displacement of electrons in reciprocal spacg,
chooseW,=0. again apart from a factor d/ gives their “velocity” dk/dt in

Since the form of the evolution equatig@) is identical  reciprocal space. Thuakd/y corresponds to the time re-
for symmetric and asymmetric potentials if one uses thejuired to cross a reciprocal space interval of lenyyth
MLB (Wherewpzo), EDL occurs in any potentigsymmet- The interpretation of Eq(4) can now be understood by
ric or asymmetrig for exactly the same ac electric fields referring to Fig. 1. The times,, correspond to the times at
Moreover, the procedure for finding electric fields that leadwhich y (and hencek) takes a particular valug (modulo
to dynamic localizatiot applies equally to symmetriand  27). Hence, they correspond to the times that a particular
asymmetricpotentials: the fields must satisfy E@). Thus  position in the Brillouin zone is visited during a period of the
even if theW, in the dynamical equation were to be ignored ac field. These visits can be of two types: they may be due to
mistakenly, the equations would still yield EDL. However, the electron returning to the sarkavithin the first Brillouin
the dynamics of the electrons between the times at whicgone(corresponding to differentin t.,;), or they may be due
they are localized would not be correct. We now address thigo arrival of the electron at the positidet-2mar in the m
issue. +1 Brillouin zone(corresponding to differemmin ty,,)). At

The MLB is not an obvious one, and one may simply each visit, the time that the electron spends within an interval
want to use the KRB to calculate the dynamics. The dynamak aboutk= y(t;y) is Akd/|¥(t;,)|. Note that the absolute
ics of the electrons calculated using the MLB and KRB withvalue is taken since the direction in which the electron trav-
corresponding/V, must be exactly the same if the same ini- els does not matter. AAk—0, Eq.(4) corresponds to the
tial state| ¥ (0)) is used. However, one must not neglect therequirement that, during one period of the applied ac electric
W, in the calculation using the KRB for an asymmetric po-field, the electron spends an equal amount of time at each
tential. To demonstrate this, we consider an asymmetrigosition in the first Brillouin zone.
GaAs/GaAl; _,As superlattice structure with a barrier thick- ~ One can draw two conclusions from the requirement that
ness of 2.0 nm, and a well that has a 7.5 nm region at &lectrons spend equal time everywhere in the Brillouin zone.
potential 200 meV below the barrier and a 2.5 nm region afrhe first is that the initial condition does not matter. The
a potential 350 meV below the barrier. The effective electrorsecond is that, since the electron spends equal time at each
mass is 0.067 that of the free electron mass. We take the amwsition, the contribution to the electron dynamics associated
field to be the minimum-amplitude square-wave ac field thatvith a positionk in the Brillouin zone is exactly canceled by
yields EDL for which Ey= 2% w/ed, whereo=27/7, and  that contribution at-k. Therefore, irrespective of the initial
7=825fs. We employ the KRB Wannier functions. In a condition, after an integer number of field periods each elec-
symmetric potential this would yield/,=0 for all p, but for  tron ends up at its initial position, arttie electronis thus
this asymmetric structure, th&, are nonzero fop#0. In  dynamically localized. This last point can be made more
Fig. 2(a) we present the evolution of the probability density clear by a semiclassical analysis. Consider the small dis-
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placementAz that the electron undergoes while within a tions are visited may vary, but thetal time spent every-
small rangeAk aboutk. The second semiclassical equationwhere is nonetheless the same. The area condition that was
of motion givesdz/dt=(1/1)del ok for the average position noted earliel® corresponds to requiring thafl positionsin
of the electron. Using this relation and summing over allthe Brillouin zone are visited, not a subset. Note also that
instances that the electron is withik of k, we obtain for  when the electron has a stationary point at a particular posi-
the displacemenaz tion in reciprocal space, the time spent within an infinitesi-
mal rangeAk of this position is finite sincey—0. This
i ) clearly prevents the electron from spending the same time at
tm |7(tjm)| each position in the Brillouin zone during a finite timeand

( dynamic localization thus cannot occur. Since by &).we
Therefore, if the electric field satisfies the condition for dy-have y=E, a stationary point in reciprocal space occurs

1
:%2

tim

delkitim)] | 1 oeK) d

Az ok Th ok

namic localizatior Eq. (4)], we find when E(t)=0. Note thaty in Fig. 1 doeshave stationary
points (e.g., atk=x/d at t=t;5 and thus cannot lead to
Az— d de(k) Ak (19) EDL.1° The conclusion that EDL only occurs when the elec-
ho ok tric field has no zero crossings was noted eatfler.
wherew=2/. TakingAk to be an infinitesimal and inte- In conclusion, we have considered dynamic localization
grating this from 0 tok, we obtain assuming only the presence of a single band and the absence
of decoherence. We showed that the symmetry of the peri-
e(k) odic potential has no effect on the existence of dynamic lo-
Z(k):ZO“'dm' (20) calization or on the electric fields required to achieve it.

) o » However, the dynamics of the electrons can depend strongly
Sincek(7)=k(0), theelectron returns to its initial position  op, the inclusion of new terms that enter the evolution equa-
att=r27, ... irrespective of the band structure or the ini- tions when the potential is asymmetric. Although these terms
tial conditions. More generally, the electron actually returns, anish if maximally localized Wannier functions are used,
to its initial stateat these times and is therefore dynamlcallythey are not negligible in general. Finally we have shown

localized. that the condition for EDL corresponds to requiring that elec-

Based on this interpretation of E¢4) we find that dy-  rqng spend the same amount of time everywhere in the first
namic localization in a square-wave electric field corre-gyijiouin zone irrespective of the initial condition.

sponds to each position in the Brillouin zone being visited an

equal number of times, and that each time the electron is This work was produced with the assistance of the Natu-

traveling at the same speed in reciprocal space. For moneal Sciences and Engineering Research Council of Canada
general fields leading to EDL, the velocity in reciprocal and PREA, and of the Australian Research Council under the
space may vary, or the number of times that different posiARC Centres of Excellence program.
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