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Quantum rotation of HCN and DCN in 4He
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We present calculations of rotational absorption spectra of the molecules HCN and DCN in superfluid4He,
using a combination of the diffusion Monte Carlo method for ground-state properties and an analytic many-
body method~correlated basis function theory! for the excited states. Our results agree with the experimentally
determined effective moment of inertia which has been obtained from theJ50→1 spectral transition. The
correlated basis function analysis shows that, unlike heavy rotors such as OCS, theJ52 and higher rotational
excitations of HCN and DCN have high-enough energy to strongly couple to rotons, leading to large shifts of
the lines and accordingly to anomalous large spectroscopic distortion constants, to the possibility of roton-
maxon bands, and of secondary peaks in the absorption spectra forJ52 andJ53.

DOI: 10.1103/PhysRevB.69.104517 PACS number~s!: 67.40.Yv, 05.30.Jp, 33.20.Bx, 34.30.1h
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I. INTRODUCTION

In microwave helium nanodroplet isolation spectrosco
experiments, Conjusteauet al.1 have measured the rotation
excitation energyJ50→1 of HCN and DCN embedded in
4He clusters. Their results show a reduction of this excitat
energy by factors of 0.815 and 0.827 with respect to g
phase HCN and DCN, respectively. Infrared spectrosc
experiments of HCN by Nauta and Miller2 yield similar re-
sults from analysis of the rovibrational excitation of the C
stretching mode, namely, a reduction of 0.795 in theJ50
→1 energy. These fractional reductions are considera
smaller than those observed for heavier molecules suc
SF6 and OCS, where reductions by factors of;3 are seen.3

The gas-phase rotational constants,B51.478 222 cm21 for
HCN andB51.207 780 cm21 for DCN, are also much large
than the corresponding values for the heavier molecu
~e.g.,B50.2029 cm21 and 0.0911 cm21 for OCS and SF6,
respectively!. The widely observed reduction inB is under-
stood to be due to the interaction of the molecule with
surrounding 4He atoms.4 For the heavier molecules it ha
been found that calculations based on the microscopic t
fluid theory5 can reproduce the effective rotational consta
Beff .

4,6 For some heavy linear rotors, a semiclassical hyd
dynamical analysis that combines a classical treatment o
molecular rotation with a quantum calculation of helium s
vation density approximately reproduced the moment of
ertia increase measured in experiments~see Table I in Ref.
7!, although no agreement is found for the octahedral S6
molecule.4,8,9The hydrodynamic contribution to the effectiv
moment of inertia is found to be considerably decrea
when the molecular rotation is treated quantu
mechanically.10

These models for heavier molecules are based on ana
of partial or complete adiabatic following of the molecul
rotational motion by helium and cannot describe the dyna
ics of light rotors like HCN and DCN in helium for which
adiabatic following does not hold.11 Furthermore, infrared
spectra of HCN2 and acetylene, C2H2,12 and other light mol-
ecules show a small splitting of the rovibrationalR(0) line
which cannot be accounted for by these theoretical
proaches that focus on the calculation of the helium-indu
0163-1829/2004/69~10!/104517~21!/$22.50 69 1045
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increase of the moment of inertia. In Ref. 13, a detai
investigation of the effects of the finite4He environment on
rotational excitations showed that both hydrodynamic c
pling of translational and rotational motion and the anis
ropy of the effective interaction between the molecule a
the finite 4He cluster, can result in splitting of theR(0)
spectral line~corresponding to theJ50→1 transition! into
M50 and M561 contributions. However, the observe
line shapes could not be explained in the case of HCN,
though good agreement was found for the line shape of
R(0) transition of the heavier rotor OCS.

The molecules HCN and DCN are light rotors, possess
large zero-point motion. Therefore, calculation of the grou
state already requires a full quantum-mechanical treatmen
the molecular rotations.14 Furthermore, for the rotational ex
citations, the spacing between the rotational energy leve
large, of similar magnitude as the roton energy of bulk h
lium @the roton gap is 8.7 K Ref.~15!#. This introduces the
possibility of direct coupling between the roton states and
molecular rotational levels of light molecules. The coupli
between phonons in4He and molecular rotational levels wa
analyzed perturbatively in Ref. 16, where it was shown t
the lower density of phonon states in4He relative to that of
particle-hole states in3He leads to a much smaller couplin
of molecular rotational transitions to excitations of the qua
tum liquid for the Bose system. This provided a rationale
the observation of sharp rotational lines in infrared molecu
spectra in the bosonic4He environment, but not in the fer
mionic 3He environment. The specifics of the dispersion
lation in 4He were not incorporated in this perturbativ
analysis. In particular, only a linear phonon spectrum w
employed, and the maxon and roton excitations were
taken into account. To allow for the possibility of coupling
maxons and rotons when calculating the response to the
tion of these light molecules, it is evident that helium cann
simply be treated as a classical frictionless fluid posses
long-wavelength hydrodynamic modes, nor by a quant
fluid possessing quantized phonons with linear dispers
We must therefore describe the coupled dynamics of
molecule and the strongly correlated helium quantum fl
with true quantum many-body theory, i.e., in principle, w
must solve the (N11)-body Schrodinger equation.
©2004 The American Physical Society17-1
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R. E. ZILLICH AND K. B. WHALEY PHYSICAL REVIEW B 69, 104517 ~2004!
Quantum Monte Carlo is one such fully quantum a
proach. Zero-temperature quantum Monte Carlo calculati
for the rotational motion of a molecule doped into a fin
cluster of helium have been carried out successfully fo
variety of small molecules,11,14,17,18in which excitation ener-
gies have been obtained with the POITSE~projection opera-
tor imaginary time spectral evolution! method19 or similar
spectral evolution approaches.18 For HCN in helium clusters,
rotational constantsBeff have been obtained for clusters co
sisting of up toN525 4He atoms.14 However, in marked
contrast to the heavier OCS and SF6 molecules for which the
large droplet value is arrived at well before the first solvat
shell (N;20) is complete,17,18,20convergence to the exper
mental value ofB for HCN in large 4He clusters of severa
thousands of4He atoms was not yet found atN525. This
very different behavior accentuates the distinction betwee
light and a heavy rotor, and suggests that different phy
may underlie the reduction inB for a light molecule. This,
combined with the technical difficulties of making POITS
calculations for large clusters and hence to follow the sm
cluster B value to convergence with increasing size, mo
vates development of a more analytic approach that is s
able for implementation in the bulk limit. With an analytic
approach, implementation is generally simpler in the b
limit N→` than in a large finite system because of t
higher symmetry. However, it is then necessary to recogn
that derivation of an analytical model from the (N11)-body
Schrödinger equation is necessarily approximative and t
may affect the quantitative accuracy of our results.

The method we apply here to the rotational dynamics
HCN in helium~1 linear molecule1 N spherical atoms! is a
combination of the correlated basis function~CBF! theory
@also called ~time-dependent! hypernetted chain/Euler
Lagrange~HNC/EL! method# with diffusion Monte Carlo
~DMC! ground-state calculations. The CBF method can
formulated as an energy functional approach to solving
many-body Schro¨dinger equation. In contrast to the formu
lation of density-functional theory~DFT! that is generally
applied to helium systems,21,22 CBF theory eliminates the
need for a semiempirical correlation energy functional
expressing the energy functional not only in terms of
one-body density, but also in terms of pair densities and
necessary for quantitative agreement, also of triplet densi
Similarly to DFT, the stationary version of CBF yields th
ground-state energy and structure, while the time-depen
extension of CBF yields excited states.

As an analytic approach to the many-body problem, C
theory requires relatively little computational effort to sol
the equations of motion, once these have been derived.
CBF method yields ground-state quantities such as
ground-state energy, the chemical potentials, and the p
distribution functions. Calculation of excitations in CB
yields not only excitation energies, but also the dens
density response function, and from that the dynamic str
ture function for pure4He and the absorption spectrum
the dopant molecule, as will be shown explicitly below. A
though CBF theory is not an exact method, quantitat
agreement has been found for a variety of quantities rele
to 4He systems. These include ground state and collec
10451
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excitations in bulk4He,23,24excitations in4He films25–28and
clusters,29–31and translational motion of atomic impurities i
4He.32 This generates confidence that CBF theory may all
quantitative calculations of the rotational dynamics of dop
molecules for rotational energies in the range of the phon
maxon-roton regime. In the case of HCN/DCN, this mea
for quantum numbers up toJ53. Combining CBF theory for
excitations with exact ground-state quantities calculated
DMC may also be expected to improve the accuracy of C
excitations.

In this paper, we restrict ourselves to the simpler case
HCN/DCN in bulk 4He, where translational symmetry i
preserved and the analytic CBF calculations become co
spondingly simpler, as opposed to HCN/DCN in4He clus-
ters. This therefore precludes the calculation of inhomo
neous line broadening and possible line splitting caused
the inhomogeneous environment of the cluster.13

The structure of the paper is as follows. The derivation
the rotation excitation spectrum of a single linear molecule
bulk helium is presented in Sec. II. This analysis is related
the derivation of the translational excitation spectrum of
atom coupling to the phonon-roton excitations in bulk h
lium, which has been discussed in detail in Ref. 32. In Se
II A and II B, we derive the CBF equations for the excitatio
spectrum of a linear rotor solvated in bulk4He and for its
absorption spectrum, respectively. In Sec. II C, we desc
how the CBF theory is combined with DMC calculations
ground-state input quantities in order to obtain excitatio
and absorption spectra.

In Sec. III, we report the DMC results for the ground-sta
quantities for HCN and DCN. Section IV describes the
sults of the ‘‘marriage’’ of CBF and DMC for rotational ex
citations. We present and discuss the excitation energie
Sec. IV A and the absorption spectra in Sec. IV B. In a dir
analogy with the definition of an effective mass of an effe
tive free particle from the momentum dependence of the
citation energyE(q), it is common to obtain an effective
rotational constantBeff of an effective linear rotor from
analysis of one or more spectral transition energies. This
done in Ref. 1 using the experimentally observedR(0) (J
50→1) spectral line. We present our corresponding res
for Beff obtained from the calculatedJ50→1 transition en-
ergies in Sec. IV C. Our calculated values ofBeff are in good
agreement with the experimental values, indicating that
reduction inBeff relative to the gas phaseB for these light
molecules derives primarily from coupling to the collectiv
modes of4He. This is a very different situation from that fo
heavier molecules, where the reduction inBeff derives from
coupling to some local helium density that adiabatically f
lows the molecular rotation,33 a phenomenon that may b
formally regarded as coupling to4He modes which are lo-
calized around the molecule. The present analysis thus i
cates that there is indeed a different physics responsible
the reduction in rotational constants for light molecules th
for heavy molecules in4He. A second significant feature o
the CBF results is that, although we find that the ene
spectrum still has the same symmetry as a linear rotor,
there is no splitting of theM states within a given level in
bulk 4He, it is evident that nevertheless theJ dependence of
7-2
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QUANTUM ROTATION OF HCN AND DCN IN 4He PHYSICAL REVIEW B69, 104517 ~2004!
the rotational energyE(J) deviates considerably from that o
an effective rigid linear rotor spectrum,BeffJ(J11), when a
fit of Beff to more than oneJ level is made. In particular, we
find that the coupling to the roton and maxon collective e
citations for higherJ levels gives rise to extremely larg
effective ‘‘centrifugal distortion’’ terms that modify this rigid
rotor form. The analysis of this deviation from the rigid rot
spectrum is discussed in detail in Sec. IV D.

Lastly, in Sec. IV F, we introduce a pseudohydrodynam
model that includes only phonon modes of4He but no
maxon/roton modes in the CBF calculation. This provide
reference point that allows us to independently assess
effect of the maxon/roton excitations on molecule rotatio
The changes in the effective rotational constantsB and D
relative to the gas-phase values deriving from this pseudo
drodynamic dispersion model are much reduced relative
the corresponding changes found with the true dispers
curve for 4He, and the value ofBeff is no longer in such
good agreement with the experimentally measured va
(Deff was not experimentally accessible for HCN in the e
periments to date.1,2! This provides additional evidence fo
the critical role of the maxon/roton excitations in the redu
tion of Beff for HCN. We summarize and provide conclusio
in Sec. V.

II. THEORY

The CBF method is a microscopic quantum theory for
ground state and excitations of a many-body system.
‘‘microscopic’’ we mean that there is no input other than t
Hamiltonian, and the output quantities are expectation va
with respect to the ground state or an excited state, suc
energy, density, etc. In practice, approximations are ne
sary in order to render the CBF equations soluble. We w
point out these approximations as we introduce them.

In our case the Hamiltonian forN 4He atoms with coor-
dinatesr i , i 51, . . . ,N and a linear molecule at positionr0
and orientationV5(u,f) in the laboratory frame takes th
form

H5BL̂22
\2

2M
¹0

21(
i 51

N

VX~r02r i ,V!1HB , ~2.1!

whereB is the rotational constant of the free linear rotor,L̂ is
the angular momentum operator,M is the mass of the rotor
andVX is the molecule-4He interaction potential. For HCN
He, we use the 1E8 potential of Atkins and Hutson34 ob-
tained from fitting toab initio calculations of Druckeret al.35

For DCN-He, we use the same potential@same equilibrium
nuclear positions,r CH51.064 Å and r CN51.156 Å ~Ref.
35!# and merely transform the Jacobi coordinates (r ,a) to
take into account the change of the center of mass.r 5ur0
2r i u is the helium distance from the molecule center
mass,a is the angle between the vectorr and the molecular
axis, measured from the hydrogen end of the molecule.

The operatorHB is the pure helium Hamiltonian,

HB52
\2

2m (
i 51

N

¹ i
21(

i , j
VHe~ ur i2r j u!, ~2.2!
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wherem is the mass of a4He atom andVHe is the 4He-4He
interaction, for which we use the potential of Ref. 36.

The CBF method has been explained in detail in a num
of papers,23,37–41therefore we limit ourselves to giving onl
a very brief overview here. The starting point is to obtain t
ground-state wave function of the (N11)-body system, here

C05C0~r0 ,r1 , . . . ,rN ,V!. ~2.3!

In the framework of CBF theory,C0 is expressed in a
Jastrow-Feenberg form, i.e., expressed in terms of corr
tions,

C05exp
1

2 F(
i , j

u2~r i ,r j !1 (
i , j ,k

u3~r i ,r j ,r k!1•••

1(
i 51

N

u2
X~r0 ,r i ,V!1(

i , j
u3

X~r0 ,r i ,r j ,V!1•••G .

~2.4!

Here the molecule is referred to asX, with center-of-mass
translation coordinater0 and angular orientationV defined
above. The definition of then-particle correlationsun andun

X

is made unique by requiring thatun vanishes if one of its
coordinates is separated from the rest. Furthermore, it
vides an exact representation of the ground state when
correlations up ton5N are summed, i.e., up touN . How-
ever, even for the strongly correlated4He ground state, cor-
relations between up to just three particles are sufficien
obtain quantitative agreement of the energy and the p
distribution function38 of bulk 4He with experiments and
Monte Carlo simulations. The correlationsun are obtained by
solving the Euler-Lagrange equations, which can be writ
formally as

dE

dun~r1 , . . . ,rn!
50, ~2.5!

~and similarly fordun
X!, whereE is the expectation value o

the Hamiltonian, ^C0uHuC0&, and n<3. The resulting
Euler-Lagrange equations~2.5! are coupled nonlinea
integro-differential equations and can be solved iterative
Derivation of a formulation of Eqs.~2.5! that is appropriate
for numerical solution can be found in Ref. 40. However,
the present ‘‘marriage’’ of CBF and DMC, solution of Eq
~2.5! is not necessary since the ground-state properties
calculated by DMC.

A. Excited states

The primary aim of this paper is to employ CBF theory
the search for excitations of the molecule-helium syste
The excitations can be obtained by generalizing the gro
state form, Eq.~2.4!, to time-dependent correlations, i.e
u25u2(r1 ,r2 ;t), etc. By allowing a time-dependent extern
perturbation potentialV(ext)(r0 ,V;t) to act on the molecule
we can then use linear response theory42 to obtain excitation
energies involving motions of the molecule. Linear respon
relies on the knowledge of the ground state, which we
7-3
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R. E. ZILLICH AND K. B. WHALEY PHYSICAL REVIEW B 69, 104517 ~2004!
sume to have calculated according to the above recipe o
DMC ~see Sec. II C! or other means and which is the
weakly perturbed. The perturbed wave function can there
be written as

C~ t !5
edU(t)/2C0

^C0ueRedU(t)uC0&
, ~2.6!

where theexcitation operatordU(t) is given by

dU~ t !5du1~r0 ,V;t !1(
i 51

N

du2~r0 ,r i ,V;t !. ~2.7!

Note that we have dropped theX superscript from the two-
particle molecule-helium correlationu2. We will continue to
do this from here on, using the presence of the molec
coordinatesr0 andV in du1(r0 ,V;t) anddu2(r0 ,r i ,V;t) to
distinguish helium-molecule from helium-helium correlatio
terms. Note also that unlike the ground-state wave func
C0, the excited stateC(t) does not possess the translation
and rotational symmetry of the full HamiltonianH. There-
fore it is convenient to separatedU(t) into a one-body term
du1 and two-body correlationsdu2 according to Eq.~2.7!.
Time-dependent correlations between more than two
ticles can also be formally written down and added to E
u-
t.

y
,
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~2.7!, but would give rise to numerically intractable equ
tions. Consequently, we restrict ourselves to two-body co
lations indU(t) here.

The two terms in Eq.~2.7! give rise to two Euler-
Lagrange equations that are obtained by functional mini
zation of the action integral

dL5dE
t1

t2
dt^C~ t !uH1V(ext)~ t !2 i\

]

]t
uC~ t !&50

~2.8!

with respect todu1 anddu2. The action integral of a spheri
cal impurity (3He and atomic hydrogen! in bulk 4He can be
found in Refs. 32 and 43. We shall refer to this referen
integral for a spherical impurity asL0. For a linear molecule
in helium, the situation is complicated~i! by the additional
rotational kinetic energy term in the Hamiltonian,

H0
rot5BL̂252BF 1

sinu

]

]u S sinu
]

]u D1
1

sin2u

]2

]f2G ,
~2.9!

and ~ii ! by the breaking of the rotational symmetry of th
ground-state distribution of4He atoms around the molecule
Similarly to the derivation ofL0,32 we find for the expansion
of L to second order indU:
L5L01
1

4
BE

t1

t2
dtH E d0dVrXF u]udu1~0,V!u21

u]fdu1~0,V!u2

sin2u G1E d0dVd1r2~0,1,V!F @]udu1* ~0,V!#

3@]udu2~0,1,V!#1c.c.1S ]fdu1* ~0,V!

sinu D S ]fdu2~0,1,V!

sinu D1c.c.1U]udu2~0,1,V!U21
u]fdu2~0,1,V!u2

sin2u G
1E d0dVd1d2 r3~0,1,2,V!F @]udu2* ~0,1,V!#@]udu2~0,2,V!#1c.c.1S ]fdu2* ~0,1,V!

sinu D S ]fdu2~0,2,V!

sinu D G J
1E

t1

t2
dtE d0dV r1@dU#~0,V!V(ext)~0,V!,
ule
e

n-
where for simplicity we abbreviated the functional arg
ments r i by i, and have omitted the time argumen
r2(0,1,V) and r3(0,1,2,V) are the ground-state probabilit
densities of one and two4He atoms around the molecule
respectively, defined as

r2~0,1,V!5
N

NE d2 . . .dN uC0~0,1, . . . ,N,V!u2,

~2.10!

r2~0,1,2,V!

5
N~N21!

N E d3 . . .dNuC0~0,1, . . . ,N,V!u2, ~2.11!
whereN is the normalization integral ofC0.

r1@dU#~0,V!5rX1Redr̃1~0,V! ~2.12!

is the time-dependent probability density of the molec
expanded to first order indU, where we have defined th
complex density fluctuation

dr̃1~0,V!5rXdu1~0,V!1E d1r2~0,1,V!du2~0,1,V!,

~2.13!

andrX51/V andr5N/V are the constant ground-state de
sities of the molecule and of the4He atoms, respectively, in
the normalization volumeV.
7-4
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QUANTUM ROTATION OF HCN AND DCN IN 4He PHYSICAL REVIEW B69, 104517 ~2004!
The Euler-Lagrange equationsdL, i.e., the one-body and
two-body equations

dL
du1* ~r0 ,V!

50,
dL

du2* ~r0 ,r1 ,V!
50, ~2.14!

describe the time-dependent response of the system to
perturbationV(ext). The linear responseis obtained by linear-
izing the equations in terms of the corresponding correla
fluctuationsdu1 and du2. In the following, we bring these
equations into a form where the time-dependent density fl
tuationdr1(0,V) is a linear functional ofV(ext). From that,
excitations are derived by settingV(ext)50.

We first eliminatedu1(0,V) in favor of the ~complex!
one-body density fluctuation Eq.~2.13!. Then the linearized
one-body equation of motion can be written

B
1

sinu S ]u

]f
D • j r~0,V!1 idṙ̃1~0,V!1“0• jX~0,V!

22V(ext)~0,V!50, ~2.15!
ns
o

a

10451
the

n

c-

where the weakV(ext) is any perturbation acting only on th
molecular degrees of freedom andjX is the translational cur-
rent fluctuation. This is defined in Ref. 32 and need not c
cern us for rotational excitations, as we will see explici
below. In analogy tojX, we have defined the ‘‘rotational’
current fluctuation

j r~0,V!5S sinu]u

1

sinu
]f
D dr̃1~0,V!2E d2du2~0,2,V!

3S sinu]u

1

sinu
]f
D r2~0,2,V!. ~2.16!

dr̃1(0,V) is the time-dependent density fluctuation defin
in Eq. ~2.13!, while, due to the linearization,r2(0,2,V) is the
ground-state pair density. The second and third terms of
~2.15! stem from the variationdL0 /du1* (0,V). The density

fluctuationdr̃1 couples viaj r and jX to the two-body equa-
tion in Eq. ~2.14!. The two-body equation is more lengthy
05
B

sinu
]usinur2~0,1,V!]u

dr̃1~0,V!

rX
1

B

sin2u
]fr2~0,1,V!]f

dr̃1~0,V!

rX
1

B

sinu
]usinur2~0,1,V!]udu2~0,1,V!

1
B

sin2u
]fr2~0,1,V!]fdu2~0,1,V!1E d2

B

sinu
]usinur3~0,1,2,V!]udu2~0,1,V!

1E d2
B

sin2u
]fr3~0,1,2,V!]fdu2~0,1,V!2E d2

B

rX

1

sinu
]usinur2~0,1,V!]ur2~0,2,V!du2~0,1,V!

2E d2
B

rX

1

sin2u
]fr2~0,1,V!]fr2~0,2,V!du2~0,1,V!1 i\dṙ̃2~0,1,V!1¹1•J2~0,1,V!2

dL 0
trans

du2* ~0,1,V!

22r2~0,1,V!V(ext)~0,V!. ~2.17!
as

ns
-

ion

m
a

dL 0
trans/du2* (0,1,V) represents the terms related to the tra

lational degrees of freedom of the molecule, the derivation
which again can be found in Ref. 32. The~complex! two-
body density fluctuationdr̃2(0,1,V) can be expressed as
functional ofdr̃1(0,V) anddu2(0,1,V),

dr̃2~0,1,V!5r2~0,1,V!
dr̃1~0,V!

rX
1r2~0,1,V!du2~0,1,V!

1E d2S r3~0,1,2,V!

2
1

rX r2~0,1,V!r2~0,2,V! D du2~0,2,V!,

~2.18!
-
f
which follows from the definition~2.10!. The 4He-current
fluctuationJ2 induced by the rotating molecule is defined

J2~0,1,V!5
\

2m
r2~0,1,V!“1du2~0,1,V! . ~2.19!

Unfortunately, solution of the coupled set of equatio
~2.15! and ~2.17! is not feasible without further approxima
tions to the two-body equation~2.17!. In a rather drastic
approximation step, we therefore expand the pair distribut

g~0,1,V!5
r2~0,1,V!

rXr
~2.20!

about unity. This is commonly referred to as the ‘‘unifor
limit’’ approximation.37 It has the advantage of leading to
7-5
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particularly simple expression for the excitation energies
terms of a self-energy correction, and has been used in m
CBF calculations of excited states of4He and impurities in
4He. Therefore, this uniform limit approximation is our fir
candidate for simplifying Eq.~2.17!. We discuss the extent o
the validity of this approximation in Sec. III, where w
present our DMC result forg.

When applied to the equations of motions~2.15! and
~2.17!, the uniform limit approximation amounts to replacin
the pair-distribution functiong(0,1,V) by unity in coordinate
space, butnot in integrals, where it is retained in full form
The triplet density in the uniform limit approximation the
reads

r3~0,1,2,V!2
1

rX r2~0,1,V!r2~0,2,V!'rXrr@g~1,2!21#,

~2.21!

whereg is the pair distribution of two4He atoms, regardles
of the positionr0 and orientationV of the molecule.

We can furthermore eliminatedr̃2(0,1,V) in favor of
dr̃1(0,V) anddu2, using Eq.~2.18!, and then make use o
the one-body equation~2.16!, in order to arrive at

05BS ]u

dr̃1~0,V!

rX D @]ur2~0,1,V!#

1B
1

sin2uS ]u

dr̃1~0,V!

rX D @]ur2~0,1,V!#

1rXrE d2S~1,2!BL̂2du2~0,2,V!

1rXr
\2

2m
¹1

2du2~0,1,V!1
\2

2M S ¹0

dr̃1~0,V!

rX D
3@“0r2~0,1,V!#2rXr

\2

2ME d2S~1,2!¹0
2du2~0,2,V!

1 i\rXrE d2S~1,2!du̇2~0,2,V!, ~2.22!

where the terms involving “0 stem from
dL 0

trans/du2* (0,1,V). Note that the explicit reference to th
external field V(ext)(0,V) has now been eliminated. Thi
means that the two-body correlation fluctuations are o
driven by the one-body correlation fluctuations, which
turn are the response toV(ext)(0,V). In the above equation,S
is the static structure function of4He in coordinate space,

S~ ur12r2u!5d~r12r2!1r„g~ ur12r2u!21…, ~2.23!

S~k!5E d3reik•rS~r !. ~2.24!

Equations~2.15! and~2.22! can now be solved by expan
sion in plane waves and spherical harmonics. We define
10451
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dr̃1~r0 ,V!5(
J,M

E d3q

~2p!3eiq•rYJM~V! dr̃JM~q!,

~2.25!

V(ext)~r0 ,V!5(
J,M

E d3q

~2p!3eiqrYJM~V!VJM
(ext)~q!,

~2.26!

du2~r0 ,r1 ,V!5(
,,m

E d3k

~2p!3

d3p

~2p!3 eik•r0eip(r02r1)

3Y,m~V!a,m~k,p!, ~2.27!

g~r0 ,r1 ,V!215g~r ,cosa!2154p(
,

~2,11!

3P,~cosa!E dkk2

~2p!3 j ,~kr !g,~k!,

~2.28!

wherer5r02r1 and cosa5r•V.
If we restrict ourselves to an external perturbation pot

tial that couples only to the rotational degree of freedom, i
V,,m

(ext)(q50)[V,,m
(ext) , then translational motion is not directl

excited. Since in CBF theory the molecule1helium system is
regarded as being in its ground state before excitation, we
therefore calculating only the purely rotationally excite
states, i.e.,dr̃,,m(q50)[dr̃,,m .

With the above transformations and after transform
from time to frequency, the one-body and two-body respo
equations~2.15! and ~2.22! become coupled algebraic equ
tions. Equation~2.15! becomes

\vdr̃JM~v!12VJM
(ext)~v!

5BJ~J11!dr̃JM~v!14prXrB (
,8,m8

,,m

~2 i !,8

3E d3p

~2p!3 Y,8m8
* ~V2p!g,8~p!a,m~0,p;v!

3~21!MK J ,8 ,

2M m8 mL , ~2.29!

where we note that the translational current fluctuationjX in
Equation~2.15! vanishes. Eq.~2.22! becomes

S B,~,11!1
\2p2

2mS~p!
1

\2p2

2M
2\v Da,m~0,p;v!

524pB (
l,m

l8,m8

~2 i !l8~21!mK l l8 ,

m m8 2mL
3Yl8m8

* ~Vp!
dr̃lm~v!

rX

gl8~p!

S~p!
. ~2.30!
7-6
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Here the static structure factorS(p) is defined in Eq.
~2.24!. The energy expression on the left-hand side of
~2.30! contains the linear rotor spectrumB,(,11) and the
translational spectrum\2p2/2M of the free molecule in ad
dition to the the Bijl-Feynman spectrum44 of bulk 4He,

e~p!5
\2p2

2mS~p!
.

The symbols in the angular brackets result from angular
tegration of spherical harmonics and can be expresse
follows:

K ,1 ,2 ,3

m1 m2 m3
L 5AL̃~,1 ,,2 ,,3!S ,1 ,2 ,3

m1 m2 m3
D ,

L̃~,1 ,,2 ,,3!5 1
4 L̄~,1 ,,2 ,,3!@,1~,111!1,2~,211!

2,3~,311!#,2 ~2.31!

L̄~,1 ,,2 ,,3!

5
~2,111!~2,211!~2,311!

4p S ,1 ,2 ,3

0 0 0 D 2

,

where the expressions in round brackets are Wigner’sj
symbols.45 After eliminatinga,m(0,p) in Eq. ~2.29! by using
Eq. ~2.30!, we use the summation rules for the Wigner 3j
symbols to further simplify Eq.~2.29!. It turns out that most
of the angular quantum number summations are trivial
that the dr̃JM coefficients do not mix. This leads to th
simple formula

@BJ~J11!1SJ~v!2\v#dr̃JM~v!52VJM
(ext)~v!.

~2.32!

Hence we have found the linear response of the den
dr̃JM , to a weak perturbation of symmetry (J,M ), VJM

(ext) .
The excitation energies of the system are obtained by se
the perturbation potential to zero and solving Eq.~2.32!,

\v5BJ~J11!1SJ~v!. ~2.33!

This has to be solved self-consistently in order to obtain
excitation energyvJ for given J ~or energies, if there exis
more than one solutions for givenJ). These solutions corre
spond to the energiesEJ5\vJ of the coupled molecule
helium system, in the usual spectroscopic notation with to
angular momentum\J. SJ(v) is the self-energy

SJ~v!52B2
~4p!2r

2J11 (
,
E dp

~2p!3

p2

S~p!

3

(
,8

L̃~J,,8,, !g,8
2

~p!

B,~,11!1e~p!1\2p2/2M2\v
.

~2.34!
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We note thatSJ(v) does not depend on the quantum numb
M anymore, and that therefore we will not observe anyM
splitting of theR(0) line of HCN in bulk 4He. This splitting
has been found in spectra of HCN in4He droplets as re-
ported in Ref. 2, where it has been attributed to the finite s
of the droplets.13 Our result for the excitation energy, Eq
~2.33!, indicates that allM levels are degenerate when HC
is embedded in uniform bulk4He. Note that infrared spectr
of HCN solvated in4He droplets in a strong electric fiel
show clear evidence ofM splitting.2 The lack ofM splitting
in our calculation of HCN in the homogeneous environme
of bulk 4He thus indicates that the inhomogeneous envir
ment of finite4He droplets may indeed be responsible for t
observed spectral splitting.

In general, the self-energy will be complex. Strict
speaking, Eq.~2.33! cannot be solved self-consistently
that case, and we can only speak in terms of the respons
the system to the perturbation~i.e., laser field!. The imagi-
nary part ofSJ(v), which is the homogeneous linewidth
i.e., the inverse lifetime of the stateJ, results from the con-
tour integration*dp in Eq. ~2.34! when the energy denomi
nator has a zero. At such quantum numbersp and,, energy
conservation allows for a decay of stateJ having energy\vJ
into a lower rotational excitation with energyB,(,11),
while exciting a phonon of energye(p) and translational
motion of the molecule of energy\2p2/2M ~momentum con-
servation! such that\vJ5B,(,11)1e(p)1\2p2/2M . For
all other combinations ofp and ,, a decay would not con-
serve energy, thus these decay channels are closed.

The quantityL̃, Eq. ~2.31!, contains a Wigner 3-j symbol
as well as a rotational kinetic-energy factor@the expression
in the rectangular brackets on the right-hand side of
~2.31!#. Combined, they obviously lead to the selection ru

L̃~,1 ,,2 ,,3!50, if ,11,21,3 odd,

L̃~,1 ,,2 ,,3!50, if ,1,,2,,3 do not satisfy the triangular

condition~Ref. 45!,

~2.35!

L̃~,1 ,,2 ,,3!50, if ,150 or ,250.

It follows that SJ(v)50 for J50, i.e., the self-energy doe
not renormalize the ground-state energy. The coupling of
spectra in the energy denominator is mediated by the an
tropic pair probability distributiong(r ,cosa), decomposed
into its Legendre expansion coefficients. Furthermore,
spherical expansion coefficientg,850 does not contribute to
SJ(v).

We note that in the self-energy part of the spectru
~2.33!, \vJ couples to free rotor states, to the free trans
tional states, and to the Bijl-Feynman spectrum of heliu
Although we should not overinterpret the meaning of t
individual terms inSJ(v), in an exact expression for th
correction to the rotational energy in the helium environm
we would expect to find a coupling to renormalized molec
lar rotations and translations. We would also expect to
coupling to the exact energy spectrum of4He, instead of
7-7
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coupling to the Bijl-Feynman spectrum. Going beyond t
uniform limit approximation for the probability densitie
might improve the molecular rotation spectrum in these
spects, as has been found for other excitations in heli
These include calculations of the bulk helium spectrum24 and
of the effective mass of3He impurities in 4He.46 Alterna-
tively ~and much easier!, we can choose a phenomenologic
approach and try to improve the self-energy of Eq.~2.33! by
using any one or a combination of the following replac
ments in the energy denominator of the self-energy.

~1! In the following, we will always use the experimen
tally measured excitation spectrum instead of the B
Feynman spectrum.

~2! We can use the dispersion of translational motion
HCN and DCN in bulk4He, \2p2/2Meff instead of the free
dispersion. Since we do not know of any experimental va
for Meff of HCN and DCN~which would be a tensor quan
tity!, we use the bare massM.

~3! We can use\v, self-consistently instead ofB,(,
11). In this case, we solve\v5B,(,11)1S,(v) for \v
at angular quantum number,, and the solution\v, replaces
B,(,11) in the energy denominator ofSJ(v) for the next
iteration; the procedure is iterated until convergence
reached for all\vJ . In the case of the calculation of th
effective mass of impurities in4He, this phenomenologica
approach was shown to improve agreement with experim
tal results.32 However, we will see that in case for molecu
rotations in 4He, for givenJ we can have several solution
vJ of Eq. ~2.33!, see Appendix A. We minimize the ambiva
lence associated with this procedure and will not use
phenomenological improvement of the self-energy.

We discuss the dependence of the results on these
nomenological improvements in Appendix C, whereBeff /B0
is calculated for various combinations of replacements 1
and 3. For the rest of the paper, we apply only replacemen

A related concern is the missing of decay channels wh
localized 4He excitations are generated instead of a b
helium excitatione(p). Localized layer phonons and roton
have been calculated47 and observed48 for helium adsorbed
to graphite sheets, and localized vibrations calculated for
lium adsorption on aromatic molecules.49 Since the rotation
of a molecule in 4He involves a correlated motion of th
molecule and the surrounding4He atoms, it can be regarde
as involving a localized ‘‘layer’’ excitation of the4He when
observed from the molecule frame. One significant diff
ence from layer excitations of helium adsorbed to an
tended substrate is that here the molecule ‘‘substrate’’ is
light that its motion must be taken into account~the rota-
tional motion has been seen to have an influence on
vibrational energies for4He adsorbed on the benzen
molecule49!. However, decay into channels other than bu
helium excitations, such as the localized molecule-heli
excitations themselves, is beyond the ansatz of Eq.~2.7! and
the uniform limit approximation, as we have pointed o
above. Deriving and solving the CBF equations in the fra
of the molecule would allow coupling to localized excit
tions, although it would considerably complicate the CB
equations. An extension in this direction might allow ana
sis of the rotational dynamics of heavier molecules such
10451
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OCS and extraction of the moment of inertia renormalizat
deriving from coupling to some adiabatically followin
helium.4 However for the light HCN molecule, our result
below show good agreement with the experimental rotatio
constant in helium, indicating that such coupling to localiz
excitations is not important in this case.

B. Linear response and absorption spectrum

Once we have derived the excitation energy of molecu
rotations in 4He from a linear response approach, we c
also obtain the dynamic response functionx(v), which is
the linear operator relating a weak perturbationV(ext) of fre-
quencyv and the response of the probability densitydr1:

dr1~v!5x~v!V(ext)~v!.

x(v)5x8(v)1 ix9(v) consists of a real partx8(v) de-
scribing dispersion, and an imaginary partx9(v)[2S(v)
describing absorption42,50 @note that our definition ofS(v)
differs by a factor ofp from the definition of Ref. 42#. How-
ever, we cannot simply identify the inverse of the express
in the bracket in Eq.~2.32! with x(v), becausedr̃(v) is the
Fourier transform of the complex density fluctuatio
dr̃1(0,V). The physicaldensity response in linear order
given by thereal part of dr̃1(0,V):

dr1~0,V;t ![^F~ t !ur̂1~0,V!uF~ t !&5Redr̃1~0,V;t !.

Here r̂1(r0 ,V) is the molecule density operator, which
given in coordinate space byd(r02r08)d(V2V8). The ex-

pectation value ofr̂1(0,V) is the probability to find a mol-
ecule at positionr0 and orientationV.

To obtainx(v) from Eq. ~2.32!, we first note that

drJM~v!5 1
2 @dr̃JM~v!1~21!Mdr̃J,2M* ~2v!#,

@VJ,2M
(ext) ~2v!#* 5~21!MVJM

(ext)~v!,

where we used the fact thatV(ext)(V;t) is real. With relation
~2.32! we find

drJM~v!5@GJ~v!1GJ* ~2v!#VJM
(ext)~v!,

whereGJ(v) is the resolvent

GJ~v!5@BJ~J11!1SJ~v!2\v#21. ~2.36!

Since GJ(v) is real for v,0, we obtain for the dynamic
response function

xJ~v!5GJ~v!1GJ~2v!. ~2.37!

From this the absorption spectrum of a rigid linear ro
exposed to dipole (J51), quadrupole (J52), etc., radiation
of frequencyv can be obtained as

SJ~v!52ImxJ~v!52ImGJ~v!. ~2.38!
7-8
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C. Marriage of DMC and CBF

Formulations of the ground-state Euler-Lagrange eq
tions ~2.5! which are suitable for numerical solution have
take advantage of the symmetries of the system under
sideration. In our case this means translational symmetry
rotational symmetry around the axis of the linear molecu
Unlike the corresponding CBF calculation of excitatio
~2.14!, the ground-state equations~2.5! cannot be linearized
due to the strongly repulsive interactions. Consequently b
their formulation for a specific symmetry and their numeric
solution are more demanding than the calculation of exc
tions. Nevertheless, the calculation of the self-energySJ(v)
~2.34! does require knowledge of some ground-state qua
ties, in particular, of the4He-4He and the 4He-molecule
pair-distribution functions,g(1,2) @Eq. ~2.23!# andg(0,1,V)
@Eq. ~2.20!#.

The 4He-4He pair-distribution functiong(1,2) is the Fou-
rier transform of the static structure factorS(k). For bulk
4He this has been obtained with great accuracy fr
neutron- scattering experiments.51,52 S(k) has also been cal
culated using HCN/EL theory32 and DMC~Ref. 53! We have
used theS(k) at T50 K from Ref. 32 as well as the exper
mentally determinedS(k) at T51K from Ref. 51. These
give essentially identical results for the rotational excitat
energies, i.e., the results are independent of the finer de
of S(k). We note that dopingN 4He atoms with a single
molecule will cause only a change ofS(k) on the order of
O(1/N). Therefore we can safely use theS(k) of pure 4He
in the expression for the self-energy~2.34!.

We additionally need to calculate the4He-molecule pair-
distribution functiong(0,1,V). Here DMC is of use: DMC is
easy to implement for the calculation of ground-state pr
erties, and since it does not require prior specification
symmetries, one DMC implementation can be applied to
molecule-4He system with only little modification. Henc
we shall employ DMC for calculation of the ground-stat
instead of solving equations~2.5!. This effectively avoids the
difficulties of solving the nonlinear Euler-Lagrange equ
tions in a ground state calculation. We therefore use C
theory only for excited states. The combined procedure
be summarized as follows.

Step 1. DMC for calculation of the4He-molecule pair
distributiong(0,1,V).

Step 2. CBF for calculation of rotational excitations\vJ
and the corresponding absorption spectrum, using as i
the 4He-molecule pair distributiong(0,1,V) obtained in step
1 and the4He-4He pair distribution taken from experiment
neutron scattering data.15,54

The energies\vJ reported for HCN and DCN in this
work ~Sec. IV A! are obtained using these two steps.

In addition to the approximate calculation of excitatio
energies and lifetimes, CBF provides us with calculation
the excitation operatordU for which dUuF0& is a good ap-
proximation of the excited-state wave function. This raise
potentially useful option for further improvement of ener
calculations in these systems by direct means. We note
the representation of an excited state in terms of an excita
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operator that is made in CBF is conceptually similar to t
representation made in the POITSE approach.19 In POITSE,
the excitation operator provides input for a zero-temperat
imaginary time correlation function calculation from whic
the corresponding excitation energy is obtained by inve
Laplace transformation. In CBF, the excitation operator
one of the outputs of the calculation, and it is normally d
carded. Finding the appropriate excitation operator fo
POITSE calculation can be a hard problem in some syste
Therefore, knowledge of a good excitation operator deriv
from a high-quality CBF calculation may help considerab
in reducing the computational expense as well as in sim
fying the inverse Laplace transformation of a POITSE cal
lation. By using Eqs.~2.13!, ~2.27!, and~2.30! one can show
that within CBF the one-body term ofdU in Eq. ~2.7! is
proportional to

du1~V!;YJM~V!, ~2.39!

i.e., the free rotor wave function, corresponding to an ex
tation energyBJ(J11). Thus, it is the two-body terms o
dU which are responsible for the reduction in value of t
effective rotational constantBeff below the free rotor valueB.
To date, POITSE and related calculations for rotational ex
tations of molecules in helium clusters14,17,18,55have used
only one-body excitation operators of the above form. W
therefore propose that in future implementations of spec
evolution methods such as POITSE, one employs the C
excitation operatordU of Eq. ~2.7!. In this situation, the
output of CBF,dU, may then be used as the input to a thi
calculation step.

Step 3. CBF provides the excitation operator for
POITSE calculation of the exact excitation energies\vJ .

We expect that because of the incorporation of molecu
helium correlations into the excitation operator within an e
act calculation methodology, this should provide an impro
ment over the present calculations that terminate after ste

III. RESULTS: GROUND STATE

The implementation of DMC for a single linear molecu
surrounded by4He follows Refs. 56 and 57 treating the mo
ecule as a rigid body with both rotational and translatio
degrees of freedom. The difference is that here the syste
confined to a simulation box of appropriate size and perio
boundary conditions are applied. The simulation box mo
with the molecule such that the latter is kept in the center
the box~but the box does not rotate with the molecule!. The
sizes of the simulation box can be either adjusted such t
~i! the system consisting of 2564He atoms and a single HCN
or DCN molecule is in equilibrium, i.e., the ground-sta
energy is minimized with respect to variations of the b
size; or such that~ii ! the 4He density reaches the asymptot
equilibrium value r50.022 Å23 furthest away from the
molecule ~the edge of the simulation box!. In the first
method, the calculated quantity~the total energy! changes
quadratically with the change ofs, and in the second metho
the calculated quantity~the asymptotic density! changes lin-
early. The first method is thus more susceptible to errors
7-9
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R. E. ZILLICH AND K. B. WHALEY PHYSICAL REVIEW B 69, 104517 ~2004!
construction. Furthermore, there is an uncertainty in the t
energy that is largely due to the cutoff of the4He-4He inter-
action potential at large distances~see below!. For these rea-
sons, we chose to adjusts by the second method. In order t
avoid excessive amount of calculations to find the equi
rium density~zero pressure!, we choose only three box size
s522.5 Å, 23.0 Å, and 23.5 Å. We found that thes
523.0 Å simulation yields edge densities closest to the eq
librium bulk value. Using one of the other box sizes did n
change our results for the rotational excitation energ
within the statistical error. We have used a time step ofdt
50.15 mK for the imaginary-time evolution to the groun
state. We have doubleddt and again have obtained the sam
result for the rotational excitation energies, thereby verify
that the DMC energies are free of finite time step bias.

Ground-state expectation values@i.e., g(r ,cosa)] have
been calculated with pure estimators using descen
weighting of importance sampled DMC according to the a
proach of Ref. 58. The trial wave function used here for
importance sampled DMC has the form

CT5exp
1

2 F(
i 51

N

u1
(T)~ ur i2r0u,cosa i !1(

i , j
u2

(T)~ ur i2r j u!G ,

~3.1!
with the molecule-4He correlationu1

(T) ~Ref. 14! and the
4He–4He correlationu2

(T) ~Ref. 53! given by

u1
(T)~r ,cosa!52~c/r !5, ~3.2!

u2
(T)~r !52~b/r !5 ~3.3!

with c57.392 Å andb52.670 Å. The precise from of the
trial function is not important because we use descend
weighting for obtaining unbiased values forg(r ,cosa). Such
an isotropic trial function was found to be adequate for p
vious important sampled DMC calculations for HCN
small clusters.14 This is expected from the weak anisotrop
of the HCN-He interaction. Figure 1 shows contours of t
molecule-helium interaction potentialVX for HCN-4He. For
computational efficiency we introduce a cutoff for both t
4He-4He interaction and its correlationu2

(T) at a radiusr c

58 Å, and replaceu2
(T) by a smooth function59

ū2
(T)~r !5u2

(T)~r !2u2
(T)~r c!2~r 2r c!

du2
(T)~r !

dr
U

r 5r c

.

~3.4!

For completeness, we report the ground-state energ
of HCN in bulk 4He obtained within these calculations.
order to correct the total potential energy for the error int
duced by the cutoff, we assume a homogeneous4He equi-
librium densityr at zero pressure, and approximate the mi
ing contribution to the total ground-state energy,Ecorr

5(r/2)* r c

` d3rVHe(r ). This is not a highly accurate correc

tion, but the exact value of the ground state energy is imm
terial for our calculation ofg(r ,cosa). For the equilibrium
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densityr50.022 Å23, the DMC sampling yields an uncor
rected ground-state energy ofE8/N527.3560.006 K. The
correction isEcorr/N520.95 K per 4He atom. Thus we find
a total energy of approximatelyE/N528.3 K for both HCN
and DCN. The chemical potential of the moleculem is the
difference between the energyE of molecule and helium and
the energy of pure helium,E05N37.2 K at equilibrium.
Hence we findm'2282 K for HCN and DCN in bulk4He.

In Fig. 2, the pair distributiong(r ,cosa) @Eq. ~2.28!# is
shown for HCN in bulk4He, simulated by 2564He atoms in
a box of 23.0 Å length on each side with periodic bounda
conditions applied. For DCN, we used the same box s
The coordinatesr and a are the radial and polar spheric
coordinates in the center-of-mass frame of the HCN m
ecule, with the molecular symmetry axis as thez axis.

Due to the small anisotropy of the4He-HCN and
4He-DCN potential, and the large zero-point rotational m
tion of the molecule, the pair distributiong(r ,cosa) is only
slightly anisotropic. In Fig. 3, we show the Legendre expa
sion coefficientsg,(r ) of g(r ,cosa), whose Bessel trans
form is the quantity entering the calculation of the se
energy~2.34!. In the limit of B→`, the zero-point motion
would completely delocalize the molecule orientation w
respect to the surrounding4He. In this situation,g(r ,cosa)
would be isotropic,g,.0(r )50, and therefore the self
energy correction toBeff would vanish,Beff5B. With the
large but finiteB value of HCN, the Legendre expansio
coefficientsg,.0(r ) are not negligible. As can be seen fro

FIG. 1. Contour plot of the HCN-4He potential surfaceVX(R,z)
from Ref. 34. Contour levels are shown at energy spacings of
with the outermost contour at25 K, the next one at210 K, etc.
The linear HCN molecule is oriented along thez axis such that the
hydrogen points in the positivez direction.R is the cylindrical polar
radius. Atz54.25 Å andR50 Å, the potential attains its minimum
value of242.4 K.
7-10
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QUANTUM ROTATION OF HCN AND DCN IN 4He PHYSICAL REVIEW B69, 104517 ~2004!
Fig. 3, the quadrupole coefficientg2(r ) is the main contri-
bution to the anisotropy ofg(r ,cosa) for HCN.

We recall that for the derivation of the rotational se
energy expression~2.34!, the uniform limit approximation
was applied~see discussion in Sec. II A!. For the Legendre
expansion, this translates into the coordinate space app
mationsg,50(r )'1 andg,.0!1. While all higher expan-
sion coefficientsg,.0(r ) never exceed values of 0.2 in ab
solute value,g0(r ) deviates from unity considerably, varyin
between 0 and values of almost 2. However, since, due to
selection rules,SJ(v) is independent ofg,50, we see that
the extent of angular modulations in the helium solvat
density are consistent with the uniform limit and that this
therefore a good approximation for the purpose of calcu
ing purely rotational excitations of a light rotor like HCN
and DCN. We note that for the heavier linear rotor OC
which has a stronger and more anisotropic interaction w
helium,60 the angular modulation in the first layer of heliu

FIG. 2. Pair distributiong(r ,cosa) @Eq. ~2.28!#, between HCN
and 4HeN , for N5256. r is the distance between HCN and a4He
atom, anda is the angle between the directional vector from HC
to 4He and the HCN axis. The HCN-4He interaction potential@see
Fig. 1# is defined such that hydrogen is located on the positive s
of molecule axis, i.e., ata50.

FIG. 3. Legendre expansion coefficientsg,(r ) of the pair-
distribution functiong(r ,cosa), between HCN and4HeN , for N
5256 in a cubic simulation box of length 23.0 Å.
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around OCS is considerably larger than4 for HCN ~Fig. 3!.
Hence the expansion coefficientsg,(r ) will be considerably
larger and use of the uniform limit approximation would b
more questionable for OCS.

IV. RESULTS: EXCITED STATES

A. Rotational energies of HCN and DCN in 4He

The excitation energies are obtained as the solutionsvJ of
Eq. ~2.33!. Unlike for a linear molecule in the gas phas
@whereSJ(v)50], it is possible that more than one solutio
exists for a givenJ. In the following section, we will show
that this is actually the case forJ52 andJ53 ~and presum-
ably for higherJ’s!. The existence of several solutions is n
surprising considering thatvJ are the approximate excitatio
energies of amany-body system.

Table I lists the energies of the primary rotational exci
tion for J51,2,3. By ‘‘primary’’ we refer to the excitation of
lowest energy, when we find more than one solutions of
~2.33!. The occurrence of several lines for a givenJ is dis-
cussed in the following section and in Appendix A. Als
shown in Table I are the respective experimental excitat
energies for HCN and DCN obtained by microwa
spectroscopy.1 Only the energy forJ51 could be measured
experimentally, because the helium cluster temperature oT
50.38 K is too low to allow appreciable population of rot
tionally excited states for this system.

B. Absorption spectra of HCN in 4He

As discussed in more detail in Sec. IV E, the self-ene
SJ(v) is complex, and the excitations obtained from E
~2.33! are therefore not true eigenstates but decay as a re
of the coupling to4He excitation modes. This effect is ob
served in the molecule absorption spectrumSJ(v), Eq.
~2.38!, in the weak perturbation fieldV(ext) of frequencyv.

In a spectroscopic experiment, the frequencyv of a mi-
crowave laser field is scanned to obtain the rotational sp
trum. Since the wavelength is much longer than the size
the molecule, only the dipole component ofV(ext)(V), cor-
responding to theJ51 component, is non-negligible. As
zero-temperature method, DMC/CBF only describes exc
tions from the ground state to an excited state. Hence, w
the dipole fieldV1M

(ext) acting on the molecule, we obtain onl
theJ50→1 rotational excitation~s!. This corresponds to the
R(0) spectral line. Neither theJ51→2, 2→3, . . . excita-

e

TABLE I. Energies of the primary rotational excitation of HCN
and DCN. CBF denotes the present calculations employing C
theory for excitations combined with exact ground-state quanti
calculated by DMC, and expt. refers to the experimental value
Ref. 1.

J HCN~CBF!
(cm21)

HCN~expt.!
(cm21)

DCN~CBF!
(cm21)

DCN~expt.!
(cm21)

1 2.53 2.407 2.08 1.998
2 6.64 5.76
3 10.8 9.77
7-11
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R. E. ZILLICH AND K. B. WHALEY PHYSICAL REVIEW B 69, 104517 ~2004!
tions corresponding toR(0),R(1), . . . spectral lines, nor the
deexcitationsJ51→0, 2→1, . . . corresponding to the
P(1),P(2), . . . spectral lines are obtained directly. How
ever, one can go from the ground state toJ52,3, . . . simply
by directly applying perturbationsVJM

(ext) , J52,3, . . . , i.e.,
via quadrupole-, octopole-, etc., transitions. Unlike in expe
ment, it is much easier in our CBF calculation to apply the
multipole perturbations rather than formulate and solve
problem in a finite temperature theory. It has the added b
efit that the zero-temperature absorption spectraSJ(v) re-
sulting from application of dipole, quadrupole, etc., pert
bations are simpler to interpret than finite temperat
spectra, while still containing all the information about t
energetics of the system. In Fig. 4, we plot the result
absorption spectraSJ(v), J51,2,3, for HCN, where we
have set both the field strengthVJM

(ext) and the dipole momen
of HCN to unity ~these factors will only scale the intensitie
of the spectra!. The DCN spectra look very similar. As w
have pointed out above~Sec. II A!, we correct the energy
denominator of the self-energy in Eq.~2.37! by using the
experimental phonon-roton spectrum instead of the B
Feynman spectrum. However, we have not further repla
B,(,11) by \v,5B,(,11)1S,(v,). A detailed discus-
sion about the effect of these and other phenomenolog
corrections can be found in Appendix C.

Without 4He surrounding the molecule, we haveSJ(v)
50, i.e., the spectrum is ad function centered at the fre
rotor energy,

SJ
(free)~v!52Im@\v2BJ~J11!1 i«#21

5pd„\v2BJ~J11!…. ~4.1!

In Fig. 4, the free rotor lines are indicated by dashed vert
lines.

FIG. 4. The absorption spectraSJ(v), J51,2,3, for HCN in
bulk 4He, where this is represented byN5256 4He in a box subject
to periodic boundary conditions~see text!. The dashed lines indicat
the corresponding rotational excitation energies of HCN in the
phase~Ref. 65!. The spectra have been broadened by a Lorentz
by adding a small constant imaginary part of 10 mK to the s
energySJ(v).
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In the CBF approximation, the self-energySJ(v) is non-
zero with both a real and an imaginary part. The associa
absorption spectrumSJ(v) shows two kinds of features—
sharp peaks and broader bands. We first analyze the s
peaks. The origin of sharp peaks inSJ(v) is discussed in
detail in Appendix A. We show there how an imaginary pa
that is small relative toBJ(J11)1ReSJ leads to a Lorent-
zian peaked at the energy\vJ , which is obtained as
the solution ~or one of the solutions! of \v2BJ(J11)
2ReSJ(v)50. The energy\vJ can be associated with
rotational excitation of finite lifetime, which decays into
combination of a molecular,,J state and an excitation o
the helium environment. The width of the Lorentzian
given by ImSJ(vJ) ~see Sec. IV E!.

In Fig. 4, the spectraSJ(v) show sharp peaks of increas
ing width and decreasing height with increasingJ. This in-
dicates that the coupling of the HCN rotation to the phono
roton spectrum of bulk4He is stronger for higher energies
The lowest molecular modeJ51 has the weakest coupling
evidenced by the fact thatS1(v) is very close to the spec
trum of a free rotor atT50, i.e., it has a single sharp line. I
the following section we will obtain the effective rotation
constantBeff from this line and compare with the correspon
ing experimental measurement. The exact width of theJ
51 spectral line is subject to computational uncertaint
related to the DMC ground-state calculation, as explained
Sec. IV E and therefore cannot be directly compared with
experimental line width. In contrast to the single peak se
for J51, the spectra forJ52 andJ53 show several distinc
sharp peaks. As explained in Appendix A, calculation of t
position of a peak can result in several solutions. In so
cases,26 the associated peaks have very small weight, but
J52 andJ53, we find two clearly discernible peaks. De
tailed analysis of the origin of these two peaks is also p
sented in Appendix A. The analysis shows that this two-pe
structure ofSJ(v) is a direct consequence of the diverge
density of states of4He at the roton minimum and the maxo
maximum. Coupling to these divergences effectively sp
the single free peak into two, and shifts one of the result
peaks below the roton minimum and the other above
maxon maximum. Both peaks lie very close in energy to
divergent density of states of the phonon-roton dispers
Therefore the motion of the molecule can couple to ma
excitations and the molecule rotates in a dense cloud ofvir-
tual roton and maxon excitations. Because of energy con
vation, excitation ofreal rotons and maxons is not allowed
the energies of the two peaks. If it were allowed, it wou
lead to immediate damping of the rotation and we would
see well-defined peaks.

We consider now the origin of the broader bands ofSJ(v)
in Fig. 4. These broader bands are seen as additional fea
in the spectra forJ52 and J53, between the two peaks
This is more clearly seen in Fig. 5, where the absorpt
spectra are now plotted all on the same scale and are sh
together with the density of states for the bulk1freely trans-
lating particle excitation spectrum«(p)1\2p2/2M ~bottom
panel!. In the energy rangeE512.0–15.1 K,S2 has a high-
energy wing that is clearly aligned with the energy cor
sponding to maxon-roton excitations in4He plus a recoiling
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QUANTUM ROTATION OF HCN AND DCN IN 4He PHYSICAL REVIEW B69, 104517 ~2004!
HCN molecule. This wing structure is thus a signature
efficient coupling of the molecule to high-energy excitatio
in 4He that lie between the roton minimum and the max
maximum. Excitations of the molecule in this wing featu
are virtual, i.e., the molecule remains in its ground state,
50. Another roton-maxon wing results from the coupling
the rotons and maxons with the,51 state of the molecule
Hence this wing is shifted byB,(,11)52B and corre-
sponds to the generation of a high-energy4He excitation
together with translational recoil of the molecule, plus a m
lecular rotational excitation,51, i.e., the molecule is now
not only translated but is also excited rotationally to the,
51 state.S3 shows qualitatively the same features. In co
trast, inS1 the roton-maxon wings are negligibly small. Th
primary peak has almost all the strength of the spectr
because the dipole field directly couples to theJ51 excita-
tion energy of the molecule, the energy of which is mu
lower than the roton. Thus, forJ51 alone the absorption
spectrum looks like a gas-phase spectrum and can thu
described purely in terms of an effective rotational const
Beff which determines the location of the single peak.

In principle, there is an infinite series of roton-maxo
wings for each,, shifted by B,(,11), with decreasing
strength. However, with increasing energy\v, multiphonon
processes presumably become important. For example
pure helium, these processes become important for ene
above approximately 25 K, above which the dynamic str

FIG. 5. The spectraSJ(v), J51,2,3, for HCN in bulk4He with
all SJ(v) now shown on the same scale. For details of the rep
sentation of bulk4He see Fig. 4 and text. The bottom panel sho
in addition the dispersion curve«(p)1\2p2/2M and its density of
states~‘‘dos’’ ! @d«(p)/dp1\2p/M #21. The vertical dashed and
dotted lines indicate the onset of the roton-maxon band coup
with the ,50 ~dashed lines! and the,51 ~dotted lines! rotational
states of the molecule, respectively~see text!.
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ture function S(k,v) is dominated by multiphonon
excitations.61 In our implementation of CBF theory, only
one-phonon processes are taken into account.

Two technical details of our calculations are presented
the appendixes. The first is the necessity to introduce a cu
in the Legendre expansion ofg(r ,cosa) ~Appendix B!. The
second is a comparison of the effects of making the vari
phenomenological corrections to the self-energy discusse
Sec. II A ~Appendix C!.

C. Effective rotational constant Beff of HCN and DCN in 4He

From the position of the single peak in the absorpti
spectrumS1 we can obtain the rotational excitation energy
the J51 excitation,\v1, from which we can obtain an ef
fective rotational constant ofBeff assuming a free rotor spec
trum:

\v152Beff .

This is the direct analog of the procedure used to obtain
experimental measurement ofBeff in Refs. 1 and 2. Table II
compares the effective rotational constant of HCN and DC
obtained fromJ51 only in this manner, with the corre
sponding measured values of Ref. 1. The statistical erro
Beff shown in the table is propagated from the DMC groun
state calculation ofg(r ,cosa). The values ofBeff are in over-
all good agreement with the experimental values, agreein
within 5% for both molecules, although the error ba
(;2%) are unfortunately too large to confirm the expe
mental determination of a slightly smaller (;1.5%) ratio
Beff /B for the lighter HCN than for DCN. For both HCN an
DCN, the calculated values ofBeff are slightly larger than the
experimental values. Such behavior of CBF theory to p
duce somewhat higher excitation energies than the co
sponding experimental~exact! values has been observed
other cases.32 One remedy for this is to apply phenomen
logical corrections to all terms in the energy denominator
SJ(v) as we have explained in Sec. II A. The values giv
in Table II were obtained by making such a correction on
to the Bijl-Feynman spectrum for bulk helium, i.e., replaci
this by the experimental collective excitation spectrum, b
not modifying B,(,11). The additional effect of this fur-
ther correction is summarized in Table III where we see
slight improvement ofBeff in its agreement with the experi

TABLE II. Comparison of the calculated ratioBeff /B0 of HCN
and DCN with the corresponding experimental values~Ref. 1!. CBF
refers to the current CBF theory for excitations combined with
act ground-state quantities calculated by DMC. Within the stati
cal error, the calculated ratiosBeff /B0 for HCN and DCN cannot be
distinguished from each other. The last column lists the correspo
ing moment of inertia increase~in u Å2) in CBF theory and in
experiment, respectively.

CBF Experiment~Ref. 1! DI ~CBF! DI ~expt.!

HCN 0.85760.019 0.814 1.9060.29 2.61
DCN 0.86360.016 0.830 2.2260.31 2.87
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R. E. ZILLICH AND K. B. WHALEY PHYSICAL REVIEW B 69, 104517 ~2004!
mental values upon making a self-consistent replacemen
B,(,11) by \v, . Table III shows that the biggest im
provement derives from the replacement of the Bijl-Feynm
spectrum by the experimental bulk spectrum. Further
provement could presumably be achieved by replacing
bare molecular massM by the effective massMeff of HCN
and DCN moving in4He, if these quantities were known
However, we have checked that realistic changes in th
quantities would not change the qualitative behavior of a
of our results. These checks and relevant details for im
mentation of the phenomenological corrections are provi
in Appendix C.

Given that the value ofBeff obtained here for HCN in bulk
4He is in good agreement with that measured in large dr
lets (N.1000 helium atoms!, it is interesting to compare
also with the corresponding values calculated for sm
clusters14 ~no experimental measurements have been m
yet on small clusters!. As noted in Sec. I, calculations of th
J51 excitation by the POITSE methodology show that t
resulting fitted valueBeff does not converge to the large dro
let value byN525, in contrast to the behavior of the heavi
molecules such as OCS and SF6. For these molecules,Beff
converges to the corresponding droplet value before the
solvation shell is complete.4,17,18,20,62,63There are severa
possible reasons for this difference. First, our analysis
HCN in bulk 4He shows that a light rotating molecule lea
to generation of collective excitations that are extended
space~phonons and rotons! instead of to formation of a loca
nonsuperfluid density in the first solvation shell that c
adiabatically follow the molecular rotation.4 The cluster size
dependence for these two different mechanisms might
sonably be expected to be very different, with the coupling
extended modes requiring more than a single solvation s
to approach its bulk character. A second possible explana
is that the projection operatorÂ used in Ref. 14 accesses
higherJ51 state than the state associated with the rota
of the molecule, thereby causing the targeted excitation
overshoot not only the large droplet value but also the g
phase rotational energy. This effect was already seen in
POITSE excitation spectra of the smallest clusters calcula
in Ref. 14, where multiple peaks were found, one of wh
was consistently above the gas-phase rotational energy
N51, comparison with the corresponding result obtained
the collocation method35 confirmed that this excitation is in
deed a higher-lyingJ51 level. The POITSE method relie

TABLE III. Comparison of the calculated ratioBeff /B0 for HCN
obtained with and without the phenomenological corrections
plained in the text. The four entries correspond to the four poss
combinations of corrections in the energy denominator of the s
energySJ(v): ~i! the Bijl-Feynman spectrum~left column! or the
experimental spectrum~right column!, and ~ii ! the gas-phase rota
tional energies~top row! or self-consistent solution of the rotation
energies in helium, Eqs.~C1! and ~C2! ~bottom row!.

Bijl-Feynman Expt. bulk spectrum

B,(,11) 0.913 0.857
\v, 0.910 0.841
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on having a good projection operatorÂC0 which has suffi-
cient overlap with the desired excited state. In this case
seeks a rotation of the molecule, but one that neverthe
involves considerable correlation of the molecule with t
helium, as is evident from the second term in the CBF ex
tation operator, Eq.~2.7!. In contrast, the projector that ha
been used in both POITSE~Refs. 14 and 17! and related
methods18 to date is a free molecular rotor function, whic
corresponds only to the first term in Eq.~2.7!. This suggests
that it will be worthwhile to use the full stationary CB
excitation operatorÂ5dU in a POITSE calculation, as we
have already proposed in Sec. II C above.

The situation seems to be opposite for heavier rotors
4He, namely, here the direct approaches by evaluation
inversion of imaginary time correlation functions can pr
vide a better description of the rotational dynamics. Th
POITSE and related approaches are able to obtain accu
values forBeff for OCS,17,18 but our current implementation
of CBF is not expected to be reliable in this case, as we h
noted in Sec. II A. We expect that working in the frame
the molecule would improve the CBF description to acco
also for the adiabatic following of4He around such heavy
rotors.

D. Effective distortion constant Deff of HCN and DCN in 4He

We can use sharp spectral peaks for higherJ values and fit
to the spectroscopic energy levels for a nonrigid linear ro
BJ(J11)2D„J(J11)…2,64 whereD is the centrifugal dis-
tortion constant. However, this fit should be used with co
siderable caution, for two reasons. First, as we have see
Sec. IV B, the deviations of theJ50→2 and 0→3 transi-
tions from an effective linear rotor are very large and ha
nothing to do with a true centrifugal distortion that mig
arise from a coupling of the molecular rotation to either
molecular or a localized helium vibration. In particular, the
higher transitions are split into two peaks which cannot b
be fit by a simple phenomenological centrifugal distorti
term. Second, both the statistical errors from the DMC a
the errors stemming from the approximations used in C
~see Sec. II above! grow with J, leading to larger overall
errors associated with the peaks for higherJ values. Never-
theless, by direct analogy again with the experimental pro
dure of fitting to spectral line positions, we can make a p
nomenological fit to theJ51 spectral line together with the
lowest spectral peak for each of theJ52 andJ53 spectra.
The result is that because of the downward shift of theJ
52 andJ53 lines induced by coupling to the roton-maxo
excitations, we find a very large value of the fitted effecti
centrifugal distortion constantDeff . Thus, e.g., for HCN,
while we obtain a valueBeff5v1/251.266 cm21 ~1.822 K!
from theJ51 line only, fitting theJ51 and firstJ52 peaks
yields Beff51.346 cm21 ~1.937 K! and Deff50.040 cm21

~0.058 K!, and further fitting theJ51 and firstJ52 andJ
53 peaks all together yieldsBeff51.320 cm21 ~1.899 K!
and Deff50.035 cm21 ~0.050 K!. These values ofDeff are
vastly enhanced over the gas-phase value of the centrif
distortion constant for HCN,D52.931026 cm21,65 show-
ing an increase of four orders of magnitude. Similar enhan
ments of several orders of magnitude have been observe
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QUANTUM ROTATION OF HCN AND DCN IN 4He PHYSICAL REVIEW B69, 104517 ~2004!
TABLE IV. The effective distortion constantDeff and the ratiosDeff /B and Deff /Beff calculated for HCN in helium by the presen
combination of CBF and DMC, compared to the corresponding ratios derived from experimental measurements for OCS in helium
~Ref. 66!. We also show the corresponding values calculated for HCN within the pseudohydrodynamical model of Sec. IV F. The
columns give the gas-phase reference values of the spectroscopic constantsB andD for the two molecules.

Deff (cm21) Deff /B Deff /Beff B (cm21) D (cm21)

HCN 0.035 0.0237 0.0265 1.478~Ref. 65! 2.931026 ~Ref. 65!
OCS~expt.! ~Ref. 66! 0.0004 0.00197 0.00546 0.0732 0.43831027

HCN~pseudohydro.! 0.00568 0.00384 0.00412
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experimental fitted values ofDeff to multiple spectral lines
for heavier molecules3 and no theoretical explanation fo
these large enhancements has been given.

The fitting constantDeff for HCN in helium and the gas
phase centrifugal distortion constantD measure different
physical effects.D is the usual measure of distortion of th
linear rotor spectrum due to the nonrigid nature of HC
which results in centrifugal forces acting on the compon
atoms as the molecule rotates, and hence in increased
ments of inertia and lower rotational energy levels.Deff is a
measure of the deviation from the effective linear rotor sp
trum caused instead, in the case of the weakly anisotro
HCN molecule, by the ‘‘back-flow’’ of the surrounding he
lium. As our CBF results clearly show, the ‘‘back flow’’ ef
fect on the energy spectrum is much bigger than centrifu
distortion of the bare molecule. Thus the observed enha
ment factor with respect to the gas-phase value,Deff /D, is
not significant, andD can be neglected in the discussion
rotational spectra of molecules in helium.

In the first column of Table IV we compare the effectiv
distortion constantDeff of HCN ~from fitting to our CBF
results! and OCS~fitted to experimental data! in helium. We
also show values ofDeff obtained for HCN in a pseudohy
drodynamic limit model, discussed in Sec. IV F. In the se
ond and third columns, we show the respective ratiosDeff /B
and Deff /Beff , i.e., we normalizeDeff such that all~free!
linear rotor spectra would collapse on the same curveJ(J
11).

We see from Table IV that regardless of whether we
eitherDeff , or Deff /B, or Deff /Beff as a measure of distortio
of the linear rotor spectrum, the HCN spectrum of excitat
energies deviates considerably more from the linear ro
spectrum than does the spectrum of the heavier OCS m
ecule. We also see that the ratioDeff /Beff is similar for OCS
and HCN in the pseudohydrodynamic model. A possible
planation for this last observation is given in Sec. IV F b
low.

The large value ofDeff for HCN calculated here is a direc
consequence of the high density of states in bulk helium n
the roton minimum and maxon maximum, which are miss
in the hydrodynamic limit model. This high density of stat
gives rise to a downward shift of the lower component of
split peaks for higherJ states, as discussed in Sec. IV
above and explained in detail in Appendix A. It also expla
the greater distortion of the linear rotor spectrum compa
to the distortion measured for OCS, since the considera
lower energy rotational excited states of OCS do not cou
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as effectively to the roton and maxon states as the rotatio
states of the lighter HCN molecule.

E. Rotation lifetimes and homogeneous linewidth

The self-energySJ has a small, but finite imaginary par
which leads to a finite life-timet51/ImSJ of the rotational
excitation, i.e., to homogeneous line broadening of the ro
tional absorption spectra. ImSJ results from the principal
value integration*dp in Eq. ~2.34! that is made when the
energy denominator vanishes at some momentump5p0,

ImSJ5
2B2r

2J11 (
,

p0
2

S~p0!

(
,8

L̃~J,,8,, !g,8
2

~p0!

de~p0!/dp1\2p0 /M
~4.2!

with p0 defined by

B,~,11!1e~p0!1
\2p0

2

2M
5\v. ~4.3!

The lifetime is obtained by summing the contributio
from all polesp0. For calculation of theJ51 excitation, Eq.
~4.3! only has a solution for,50 and hence there is only on
pole, because\v,B,(,11). From the selection rules
~2.35!, we find that,851 and hence we obtain the estima
of linewidth

ImSJ515
2

3
B2r

p0
2

S~p0!

L̃~1,1,0!g1
2~p0!

de~p0!/dp1\2p0 /M
. ~4.4!

Unfortunately the value of the momentum at the poles
HCN and DCN is very small:p050.19 Å21 for HCN and
p050.15 Å21 for DCN. These momentum values are to
small for the corresponding Legendre component of the p
correlation functiong1(p0) to be a reliable estimate. Thi
can be seen by considering for simplicity the Fourier tra
form of a periodic function with periods. The corresponding
wave numberp is discrete with smallest nonzero wave num
ber equal topmin52p/s. In our case,s523.0 Å is the simu-
lation box length. This results in a minimum wave numb
pmin50.27 Å21, which is larger than the desired pole m
mentum valuesp0 for HCN and DCN given above. Further
more, we have the limiting behaviorg1(p);p for p→0.
Hence the Legendre component at the poleg1(p0) is small,
resulting also in a small value of ImSJ51. This explains the
small width of theJ51 line evident in Figs. 4 and 5. How
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R. E. ZILLICH AND K. B. WHALEY PHYSICAL REVIEW B 69, 104517 ~2004!
ever, since the statistical error ofg1(p) for small p is of the
order of g1(p) itself, we are not able to extract a reliab
quantitative estimate of theJ51 lifetime and the associate
linewidth.

F. Hydrodynamic limit

Hydrodynamical models have been used to describe r
tions of heavy molecules with large moments of inertia s
vated in 4He.4,7,20As we have noted already in the Introdu
tion, these models fail for light rotors like HCN when bas
on assumptions of adiabatic following. In this section w
show that independently of any assumption of adiabatic
lowing, any analysis of light rotor rotation involving hydro
dynamic coupling to long-wavelength helium modes can
provide an adequate description of the coupled molec
helium excitations dynamics because of the absence of
pling of rotational levels to4He excitations of higher energ
than the long-wavelength phonon modes, i.e., to rotons
maxons.

We can simulate a hydrodynamic description of the4He
environment by replacingp-dependent4He quantities by
their low-p expansion:

S~p!→ \p

2mc
, ~4.5!

«~p!→\cp. ~4.6!

For simplicity, we keep the molecule-4He pair distribution
g(r ,cosa) we have obtained from the quantum-mechani
DMC calculation. Therefore, our toy model is not a tr
hydrodynamical model, which would require calculation
g(r ,cosa) for HCN solvated in a hydrodynamic environ
ment. It should be noted that this ‘‘pseudohydrodynam
model does not assume adiabatic following of the4He.4,11 In
the present context, ‘‘hydrodynamic’’ refers simply to th
coupling to bulk helium modes with long wavelength.

In Fig. 6 we show the absorption spectraSJ , J51,2,3 for
HCN that are obtained with this pseudohydrodynam
model. These spectra show only sharp peaks and no b
bands, as expected from the discussion in Sec. IV B
assigned the broad bands to coupling to collective excitat
in the maxon-roton region. Also, only a single spectral line
found for all threeJ levels. According to the analysis in Se
IV B and in Appendix A~see also Fig. 7!, this is also con-
sistent with the lack of coupling to maxon-roton states. F
ting the positions of the three spectral peaks results in a g
fit to a linear rotor spectrum, yielding effective spectrosco
constants Beff51.376 cm21 ~1.980 K! and Deff
50.005 68 cm21 ~0.008 17 K!, respectively, and a corre
sponding ratio valueBeff /B050.931. The reduction in rota
tional constant is significantly less than the experimenta
observed reduction of 0.815, amounting to only;36% of
the experimental reduction. This large discrepancy with
observed change of the rotational constant, in contrast to
good agreement achieved in Sec. IV C from coupling to
true helium excitation spectrum further confirms that t
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maxon-roton regime of excitations has a strong influence
the rotation of light rotors in4He. It is therefore essential fo
a reliable model to either directly~as in the present CBF
approach! or indirectly ~e.g., as in the POITSE approach!
allow for coupling of the rotational levels with those excit
tions.

The effective distortion constantDeff is significantly re-
duced with respect to the full CBF result~see Table IV!,
while its ratioDeff /Beff is similar to the corresponding rati
for OCS. This suggests that the effective distortion const
of OCS may be rationalized as resulting from coupling
long-wavelength phonons. Within the present CBF analy
this is consistent with the observation that for OCS with
gas phase rotation constantB50.2029 cm21 ~0.2920 K!, the
roton excitations are too high in energy to couple effectiv
to the molecular rotation. However, for OCS the local co
pling to helium4 needs also to be taken into account for a f
analysis, as discussed in Sec. II A above. Consequent
consistent analysis of bothBeff and Deff for OCS will most
likely benefit from reformulating the CBF theory in the mo
lecular frame, as suggested in Sec. II A.

Finally, it is interesting to note that this pseudohydrod
namic model severelyunderestimatesthe change of the rota
tional constant for HCN, as opposed to the overestimat
for HCN that was obtained from the previous hydrodynam
model of Ref. 7 that assumed complete adiabatic follow
of the molecular rotation by helium.

V. CONCLUSIONS

In this paper, we have derived the dynamic equations
molecular rotations in bulk4He within the formalism of
CBF theory and applied them to HCN and DCN in superflu
bulk 4He atT50. For that purpose we have combined DM

FIG. 6. The absorption spectraSJ(v), J51,2,3, for HCN ob-
tained with the ‘‘pseudohydrodynamic model’’ in which the bu
4He is replaced by a hydrodynamic model fluid having only lon
wavelength~phonon! modes, i.e., possessing linear dispersion. T
simulation is made withN5256 4He in a box subject to periodic
boundary condition and a length of 23.0 Å. The dashed lines in
cate the corresponding spectral positions for HCN in the gas ph
~Ref. 65!.
7-16
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QUANTUM ROTATION OF HCN AND DCN IN 4He PHYSICAL REVIEW B69, 104517 ~2004!
calculations for the required ground-state properties with
CBF theory for excitations. Energy levels, absorption sp
tra, and spectroscopic constants for rotational excitation
the HCN and DCN molecules were calculated from t
combined theoretical approach which allows for coupling
collective 4He excitations. Our results for the effective rot
tional constants of HCN and DCN are seen to be in go
agreement with the corresponding experimentally de
mined values.1 The CBF values are slightly higher than th
experimental results~by ;5% of B, corresponding to;25%
of the reductionB2Beff), with about half of the difference
being contained within the statistical error. We saw that
CBF values could be improved with systematic incorporat
of more phenomenological input to the self-energy. The s
tistical error derives from the DMC calculation of th
molecule-helium pair distribution function and is hard to r
duce further without imposing excessive computational
quirements~the required sampling grows as the inver
square of the statistical error!. For the present calculation
with HCN and DCN, the statistical error of DMC is unfo
tunately too large to determine whether the experiment
observed small isotope effect (;1.5%! is correctly predicted
by CBF.

An attractive feature of the CBF approach is the ability
calculate the full microwave absorption spectra at zero te
perature. We calculated the spectra of the dipole, quadrup
and octopole transitions of HCN, corresponding toJ50
→1, 0→2, and 0→3. TheJ50→1 transition is found to
be very sharp and the dipole spectrum to have almos
features apart from the single Lorentzian peak centered a
J51 excitation energy. In contrast, theJ50→2 andJ50
→3 transitions show weak phonon-maxon-roton bands
well as secondary peaks. Both of these features are caus
the strong coupling of the molecule rotation to the roton a
maxon excitations of4He. This strong coupling is also re
sponsible for the large values of the effective distortion c
stant Deff that result from fitting the primary peaks of th
rotational excitation spectrum to the effective nonrigid line
rotor energy level expressionBJ(J11)2D@J(J11)#2. The
importance of the phonon-maxon-roton spectrum was fur
highlighted by a comparative calculation where the rotatio
excitations are calculated with coupling to a phonon disp
sion mode alone~Sec. IV F!. In this pseudohydrodynamica
model that lacks roton and maxon excitations, a much s
pler absorption spectrumSJ was found that possesses only
single peak for allJ values and no broad sidebands. T
resulting empirically fit rotation constant is considerab
higher than the experimental values, and smaller value
the effective distortion constant are seen. This shows tha
coupling to the roton and maxon excitations of helium
creases the deviation from the linear rotor spectrum. T
coupling is strong for HCN and other light molecules, due
the vicinity of the J52 and J53 rotational levels to the
roton energy.

A key feature of our CBF results is their demonstrati
that the coupling to phonons and rotons of the bulk heli
environment accounts quantitatively for the observed red
tion of the effective rotational constantBeff for HCN and
DCN. For these light molecules, coupling to localiz
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modes, e.g., as manifested by adiabatic following of so
fraction of the first solvation shell helium density,4 can there-
fore be at most a very minor effect in the reduction ofBeff .

As far as the methodology is concerned, the combinat
of DMC and CBF employed here facilitates the calculati
of excitation energies in the CBF approximation because
the ease of implementing DMC, which provides the groun
state pair distributiong(r ,cosa) needed for a CBF calcula
tion. On the other hand, DMC is computationally much mo
expensive than the alternative of a full CBF calculation
both ground state and excitations. Even after extensive s
pling, the statistical error of the4He-HCN and 4He-DCN
pair distribution functiong(r ,cosa) was too large to be able
to detect a statistically reliable difference between the ro
tional constants of the two isotopic species. Furthermo
with currently feasible simulation box sizes containingN
5256 4He atoms, we cannot reliably account for the lon
range~small wavelength! correlations which are needed fo
the calculation of the homogeneous linewidth~Sec. IV E!.
Ground-state CBF, in contrast, is particularly reliable f
long-range properties, while it yields only approximations
short-range properties, like the peak density of the first s
of 4He around the correlation hole of a4He atom or a mol-
ecule. Thus, neither of these two approaches alone prov
all the required ingredients to accurately obtain both the v
small isotopic dependences of rotational constants and l
widths for the HCN and DCN isotopomers.

In this work, we have considered the simplest impleme
tation of the CBF analysis for molecular excitations in4He,
by assuming an infinite bulk4He matrix. However, matrix
isolation spectroscopy experiments are performed in drop
consisting of a few thousands of4He atoms. As noted above
the inhomogeneous environment has been shown13 to possi-
bly cause inhomogeneous line broadening and may be
sponsible for theM-splitting of the observedR(0) line for
HCN.2 Another simplification made in the current CB
analysis was the disregard of coupling of rotation and tra
lations of the molecule. This is justified atT50. At finite
temperatures however, translational excitations will be po
lated, and these provide another source for inhomogene
line broadening. The present CBF calculations can be ge
alized to molecules embedded in a finite quantum clus
which would allow quantification of the effect of a long
range inhomogeneous helium environment~as distinct from
the inhomogeneity in the local solvation shell around t
molecule which is incorporated in this work! on the rota-
tional dynamics of molecules. Finally we note that extens
of the CBF approach presented here to heavy rotors
OCS and SF6 may be feasible if the minimization of th
action integral, Eq.~2.8!, is performed in a frame rotating
with the molecule, thus allowing also for coupling to4He
excitations localized around the molecule and for adiab
following of some local4He density.
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APPENDIX A: SELF-CONSISTENT SOLUTION
OF Eq. „2.33…

The absorption spectraSJ(v) of Eqs. ~2.38! and ~2.36!
are complete descriptions of the spectrum in that they c
tain all the information about excitation energies that C
theory can provide. However, it is instructive to take a clo
look at precisely how the sharp peaks inSJ(v) arise from
Eqs. ~2.38! and ~2.36!. The present discussion follow
closely the discussion of appendix A in Ref. 26.

With the abbreviation

gJ~v!5BJ~J11!1ReSJ~v!

we can write the spectrum as

SJ~v!5
ImSJ~v!

@gJ~v!2\v#21@ ImSJ~v!#2
.

Hence sharp peaks, i.e., long lifetimes of excitations67 of
energy \v0, occur whengJ(v0)5\v0 and ImSJ(v) is
small. In this situation,SJ(v) is small everywhere excep
nearv5v0. In the vicinity of this region we can expand

gJ~v!2\v5aJ\~v2v0!

with aJ5FdReSJ~v!

d\v
21G

v5v0

,

and obtain a Lorentzian centered atv0,

SJ~v!5
eJ

\2aJ
2~v2v0!21eJ

2 .

Here we have assumed that ImSJ(v) varies very little in the
region close tov0 and can consequently be replaced byeJ
5ImSJ(v0). The weight of the peak is obtained by integr
tion of the peak

E d\v SJ~v!5
p

uaJu
.

Hence we find the position of a peak by solving the equat

gJ~v!2\v50

for one or several rootsv i . We obtain the width of the pea
from ImSJ(v i) and its weight from of udgJ(v i)/dv
21u21. All this applies only when ImSJ(v i) is small.

In Fig. 7 we showgJ(v)2\v as a function of\v for
J52. In the range shown in the plots,gJ(v)2\v has two
roots, v (1) and v (2), indicated by black points. Since th
imaginary parts ofSJ(v

(1)) is small,SJ(v) has a sharp pea
at v (1), see Fig. 5. In contrast, ImSJ(v

(2)) is much larger,
resulting in a broad peak atv (2). Furthermore, both the rea
10451
n-
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and imaginary parts ofSJ(v) vary significantly nearv (2),
so that the peak is no longer Lorentzian. A broad band can
seen between the two peaks in Fig. 5. This broad band st
from the large values for ImSJ(v) when \v lies in the
roton-maxon band of the density of states, which is la
between the two extremas of«(p)1\2p2/2M ~see lowest
panel of Fig. 5!. It is easy to show that the density of state
as well as ImSJ(v), diverges as the inverse square root
the energy at the extremas of«(p)1\2p2/2M ~see lower
panel of Fig. 7!. The real component ReSJ(v) also diverges
as the inverse square root, but it does so on the ‘‘outer’’ si
of roton-maxon band~see upper panel of Fig. 7!. These two
divergences of ReSJ(v) and hence ofgJ(v)2\v at the
roton-maxon band are clearly responsible for the occurre
of two roots v (1) and v (2). In the pseudohydrodynamica
model presented in Sec. IV F we retain only the linear ph
non dispersion and there is no roton-maxon band. Con
quently, ReSJ(v) does not diverge anywhere and we fin
only a single peak for eachJ in the pseudohydrodynami
calculations.

APPENDIX B: ø CUTOFF FOR gø„p…

Sinceg(r ,cosa), and thereforeg,(p), is affected by sta-
tistical noise, the self-energySJ(v) is also affected by this.
For large,, g,(p) is small and the noise will exceed the tru
value ofg,(p). But SJ(v) is a functional ofg,

2(p), i.e., for
large,, the summation over, in Eq. ~2.34! adds only noise
to SJ instead of converging. For that reason we introduc
cutoff ,cut to g,(p), such thatg,(p)50 for ,.,cut. In Fig.
8, we show the ratioBeff /B0 for HCN as a function of the
cutoff ,cut, where the phenomenological self-energy with t

FIG. 7. Illustration of procedure for obtaining excitation ene
gies from Eq.~2.33!. The upper panel showsgJ(v)2\v for J
52, wheregJ(v)[BJ(J11)1ReSJ(v). The points emphasize
the zeros ofgJ(v)2\v, which are the excitation energies forJ
52. For comparison, the dashed line showsgJ(v)2\v, J52,
from our pseudohydrodynamic model, see Sec. IV F, wheregJ(v)
5\v has only one solution, leading to the single peak shown
Fig. 6. The lower panel shows ImSJ(v) for J52. Again, the
dashed line indicates the corresponding result of the pseudohy
dynamic model. See text for a full discussion.
7-18
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QUANTUM ROTATION OF HCN AND DCN IN 4He PHYSICAL REVIEW B69, 104517 ~2004!
experimental rather than the Bijl-Feynman excitation sp
trum was used in the denominator. Figure 8 shows cle
that for HCN the largest contribution toSJ(v) comes from
,52, i.e., the quadrupole deviation from a spherical dis
bution around the molecule. Beyond,.4, g,(p) contributes
very little to SJ , therefore we choose,cut56. The uncer-
tainty associated with,cut is much smaller than the statistic
error of Beff /B0 that is propagated from the error o
g(r ,cosa).

APPENDIX C: CORRECTION TO SJ„v…

The self-energySJ(v) ~2.34! was obtained by allowing
for fluctuations of two-body correlations and using the u
form limit approximation. As mentioned above, we can try
improve SJ(v) without changing its analytic form, but in
stead by introducing a phenomenological energy denom
tor, obtained by ~i! using the experimental excitatio
spectrum15,54 instead of the Bijl-Feynman spectrum,~ii ! us-
ing the effective mass of HCN or DCN instead of the ba
mass in\2p2/2M , or ~iii ! using\v, instead ofB,(,11),
as well as by combinations of these corrections.

For the last replacement, we have to solve Eq.~2.33! self-
consistently not only forJ51, but simultaneously for allJ,
because of the occurrence of\v, in SJ . Hence we solve the
set of equations

\vJ5BJ~J11!1ReSJ~vJ!, J51, . . . ,Jmax ~C1!

with

FIG. 8. The effective rotational constant ratioBeff /B0 as a func-
tion of the cutoff,cut for HCN in bulk 4He, approximated byN
5256 4He in a box subject to periodic boundary conditions. W
have truncated the Legendre expansion of the pair distribu
g(r ,a) at ,cut . The expansion has reached convergence at a v
slightly higher than the experimentally measured ratio~Ref. 1!
which is indicated by the horizontal line.
10451
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SJ~vJ!52B2
~4p!2r

2J11 (
,
E dp

~2p!3

p2

S~p!

3

(
,8

L̃~J,,8,, !g,8
2

~p!

\v,1e~p!1\2p2/2M2\vJ

. ~C2!

We take the real part of the self-energy, assuming that
imaginary part is small, since only then we have well-defin
excitations, albeit decaying ones. We note that forJ.1,
each one of Eqs.~C1! has more than one solution, but w
restrict ourselves to the solution which we believe cor
sponds to the effective rotational excitation of the molecu
i.e., to the primary peak ofSJ . This correspondence can on
be established up toJ53, hence we have to restrict ou
selves toJmax53. For J.3 we useBJ(J11). In our view,
solving Eqs.~C1! for all other solutions as well and retainin
the imaginary part ofSJ(v) would stretch the validity of a
phenomenological correction ofSJ(v) and is therefore not
warranted.

The resulting four combinations of corrections~i! and~iii !
for SJ(v) for HCN in bulk 4He are compared in Table III
Clearly, the replacement of the Bijl-Feynman spectrum
the experimental excitation spectrum constitutes a signific
correction ofSJ(v) and manages to come close to the e
perimental values ofBeff . On the other hand, the self
consistent replacement ofB,(,11) by \v, leads only to a
minor further reduction ofBeff , almost within the statistica
error ofSJ(v). Hence, we do not apply the latter correctio
in our calculations.

It is instructive to consider the effect of the molecul
mass more carefully. Unfortunately, the effective massMeff
of HCN and DCN in 4He is unknown. CBF permits the

n
ue

FIG. 9. The error of calculated vs experimental effective ro
tional constant,Beff /Beff

ex , for HCN and DCN as a function of the
effective mass ratioMeff /M . That the intersections of the curve
with Beff /Beff

ex51 occurs at the same values ofMeff /M is clearly not
statistically significant because of the large error bars. The valu
Beff

ex is taken from Ref. 1. See Appendix C for a discussion of
phenomenological corrections used in this figure.
7-19
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calculation of effective masses but this would be beyond
scope of the paper. Therefore we used the bare massM in the
denominator of Eq.~C2! for all our calculations. In principle
we can turn the argument around and compare the solu
vJ of Eq. ~C1! for J51 with the value forv1 from the
experiments of Ref. 1. However, on the level of CBF theo
implemented in this paper, a precise prediction of the eff
tive mass cannot be made, becausev1 depends only weakly
on Meff . In Fig. 9 we show the ratios of calculated vers
experimental effective rotational constant,Beff /Beff

ex , for
HCN and DCN as a function of the effective mass ra
G

J.

G

e

J

s
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n

ev

w

-

M
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Meff /M , whereBeff52v1 has been obtained from Eqs.~C1!
and ~C2!, using the experimental4He spectrum fore(p).
The error bars in Fig. 9 are estimated from the statisti
error of Beff obtained from Eqs.~2.33! and ~2.34!, with
Meff5M . The curves intersectBeff /Beff

ex51 at the same val-
ues ofMeff /M . However, the error bars are very large, a
for the entire range in Fig. 9, the dependence ofBeff on Meff
is not statistically significant. Note also that we have n
glected the effect of coupling of translation and rotation
Meff . Coupling would of course introduce directional depe
dence ofMeff in the molecular coordinate frame.
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