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Computational investigation of intrinsic localization in crystalline Si
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We investigate numerically existence and dynamical properties of intrinsic localization in crystalline silicon
through the use of interatomic Tersoff force fields. We find a band of intrinsic localized nidiesete
breatherseach with lifetime of at least 60 ps in the spectral region 548—578¢iocated just above the zone
end phonon frequency calculated at 536 ¢mThe localized modes extend to more than second neighbors and
involve pair central-atom compressions in the range from 6.1% to 8.6% of the covalent bond length per atom.
Finite temperature simulations show that they remain robust to room temperatures or higher with a typical
lifetime equal to 6 ps.
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In 1988 Sievers and Takehsuggested that nonlinearity study in a controlled fashion their features in the vast inter-
of interatomic forces in crystals can lead to vibrational en-mediate nonlinear regime. In our computations we used a
ergy localization in the form of intrinsic localized modes cell consisting of 216 atoms. Initially, we calculated the den-
(ILM’s) or discrete breathe(®B’s) generated in the absence Sity of states of the linearized vibrational spectrum of Si and
of any type of disorder. Subsequent theoretical analysis ofonfirmed known results mentioned above and place the
this fruitful concept addressed a variety of isuasd in  zone end boundary approximately @t, =536 cm *; pos-
particular focused on DB rigorous existeriamobility,* ther-  sible stable ILM’s can have frequencies larger thappro-
modynamic propertie3,and classical and quantmmodel  Vided effective interaction hardening takes place in a range
systems. On the practical, experimental side, DB’s have bee®f large displacement from the equilibrium positions.
unequivocally generated in man-made systems of micron In the search for intrinsic localization properties in mate-
scale such as Josephson junctidhas well as MEMSRef.  rials it is important to be able to construct a precise initial
9) while presently only quasi-one-dimensional crystallinestate that forms a breather state. We will be using a truncated
PtCl seems to present a clear candidate for presence of DBFourier domain method that has been tested and seen to work
on a microscopic scaf€. From the purely computational Well in three-dimensional model systeffsSince we are
stand point only few attempts were made so far aiming at théeeking space localized but time periodic lattice solutions,
numerical investigation of intrinsic localization in real sys- We consider for al-dimensional system of atoms the Fourier
tems throughab initio or alternative numerical methods.™®  expansion of the atomic positiof and forces~; acting on
In the present study we perform a computationally intensivghe ith atom of massm; in multiples of the breather fre-
analysis that details the onset of intrinsic localization in onequencywy; we thus obtain Newton's law in the frequency
of the most technologically important materials, viz., in crys-domain, ViZ-,—minzwgﬁi,nZTZi,n, where tilde denotes the
talline silicon, and analyze some of its properties. transformed quantities and the indexabels Fourier modes.

Crystalline carbon, silicon, and germanium have four va-The breather construction algorithm solves iteratively this
lence electrons and form diamond structures where eac8quation by assuming an initial DB frequenmﬁo) outside
atom has four neighbors. In crystalline silicon, in particular,the phonon band as well as an initial, localized set of eigen-
the nearest-neighbor distance is 2.35 A with ground-statgectors R(”); these two enable the first force evaluation
(cohesive energy per atom equal te 4.63 eV while '}f V- while through it the first mode eigenvector follows. Subse-
brational spectrum has an upper limit band=e#36 cm *. A guent use of the latter corrects the frequency, obtaining thus

properties can be analyzed computationally through the use

of semiempirical interatomic potentials with adjustable pa-

rameters fitted from the experiment. In the present numerical
study we used almost exclusively pseudopotentials of Tersoff
type'* that follow modified Morse laws while incorporation

of environmental effects on bonding gives them implicit ' . .
many-body character that is important in the study of severz{lﬁ;thgofr']rss‘tg‘n";aleze?gtr;]er mgg:s f%)l(lcé)?/\?st tr;foiqer%heone%uvgzgi

group-1V element propertie’s.Our basic aim is on one hand =005 (K) ] ) i
to investigate nonlinear localization in bulk materials, while Fio{Ri,g}=0. The iterative procedure ends when there is
on the other to probe at the same time the regime of validitgonvergence for specific values @f, of the breather eigen-
of empirical pseudopotentials away from the usual purelyectorsR,; .

linear regime. Since empirical pseudopotentials are many Using this method we can construct three-dimensional
times used from a linear regime to melting, it is important tosilicon ILM’s such as the one depicted in Figal We note
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FIG. 2. (a) Breather frequency as a function of distortion of the
central atoms =2.35 A). Dashed line corresponds to the upper
-~y [ o limit of phonon band.

i i vives to the end of the simulation, i.e., has a lifetime of at
0.5 (b) ] least 60 ps, or it lasts more that>lDB oscillation periods at
I T zero temperaturgFig. 1(b)].

02 For a more systematic study of the DB properties in sili-
con we applied the previous approach for various breather
I OIS periods; the results are shown in Fig. 2 where breather fre-
= quency is plotted as a function of the amplitude of the central
0l atom. We observe a number of remarkable features; first we
note that there is a very small zone starting at the top of the
005 e phonon band to the lowest possible breather frequency lo-
VYo NN el N cated atwp min="540 cni'* where no breathers are con-
898 999 1000 structed. The lack of breathers in this small zone could be

time (T,) attributed to the true three-dimensional nature of the
structuret’ we also note that we find that true breather

FIG. 1. (a) Numerically accurate discrete breather generation inodes in the small-frequency and small-amplitude side of
silicon modeled by Tersoff potentials. The breather frequency ighe breather band have weaker stability compared to the rest.

wy=578 cm * while vectorsimagnified for visualization purposes N what regards the specific breather frequency-amplitude re-
denote atomic displacements from equilibrium; only figrtay, red  lation we observe an initial increase in DB frequency as the
on line) and secondwhite) neighbors to the centréblack, blue on  amplitude increases indicating an initial hardening of bonds
line) two breather atoms are included. The distortion of the twowhile upon reaching a maximum in the frequenay 4 the
central breather atoms &=0.18 A. (b) Time evolution of the sili-  frequency decreases with the amplitude. The presence of this
con breather state after 998 breather periods. We plot the absolugecond branch in the “breather dispersion relation” indicates
value of the displacements from equilibrium along the direction ofthe expected softening of the bonds in the breather neighbor-
motion of each atom. We note the coordinated oscillation of centrahood at even larger amplitudes.
(solid), first (dotted, and seconddashed neighbor atoms. The dynamical reasons for this distinct behavior of the
intrinsically localized silicon modes arise from the potential
that there are two central atoms where most ILM energy ignergy of the mode central atoms as well as the specifics of
concentrated, while each of these atoms is surrounded e eigenvectors of each atom constituting the ILM. Indeed
three first neighboring ones oscillating in phase with theirthe nature of the pseudopotentials used in conjunction with
opposite to them central atom. At larger yet distances fronthe specific diamond structure of the silicon crystal appears
the two central breather sites there is a layer of second neigle induce a hardening of the effective breather potential that,
boring silicon atoms that have smaller, yet discernible mo-however, gets softened at larger deviations. This tendency is
tions with the same breather frequency. We note that motioimprinted in the change of the first neighbor eigenvectors for
practically ceases beyond this layer of second neighbors. Wereathers with different central-atom differences and fre-
thus have the typical configuration of a discrete breathefuencies.
thereby having a collection of atoms oscillating with the Indeed, the eigenvectors for three extreme breather states
same period while the amplitude of the oscillation drops ex-of the breather band, viz.(i) the breather withwy
ponentially as we move away from the central oscillating=540 cm ! and lower central amplitudeji) the breather
sites. Using the state shown in Figal as initial state we with the highest possible frequenay,=578 cmi %, and(iii)
performed long-time evolution of the lattice dynamics andthe breather withw, =540 cni ! but larger central amplitude
confirmed that this localized coherent oscillating state surare quite different. While in all three cases the direction of
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FIG. 3. (a) Probability distribution(unnormalized of breather
lifetime at T=300 K. (b) Breather lifetime as a function of distor-
tion of the central atoms af=300 K. (c) Breather lifetime as a
function of temperature. Fg®) and (c), the breather frequency is
w,=578 cm ! and corresponds to the top of the breather baee
Fig. 2.
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second neighbors for the central atoms leading to bond hard-
ening. This cage is progressively removed in the second
branch leading to an eventual softening of the bonds and the
remarkable frequency degeneracy in the breather states. We
note that the breathers with frequency degeneracy found here
have distinct eigenstates that differ particularly in the first
and second neighbors while, additionally, have completely
different energies. All breathers found in this range are stable
as we have verified through substitution of the initial
breather state in the dynamical equations of motion and sub-
sequent monitoring of the time evolution. However, while
breathers in the range=550 cm ! have a lifetime over 60

ps we found that for breathers with=<550 cni'! lifetime
reduces by almost an order of magnitude.

Having studied the onset of localization in the purely
Hamiltonian case, we now turn our attention to the DB prop-
erties at finite temperatures. To this effect we consider our
silicon lattice model with kinetic terms thermalized to a
given temperaturel and superimpose on it our precise
breather state found in the way outlined above. We evolve
the system in time and measure the decay time concentrating
primarily in the central two silicon atoms. In order to take
into account the statistical fluctuations of the process we re-
peat this procedure several times to construct a histogram
describing the probability of breather decay as a function of
time, such as the one shown in Figagfor T=300 K. We
note that the breather decay distribution is not a Gaussian but
has Gaussian features although it has a clear tail at long
times; it can be fitted by a power-law distribution of the form
Ax*[(x—A1)8+A,], with Ay, A;, and A, appropriate
constants. Due to the specific power-law-like shape of the
distribution we choose to define as breather lifetime the time
associated to the mode, i.e., the most probable value of the
distribution, that, in the depicted case is equal tp
=6.1 ps.

Clearly, the breather lifetime for each temperature de-
pends on the specific breather studied. In Fidp) 3ve plot
the breather lifetime aff=300 K as a function of the
breather amplitude of the central atoms; we note that DB
lifetime increases linearly with central displacement or fre-
quency, indicating that, once generated, the more energetic
breathers survive longer. Systematic study in the way pre-
sented previously of the breather lifetime as a function of
temperature results in the curve of FigcBthat applies to
breathers in the center of the breather band. We note that
although the DB lifetime decays t&2 ps at temperatures
800 K and higher the state does not completely disappear
even at 1500 K. We find thus that breathers once generated
are very robust to temperature fluctuations.

the central-atom eigenmode does not change, in the first case In addition to silicon we performed similar studies to
(i) the first and second neighbor atom eigendirections arether valence-four atomic models, viz., those of germanium
approximately parallel to the one defined by the central twaand carbon. For germanium we found analogous behavior,
atoms while as the amplitude increases and we move towardsz., existence of a breather band above the phonon zone end
breathergii) and(iii ), this direction becomes closer to being separated by a small breather gap. In the case of carbon,
perpendicular to it. As a result we observe that the lowethowever, we were not able to construct breathers in a way
branch of the DB frequency-amplitude curve is dominatedsimilar to that of silicon and germanium. We evaluated nu-
by angular motion of the second and third neighbors resultmerically the interaction energy of the central two atoms as
ing in the formation of an effective cage by the first andfunction of distance and found that while in the case of Si
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and Ge this energy differs very little in the case of C there isearity is substantially enhanced may be connected with our
a substantial increase by more than 100% in the regionBndings.

where breathers could form. Thus, although we also observe In conclusion, we have presented a computational analy-
a bond hardening for C, the reason for no breather formatiogis of nonlinear localization in diamond structures of silicon,
may be linked to the fact that the much larger effectivedermanium, and carbon using Tersoff potentials. For the first
intercarbon coupling moves the system away from the regiofvo elements we found a breather band above the phonon
of the anticontinuous limit where breathers can elst, band while for carbon no such band was identified. Fre-
and as a result does not enable the formation of localize§Uency degeneracy in breathers was found due to the effec-
modes in this spectral region. In order to test the validityt'\“.a formation of a bfeathef cage ffo”! _the second and.thlrd
of Tersoff results away from the linear regime we aISOnelghbor atoms that leads in the specific pseudopotentials to

checked the possibility for breather mode construction using") éffective potential hardening in a limited range of dis-
other semiempirical forms for silicol:?° Due to the fact ances. The breather lifetime at finite temperatures was cal-

that these potentials are either $dfor lead to essentially culated and found to be of order .6 psTat 300 K whilede-
linear pair atomic forced in the regions of interest no long- cays to~2 ps at temperatures higher than 800 K. We note
lived stable breather modes could be constructed. In What{1at Wwe were not able, howeyer, fo construct breathers using
regards finally experimental realizations of intrinsic Iocaliza—Other standard pseudopotentials and, as a result, further in-

tion, our findings would be compatible withke=0 phonon vestigations are needed both in assessing the regime of va-

optic-mode local hardening in some temperature range. AII_|d|ty of pseudopotentials in the nonlinear regime as well as

though Raman spectra in crystalfi@nd nanocrystallif@ the actl_JaI experimental _realization of nonlinear localized
Si show a general mode softening with temperature, :som5nOdes in valence-IV semiconductors.

small but discernible deviations that are noted especially in This research was supported in part by the European
the nanocrystalline case where the effective system nonlin-Union under Contract No. HPRN-CT-1999-00163.
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