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Computational investigation of intrinsic localization in crystalline Si
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We investigate numerically existence and dynamical properties of intrinsic localization in crystalline silicon
through the use of interatomic Tersoff force fields. We find a band of intrinsic localized modes~discrete
breathers! each with lifetime of at least 60 ps in the spectral region 548–578 cm21, located just above the zone
end phonon frequency calculated at 536 cm21. The localized modes extend to more than second neighbors and
involve pair central-atom compressions in the range from 6.1% to 8.6% of the covalent bond length per atom.
Finite temperature simulations show that they remain robust to room temperatures or higher with a typical
lifetime equal to 6 ps.
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In 1988 Sievers and Takeno1 suggested that nonlinearit
of interatomic forces in crystals can lead to vibrational e
ergy localization in the form of intrinsic localized mode
~ILM’s ! or discrete breathers~DB’s! generated in the absenc
of any type of disorder. Subsequent theoretical analysis
this fruitful concept addressed a variety of issues2 and in
particular focused on DB rigorous existence,3 mobility,4 ther-
modynamic properties,5 and classical and quantum6 model
systems. On the practical, experimental side, DB’s have b
unequivocally generated in man-made systems of mic
scale such as Josephson junctions7,8 as well as MEMS~Ref.
9! while presently only quasi-one-dimensional crystalli
PtCl seems to present a clear candidate for presence of
on a microscopic scale.10 From the purely computationa
stand point only few attempts were made so far aiming at
numerical investigation of intrinsic localization in real sy
tems throughab initio or alternative numerical methods.11–13

In the present study we perform a computationally intens
analysis that details the onset of intrinsic localization in o
of the most technologically important materials, viz., in cry
talline silicon, and analyze some of its properties.

Crystalline carbon, silicon, and germanium have four
lence electrons and form diamond structures where e
atom has four neighbors. In crystalline silicon, in particul
the nearest-neighbor distance is 2.35 Å with ground-s
~cohesive! energy per atom equal to24.63 eV while its vi-
brational spectrum has an upper limit band at'536 cm21. A
large number of bulk, surface, as well as nanocrystal
properties can be analyzed computationally through the
of semiempirical interatomic potentials with adjustable p
rameters fitted from the experiment. In the present numer
study we used almost exclusively pseudopotentials of Ter
type14 that follow modified Morse laws while incorporatio
of environmental effects on bonding gives them impli
many-body character that is important in the study of sev
group-IV element properties.15 Our basic aim is on one han
to investigate nonlinear localization in bulk materials, wh
on the other to probe at the same time the regime of vali
of empirical pseudopotentials away from the usual pur
linear regime. Since empirical pseudopotentials are m
times used from a linear regime to melting, it is important
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study in a controlled fashion their features in the vast int
mediate nonlinear regime. In our computations we use
cell consisting of 216 atoms. Initially, we calculated the de
sity of states of the linearized vibrational spectrum of Si a
confirmed known results mentioned above and place
zone end boundary approximately atvp5536 cm21; pos-
sible stable ILM’s can have frequencies larger thanvp pro-
vided effective interaction hardening takes place in a ra
of large displacement from the equilibrium positions.

In the search for intrinsic localization properties in ma
rials it is important to be able to construct a precise init
state that forms a breather state. We will be using a trunca
Fourier domain method that has been tested and seen to
well in three-dimensional model systems.16 Since we are
seeking space localized but time periodic lattice solutio
we consider for ad-dimensional system of atoms the Fouri
expansion of the atomic positionsRi and forcesFi acting on
the i th atom of massmi in multiples of the breather fre
quencyvb ; we thus obtain Newton’s law in the frequenc
domain, viz.,2min

2vb
2R̃i ,n5F̃i ,n , where tilde denotes the

transformed quantities and the indexn labels Fourier modes
The breather construction algorithm solves iteratively t
equation by assuming an initial DB frequencyvb

(0) outside
the phonon band as well as an initial, localized set of eig
vectors Ri

(0) ; these two enable the first force evaluatio
while through it the first mode eigenvector follows. Subs
quent use of the latter corrects the frequency, obtaining t
vb

(1) . Repetition of this procedure results afterk iterations to

R̃i ,n
(k)52

F̃i ,n
(k)

min
2~vb

(k21)!2
,

for the firstnmax Fourier modes except the zeroth one, wh
the constant zeroth mode follows from the equati
F̃i ,0

(k)$R̃i ,0
(k)%50. The iterative procedure ends when there

convergence for specific values ofvb of the breather eigen
vectorsR̃i ,n .

Using this method we can construct three-dimensio
silicon ILM’s such as the one depicted in Fig. 1~a!. We note
©2004 The American Physical Society01-1
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that there are two central atoms where most ILM energy
concentrated, while each of these atoms is surrounded
three first neighboring ones oscillating in phase with th
opposite to them central atom. At larger yet distances fr
the two central breather sites there is a layer of second ne
boring silicon atoms that have smaller, yet discernible m
tions with the same breather frequency. We note that mo
practically ceases beyond this layer of second neighbors
thus have the typical configuration of a discrete breat
thereby having a collection of atoms oscillating with t
same period while the amplitude of the oscillation drops
ponentially as we move away from the central oscillati
sites. Using the state shown in Fig. 1~a! as initial state we
performed long-time evolution of the lattice dynamics a
confirmed that this localized coherent oscillating state s

FIG. 1. ~a! Numerically accurate discrete breather generation
silicon modeled by Tersoff potentials. The breather frequency
vb5578 cm21 while vectors~magnified for visualization purposes!
denote atomic displacements from equilibrium; only first~gray, red
on line! and second~white! neighbors to the central~black, blue on
line! two breather atoms are included. The distortion of the t
central breather atoms isa50.18 Å. ~b! Time evolution of the sili-
con breather state after 998 breather periods. We plot the abs
value of the displacements from equilibrium along the direction
motion of each atom. We note the coordinated oscillation of cen
~solid!, first ~dotted!, and second~dashed! neighbor atoms.
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vives to the end of the simulation, i.e., has a lifetime of
least 60 ps, or it lasts more that 103 DB oscillation periods at
zero temperature@Fig. 1~b!#.

For a more systematic study of the DB properties in s
con we applied the previous approach for various brea
periods; the results are shown in Fig. 2 where breather
quency is plotted as a function of the amplitude of the cen
atom. We observe a number of remarkable features; first
note that there is a very small zone starting at the top of
phonon band to the lowest possible breather frequency
cated atvb,min5540 cm21 where no breathers are con
structed. The lack of breathers in this small zone could
attributed to the true three-dimensional nature of
structure;17 we also note that we find that true breath
modes in the small-frequency and small-amplitude side
the breather band have weaker stability compared to the
In what regards the specific breather frequency-amplitude
lation we observe an initial increase in DB frequency as
amplitude increases indicating an initial hardening of bon
while upon reaching a maximum in the frequencyvb,max the
frequency decreases with the amplitude. The presence of
second branch in the ‘‘breather dispersion relation’’ indica
the expected softening of the bonds in the breather neigh
hood at even larger amplitudes.

The dynamical reasons for this distinct behavior of t
intrinsically localized silicon modes arise from the potent
energy of the mode central atoms as well as the specific
the eigenvectors of each atom constituting the ILM. Inde
the nature of the pseudopotentials used in conjunction w
the specific diamond structure of the silicon crystal appe
to induce a hardening of the effective breather potential th
however, gets softened at larger deviations. This tendenc
imprinted in the change of the first neighbor eigenvectors
breathers with different central-atom differences and f
quencies.

Indeed, the eigenvectors for three extreme breather st
of the breather band, viz.,~i! the breather with vb
5540 cm21 and lower central amplitude,~ii ! the breather
with the highest possible frequencyvb5578 cm21, and~iii !
the breather withvb5540 cm21 but larger central amplitude
are quite different. While in all three cases the direction
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FIG. 2. ~a! Breather frequency as a function of distortion of th
central atoms (d52.35 Å). Dashed line corresponds to the upp
limit of phonon band.
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the central-atom eigenmode does not change, in the first
~i! the first and second neighbor atom eigendirections
approximately parallel to the one defined by the central t
atoms while as the amplitude increases and we move tow
breathers~ii ! and~iii !, this direction becomes closer to bein
perpendicular to it. As a result we observe that the low
branch of the DB frequency-amplitude curve is domina
by angular motion of the second and third neighbors res
ing in the formation of an effective cage by the first a

FIG. 3. ~a! Probability distribution~unnormalized! of breather
lifetime at T5300 K. ~b! Breather lifetime as a function of distor
tion of the central atoms atT5300 K. ~c! Breather lifetime as a
function of temperature. For~a! and ~c!, the breather frequency i
vb5578 cm21 and corresponds to the top of the breather band~see
Fig. 2!.
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second neighbors for the central atoms leading to bond h
ening. This cage is progressively removed in the sec
branch leading to an eventual softening of the bonds and
remarkable frequency degeneracy in the breather states
note that the breathers with frequency degeneracy found
have distinct eigenstates that differ particularly in the fi
and second neighbors while, additionally, have complet
different energies. All breathers found in this range are sta
as we have verified through substitution of the init
breather state in the dynamical equations of motion and s
sequent monitoring of the time evolution. However, wh
breathers in the rangev*550 cm21 have a lifetime over 60
ps we found that for breathers withv&550 cm21 lifetime
reduces by almost an order of magnitude.

Having studied the onset of localization in the pure
Hamiltonian case, we now turn our attention to the DB pro
erties at finite temperatures. To this effect we consider
silicon lattice model with kinetic terms thermalized to
given temperatureT and superimpose on it our precis
breather state found in the way outlined above. We evo
the system in time and measure the decay time concentra
primarily in the central two silicon atoms. In order to tak
into account the statistical fluctuations of the process we
peat this procedure several times to construct a histog
describing the probability of breather decay as a function
time, such as the one shown in Fig. 3~a! for T5300 K. We
note that the breather decay distribution is not a Gaussian
has Gaussian features although it has a clear tail at l
times; it can be fitted by a power-law distribution of the for
A0x4/@(x2A1)81A2#, with A0 , A1, and A2 appropriate
constants. Due to the specific power-law-like shape of
distribution we choose to define as breather lifetime the ti
associated to the mode, i.e., the most probable value of
distribution, that, in the depicted case is equal totb
56.1 ps.

Clearly, the breather lifetime for each temperature d
pends on the specific breather studied. In Fig. 3~b! we plot
the breather lifetime atT5300 K as a function of the
breather amplitude of the central atoms; we note that
lifetime increases linearly with central displacement or f
quency, indicating that, once generated, the more energ
breathers survive longer. Systematic study in the way p
sented previously of the breather lifetime as a function
temperature results in the curve of Fig. 3~c! that applies to
breathers in the center of the breather band. We note
although the DB lifetime decays to'2 ps at temperature
800 K and higher the state does not completely disapp
even at 1500 K. We find thus that breathers once gener
are very robust to temperature fluctuations.

In addition to silicon we performed similar studies
other valence-four atomic models, viz., those of germani
and carbon. For germanium we found analogous behav
viz., existence of a breather band above the phonon zone
separated by a small breather gap. In the case of car
however, we were not able to construct breathers in a w
similar to that of silicon and germanium. We evaluated n
merically the interaction energy of the central two atoms
function of distance and found that while in the case of
1-3
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and Ge this energy differs very little in the case of C there
a substantial increase by more than 100% in the reg
where breathers could form. Thus, although we also obs
a bond hardening for C, the reason for no breather forma
may be linked to the fact that the much larger effect
intercarbon coupling moves the system away from the reg
of the anticontinuous limit where breathers can exis18

and as a result does not enable the formation of locali
modes in this spectral region. In order to test the valid
of Tersoff results away from the linear regime we al
checked the possibility for breather mode construction us
other semiempirical forms for silicon.19,20 Due to the fact
that these potentials are either soft19 or lead to essentially
linear pair atomic forces20 in the regions of interest no long
lived stable breather modes could be constructed. In w
regards finally experimental realizations of intrinsic localiz
tion, our findings would be compatible with ak50 phonon
optic-mode local hardening in some temperature range.
though Raman spectra in crystalline21 and nanocrystalline22

Si show a general mode softening with temperature, so
small but discernible deviations that are noted especially
the nanocrystalline case where the effective system non
s

s.
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earity is substantially enhanced may be connected with
findings.

In conclusion, we have presented a computational an
sis of nonlinear localization in diamond structures of silico
germanium, and carbon using Tersoff potentials. For the
two elements we found a breather band above the pho
band while for carbon no such band was identified. F
quency degeneracy in breathers was found due to the e
tive formation of a breather cage from the second and th
neighbor atoms that leads in the specific pseudopotentia
an effective potential hardening in a limited range of d
tances. The breather lifetime at finite temperatures was
culated and found to be of order 6 ps atT5300 K whilede-
cays to'2 ps at temperatures higher than 800 K. We n
that we were not able, however, to construct breathers u
other standard pseudopotentials and, as a result, furthe
vestigations are needed both in assessing the regime o
lidity of pseudopotentials in the nonlinear regime as well
the actual experimental realization of nonlinear localiz
modes in valence-IV semiconductors.
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