Properties of conduction-band dilute-magnetic-semiconductor quantum wells in an in-plane magnetic field: A density of states profile that is not steplike

Constantinos Simserides

Leibniz Institute for Neurobiology, Special Lab for Non-Invasive Brain Imaging, Brenneckestrasse 6, D-39118 Magdeburg, Germany and Physics Department, Solid State Section, University of Athens, Panepistimiopolis, Zografos, GR-15784 Athens, Greece (Received 6 September 2003; published 12 March 2004)

We examine how an in-plane magnetic field B modifies the density of states (DOS) in narrow-to-wide, conduction-band dilute-magnetic semiconductor quantum wells. We demonstrate that the DOS diverges significantly from the *ideal* steplike two-dimensional electron gas form and this causes severe changes to the physical properties, e.g., to the spin-subband populations, the internal and free energy, the Shannon entropy, and the in-plane magnetization *M*. We predict a considerable fluctuation of *M* in cases of vigorous competition between spatial and magnetic confinement.

DOI: 10.1103/PhysRevB.69.113302 PACS number(s): 73.20. - r, 85.75. - d, 75.75. + a, 65.40.Gr

When a magnetic field *B* is applied parallel to a quasitwo-dimensional electron gas (2DEG) layer, an interplay between spatial and magnetic localization is established. In the general case, it is necessary to compute self-consistently the energy dispersion.^{1,2} In a dilute magnetic semiconductor (DMS) structure, due to the enhanced energy splitting between spin-up and spin-down states, all possible degrees of freedom become evident, and the density of states (DOS) acquires the form

$$
n(\mathcal{E}) = \frac{A\sqrt{2m^*}}{4\pi^2\hbar} \sum_{i,\sigma} \int_{-\infty}^{+\infty} dk_x \frac{\Theta(\mathcal{E} - E_{i,\sigma}(k_x))}{\sqrt{\mathcal{E} - E_{i,\sigma}(k_x)}}.
$$
 (1)

The quasi-2DEG layer is parallel to the *xy* plane and *B* is applied along the *y* axis. Θ is the step function, *A* is the *xy* area of the structure, m^* is the effective mass, and $E_{i,q}(k_x)$ are the spin-dependent *xz* plane eigenenergies which must be self-consistently calculated. Equation (1) is valid for any type of interplay between spatial and magnetic localization, i.e., for *narrow* as well as for *wide* quantum wells (QW's). In the limit $B \rightarrow 0$, the DOS retains the *famous* (and occasionally stereotypic) steplike 2DEG form. Another asymptotic limit of Eq. (1) is that of a simple saddle point, where the DOS diverges logarithmically.

Considerable advance has been achieved for III-V-based magnetic semiconductors which utilize the valence band³ e.g., $(In,Mn)As$ and $(Ga,Mn)As$. In view of that, we examine a system where conduction-band spintronics can be achieved; specifically we analyze n-doped *narrow*-to-*wide* DMS $ZnSe/Zn_{1-x-y}Cd_xMn_ySe/ZnSe QW's.$ A principal reason which increases the influence of *B* and drives this system away from the parabolic dispersion is the relatively low conduction-band offset ΔE_c . We use $\Delta E_c = 1$ Hartree^{*}.⁴ In the present system the *enhanced* electron spin-splitting $U_{\sigma\sigma}$ is not proportional to the cyclotron gap, $\hbar \omega_c$, i.e., $U_{\sigma\sigma}$ $=(g^*m^*/2m_e)\hbar\omega_c + N_0\eta y(5/2)B_{5/2}(\xi) = \alpha + \beta^2$.⁴ *g*^{*} is the effective Lande` factor and m_e is the electron mass. The term β arises from the exchange interaction between the conduction electron and the Mn^{2} cations. N_0 is the concentration of cations and η is the expectation value of the exchange coupling integral over a unit cell. $N_0 \eta y$ ($y=0.035$) is taken

0.13 Hartree *.⁴ $B_{5/2}(\xi)$ is the standard Brillouin function. ξ is a quantity with denominator $k_B T$ and numerator containing two terms: the first one includes *B*, and the second one includes the difference between spin-up and spin-down populations.^{5,6} *T* is the temperature and k_B is the Boltzmann constant. In the present paper $T=4.2$ K, thus $B_{5/2}(\xi) \approx 1$. Hence, β =0.325 Hartree*. For ZnSe, $\alpha \approx \tau 10^{-3}$ Hartree*, where τ is the arithmetic value of *B* in Tesla. The term α is one or two orders of magnitude smaller than the term β . Therefore, it is convenient in the *first approximation* to ignore α . For ZnSe, 1 Hartree* \approx 70.5 meV, thus β \approx 23 meV. The electronic states' calculation and the material parameters can be found elsewhere.^{7,8} Due to the numerical cost, the k_x dependence is often ignored.^{4,6} However, this is adequate only if the spatial localization dominates.

The DOS is the *core* of the system and its changes affect all physical properties. If $f_0(\mathcal{E})$ is the Fermi-Dirac distribution, the total electron population, $N = \int_{-\infty}^{+\infty} d\mathcal{E} n(\mathcal{E}) f_0(\mathcal{E})$, the internal energy, $U = \int_{-\infty}^{+\infty} d\mathcal{E} n(\mathcal{E}) f_0(\mathcal{E}) \mathcal{E}$, and the Shannon entropy, $S = -k_B \int_{-\infty}^{+\infty} d\mathcal{E} n(\mathcal{E}) f_0(\mathcal{E}) \ln[f_0(\mathcal{E})]$. Hence, *N*, *U*, and *S*, can be calculated.¹⁰ Qualitatively, if *N* is kept constant, we expect that $|U|$ will decrease whenever *B* induces flattening of the occupied spin-subbands, since this leads to occupied energies with smaller $|\mathcal{E}|$. On the other hand, *S* is sensitive to the changes of $\ln[f_0(\mathcal{E})]$. At $T=4.2$ K, these changes only occur in a short region around the chemical potential $\mu = 0$. In other words, *S reads* the modification of the dispersion around $\mu=0$. The free energy $F=U-TS$. The main contribution to *F*—at this low *T*—comes from *U*. The in-plane magnetization, $M = -(1/V)(\partial F/\partial B)_{N,T}$, where *V* is the structure's volume. In the following, we deliberately keep T and N constant (we assume that all donors—e.g., Cl—are ionized). $N/A = 1.566 \times 10^{11}$ cm⁻². We symbolize 00 the ground-state spin-down-subband, 10 the first excited spin-down subband, 01 the ground-state spin-up subband, and finally 11 the first excited spin-up subband. To illustrate the antagonism between the spatial and the magnetic confinement we present results corresponding to different well widths *L*, i.e., 10 nm, 30 nm, and 60 nm. As a *unit* of DOS we use the ideal 2DEG step, $(m^*A)/(\pi\hbar^2)$.

For $L=10$ nm, the spatial confinement dominates. Even for $B=20$ T, the $E_{i,q}(k_x)$ retain a "parabolic shape" and the

FIG. 1. (Color online) $L = 10$ nm. Internal energy *U*, free energy *F*, and entropy *S*, as a function of *B*. The dispersion is *almost parabolic* and increase of *B* induces a slight flattening of the spin subbands.

DOS is an almost ''perfect staircase'' with steps increasing \sim 7.5% for the 00 spin subband and \sim 10% for the 01 spin subband, relatively to the ideal 2DEG step. This increase is due to the *B*-induced slight flattening of the $E_{i,\sigma}(k_x)$. Only 00 is occupied. Figure 1 depicts *U*, *F*, and *S* as a function of *B* in the range $0-20$ T. All these physical properties exhibit ''a single behavior'' because the system has ''almost parabolic'' spin subbands.

Figures 2 and 3 demonstrate how the ideal picture is modified for $L=30$ nm. Figure 2 presents the $E_{i,\sigma}(k_x)$ and the DOS for characteristic values of *B*. Even for $B=4$ T, since the $E_{i,\sigma}(k_x)$ are no longer "perfect parabolas," there is a quantitative modification of the DOS. For $B=6$ T there are two impressive singularities and the DOS is quantitatively different from the ideal 2DEG staircase. Figure 3 depicts the spin-subband sheet electron populations, N_{ij} , as well as U , *F*, and *S* as a function of *B* in the range 0–20 T. For $B=0$ there are two populated spin subbands i.e., $N_{00} = 1.397$ $\times 10^{11}$ cm⁻² and \bar{N}_{10} =0.169 $\times 10^{11}$ cm⁻². In the region 0–6 T, we observe the gradual *depopulation* of the 10 spin subband. During this process, the perfect parabola is slightly distorted and the 10 partial DOS for $B=6$ T looks like an "old abraded step." In the region $4-12$ T the 00 and 01 spin subbands change drastically, i.e., from almost parabolic with a single minimum gradually develop a two-minima shape. This is characteristically mirrored in the submersion of *U* and *F*. For $B \ge 12$ T the dispersion retains the two-minima shape, while the basic effect of increasing *B* is the decrease of the electron concentration in the center of the well. As discussed above, *S* is very sensitive to these dispersion modifications. *S* clearly exhibits $[Fig. 3(b)]$ "three distinct behaviors" approximately in the zones $0-4$ T (concave down), $4-12$ T (concave up), and $13-20$ T (concave down). For the whole range 0–20 T, *N* is made up only from spin-down carriers. Even if some spin-up electrons survived, we could in principle utilize the effect of *depopulation* of the higher spin subbands to eliminate spin-up electrons.

Let us now consider a wider QW with $L = 60$ nm. For *B* $=0$, the partial DOS of all spin subbands is exactly 0.5 ideal 2DEG step. The 00—10 parabolas as well as the 01—11

FIG. 2. (Color online) $E_{i,\sigma}(k_x)$ and DOS for $L=30$ nm. (a) $B=4$ T, (b) $B=6$ T, and (c) $B=11$ T. In the region 4–12 T the 00 and 01 spin subbands change drastically, gradually developing a two-minima shape.

parabolas are energetically very close. The resulting populations are $N_{00} = 7.934 \times 10^{10}$ cm⁻², $N_{10} = 7.726 \times 10^{10}$ cm⁻², N_{01} = 5.009×10⁻¹⁵ cm⁻², and N_{11} = 4.316×10⁻¹⁵ cm⁻², i.e., only spin-down electrons survive. Only 10 has some population in the center of the well but the system is basically already a bilayer one. Figure 4 presents the $E_{i,\sigma}(k_x)$ and the DOS for $L=60$ nm and characteristic values of *B*. The ideal steplike DOS cannot describe the system even for relatively small *B*. For $B=2$ T the two pairs of dispersion

FIG. 3. (Color online) $L = 30$ nm. (a) Spin-subband sheet electron populations N_{ii} , and free energy F ; (b) internal energy *U*, free energy *F*, and entropy *S*, as a function of *B*. The drastic dispersion modification is mirrored in the behavior of *U*, *F*, and *S*.

curves corresponding to spin-down and spin-up electrons anticross at $k_x=0$ and the total DOS has been already slightly modified. For $B=7$ T some nice singularities are present while the shape and magnitude of the DOS is far away from the famous 2DEG staircase. For $B=20$ T the $k_x=0$ energy separation of the members of the spin-up and spin-down pairs is 14.11 meV $\approx \hbar \omega_c = 14.47$ meV. Hence, in the center of the well the magnetic confinement has overcome the spatial confinement. In this region, the DOS is that of a free particle along the *y* axis plus a harmonic oscillator in the *xz* plane. Figure 5 presents N_{ij} , as well as U , F , and S , as a function of *B* in the range $0-20$ T. Initially, in the zone $0-4$ T, the magnetic field depopulates the 10 spin subband. During this process the 10 dispersion retains a ''one minimum'' form. In the 0–4 T range, the dispersion loses gradually the two-parabolas' type, developing via anticrossing the twominima shape in the 00 spin subband. In the $4-20$ T range, only the 00 spin subband remains populated retaining the two-minima shape. These two types of behavior can be seen in the modification of *U* and *F*. Again, more sensitive to these dispersion modifications is *S*, which is concave up in the 0–4 T range but an absolutely straight line in the range 4–20 T!

Using a derivative algorithm we obtain the in-plane magnetization $(Fig. 6)$. Since *L* is different in these three cases, we present the product magnetization times volume *MV*, in

FIG. 4. (Color online) $E_{i,\sigma}(k_x)$ and DOS for $L=60$ nm. (a) *B* $=$ 2 T, (b) $B=7$ T, and (c) $B=20$ T. This is basically a spin-down bilayer system.

units of eV/T instead of *M* alone. For $L=10$ nm there is a simple almost straight line because the dispersion remains "basically parabolic." For $L=60$ nm, since the structure "is" basically a bilayer system'' no big surprises are present. The situation is different for $L=30$ nm. Here, in the region where the dispersion changes drastically, we observe a severe fluctuation of *M*, which is so big that the lines for *L* $=$ 10 nm and L = 60 nm seem almost constant. The magnitude of the magnetization fluctuation—for this 30 nm

FIG. 5. (Color online) $L = 60$ nm. (a) Spin-subband sheet electron populations N_{ij} and free energy F ; (b) internal energy U , free energy *F*, and entropy *S*, as a function of *B*. The two ''dispersion zones," $0-4$ T and $4-20$ T, are mirrored in the behavior of *U*, *F*, and *S*.

well—is \approx 5 Am⁻¹. This corresponds \sim to a Mn concentration of 10^{17} cm⁻³. Conclusively, the DOS modification has caused an impressive effect on the system's in-plane magnetization.

To our knowledge, there has been no experimental study of the present system under in-plane magnetic field. We note two photoluminescence studies performed in the Faraday geometry, with the magnetic field applied perpendicular to the

- $¹$ C.D. Simserides, J. Phys.: Condens. Matter 11, 5131 (1999).</sup>
- 2^2 O.N. Makarovskii, L. Smrčka, P. Vašek, T. Jungwirth, M. Cukr, and L. Jansen, Phys. Rev. B 62, 10 908 (2000).
- ³H. Ohno, J. Magn. Magn. Mater. **200**, 110 (1999); **242-245**, 105 $(2002).$
- 4S.P. Hong, K.S. Yi, and J.J. Quinn, Phys. Rev. B **61**, 13 745 $(2000).$
- 5B. Lee, T. Jungwirth, A.H. MacDonald, Phys. Rev. B **61**, 15 606 $(2000).$
- ⁶H.J. Kim and K.S. Yi, Phys. Rev. B **65**, 193310 (2002).
- ⁷C. Simserides, Physica E (Amsterdam) **21**, 956 (2004) .
- 8 H. Venghaus, Phys. Rev. B 19, 3071 (1979); S. Adachi and T. Taguchi, *ibid.* **43**, 9569 (1991).

FIG. 6. (Color online) In-plane magnetization times volume *MV*, as a function of *B*. Note the fluctuation for $L = 30$ nm due to the severe DOS modification.

layers: one of the narrow QW at 4.2 K (Ref. 11) and one of the asymmetric double QW at 1.8 K.¹² Interesting magnetic/ nonmagnetic structures with different layers of ZnCdSe, ZnSe, and ZnCdMnSe have been magneto-optically investigated more recently,^{13,14} without taking advantage of a parallel magnetic field. Hence, in order to exploit the potentialities of the present system we would like to encourage experiments with in-plane magnetic field and wider quantum wells.

We have illustrated—by providing results for different degrees of magnetic and spatial confinement—how much the *classical* staircase 2DEG density of states must be modified, for *n*-doped $ZnSe/Zn_{1-x-y}Cd_xMn_ySe/ZnSe QW's$, under inplane magnetic field. This is a valuable system for conduction-band spintronics. The DOS modification causes considerable effects on the system's physical properties. We have described the changes induced to the spin-subband populations, the internal and free energy, the entropy, and the in-plane magnetization. We predict a significant fluctuation of the in-plane magnetization when the dispersion is severely modified by the parallel magnetic field.

I would like to thank Professor G. P. Triberis for general support, and Professor J. J. Quinn for correspondence and an older paper.

⁹ C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).

- $10N = \Gamma \sum_{i,\sigma} \int_{-\infty}^{+\infty} dk_x I$, $S = -k_B \Gamma \sum_{i,\sigma} \int_{-\infty}^{+\infty} dk_x K$, $U = \Gamma \sum_{i,\sigma} \int_{-\infty}^{+\infty} dk_x$ $\times [E_{i,\sigma}(k_x)I_+^+J], \Gamma = (A\sqrt{2m^*})/(4\pi^2\hbar). \ I = \int_0^{+\infty} (da/\sqrt{a})\Pi,$ $J = \int_0^{+\infty} d\vec{a} \sqrt{\vec{a}} \Pi$, $K = \int_0^{+\infty} (d\vec{a}/\sqrt{\vec{a}}) \Pi$ ln Π , $\Pi = \{1 + \exp[(\vec{a}$ $+E_{i,\sigma}(k_x)-\mu)/k_BT]\}^{-1}.$
- 11M.S. Salib, G. Kioseoglou, H.C. Chang, H. Luo, A. Petrou, M. Dobrowolska, J.K. Furdyna, and A. Twardowski, Phys. Rev. B **57**, 6278 (1998).
- 12W. Heimbrodt, L. Gridneva, M. Happ, N. Hoffmann, M. Rabe, and F. Henneberger, Phys. Rev. B 58, 1162 (1998).
- 13M. Syed, G.L. Yang, J.K. Furdyna, M. Dobrowolska, S. Lee, and L.R. Ram-Mohan, Phys. Rev. B 66, 075213 (2002).
- 14S. Lee, M. Dobrowolska, J.K. Furdyna, and L.R. Ram-Mohan, Phys. Rev. B 61, 2120 (2000).