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Quantum rotation of HCN and DCN in *He
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We present calculations of rotational absorption spectra of the molecules HCN and DCN in sufetéuid
using a combination of the diffusion Monte Carlo method for ground-state properties and an analytic many-
body methodcorrelated basis function thegrfor the excited states. Our results agree with the experimentally
determined effective moment of inertia which has been obtained frond#®—1 spectral transition. The
correlated basis function analysis shows that, unlike heavy rotors such as OQS,2hend higher rotational
excitations of HCN and DCN have high-enough energy to strongly couple to rotons, leading to large shifts of
the lines and accordingly to anomalous large spectroscopic distortion constants, to the possibility of roton-
maxon bands, and of secondary peaks in the absorption spectta randJ=3.
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I. INTRODUCTION increase of the moment of inertia. In Ref. 13, a detailed
investigation of the effects of the finittHe environment on
In microwave helium nanodroplet isolation spectroscopyrotational excitations showed that both hydrodynamic cou-
experiments, Conjusteat al! have measured the rotational pling of translational and rotational motion and the anisot-
excitation energyyl=0—1 of HCN and DCN embedded in ropy of the effective interaction between the molecule and
“He clusters. Their results show a reduction of this excitatiorthe finite “He cluster, can result in splitting of thig(0)
energy by factors of 0.815 and 0.827 with respect to gasspectral line(corresponding to thd=0—1 transition into
phase HCN and DCN, respectively. Infrared spectroscopy=0 and M= =1 contributions. However, the observed
experiments of HCN by Nauta and Milfeyield similar re-  line shapes could not be explained in the case of HCN, al-
sults from analysis of the rovibrational excitation of the C-H though good agreement was found for the line shape of the
stretching mode, namely, a reduction of 0.795 in #he0 R(0) transition of the heavier rotor OCS.
—1 energy. These fractional reductions are considerably The molecules HCN and DCN are light rotors, possessing
smaller than those observed for heavier molecules such darge zero-point motion. Therefore, calculation of the ground
SF; and OCS, where reductions by factors-e8 are seefi.  state already requires a full quantum-mechanical treatment of
The gas-phase rotational constarBss 1.478222 cm? for  the molecular rotation¥ Furthermore, for the rotational ex-
HCN andB=1.207 780 cm* for DCN, are also much larger citations, the spacing between the rotational energy levels is
than the corresponding values for the heavier moleculekrge, of similar magnitude as the roton energy of bulk he-
(e.g.,B=0.2029 cm* and 0.0911 cm? for OCS and SE; lium [the roton gap is 8.7 K Ref15)]. This introduces the
respectively. The widely observed reduction @ is under-  possibility of direct coupling between the roton states and the
stood to be due to the interaction of the molecule with themolecular rotational levels of light molecules. The coupling
surrounding*He atoms! For the heavier molecules it has between phonons ifHe and molecular rotational levels was
been found that calculations based on the microscopic twoanalyzed perturbatively in Ref. 16, where it was shown that
fluid theory can reproduce the effective rotational constantthe lower density of phonon states fhie relative to that of
Begr.*® For some heavy linear rotors, a semiclassical hydroparticle-hole states iftHe leads to a much smaller coupling
dynamical analysis that combines a classical treatment of thef molecular rotational transitions to excitations of the quan-
molecular rotation with a quantum calculation of helium sol-tum liquid for the Bose system. This provided a rationale for
vation density approximately reproduced the moment of inthe observation of sharp rotational lines in infrared molecular
ertia increase measured in experimefstse Table | in Ref. spectra in the bosoniéHe environment, but not in the fer-
7), although no agreement is found for the octahedra) SFmionic *He environment. The specifics of the dispersion re-
molecule*®°The hydrodynamic contribution to the effective lation in *He were not incorporated in this perturbative
moment of inertia is found to be considerably decreasednalysis. In particular, only a linear phonon spectrum was
when the molecular rotation is treated quantumemployed, and the maxon and roton excitations were not
mechanically® taken into account. To allow for the possibility of coupling to
These models for heavier molecules are based on analysigaxons and rotons when calculating the response to the mo-
of partial or complete adiabatic following of the molecular tion of these light molecules, it is evident that helium cannot
rotational motion by helium and cannot describe the dynamsimply be treated as a classical frictionless fluid possessing
ics of light rotors like HCN and DCN in helium for which long-wavelength hydrodynamic modes, nor by a quantum
adiabatic following does not hofd. Furthermore, infrared fluid possessing quantized phonons with linear dispersion.
spectra of HCK and acetylene, {8,,*? and other light mol- We must therefore describe the coupled dynamics of the
ecules show a small splitting of the rovibratior(0) line  molecule and the strongly correlated helium quantum fluid
which cannot be accounted for by these theoretical apwith true quantum many-body theory, i.e., in principle, we
proaches that focus on the calculation of the helium-inducednust solve the )+ 1)-body Schrodinger equation.
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Quantum Monte Carlo is one such fully quantum ap-excitations in bulk*He, ?*?*excitations in*He films™>~?®and
proach. Zero-temperature quantum Monte Carlo calculationglusters>®>—3!and translational motion of atomic impurities in
for the rotational motion of a molecule doped into a finite “He.*? This generates confidence that CBF theory may allow
cluster of helium have been carried out successfully for ajuantitative calculations of the rotational dynamics of dopant
variety of small moleculet;***"%8n which excitation ener- molecules for rotational energies in the range of the phonon-
gies have been obtained with the POIT@Eojection opera- maxon-roton regime. In the case of HCN/DCN, this means
tor imaginary time spectral evolutiprmethod® or similar  for quantum numbers up tb=3. Combining CBF theory for
spectral evolution approach&sFor HCN in helium clusters, excitations with exact ground-state quantities calculated by
rotational constantB. 4 have been obtained for clusters con- DMC may also be expected to improve the accuracy of CBF
sisting of up toN=25 “He atoms:* However, in marked excitations.
contrast to the heavier OCS andg3folecules for which the In this paper, we restrict ourselves to the simpler case of
large droplet value is arrived at well before the first solvationHCN/DCN in bulk “He, where translational symmetry is
shell (N~ 20) is completé/*®2°convergence to the experi- preserved and the analytic CBF calculations become corre-
mental value o for HCN in large “He clusters of several spondingly simpler, as opposed to HCN/DCN 4Hle clus-
thousands of‘He atoms was not yet found &t=25. This ters. This therefore precludes the calculation of inhomoge-
very different behavior accentuates the distinction between aeous line broadening and possible line splitting caused by
light and a heavy rotor, and suggests that different physicthe inhomogeneous environment of the clu$ter.
may underlie the reduction iB for a light molecule. This, The structure of the paper is as follows. The derivation of
combined with the technical difficulties of making POITSE the rotation excitation spectrum of a single linear molecule in
calculations for large clusters and hence to follow the smalbulk helium is presented in Sec. Il. This analysis is related to
cluster B value to convergence with increasing size, moti-the derivation of the translational excitation spectrum of an
vates development of a more analytic approach that is suitttom coupling to the phonon-roton excitations in bulk he-
able for implementation in the bulk limit. With an analytical lium, which has been discussed in detail in Ref. 32. In Secs.
approach, implementation is generally simpler in the bulkll A and Il B, we derive the CBF equations for the excitation
limit N—oo than in a large finite system because of thespectrum of a linear rotor solvated in bufide and for its
higher symmetry. However, it is then necessary to recognizabsorption spectrum, respectively. In Sec. Il C, we describe
that derivation of an analytical model from the ¢ 1)-body  how the CBF theory is combined with DMC calculations of
Schralinger equation is necessarily approximative and thigground-state input quantities in order to obtain excitations
may affect the quantitative accuracy of our results. and absorption spectra.

The method we apply here to the rotational dynamics of In Sec. lll, we report the DMC results for the ground-state
HCN in helium(1 linear molecule+ N spherical atomsis a  quantities for HCN and DCN. Section IV describes the re-
combination of the correlated basis functic@BF) theory  sults of the “marriage” of CBF and DMC for rotational ex-
[also called (time-dependent hypernetted chain/Euler- citations. We present and discuss the excitation energies in
Lagrange(HNC/EL) method with diffusion Monte Carlo  Sec. IV A and the absorption spectra in Sec. IV B. In a direct
(DMC) ground-state calculations. The CBF method can beanalogy with the definition of an effective mass of an effec-
formulated as an energy functional approach to solving théive free particle from the momentum dependence of the ex-
many-body Schrdinger equation. In contrast to the formu- citation energyE(q), it is common to obtain an effective
lation of density-functional theoryDFT) that is generally rotational constanB.; of an effective linear rotor from
applied to helium systenf$;??2 CBF theory eliminates the analysis of one or more spectral transition energies. This was
need for a semiempirical correlation energy functional bydone in Ref. 1 using the experimentally obsenr@®) (J
expressing the energy functional not only in terms of the=0—1) spectral line. We present our corresponding results
one-body density, but also in terms of pair densities and, ifor B4 obtained from the calculatet=0— 1 transition en-
necessary for quantitative agreement, also of triplet densitiegrgies in Sec. IV C. Our calculated valuesBy; are in good
Similarly to DFT, the stationary version of CBF yields the agreement with the experimental values, indicating that the
ground-state energy and structure, while the time-dependenéduction inB.y relative to the gas phad for these light
extension of CBF yields excited states. molecules derives primarily from coupling to the collective

As an analytic approach to the many-body problem, CBFmodes of*He. This is a very different situation from that for
theory requires relatively little computational effort to solve heavier molecules, where the reductionBg derives from
the equations of motion, once these have been derived. Theupling to some local helium density that adiabatically fol-
CBF method yields ground-state quantities such as théows the molecular rotatioft, a phenomenon that may be
ground-state energy, the chemical potentials, and the paifermally regarded as coupling ttHe modes which are lo-
distribution functions. Calculation of excitations in CBF calized around the molecule. The present analysis thus indi-
yields not only excitation energies, but also the density-cates that there is indeed a different physics responsible for
density response function, and from that the dynamic structhe reduction in rotational constants for light molecules than
ture function for pure*He and the absorption spectrum of for heavy molecules ifHe. A second significant feature of
the dopant molecule, as will be shown explicitly below. Al- the CBF results is that, although we find that the energy
though CBF theory is not an exact method, quantitativespectrum still has the same symmetry as a linear rotor, i.e.,
agreement has been found for a variety of quantities relevanhere is no splitting of thé\l states within a given level in
to “He systems. These include ground state and collectivbulk “He, it is evident that nevertheless thelependence of
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the rotational energf(J) deviates considerably from that of wherem is the mass of &He atom andV,,. is the “He-*He

an effective rigid linear rotor spectruB.4J(J+ 1), when a interaction, for which we use the potential of Ref. 36.

fit of Bgg to more than ond level is made. In particular, we The CBF method has been explained in detail in a number

find that the coupling to the roton and maxon collective ex-of papers>>3’~*!therefore we limit ourselves to giving only

citations for higherJ levels gives rise to extremely large a very brief overview here. The starting point is to obtain the

effective “centrifugal distortion” terms that modify this rigid ground-state wave function of th&l¢1)-body system, here

rotor form. The analysis of this deviation from the rigid rotor

spectrum is discussed in detail in Sec. IV D. Wo=Wo(ro,lys ... I, Q). 2.3
Lastly, in Sec. IV F, we introduce a pseudohydrodynamic o Too L TN

model that includes only phonon modes ®He but no In the framework of CBF theory¥, is expressed in a

maxon/roton modes in the CBF calculation. This provides alastrow-Feenberg form, i.e., expressed in terms of correla-

reference point that allows us to independently assess tHons,

effect of the maxon/roton excitations on molecule rotations.

The changes in the effective rotational constaBtand D 1

relative to the gas-phase values deriving from this pseudohy- Yo~ €XP5 ;l ua(r; ’rj)+i<,2<k Ug(ri,ry,rg+ -

drodynamic dispersion model are much reduced relative to

the corresponding changes found with the true dispersion

curve for “He, and the value 0B is no longer in such + 2 UR(ro,1, Q)+ 2 uX(ro. i1, Q)+ -

good agreement with the experimentally measured value. =t =

(Do was not experimentally accessible for HCN in the ex- (2.9

periments to dat&? This provides additional evidence for

the critical role of the maxon/roton excitations in the reduc-

tion of B for HCN. We summarize and provide conclusions

in Sec. V.

N

Here the molecule is referred to & with center-of-mass
translation coordinate, and angular orientatiof) defined
above. The definition of the-particle correlationsl,, and uff
is made unique by requiring that, vanishes if one of its
coordinates is separated from the rest. Furthermore, it pro-
vides an exact representation of the ground state when all
The CBF method is a microscopic quantum theory for thecorrelations up tam=N are summed, i.e., up toy. How-
ground state and excitations of a many-body system. Bgver, even for the strongly correlatéttie ground state, cor-
“microscopic” we mean that there is no input other than therelations between up to just three particles are sufficient to
Hamiltonian, and the output quantities are expectation valuegbtain quantitative agreement of the energy and the pair-
with respect to the ground state or an excited state, such alistribution functior® of bulk “He with experiments and
energy, density, etc. In practice, approximations are necedMonte Carlo simulations. The correlationg are obtained by
sary in order to render the CBF equations soluble. We willsolving the Euler-Lagrange equations, which can be written
point out these approximations as we introduce them. formally as
In our case the Hamiltonian fa¥ “He atoms with coor-
dinatesr;, i=1,... N and a linear molecule at positiop oE o 25
and orientatior)= (6, ¢) in the laboratory frame takes the SUn(re, ...rp) '
form

Il. THEORY

(and similarly f0r5u§), whereE is the expectation value of
. h2 ) N the Hamiltonian, (¥ o|H|¥y), and n<3. The resulting
H=BL?- WVOJFZ Vx(ro—ri,Q)+Hg, (2.1) Euler-Lagrange equationg2.5 are coupled nonlinear
=1 integro-differential equations and can be solved iteratively.
whereB is the rotational constant of the free linear rofois ~ Derivation of a formulation of Eqg2.5) that is appropriate
the angular momentum operatdd, is the mass of the rotor, for numerical solution can be found in Ref. 40. However, in
andVy is the moleculetHe interaction potential. For HCN- the present “marriage” of CBF and DMC, solution of Egs.
He, we use the 1E8 potential of Atkins and Hut¥oab- (2.5 is not necessary since the ground-state properties are
tained from fitting toab initio calculations of Druckeet al®®  calculated by DMC.
For DCN-He, we use the same potenfishme equilibrium
nuclear positionsycy=1.064 A andr.\=1.156 A (Ref. A. Excited states
35)] and merely transform the Jacobi coordinatesa] to The primary aim of this paper is to employ CBF theory in

take into account the change of the center of massro e search for excitations of the molecule-helium system.

—ri| is the helium distance from the molecule center oftpe excitations can be obtained by generalizing the ground
mass,« is the angle between the vectoand the molecular  gate form, Eq.(2.4), to time-dependent correlations, i.e.,

axis, measured from the hydrogen end of the molecule. Uy=U,(r,r,:t), etc. By allowing a time-dependent external

The operatoHy is the pure helium Hamiltonian, perturbation potential/(®Y(r,,Q;t) to act on the molecule,
p2 N we can then use linear response thébdty obtain excitation

Ho= — — v2+ S vodri—ri), 29 engrgies involving motions of the molecule. Linear response

B 2m ;1 ' .Z<J wel|ri= ) 22 relies on the knowledge of the ground state, which we as-
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sume to have calculated according to the above recipe or bi2.7), but would give rise to numerically intractable equa-
DMC (see Sec. Il € or other means and which is then tions. Consequently, we restrict ourselves to two-body corre-
weakly perturbed. The perturbed wave function can thereforéations in sU(t) here.
be written as The two terms in Eq.(2.7) give rise to two Euler-
Lagrange equations that are obtained by functional minimi-
eV zation of the action integral

, 2.6
(‘I’o|eRe5U(t)|‘I’o> (20

t, J
- (ex)t)—if — =
where theexcitation operatorsU(t) is given by oL 5£1 At (t)[H+ VIO —i% ot [W(t)=0
N (2.9
SU(t)=8uy(re,Q;t)+ E Suy(ro,ri,Q;t). (2,70  with respect tasu, and éu,. The action integral of a spheri-
=1 cal impurity (He and atomic hydrogerin bulk “He can be

Note that we have dropped thesuperscript from the two- found in Refs. 32 _and_43. We shall refer_to this reference
integral for a spherical impurity aS,. For a linear molecule

article molecule-helium correlatiam,. We will continue to . . e X ) "
So this from here on, using the ?)ur]zesence of the moleculal’ helium, the situation is complicatd@ by the additional

coordinates ; andQ in duy (1o, Q:t) andduy(r.r;,Q:t) to rotational kinetic energy term in the Hamiltonian,
distinguish helium-molecule from helium-helium correlation P P 1 2
terms. Note also that unlike the ground-state wave function HBOt:BLZ: —-B|—— —(sin 0—) + == —2}

¥, the excited stat& (t) does not possess the translational sing 90 0] sinf9 a¢

and rotational symmetry of the full Hamiltoniad. There- (2.9
fore it is convenient to separa®J(t) into a one-body term and (ii) by the breaking of the rotational symmetry of the
du; and two-body correlationsu, according to Eq(2.7). ground-state distribution ofHe atoms around the molecule.
Time-dependent correlations between more than two paSimilarly to the derivation ofy,3 we find for the expansion
ticles can also be formally written down and added to Eqof £ to second order idU:

w(t)=

, 19,40u(00)]2 .
|308U1(0,0)|+ ———7——|+ | d0dQd1p,(0,10)|[d,5u} (0.0)]

1 tp
L=£0+—Bf dtU dodQ p*
47 )y,

9.,0u* (0,0 S 1 s 10)P2
KLU0 recx : :iln(a ))(% Uszi(nOa Q))+c.c.+ 940U5(0,10) %+ Wlﬁ#}
8u3 (0,1 5U,(0,2
+ [ aosadrae ”3(0'1'29)[['905“5<°,1m][095u2<o,2m]+c.C-+ L m)(% o ,m)“

t
+J Zdtf d0dQ p,[5U](0,0)VE(0,0),
ty

where for simplicity we abbreviated the functional argu-where\ is the normalization integral o¥ .

ments r; by i, and have omitted the time argument.

p2(0,10) andp3(0,1,2Q)) are the ground-state probability ~

densities of one and twéHe atoms around the molecule, p1[8U](0,0)=p"+Redp,(0) (212

tivel fi
respectively, defined as is the time-dependent probability density of the molecule

expanded to first order iU, where we have defined the
N complex density fluctuation
pz(o,l,Q):Nf d2...dN|¥4(0,1,...N,Q)|%

2.1 -
B0 e 00)=p su00)+ f d1p5(0,10)5u,(0,100),

(2.13
andp*=1N andp=N/V are the constant ground-state den-

N(N—-1) 2 sities of the molecule and of thtHe atoms, respectively, in
N f d3...dNWe(0.1,... N.O)I% (211 the normalization volumy/.

p2(0,1,2Q)
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The Euler-Lagrange equatiod®, i.e., the one-body and where the weak/(®?¥ is any perturbation acting only on the

two-body equations molecular degrees of freedom ajitis the translational cur-
rent fluctuation. This is defined in Ref. 32 and need not con-
cern us for rotational excitations, as we will see explicitly
oL oL X - « . "
=0, =0, (2.14  below. In analogy tg”, we have defined the “rotational
ou7 (ro, 1) 8u3 (ro,ry, Q1) current fluctuation

describe the time-dependent response of the system to the

perturbationvV(®Y. Thelinear responsés obtained by linear- sin6d, _

izing the equations in terms of the corresponding correlation  j'(0,Q)=| 1 5p1(0,ﬂ)—j d26u,(0,20)

fluctuationséu, and Su,. In the following, we bring these sing?¢

equations into a form where the time-dependent density fluc-

tuation 8p1(0,Q) is a linear functional o/®Y. From that, sin6d,

excitations are derived by setting®9=0. «| 1 0,(0.20). (2.16
We first eliminatesu;(0,2) in favor of the (complex sing%¢ '

one-body density fluctuation E(R.13. Then the linearized
one-body equation of motion can be written 0p1(0,Q) is the time-dependent density fluctuation defined
in Eq.(2.13, while, due to the linearizatiom,(0,2{2) is the

1 (4, 5 ground-state pair density. The second and third terms of Eq.
Bm< P ) 1(0,0)+i6p1(00Q)+Vy-j%(0,Q) (2.195 stem from the variatio®L,/su7 (0,Q2). The density
¢ fluctuation 5p, couples vig]" andj* to the two-body equa-
—2v®9(0,0)=0, (2.19  tion in Eq.(2.14. The two-body equation is more lengthy:

5p(0Q) B 5p1(0Q) B
+ sinzga¢p2(o,1n)a¢T+ ——9,5iN0p,(0,1£)9,6u,(0,10)

B :
0= m(%sm 0p»(0,10)d, i Sno

B B
+mﬁ(f,pz(o,lﬂ)ﬁd,ﬁuz(o,lﬂ)-i-f 02— 9,5in0p3(0,1,202)7,8U5(0,12)

B B 1
+j dzs?—e{9¢p3(0,1,29)(9¢5U2(0,1ﬂ)_J dZ? mﬁgsm0p2(0,1,Q)r99p2(0,2,Q)5u2(0,1,Q)

trans
0

6u3(0,10Q)
—2p,(0,10)VEI0,0). (2.17

B 1 -
- f 42 5 g 9up2(010)4p2(0.260) 8Ux(0,10) +1 8p,(0,100)+ V1 J(0,100) -

SLYM 5u%(0,10) represents the terms related to the transWhich follows from the definition(2.10. The “He-current
lational degrees of freedom of the molecule, the derivation ofluctuationJ, induced by the rotating molecule is defined as
which again can be found in Ref. 32. Tiieomplex two-

body density fluctuationsp,(0,102) can be expressed as a _h
functional of §p,(0.Q) and 8u,(0,10), J2(0.10)= 51p2(0.10)V1805(0,10) . (2.19

55.(00) Unfortunately, solution of the coupled set of equations
o~ _ Pt (2.15 and(2.17) is not feasible without further approxima-
6p2(0,10)=p,(0,100)—————+p,(0,10) 5u,(0,1 . . .
p2(0.141)=p,(0.10) X p2(0.141)u>(0,14D) tions to the two-body equatiof2.17). In a rather drastic
approximation step, we therefore expand the pair distribution

+f dZ(p3(0,1,ZQ)

_ p2(0,102)
9(0,10)= 5 (2.20

1
- —xpz(O,lﬂ)pz(O.ZQ)) ou,(0,2Q2),
p about unity. This is commonly referred to as the “uniform
(2.18 limit” approximation>’ It has the advantage of leading to a

104517-5



R. E. ZILLICH AND K. B. WHALEY

PHYSICAL REVIEW B 69, 104517 (2004

particularly simple expression for the excitation energies in - d3q -
terms of a self-energy correction, and has been used in many 5pl(ro,ﬂ):J2M J We'q'wm(ﬂ) opam(ad),

CBF calculations of excited states dfle and impurities in
“He. Therefore, this uniform limit approximation is our first
candidate for simplifying Eq.2.17). We discuss the extent of
the validity of this approximation in Sec. Ill, where we
present our DMC result fog.

When applied to the equations of motio2.15 and
(2.17), the uniform limit approximation amounts to replacing
the pair-distribution functiog(0,1£)) by unity in coordinate
space, bunot in integrals, where it is retained in full form.
The triplet density in the uniform limit approximation then
reads

1
p3(0,1,20)— 792(0,19)1)2(0,29)%pxpp[g(1,2)— 1],
(2.21
whereg is the pair distribution of twd*He atoms, regardless

of the positionry and orientation() of the molecule.

We can furthermore eliminatép,(0,1Q) in favor of
8p1(0,Q) and du,, using Eq.(2.18), and then make use of
the one-body equatio(®.16), in order to arrive at

5p1(0,0
#) [90p2(0,102)]

L

sinzb’\

0= B( (9(;

5p1(0,)
px

+B dy )[%Pz(oylﬂ)]

+pxpf d2S(1,2BL25u,(0,20)

2 2

P 25u,(0.10) 4 o | ¥
ppzm lu2(vﬂ) 2M 0

5&(@9))
px

X ﬁz 2
X[Vop2(0,10)]—p pmf d2S(1,2)V25u,(0,20)

+ihpxpf d2S(1,2)8u,(0,20), (2.22
where the terms involving V, stem from
SL§"T suj (0,10). Note that the explicit reference to the
external field V(®9(0,Q0) has now been eliminated. This

(2.295
(ext) d3q iqr (ext)
\ (ro,Q):JEM (277)3‘3 Yam(Q)Viu'(a),
(2.26
d®k  d® ) )
alforn =2 | s (2;;3elk'r°e'p(r°frl)
,m
XY em(Q) agm(k,p), (2.27

g(ro,rl,Q)—1=g(r,c05a)—1=4772 (2¢+1)
T

dkié
XPe(COSa)J Wle(kr)ge(k),

(2.28

wherer=rqy—r, and cosy=r- ().

If we restrict ourselves to an external perturbation poten-
tial that couples only to the rotational degree of freedom, i.e.,
VED(q=0)=V{=Y, then translational motion is not directly
excited. Since in CBF theory the molectibelium system is
regarded as being in its ground state before excitation, we are
therefore calculating only the purely rotationally excited
states, i.e.0p¢ m(q=0)=p¢ m-

With the above transformations and after transforming
from time to frequency, the one-body and two-body response
equationg2.15 and(2.22 become coupled algebraic equa-
tions. Equation2.15 becomes

fwdpym(®)+2Vin(w)
=BJ(J+1)8pyy(w)+4mp*pB > (—i)"
Q:ﬁ
d*p
Xj(zﬂ_):‘} Yf’m’(Q_p)gf’(p)afm(oip;(,l))

¢ L

-M m m>’ (2-29

o

means that the two-body correlation fluctuations are only ) .
driven by the one-body correlation fluctuations, which inWhere we note that the translational current fluctuajtom

turn are the response ¥§®9(0,Q). In the above equatior
is the static structure function dHe in coordinate space,

S(|ri—ra)=8(ri—r)+p(@(ri—ry))—1), (2.23

S(k):f d3re’®"S(r). (2.24

Equations(2.15 and(2.22 can now be solved by expan-
sion in plane waves and spherical harmonics. We define

Equation(2.15 vanishes. Eq(2.22 becomes

ﬁ2p2 ﬁ2p2
B€(€+1)+2m8(p)+ oM —ﬁw)afm(o,p:w)
, NNt
=—47B D, (—i)”(—l)m< , >
N, MM —m
}\!’MV
. 5pxu(@) 9y (P)
XY¥, L (Q)—E— . 2.3
v () p*  S(p) (230
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Here the static structure fact@(p) is defined in Eq. We note thal ;(w) does not depend on the quantum number
(2.24). The energy expression on the left-hand side of EQM anymore, and that therefore we will not observe ahy
(2.30 contains the linear rotor spectruB¥ (£+1) and the splitting of theR(0) line of HCN in bulk “He. This splitting
translational spectrumi?p?/2M of the free molecule in ad- has been found in spectra of HCN fiHe droplets as re-

dition to the the Bijl-Feynman spectrdfrof bulk “He, ported in Ref. 2, where it has been attributed to the finite size
of the droplets® Our result for the excitation energy, Eq.
f2p? (2.33), indicates that alM levels are degenerate when HCN
e(p)= 2mSp)’ is embedded in uniform bulkHe. Note that infrared spectra

) ~ of HCN solvated in*He droplets in a strong electric field
The symbols in the angular brackets result from angular inshow clear evidence dfl splitting? The lack ofM splitting
tegration of spherical harmonics and can be expressed s our calculation of HCN in the homogeneous environment

follows: of bulk “He thus indicates that the inhomogeneous environ-
ment of finite*He droplets may indeed be responsible for the
€ Gt _ m € Gt observed spectral splitting.
m; m, ms bRt m m, mg/’ In general, the self-energy will be complex. Strictly
speaking, Eq.2.33 cannot be solved self-consistently in
- _ that case, and we can only speak in terms of the response of
L(€1,€2,€3)=3L(€1,€5,€3)[£1(£1+1)+€(£p+1) the system to the perturbatidie., laser fieldl The imagi-
— U503+ 1)],2 (2.31) nary part ofX;(w), which is the homogeneous linewidth,

i.e., the inverse lifetime of the stafk results from the con-
tour integrationfdp in Eq. (2.34 when the energy denomi-
nator has a zero. At such quantum numheend{, energy
(20,+1)(26,+1)(263+1) [ €1 €2 {53) 2 _conservation allovv_s fora de_cay of stgi‘tbaving energyi w;
= , into a lower rotational excitation with energg€(€+1),
4m 0 0 0 while exciting a phonon of energy(p) and translational
where the expressions in round brackets are Wignej's 3-motion of the molecule of energy’p?/2M (mognezntum con-
symbols® After eliminatinga,,(0,p) in Eq.(2.29 by using ~ Servation such thatiw,=B{({ +1)+e(p) +#°p*/2M. For
Eq. (2.30, we use the summation rules for the Wignej 3- all other combinations op and ¢, a decay would not con-
symbols to further simplify Eq(2.29. It turns out that most S€rve energy, thus these decay channels are closed.
of the angular quantum number summations are trivial and The quantityl, Eg.(2.31), contains a Wigner 3-symbol

that the 8p,y coefficients do not mix. This leads to the 8S well as a rotational kinetic-energy _fac{dine exp_ression
simple formula in the rectangular brackets on the right-hand side of Eq.

(2.31)]. Combined, they obviously lead to the selection rules

L(€y,€5,63)

+1)+ —fiw]bp =2V (w). -
[BII+D)+2s(0)~ Aol dpyu(@) =2V)u (“’)(2_32) L(€1,05,65)=0, if €4+€,+¢5 odd,

Hence we have found the linear response of the densit{ (¢, ¢, ¢,)=0, if ¢,,€,¢5 do notsatisfy the triangular

Spym. to a weak perturbation of symmetry,M), VY. condition(Ref. 45

The excitation energies of the system are obtained by setting ’

the perturbation potential to zero and solving E232), (2.3
ﬁw=BJ(J+1)+EJ(w) (233) E(€l,€2,€3)=0, if €1=O or €2=0

This has to be solved self-consistently in order to obtain thdt follows thatX ;(w)=0 for J=0, i.e., the self-energy does
excitation energyw; for given J (or energies, if there exist not renormalize the ground-state energy. The coupling of the
more than one solutions for givel). These solutions corre- Spectra in the energy denominator is mediated by the aniso-
spond to the energieB;=#%w; of the coupled molecule- tropic pair probability distributiong(r,cose), decomposed
helium system, in the usual spectroscopic notation with totainto its Legendre expansion coefficients. Furthermore, the

angular momentuniJ. 2 ;(w) is the self-energy spherical expansion coefficiegt, - does not contribute to
2 5(w).
(4m)?p dp  p? We note that in the self-energy part of the spectrum
— _R2? 2 LA (2.33, ~w; couples to free rotor states, to the free transla-
2(w)=-B 3 . i .
2J+17 J (27)° S(p) tional states, and to the Bijl-Feynman spectrum of helium.
Although we should not overinterpret the meaning of the
D I(J,€’,€)g§,(p) individual terms inEJ_(w), in an exact expression for the
¢ ’ correction to the rotational energy in the helium environment

we would expect to find a coupling to renormalized molecu-
lar rotations and translations. We would also expect to see
(2.39 coupling to the exact energy spectrum tfle, instead of

X .
BL(£+1)+e(p)+h2p212M -t w
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coupling to the Bijl-Feynman spectrum. Going beyond theOCS and extraction of the moment of inertia renormalization
uniform limit approximation for the probability densities deriving from coupling to some adiabatically following
might improve the molecular rotation spectrum in these rehelium? However for the light HCN molecule, our results
spects, as has been found for other excitations in heliunbelow show good agreement with the experimental rotational
These include calculations of the bulk helium specfitamd ~ constant in helium, indicating that such coupling to localized
of the effective mass ofHe impurities in “He.*® Alterna-  excitations is not important in this case.

tively (and much easigrwe can choose a phenomenological

approach and try to improve the self-energy of E433 by B. Linear response and absorption spectrum

using any one or a combination of the following replace- . o
ments in the energy denominator of the self-energy. Once we have derived the excitation energy of molecular

(1) In the following, we will always use the experimen- rotations _in “He from a linear response_approach_, we can
tally measured excitation spectrum instead of the Bijl-&/SC obtain the dynamic response functip(w), )X‘)’h'Ch IS
Feynman spectrum. the linear operator relating a weak perturbgt\dﬁ of fre-

(2) We can use the dispersion of translational motion ofdUencye and the response of the probability densify;:

HCN and DCN in bulk*He, #2p2/2M ¢ instead of the free

dispersion. Since we do not know of any experimental value 5p1(@)=x(0)VEY ).

for Mgt of HCN and DCN(which would be a tensor quan-
tity), we use the bare masgs.

(3) We can usehw, self-consistently instead dB¢ (¢
+1). In this case, we solvko=B{¢({+1)+3,(w) for fiw

x(w)=x'(w)+ix"(w) consists of a real parf’'(w) de-
scribing dispersion, and an imaginary paft(w)=—S(w)
describing absorptidA®° [note that our definition o8(w)
differs by a factor ofr from the definition of Ref. 4R How-

at angular quantum numbér and the solutiok w, replaces . . . . .
BC(¢+1) in the energy denominator &,(w) for the next ever, we cannot simply identify the inverse of the expression

iteration; the procedure is iterated until convergence idn the bracketin Eq(2.32 with x(w), becaus&bp(w) is the
reached for alliw;. In the case of the calculation of the Fourier transform of the complex density fluctuation
effective mass of impurities iffHe, this phenomenological 9P1(0.£2). The physicaldensity response in linear order is
approach was shown to improve agreement with experimer@iven by thereal part of 6p,(0.(2):
tal results*? However, we will see that in case for molecule
rotations in“He, for givenJ we can have several solutions 5p1(0,Q;t)E((b(t)|f)1(0,ﬂ)|<b(t)>=Reéﬁl(o,ﬂ;t).
w; of Eq. (2.33), see Appendix A. We minimize the ambiva-
lence associated with this procedure and will not use thisdere p,(roy,Q) is the molecule density operator, which is
phenom_enological improvement of the self-energy. given in coordinate space b§(ro—rg) 8(Q—Q'). The ex-
We discuss the dependence of the results on these phfa tation value of,(0,2) is the probability to find a mol-
nomenological improvements in Appendix C, wh&g/By o jle at positiorr, and orientatior().
is calculated for various combinations of replacements 1, 2, obtainy(w) from Eq.(2.32), we first note that
and 3. For the rest of the paper, we apply only replacement 1. ’
A related concern is the missing of decay channels where

_1r <& M
localized “He excitations are generated instead of a bulk Spam(@)=3[pym(w)+(=1)Mp] _u(—w)],
helium excitatione(p). Localized layer phonons and rotons
have been calculatétiand observeti for helium adsorbed [VER (= w)* = (- )MV ),

to graphite sheets, and localized vibrations calculated for he-

lium adsorption on aromatic molecul&sSince the rotation Wwhere we used the fact thet®9(Q;t) is real. With relation
of a molecule in“He involves a correlated motion of the (2.32 we find

molecule and the surroundirftHe atoms, it can be regarded

as involving a localized “layer” excitation of théHe when Spym(®)=[Gy(w)+G*(— ) IVEN w),

observed from the molecule frame. One significant differ-

ence from layer excitations of helium adsorbed to an exwhereG;(w) is the resolvent

tended substrate is that here the molecule “substrate” is so

light that its motion must be taken into accoutiie rota- Gy(w)=[BJI+1)+3(w)—hw] L (2.39
tional motion has been seen to have an influence on the

vibrational energies for*He adsorbed on the benzene SinceG;(w) is real for <0, we obtain for the dynamic
moleculé®). However, decay into channels other than bulkresponse function

helium excitations, such as the localized molecule-helium

excitations themselves, is beyond the ansatz of(Eq) and Xi3(0)=Gj(w)+G;(—w). (2.39
the uniform limit approximation, as we have pointed out

above. Deriving and solving the CBF equations in the framé~rom this the absorption spectrum of a rigid linear rotor
of the molecule would allow coupling to localized excita- €xposed to dipoleJ=1), quadrupole {=2), etc., radiation
tions, although it would considerably complicate the CBFof frequencyw can be obtained as

equations. An extension in this direction might allow analy-

sis of the rotational dynamics of heavier molecules such as Sj(w)=—Imy;(w)=—IMG;(w). (2.39
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C. Marriage of DMC and CBF operator that is made in CBF is conceptually similar to the

Formulations of the ground-state Euler-Lagrange equa[epresentation made in the POITSE approddh. POITSE,

tions (2.5 which are suitable for numerical solution have to m}zei)r(grat'tci);g%%rr?;?;t%gvf'jﬁ;i'gﬁUJBBZLgﬁg;og:gmpﬁﬁ?éwe
take advantage of the symmetries of the system under con- ginary : o . . .
sideration. In our case this means translational symmetry anthe corresponding excitation energy Is opta_lned by Inverse

tati I. N dth is of the li lecul aplace transformation. In CBF, the excitation operator is
rotational Symmetry aroun € axis of the finear MoleCUl€, o of the outputs of the calculation, and it is normally dis-
Unlike the corresponding CBF calculation of excitation

; ) _ carded. Finding the appropriate excitation operator for a
(2.14, the ground-state equatiof®5) cannot be linearized, poTSE calculation can be a hard problem in some systems.

due to the strongly repulsive interactions. Consequently botherefore, knowledge of a good excitation operator deriving
their formulation for a specific symmetry and their numericalfom g high-quality CBF calculation may help considerably
solution are more demanding than the calculation of excitam reducing the computational expense as well as in simpli-
tions. Nevertheless, the calculation of the self-eneigfw)  fying the inverse Laplace transformation of a POITSE calcu-
(2.34) does require knowledge of some ground-state quantitation. By using Eqs(2.13), (2.27), and(2.30 one can show
ties, in particular, of the*He-*He and the*He-molecule that within CBF the one-body term afU in Eq. (2.7) is
pair-distribution functionsg(1,2) [Eq. (2.23] andg(0,112) proportional to

[Eq. (2.420)]-4

_ The “He-*He pa|r—d|str|put|on functiory(1,2) is the Fou- SUL(Q)~Y 3 (Q), (2.39

rier transform of the static structure fact8(k). For bulk

“He this has been obtained with great accuracy fromi.e., the free rotor wave function, corresponding to an exci-
neutron- scattering experiments>? S(k) has also been cal- tation energyBJ(J+1). Thus, it is the two-body terms of
culated using HCN/EL theo?§ and DMC(Ref. 53 We have U which are responsible for the reduction in value of the
used theS(k) at T=0 K from Ref. 32 as well as the experi- effective rotational constai. below the free rotor valub.
mentally determinedS(k) at T=1K from Ref. 51. These To date, POITSE and related calculations for rotational exci-
give essentially identical results for the rotational excitationtations of molecules in helium clustéts™1®**have used
energies, i.e., the results are independent of the finer detaif¥)ly one-body excitation operators of the above form. We
of S(k). We note that dopind “He atoms with a single therefqre propose that in future implementations of spectral
molecule will cause only a change 8tk) on the order of evolution methods such as POITSE, one employs the CBF

O(1/N). Therefore we can safely use tBék) of pure *He excitation operatorsU of Eqg. (2.7). In this situation, the
in the expression for the self-ener(®.34 output of CBF,6U, may then be used as the input to a third
We additionally need to calculate tHéle-molecule pair- calculation step.

. . . ) . Step 3 CBF provides the excitation operator for a
distribution functiong(0,1{1). Here DMC is of use: DMC is POITSE calculation of the exact excitation enerdies; .

easy to implement for the calculation of ground-state prop- We expect that because of the incorporation of molecule-

erties, and since it does not require prior specification of,q|i;m correlations into the excitation operator within an ex-
symmetru}s, one DMC implementation can be applied to any,; ca|culation methodology, this should provide an improve-
molecule“He system with only little modification. Hence ment over the present calculations that terminate after step 2.

we shall employ DMC for calculation of the ground-states
instead of solving equationf2.5). This effectively avoids the

difficulties of solving the nonlinear Euler-Lagrange equa-
tions in a ground state calculation. We therefore use CBF The implementation of DMC for a single linear molecule
theory only for excited states. The combined procedure casurrounded by*He follows Refs. 56 and 57 treating the mol-

Ill. RESULTS: GROUND STATE

be summarized as follows. ecule as a rigid body with both rotational and translational
Step 1 DMC for calculation of the*He-molecule pair degrees of freedom. The difference is that here the system is
distributiong(0,12). confined to a simulation box of appropriate size and periodic

Step 2 CBF for calculation of rotational excitatiorfsw;  boundary conditions are applied. The simulation box moves
and the corresponding absorption spectrum, using as inputith the molecule such that the latter is kept in the center of
the “He-molecule pair distributiog(0,1)) obtained in step  the box(but the box does not rotate with the molegulehe
1 and the*He-*He pair distribution taken from experimental sizes of the simulation box can be either adjusted such that

neutron scattering data:>* (i) the system consisting of 2581e atoms and a single HCN
The energiesiw; reported for HCN and DCN in this or DCN molecule is in equilibrium, i.e., the ground-state
work (Sec. IV A) are obtained using these two steps. energy is minimized with respect to variations of the box

In addition to the approximate calculation of excitation size; or such thatii) the *He density reaches the asymptotic
energies and lifetimes, CBF provides us with calculation ofequilibrium value p=0.022 A3 furthest away from the
the excitation operatofU for which sU|®,) is a good ap- molecule (the edge of the simulation bhaxIn the first
proximation of the excited-state wave function. This raises anethod, the calculated quantityhe total energy changes
potentially useful option for further improvement of energy quadratically with the change sf and in the second method
calculations in these systems by direct means. We note théte calculated quantitithe asymptotic densifychanges lin-
the representation of an excited state in terms of an excitatioearly. The first method is thus more susceptible to errors by
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construction. Furthermore, there is an uncertainty in the total 6

energy that is largely due to the cutoff of thele-*He inter-

action potential at large distancesee below. For these rea-

sons, we chose to adjusby the second method. In order to 4

avoid excessive amount of calculations to find the equilib-

rium density(zero pressupewe choose only three box sizes,

s=225A, 230 A and 235 A. We found that the 2

=23.0 A simulation yields edge densities closest to the equi-

librium bulk value. Using one of the other box sizes did not

change our results for the rotational excitation energies

within the statistical error. We have used a time stepl bf

=0.15mK for the imaginary-time evolution to the ground -2

state. We have doublatt and again have obtained the same

result for the rotational excitation energies, thereby verifying

that the DMC energies are free of finite time step bias. -
Ground-state expectation valugse., g(r,cosa)] have

been calculated with pure estimators using descendant

weighting of importance sampled DMC according to the ap- -6

proach of Ref. 58. The trial wave function used here for the

importance sampled DMC has the form R[A]

z [Al
[w]

N FIG. 1. Contour plot of the HCN*He potential surfac¥y(R,z)
1 ™ ™ from Ref. 34. Contour levels are shown at energy spacings of 5K,
\PT=exp§ 21 uj (|ri—ro|,c05ai)+2 u; (|ri_rj|) , with the outermost contour at5 K, the next one at-10 K, etc.
a = The linear HCN molecule is oriented along thaxis such that the
(3. hydrogen points in the positivedirection.R is the cylindrical polar
with the molecule?He correlationu{"” (Ref. 14 and the radius. Atz=4.25 A andR=0 A, the potential attains its minimum

*He—*He correlationu$” (Ref. 53 given by value of —42.4 K.

u{"(r,cosa)=—(c/r)°®, (3.2)
densityp=0.022 A3, the DMC sampling yields an uncor-
usD(ry=—(b/r)® (3.3)  rected ground-state energy Bf/N=—7.35+0.006 K. The
, . correction isE,,/N=—0.95 K per“He atom. Thus we find
with ¢=7.392A andb=2.670A. The precise from of the , (o energy of approximately/N= —8.3 K for both HCN
trial function is not important because we use descendargnd DCN. The chemical potential of the molecyleis the

weighting for obtaining unbiased values @t ,cosa). Such difference between the energyof molecule and helium and
an isotropic trial function was found to be adequate for pre-

. . . A 1 — >< . e . )
vious important sampled DMC calculations for HCN in rsnggicg%iﬁ&f?zgghzﬁmé\h a7n?:i }[<)Ca|:| ?nqgglll;ﬁ:
small clusters? This is expected from the weak anisotropy '

of the HCN-He interaction. Figure 1 shows contours of the In Fig. 2, the. pair d4istribu.tiorg(r,005a) [Eq. (2.28] i?
molecule-helium interaction potentisty for HCN-*He. For  Shown for HCN in bulk®He, simulated by 256He atoms in

computational efficiency we introduce a cutoff for both the@ Pox of 23.0 A_ length on each side with periodic boundary
4He-%He interaction and its correlation(zT) at a radiusr, cond|t|ons_applled. For DCN, we u_sed the same box_S|ze.
-8 A and replaceu(zT) by a smooth functiot? The c_oordmz_ates and « are the radial and polar spherical
coordinates in the center-of-mass frame of the HCN mol-
M ecule, with the molecular symmetry axis as thaxis.
duy’(r) Due to the small anisotropy of théHe-HCN and
dr r ' “He-DCN potential, and the large zero-point rotational mo-
¢ (3.4) tion of the molecule, the pair distributioy(r,cosa) is only
slightly anisotropic. In Fig. 3, we show the Legendre expan-
For completeness, we report the ground-state energeticson coefficientsg,(r) of g(r,cosa), whose Bessel trans-
of HCN in bulk “He obtained within these calculations. In form is the quantity entering the calculation of the self-
order to correct the total potential energy for the error intro-energy(2.34). In the limit of B—oe, the zero-point motion
duced by the cutoff, we assume a homogenetide equi-  would completely delocalize the molecule orientation with
librium densityp at zero pressure, and approximate the missrespect to the surroundintHe. In this situationg(r,cose)
ing contribution to the total ground-state enerd¥eor  would be isotropic,g,-o(r)=0, and therefore the self-
=(pl2)[{ d°Vpe(r). This is not a highly accurate correc- energy correction tBq would vanish,Beg=B. With the
tion, but the exact value of the ground state energy is immalarge but finiteB value of HCN, the Legendre expansion
terial for our calculation of(r,cosa). For the equilibrium  coefficientsg,~o(r) are not negligible. As can be seen from

uP(r)=uP () —u(ro)—(r—ry)
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g TABLE |. Energies of the primary rotational excitation of HCN
and DCN. CBF denotes the present calculations employing CBF
theory for excitations combined with exact ground-state quantities
calculated by DMC, and expt. refers to the experimental values of

Ref. 1.

J HCN(CBF) HCN(expt) DCN(CBF) DCN(expt)
(cm™1) (cm™ (cm™1) (cm™

1 2.53 2.407 2.08 1.998

2 6.64 5.76

3 10.8 9.77

FIG. 2. Pair distributiorg(r,cosa) [Eq. (2.28], between HCN  around OCS is considerably larger tAdor HCN (Fig. 3).
and *Hey, for N=256.r is the distance between HCN and’de  Hence the expansion coefficiergs(r) will be considerably

atom, anda is the angle between the directional vector from HCN larger and use of the uniform limit approximation would be
to “He and the HCN axis. The HCRHe interaction potentidlsee  more questionable for OCS.

Fig. 1] is defined such that hydrogen is located on the positive side

of molecule axs, .., ak=0. IV. RESULTS: EXCITED STATES

A. Rotational energies of HCN and DCN in“He
Fig. 3, the quadrupole coefficiegh(r) is the main contri-

bution to the anisotropy of(r,cosa) for HCN.

We recall that for the derivation of the rotational self-
energy expressioii2.34), the uniform limit approximation
was appliedsee discussion in Sec. I)AFor the Legendre
expansion, this translates into the coordinate space appro
mationsg,—o(r)~1 andg,-,<<1. While all higher expan-
sion coefficientgy,~q(r) never exceed values of 0.2 in ab- .
solute valuegg(r) deviates from unity considerably, varying energies of ananybody system.

between 0 and values of almost 2. However, since, due to thte T?blil_“ftzs ;h%eqergles Of the pfr |mtar3t/hrotat|q:1a;! exmfta-
selection rulesy ,(w) is independent of,_,, we see that UonforJ=21,2,5. By ‘primary-we reter o the excitation o

the extent of angular modulations in the helium solvationl((;v\g)St _?Eergy, when we Imd morlellthanfone Sqllglpnj. of Eq.
density are consistent with the uniform limit and that this is**" .d . etcr)]cc?rhenc_e 0 se¥era |rljes_ CX a g'\:j."sA 'SA'J
therefore a good approximation for the purpose of calculattUssed [n the following section and In Appendix A. AISO
ing purely rotational excitations of a light rotor like HCN showr_n in Table | are the respective e_xperlmental_excnatlon
and DCN. We note that for the heavier linear rotor OCS,ENerY1€s for HCN and DCN obtained by microwave

which has a stronger and more anisotropic interaction WitﬁpectroscopyOnly the energy fqﬂzl could be measured
helium® the angular modulation in the first layer of helium experimentally, because the helium cluster temperatue of
=0.38K is too low to allow appreciable population of rota-

The excitation energies are obtained as the solutignsf
Eqg. (2.33. Unlike for a linear molecule in the gas phase
[whereX ;(w) =0], it is possible that more than one solution
exists for a givenl. In the following section, we will show
>H’_]at this is actually the case fd=2 andJ=3 (and presum-
ably for higherJ’s). The existence of several solutions is not
surprising considering thad; are the approximate excitation

20 : , ‘ . tionally excited states for this system.
0.10 + ]
s b =0 | I=1 _ .
B. Absorption spectra of HCN in “He
= 0.00 o . . oo
% 10 V4 As discussed in more detail in Sec. IV E, the self-energy
os ~0.10 2 ;(w) is complex, and the excitations obtained from Eq.

(2.33 are therefore not true eigenstates but decay as a result
of the coupling to*He excitation modes. This effect is ob-

0.0 : L -0.20
' served in the molecule absorption spectr8y(w), Eg.
0101 =2 1T 2 | (2.39, in the weak perturbation field® of frequencyw.
000 [\ 000 N In a spectroscopic experiment, the frequercyf a mi-
S ' v crowave laser field is scanned to obtain the rotational spec-
ool 1 ol trum. Since the wavelength is much longer than the size of
' the molecule, only the dipole component \6#9(Q), cor-
_020 ‘ . ~020 responding to thed=1 component, is non-negligible. As a
0 5 A 10 0 5 A 10 zero-temperature method, DMC/CBF only describes excita-

tions from the ground state to an excited state. Hence, with

FIG. 3. Legendre expansion coefficiengs(r) of the pair-
distribution functiong(r,cosa), between HCN and'Hey, for N
=256 in a cubic simulation box of length 23.0 A.

the dipole fieldv(lij,“) acting on the molecule, we obtain only
theJ=0—1 rotational excitatiofs). This corresponds to the
R(0) spectral line. Neither thd=1—2, 2—3, ... excita-
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60 - - - T - In the CBF approximation, the self-enery(w) is non-
ol i =1 | zero with both a real and an imaginary part. The associated
g absorption spectrun$;(w) shows two kinds of features—
20 g 7 sharp peaks and broader bands. We first analyze the sharp
0 : : : ! : peaks. The origin of sharp peaks 8j(w) is discussed in
' ' ' IJ—2 ' detail in Appendix A. We show there how an imaginary part
%) 6r 5 B that is small relative t®J(J+ 1)+ ReX ; leads to a Lorent-
u:T Ar ;qE i zian peaked at the energhw;, which is obtained as
Zr . . . the solution(or one of the solutionsof Aw—BJ(J+1)
0 —ReX;(w)=0. The energyhw; can be associated with a
T T T T L . . . .. . . . .
10 b 1=3 £ rotational excitation of finite lifetime, which decays into a
& combination of a moleculaf <J state and an excitation of
05 r the helium environment. The width of the Lorentzian is
0.0 . . . . given by In;(w;) (see Sec. IV E
0 5 10 15 20 25 In Fig. 4, the spectr&;(w) show sharp peaks of increas-
E [K] ing width and decreasing height with increasihgrhis in-

dicates that the coupling of the HCN rotation to the phonon-
FIG. 4. The absorption spect@(w), J=1,2,3, for HCN in  roton spectrum of bulkHe is stronger for higher energies.
bulk *He, where this is represented Ny=256 “He in a box subject The lowest molecular modé= 1 has the weakest coupling,
to periodic boundary conditior(see text The dashed lines indicate gyjdenced by the fact th&;(w) is very close to the spec-
the corresponding rotational excitation energies of HCN in the 9a§rum of a free rotor aT =0, i.e., it has a single sharp line. In
phase(Ref. 63. The spectra have been broadened by a Lorentziany e fo|lowing section we will obtain the effective rotational
by adding a small constant imaginary part of 10 mK to the self-ConstamBeff from this line and compare with the correspond-
energy2 (). ing experimental measurement. The exact width of dhe
=1 spectral line is subject to computational uncertainties
related to the DMC ground-state calculation, as explained in
Sec. IV E and therefore cannot be directly compared with the
experimental line width. In contrast to the single peak seen

tions corresponding tB(0),R(1), . .. spectral lines, nor the
deexcitationsJ=1—0, 2—1,... corresponding to the
P(1),P(2), ... spectral lines are obtained directly. How-

ever, one can go from the ground statelte2,3, . . . simpl -
g g Py for J=1, the spectra fol=2 andJ=3 show several distinct

by directly applying perturbation¥{&V, J=23, ... ie., " : .
via quadrupole-, octopole-, etc., transitions. Unlike in experi-Sharp peaks. As explained in Appendix A, calculation of the

o o ; osition of a peak can result in several solutions. In some
men_t, it is much easierin our CBF calculation to apply thesec[:)ase§6 the asgociated peaks have very small weight, but for
multipole perturbations rather than formulate and solve the:lz2 z,ind‘]=3 we find two clearly discernible peakic, De-
pr_oblem in a finite temperature theory. It has the added ber}'ailed analysis’ of the origin of these two peaks is aléo pre-
efit that the zero-temperature absorption spe8jav) re-

sulting from application of dipole, quadrupole, etc., pertur_sented in Appendix A. The analysis shows that this two-peak

bations are simpler to interpret than finite temperaturegterﬁ;[fr(e)fosfti{[(ez)o"fzg;t'iﬁgtrg?gﬁﬂ?\?gﬁ?noafntgfhg'\r/ne;gggt
spectra, while still containing all the information about the y

energetics of the system. In Fig. 4, we plot the resultin haxmugn.ﬂCoupllnlg(] itwot tTvise dnl\(/jergr]]ﬁ?cei efffei:tt_llverly Sﬁ:'rtls
absorption spectr&;(w), J=1,2,3, for HCN, where we € singie ree pea 0 WO, and shits one of the resutting

. ext) . peaks below the roton minimum and the other above the
have set both the field strengij;" and the dipole moment maxon maximum. Both peaks lie very close in energy to the

of HCN to unity (these factors will only scale 'ghe_ intensities divergent density of states of the phonon-roton dispersion.
of the spectra The DCN spectra look very similar. As we Therefore the motion of the molecule can couple to many

have pointed out aboveSec. Il A), we correct the energy excitations and the molecule rotates in a dense clowdrof

denommator of the self-energy in qu'.37) by using the .. tual roton and maxon excitations. Because of energy conser-
experimental phonon-roton spectrum instead of the Bijl-

Feynman spectrum. However, we have not further replaceﬁ,}aﬂon’ excitation ofeal rotons and maxons is not allowed at
BO(€+1) byfiw,=BE({+1)43 (). A detailed discus- e energies of the two peaks. If it were allowed, it would

. | immedi mping of the rotation and we would n
sion about the effect of these and other phenomenologic ad to ediate damping of the rotation and we would not

corrections can be found in Appendix C ee well-defined peaks.
Without “He surrounding the molecule, we halis() We consider now the origin of the broader bandSgiw)

. . . in Fig. 4. These broader bands are seen as additional features
=0, i.e., the spectrum is & function centered at the free in the spectra fod=2 andJ=3, between the two peaks.
rotor energy, This is more clearly seen in Fig. 5, where the absorption
. _ spectra are now plotted all on the same scale and are shown
S w)=—Im[fiw—BI(I+1)+ie] * together with the density of states for the2 bzulkeely trans-

_ lating particle excitation spectrum(p)+#A<p</2M (bottom
=7(he=BJIJ+1). (4. pane). In the energy range=12.0-15.1 K,S, has a high-
In Fig. 4, the free rotor lines are indicated by dashed verticaénergy wing that is clearly aligned with the energy corre-
lines. sponding to maxon-roton excitations file plus a recoiling
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1.0 T — T T TABLE Il. Comparison of the calculated rat®/By of HCN
_ =1 and DCN with the corresponding experimental val(Rsf. 1). CBF
é 05 b i refers to the current CBF theory for excitations combined with ex-
& b act ground-state quantities calculated by DMC. Within the statisti-
P cal error, the calculated ratid@.;/Bo for HCN and DCN cannot be
00 ' : ' ' distinguished from each other. The last column lists the correspond-
' ' [ : e ing moment of inertia increasén uA?) in CBF theory and in
E os | e 0 i o | experiment, respectively.
A w\ / CBF Experimen{Ref. ) Al (CBF) Al (expt)
o - — HCN 0.857-0.019 0.814 196029 261
_ P =3 DCN 0.863+0.016 0.830 222031 287
” ture function S(k,w) is dominated by multiphonon
0.0 ' excitations®! In our implementation of CBF theory, only
30F ' one-phonon processes are taken into account.
ﬁ 20 | Two technical details of our calculations are presented in
Py ok the appendixes. The first is the necessity to introduce a cutoff
S in the Legendre expansion g{r,cosa) (Appendix B. The
0.0 h p 1'0 ” 2'0 > second is a comparison of the effects of making the various

phenomenological corrections to the self-energy discussed in
EXI Sec. Il A(Appendix O.

FIG. 5. The spectr&;(w), J=1,2,3, for HCN in bulk*He with
all S;(w) now shown on the same scale. For details of the repre-C. Effective rotational constant B of HCN and DCN in “He
sentation of bulk*He see Fig. 4 and text. The bottom panel shows
in addition the dispersion curwe(p) +#2p%/2M and its density of
states(*dos” ) [de(p)/dp+7#2p/M]~ . The vertical dashed and o i .
dotted lines indicate the onset of the roton-maxon band couplinéhe‘_]: 1 exgltatlon,ﬁwl, from which vye can obtain an ef-
with the £=0 (dashed linesand the¢ =1 (dotted line$ rotational  1€Ctive rotational constant @ assuming a free rotor spec-

states of the molecule, respectivésee text rum:

From the position of the single peak in the absorption
spectrumS,; we can obtain the rotational excitation energy of

HCN molecule. This wing structure is thus a signature of fiwy=2Be.
efficient coupling of the molecule to high-energy excitations
in “He that lie between the roton minimum and the maxonThis is the direct analog of the procedure used to obtain an
maximum. Excitations of the molecule in this wing feature experimental measurement Bf; in Refs. 1 and 2. Table Il
are virtual, i.e., the molecule remains in its ground state compares the effective rotational constant of HCN and DCN,
=0. Another roton-maxon wing results from the coupling of obtained fromJ=1 only in this manner, with the corre-
the rotons and maxons with the=1 state of the molecule. sponding measured values of Ref. 1. The statistical error of
Hence this wing is shifted byB¢(€+1)=2B and corre- Bgs shown in the table is propagated from the DMC ground-
sponds to the generation of a high-enerje excitation  state calculation ofi(r,cose). The values 0B are in over-
together with translational recoil of the molecule, plus a mo-all good agreement with the experimental values, agreeing to
lecular rotational excitatiof =1, i.e., the molecule is now within 5% for both molecules, although the error bars
not only translated but is also excited rotationally to the (~2%) are unfortunately too large to confirm the experi-
=1 state.S; shows qualitatively the same features. In con-mental determination of a slightly smaller({.5%) ratio
trast, inS; the roton-maxon wings are negligibly small. The B.4/B for the lighter HCN than for DCN. For both HCN and
primary peak has almost all the strength of the spectrumDCN, the calculated values & are slightly larger than the
because the dipole field directly couples to thel excita- experimental values. Such behavior of CBF theory to pro-
tion energy of the molecule, the energy of which is muchduce somewhat higher excitation energies than the corre-
lower than the roton. Thus, fol=1 alone the absorption sponding experimentdkexac) values has been observed in
spectrum looks like a gas-phase spectrum and can thus ls¢her cased? One remedy for this is to apply phenomeno-
described purely in terms of an effective rotational constantogical corrections to all terms in the energy denominator of
Bes Which determines the location of the single peak. 3 ;(w) as we have explained in Sec. Il A. The values given
In principle, there is an infinite series of roton-maxonin Table Il were obtained by making such a correction only
wings for eachf, shifted by B€(€+1), with decreasing to the Bijl-Feynman spectrum for bulk helium, i.e., replacing
strength. However, with increasing enerjy, multiphonon  this by the experimental collective excitation spectrum, but
processes presumably become important. For example, imot modifying B£(€+1). The additional effect of this fur-
pure helium, these processes become important for energi#iser correction is summarized in Table Il where we see a
above approximately 25K, above which the dynamic strucslight improvement oBg in its agreement with the experi-
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TABLE Ill. Comparison of the calculated ratBy /B for HCN on having a good projection Operatéﬂfo which has suffi-
obtained with and without the phenomenological corrections exgjent overlap with the desired excited state. In this case one
plained in the text. The four entries correspond to the four possiblgeeks a rotation of the molecule, but one that nevertheless
combinations of corrections in the energy denominator of the selfinolves considerable correlation of the molecule with the
energy>,(w): (i) the Bijl-Feynman spectrurfleft column or the  neliym, as is evident from the second term in the CBF exci-
experimental spectrurfright column), and(ii) the gas-phase rota- tation operator, Eq(2.7). In contrast, the projector that has
tional energiegtop row or self-consistent solution of the rotational peen used in both POITSERefs. 14 and 17and related

energies in helium, Eq¢C1) and(C2) (bottom row. method4® to date is a free molecular rotor function, which
- corresponds only to the first term in E&.7). This suggests
Bijl-Feynman Expt. bulk spectrum that it will be worthwhile to use the full stationary CBF
Be(€+1) 0.913 0.857 excitation operatoA=6U in a POITSE calculation, as we
oy 0.910 0.841 have already proposed in Sec. Il C above.

The situation seems to be opposite for heavier rotors in
“He, namely, here the direct approaches by evaluation and
mental values upon making a self-consistent replacement dfiversion of imaginary time correlation functions can pro-
B¢(£+1) by hw,. Table Il shows that the biggest im- vide a better description of the rotational dynamics. Thus,
provement derives from the replacement of the Bijl-FeynmarPOITSE and related approaches are able to obtain accurate
spectrum by the experimental bulk spectrum. Further imvalues forBey for OCS!"*®but our current implementation
provement could presumably be achieved by replacing thef CBF is not expected to be reliable in this case, as we have
bare molecular mash! by the effective mas# oz of HCN noted in Sec. Il A. We expect that working in the frame of
and DCN moving in4He' if these quantities were known. the molecule would improve the CBF description to account
However, we have checked that realistic changes in thesalso for the adiabatic following ofHe around such heavy
guantities would not change the qualitative behavior of anyotors.
of our results. These checks and relevant details for imple-
mentation of the phenomenological corrections are provided?- Effective distortion constant D¢y of HCN and DCN in “He
in Appendix C. We can use sharp spectral peaks for highealues and fit

Given that the value dB obtained here for HCN in bulk  to the spectroscopic energy levels for a nonrigid linear rotor,
“He is in good agreement with that measured in large dropBJ(J+1)— D (J(J+1))%,%4 whereD is the centrifugal dis-
lets (N>1000 helium atoms it is interesting to compare tortion constant. However, this fit should be used with con-
also with the corresponding values calculated for smalkiderable caution, for two reasons. First, as we have seen in
cluster$* (no experimental measurements have been madsgec. |V B, the deviations of théd=0—2 and 0-3 transi-
yet on small clustejsAs noted in Sec. I, calculations of the tions from an effective linear rotor are very large and have
J=1 excitation by the POITSE methodology show that thenothing to do with a true centrifugal distortion that might
resulting fitted valud. does not converge to the large drop- arise from a coupling of the molecular rotation to either a
let value byN =25, in contrast to the behavior of the heavier molecular or a localized helium vibration. In particular, these
molecules such as OCS andSHor these molecule®.¢  higher transitions are split into two peaks which cannot both
converges to the corresponding droplet value before the firgie fit by a simple phenomenological centrifugal distortion
solvation shell is complete!’*8206283There are several term. Second, both the statistical errors from the DMC and
possible reasons for this difference. First, our analysis fothe errors stemming from the approximations used in CBF
HCN in bulk “He shows that a light rotating molecule leads (see Sec. Il abovegrow with J, leading to larger overall
to generation of collective excitations that are extended irerrors associated with the peaks for higleralues. Never-
space(phonons and rotofsnstead of to formation of a local theless, by direct analogy again with the experimental proce-
nonsuperfluid density in the first solvation shell that candure of fitting to spectral line positions, we can make a phe-
adiabatically follow the molecular rotatidriThe cluster size nomenological fit to the=1 spectral line together with the
dependence for these two different mechanisms might redewest spectral peak for each of the=2 andJ=3 spectra.
sonably be expected to be very different, with the coupling toThe result is that because of the downward shift of dhe
extended modes requiring more than a single solvation she:2 andJ=3 lines induced by coupling to the roton-maxon
to approach its bulk character. A second possible explanatiogxcitations, we find a very large value of the fitted effective
is that the projection operatdx used in Ref. 14 accesses a centrifugal distortion constanDy. Thus, e.g., for HCN,
higherJ=1 state than the state associated with the rotatiomvhile we obtain a valuBes=w,/2=1.266 cm* (1.822 K)
of the molecule, thereby causing the targeted excitation térom theJ=1 line only, fitting theJ=1 and firstJ=2 peaks
overshoot not only the large droplet value but also the gasyields Bqs=1.346 cmi! (1.937 K and D.4=0.040 cm'!
phase rotational energy. This effect was already seen in th@®.058 K), and further fitting thel=1 and firstJ=2 andJ
POITSE excitation spectra of the smallest clusters calculateet 3 peaks all together yieldB.s=1.320 cmi! (1.899 K)
in Ref. 14, where multiple peaks were found, one of whichand D4=0.035 cnm! (0.050 K). These values oDy are
was consistently above the gas-phase rotational energy. Faastly enhanced over the gas-phase value of the centrifugal
N=1, comparison with the corresponding result obtained bydistortion constant for HCND =2.9x 10 ¢ cm™*,%® show-
the collocation methatl confirmed that this excitation is in- ing an increase of four orders of magnitude. Similar enhance-
deed a higher-lyingl=1 level. The POITSE method relies ments of several orders of magnitude have been observed in
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TABLE IV. The effective distortion constarD.z and the ratioD.4/B and D.4/Be calculated for HCN in helium by the present
combination of CBF and DMC, compared to the corresponding ratios derived from experimental measurements for OCS in helium droplets
(Ref. 66. We also show the corresponding values calculated for HCN within the pseudohydrodynamical model of Sec. IV F. The last two
columns give the gas-phase reference values of the spectroscopic coBssaat® for the two molecules.

Dot (cm™ ) D.;/B Deii/Bef B (cm?1) D (cm™ 1)
HCN 0.035 0.0237 0.0265 1.47Ref. 65 2.9x10 ° (Ref. 69
OCSexpt) (Ref. 66 0.0004 0.00197 0.00546 0.0732 0.4380°7
HCN(pseudohydro. 0.00568 0.00384 0.00412

experimental fitted values db.4 to multiple spectral lines as effectively to the roton and maxon states as the rotational
for heavier moleculésand no theoretical explanation for States of the lighter HCN molecule.
these large enhancements has been given.

The fitting constanD o for HCN in helium and the gas- E. Rotation lifetimes and homogeneous linewidth

phase centrifugal distortion constaBt measure different The self-energy. ; has a small, but finite imaginary part,
physical effectsD is the usual measure of distortion of the which leads to a finite life-time=1/Im2 ; of the rotational
linear rotor spectrum due to the nonrigid nature of HCN,excitation, i.e., to homogeneous line broadening of the rota-
which results in centrifugal forces acting on the componentional absorption spectra. I results from the principal
atoms as the molecule rotates, and hence in increased mealue integrationfdp in Eq. (2.34 that is made when the
ments of inertia and lower rotational energy levélsg is a  energy denominator vanishes at some momerenp,,
measure of the deviation from the effective linear rotor spec-
trum caused instead, in the case of the weakly anisotropic
HCN molecule, by the “back-flow” of the surrounding he- ) 2
lium. As our CBF results clearly show, the “back flow” ef- 2B%p S Po ¢ 4.2
fect on the energy spectrum is much bigger than centrifugal 2J+1 7 S(po) de(po)/dp+#42pg/M '
distortion of the bare molecule. Thus the observed enhance-, )

ment factor with respect to the gas-phase valig,/D, is  With Po defined by

not significant, and can be neglected in the discussion of
rotational spectra of molecules in helium.

In the first column of Table IV we compare the effective
distortion constanDx of HCN (from fitting to our CBF o ] ) . o
result$ and OCS(fitted to experimental datan helium. We The lifetime is obtained _by summing the_ cqntrlbutlon
also show values oD obtained for HCN in a pseudohy- from all polesp,. For.calculanon of thad=1 excnqtlon, Eq.
drodynamic limit model, discussed in Sec. IV F. In the sec-(4-3 only has a solution fof =0 and hence there is only one
ond and third columns, we show the respective rafigg/B ~ Pole, becauseiw<Bf(£+1). From the selection rules
and Dgy/Beg, i.e., we normalizeD o4 such that all(free) (2.35), we find that¢’ =1 and hence we obtain the estimate
linear rotor spectra would collapse on the same cuf@  ©f linewidth

> L(3,¢',0)9%.(po)

|m2_]:

hpg _

BE({+1)+e(Po) + 57, =h. 4.3

+1).
We see from Table IV that regardless of whether we use 2 p3 L£(1,1,093(po)
. ) X 2 0 1\MO
eitherD, Or Doi/B, or Dgs/Bes as @ measure of distortion |m2J=1:§B P S(po) de(po)/dp+7iZpg/M (4.9
0 0

of the linear rotor spectrum, the HCN spectrum of excitation
energies deviates considerably more from the linear rotobUnfortunately the value of the momentum at the poles for
spectrum than does the spectrum of the heavier OCS moHCN and DCN is very smallp,=0.19 A~* for HCN and
ecule. We also see that the rafiy/Bey is similar for OCS  py=0.15 A™! for DCN. These momentum values are too
and HCN in the pseudohydrodynamic model. A possible exsmall for the corresponding Legendre component of the pair-
planation for this last observation is given in Sec. IV F be-correlation functiong,(py) to be a reliable estimate. This
low. can be seen by considering for simplicity the Fourier trans-
The large value ob . for HCN calculated here is a direct form of a periodic function with period. The corresponding
consequence of the high density of states in bulk helium neawave numbep is discrete with smallest nonzero wave num-
the roton minimum and maxon maximum, which are missingber equal tap,,=27/s. In our cases=23.0 A is the simu-
in the hydrodynamic limit model. This high density of stateslation box length. This results in a minimum wave number
gives rise to a downward shift of the lower component of thep,;,=0.27 A", which is larger than the desired pole mo-
split peaks for highei states, as discussed in Sec. IV B mentum value®, for HCN and DCN given above. Further-
above and explained in detail in Appendix A. It also explainsmore, we have the limiting behaviag,(p)~p for p—0.
the greater distortion of the linear rotor spectrum comparedHence the Legendre component at the mplép,) is small,
to the distortion measured for OCS, since the considerablyesulting also in a small value of Dy_;. This explains the
lower energy rotational excited states of OCS do not couplemall width of theJ=1 line evident in Figs. 4 and 5. How-
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ever, since the statistical error gf(p) for smallp is of the 6o [ ' ' =1
order of g.(p) itself, we are not able to extract a reliable 40 + 8 T
quantitative estimate of thé=1 lifetime and the associated 20 L _
linewidth. 0 N . . . .
. 6 ' ' h' 'J= ]
F. Hydrodynamic limit g Al g |
Hydrodynamical models have been used to describe rota- v:T 5 | J 2 i
tions of heavy molecules with large moments of inertia sol- 0 ) ) ) )
vated in*He.*"?°As we have noted already in the Introduc- I
tion, these models fail for light rotors like HCN when based 3T E
on assumptions of adiabatic following. In this section we 2r %
show that independently of any assumption of adiabatic fol- LF &
lowing, any analysis of light rotor rotation involving hydro- 0 - L - ! L
dynamic coupling to long-wavelength helium modes cannot 0 5 10 15 20 25
provide an adequate description of the coupled molecule- E[K]

helium excitations dynamics because of the absence of cou- _

pling of rotational levels td*He excitations of higher energy ~ FIG. 6. The absorption spect&(w), J=1,2,3, for HCN ob-

than the long-wavelength phonon modes, i.e., to rotons an ined with the “pseudohydrodynamic model” in which the bulk

maxons. He is replaced by a hydrodynamic model fluid having only long-
We can simulate a hydrodynamic description of thée wavelength(phonon modes, i.e., possessing linear dispersion. The

; . 4 . simulation is made witiN=256 “He in a box subject to periodic
tehn;:,rfgvr\zsngxggn;?gfcmg) dependent”He quantities by boundary condition and a length of 23.0 A. The dashed lines indi-

cate the corresponding spectral positions for HCN in the gas phase
(Ref. 69.
hp
S(D)Hm, (4.5 maxon-roton regime of excitations has a strong influence on
the rotation of light rotors irfHe. It is therefore essential for
a reliable model to either directlfas in the present CBF
e(p)—nhcp. (4.6)  approach or indirectly (e.g., as in the POITSE approach
allow for coupling of the rotational levels with those excita-
For simplicity, we keep the moleculfHe pair distribution  tjons.
g(r,cosa) we have obtained from the quantum-mechanical The effective distortion constam is significantly re-
DMC calculation. Therefore, our toy model is not a true quced with respect to the full CBF resulsee Table IV,
hydrodynamical model, which would require calculation of yhile its ratio D /By is similar to the corresponding ratio
g(r,cosa) for HCN solvated in a hydrodynamic environ- for OCS. This suggests that the effective distortion constant
ment. It should be noted that this “pseudohydrodynamic”of OCS may be rationalized as resulting from coupling to
model does not assume adiabatic following of fire.***In  |ong-wavelength phonons. Within the present CBF analysis,
the present context, “hydrodynamic” refers simply to the this is consistent with the observation that for OCS with a
coupling to bulk helium modes with long wavelength. gas phase rotation constaBi=0.2029 cm * (0.2920 K), the
In Fig. 6 we show the absorption spec8a J=1,2,3 for  roton excitations are too high in energy to couple effectively
HCN that are obtained with this pseudohydrodynamicto the molecular rotation. However, for OCS the local cou-
model. These spectra show only sharp peaks and no brogfing to heliunf needs also to be taken into account for a full
bands, as expected from the discussion in Sec. IV B thainalysis, as discussed in Sec. Il A above. Consequently a
assigned the broad bands to coupling to collective excitationgonsistent analysis of botB.s and D¢ for OCS will most
in the maxon-roton region. Also, only a single spectral line isjikely benefit from reformulating the CBF theory in the mo-
found for all three] levels. According to the analysis in Sec. |ecular frame, as suggested in Sec. Il A.
IV B and in Appendix A(see also Fig. )7 this is also con- Finally, it is interesting to note that this pseudohydrody-
SiS'[en'[ W|th the |aCk Of Coupling to maxon-roton states. Fit'namic model Severe'ynderestimateme Change of the rota-
ting the positions of the three spectral peaks results in a googonal constant for HCN, as opposed to the overestimation
fit to a linear rotor spectrum, yielding effective spectroscopictor HCN that was obtained from the previous hydrodynamic
constants Bgr=1376 cm* (1980 K and Der  model of Ref. 7 that assumed complete adiabatic following
=0.00568 Crﬁl (0008 17 |§, respectively, and a corre- of the molecular rotation by helium.
sponding ratio valud®.4/Bo=0.931. The reduction in rota-
tional constant is significantly less than the experimentally V. CONCLUSIONS
observed reduction of 0.815, amounting to orlB6% of
the experimental reduction. This large discrepancy with the In this paper, we have derived the dynamic equations for
observed change of the rotational constant, in contrast to thaolecular rotations in bulk*He within the formalism of
good agreement achieved in Sec. IV C from coupling to theCBF theory and applied them to HCN and DCN in superfluid
true helium excitation spectrum further confirms that thebulk “He atT=0. For that purpose we have combined DMC
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calculations for the required ground-state properties with thenodes, e.g., as manifested by adiabatic following of some
CBF theory for excitations. Energy levels, absorption specfraction of the first solvation shell helium densttgan there-
tra, and spectroscopic constants for rotational excitations dbre be at most a very minor effect in the reductionBgf;.

the HCN and DCN molecules were calculated from this As far as the methodology is concerned, the combination
combined theoretical approach which allows for coupling toof DMC and CBF employed here facilitates the calculation
collective “He excitations. Our results for the effective rota- of excitation energies in the CBF approximation because of
tional constants of HCN and DCN are seen to be in goodhe ease of implementing DMC, which provides the ground-
agreement with the corresponding experimentally deterstate pair distributiorg(r,cosa) needed for a CBF calcula-
mined values. The CBF values are slightly higher than the tion. On the other hand, DMC is computationally much more
experimental resultgby ~5% of B, corresponding te-25%  expensive than the alternative of a full CBF calculation of
of the reductionB— Bg), with about half of the difference both ground state and excitations. Even after extensive sam-
being contained within the statistical error. We saw that thepling, the statistical error of théHe-HCN and “He-DCN
CBF values could be improved with systematic incorporatiorair distribution functiorg(r,cosa) was too large to be able

of more phenomenological input to the self-energy. The stato detect a statistically reliable difference between the rota-
tistical error derives from the DMC calculation of the tional constants of the two isotopic species. Furthermore,
molecule-helium pair distribution function and is hard to re-with currently feasible simulation box sizes containiNg
duce further without imposing excessive computational re=256 “He atoms, we cannot reliably account for the long-
quirements (the required sampling grows as the inverserange(small wavelengthcorrelations which are needed for
square of the statistical erporFor the present calculations the calculation of the homogeneous linewid®ec. IV B.
with HCN and DCN, the statistical error of DMC is unfor- Ground-state CBF, in contrast, is particularly reliable for
tunately too large to determine whether the experimentallyong-range properties, while it yields only approximations to
observed small isotope effect-(1.5%) is correctly predicted short-range properties, like the peak density of the first shell
by CBF. of “He around the correlation hole of“de atom or a mol-

An attractive feature of the CBF approach is the ability toecule. Thus, neither of these two approaches alone provides
calculate the full microwave absorption spectra at zero temall the required ingredients to accurately obtain both the very
perature. We calculated the spectra of the dipole, quadrupolémall isotopic dependences of rotational constants and line-
and octopole transitions of HCN, corresponding X0  Wwidths for the HCN and DCN isotopomers.

—1, 0—2, and 0—3. TheJ=0—1 transition is found to In this work, we have considered the simplest implemen-
be very sharp and the dipole spectrum to have almost ntation of the CBF analysis for molecular excitations‘ide,
features apart from the single Lorentzian peak centered at tHey assuming an infinite bulkHe matrix. However, matrix
J=1 excitation energy. In contrast, tle=0—2 andJ=0 isolation spectroscopy experiments are performed in droplets
—3 transitions show weak phonon-maxon-roton bands agonsisting of a few thousands OHe atoms. As noted above,
well as secondary peaks. Both of these features are caused ¢ inhomogeneous environment has been shbtenpossi-

the strong coupling of the molecule rotation to the roton anddly cause inhomogeneous line broadening and may be re-
maxon excitations of'He. This strong coupling is also re- sponsible for theM-splitting of the observedR(0) line for
sponsible for the large values of the effective distortion conHCN.? Another simplification made in the current CBF
stant Dy that result from fitting the primary peaks of the analysis was the disregard of coupling of rotation and trans-
rotational excitation spectrum to the effective nonrigid linearlations of the molecule. This is justified dt=0. At finite
rotor energy level expressidJ(J+1)—D[J(J+1)]2. The temperatures however, translational excitations will be popu-
importance of the phonon-maxon-roton spectrum was furthelated, and these provide another source for inhomogeneous
highlighted by a comparative calculation where the rotationaline broadening. The present CBF calculations can be gener-
excitations are calculated with coupling to a phonon disperalized to molecules embedded in a finite quantum cluster
sion mode alonéSec. IV B. In this pseudohydrodynamical Which would allow quantification of the effect of a long-
model that lacks roton and maxon excitations, a much simrange inhomogeneous helium environméag distinct from
pler absorption spectrui®; was found that possesses only athe inhomogeneity in the local solvation shell around the
single peak for allJ values and no broad sidebands. Themolecule which is incorporated in this worlon the rota-
resulting empirically fit rotation constant is considerably tional dynamics of molecules. Finally we note that extension
higher than the experimental values, and smaller values oif the CBF approach presented here to heavy rotors like
the effective distortion constant are seen. This shows that tHeCS and Sf may be feasible if the minimization of the
coupling to the roton and maxon excitations of helium in-action integral, Eq(2.8), is performed in a frame rotating
creases the deviation from the linear rotor spectrum. Thiavith the molecule, thus allowing also for coupling fiie
coupling is strong for HCN and other light molecules, due toexcitations localized around the molecule and for adiabatic
the vicinity of the J=2 and J=3 rotational levels to the following of some local*He density.

roton energy.

A key feature of our CBF results is their demonstration
that the coupling to phonons and rotons of the bulk helium
environment accounts quantitatively for the observed reduc- This work was supported by the Miller Institute for Basic
tion of the effective rotational constaly for HCN and  Research in Science and by the NSF under Grant No. CHE-
DCN. For these light molecules, coupling to localized 010754. The authors would like to thank the Central Infor-
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APPENDIX A: SELF-CONSISTENT SOLUTION @ S0r
OF Eq. (2.33 0.0
50}
The absorption spectrg;(w) of Egs. (2.38 and (2.3 ~10.0

are complete descriptions of the spectrum in that they con-

tain all the information about excitation energies that CBF 1=2

theory can provide. However, it is instructive to take a closer a 1oy
look at precisely how the sharp peaksS3g(w) arise from @’ 100 |
Egs. (2.39 and (2.36. The present discussion follows = ol

closely the discussion of appendix A in Ref. 26.
With the abbreviation 0.0 e

E[K]

v3(w)=BJJ+1)+Re ;(w)
we can write the spectrum as FIG. 7. lllustration of procedure for obtaining excitation ener-
gies from Eq.(2.33. The upper panel shows;(w)—7%w for J
=2, where y;(w)=BJ(J+1)+Re;(w). The points emphasize
Im2 ;(w) the zeros ofy;(w)—%w, which are the excitation energies far
. =2. For comparison, the dashed line showgw)—fw, J=2,
[v5(0)—ho]?+[IM2;(w)]? from our pseudohydrodynamic model, see Sec. IV F, whete)

Hence sharp peaks, i.e., long lifetimes of excitatférsf =hw has only one solution, leading to the single peak shown in

energy fiwg, occur wheny;(wo) =%wy and InS (o) is Fig. 6. The lower panel shows En(w) for J=2. Again, the
small. In this situationS(w) is small everywhere except dashed line indicates the corresponding result of the pseudohydro-

nearw=wq. In the vicinity of this region we can expand ~ dynamic model. See text for a full discussion.

Sy(w)=

and imaginary parts oF;(w) vary significantly neamw(?,

vi(w) —hw=ash(o—wo) so that the peak is no longer Lorentzian. A broad band can be
dRES () seen between the two peaks in Fig. 5. This broad band stems
with a;= “dhe } , from the large values for 1&;(w) whenZiw lies in the
w w=aw roton-maxon band of the density of states, which is large

between the two extremas ef(p)+%2p%/2M (see lowest
panel of Fig. 5. It is easy to show that the density of states,
as well as InX ;(w), diverges as the inverse square root of
€; the energy at the extremas efp)+#2p%/2M (see lower
ﬁ2a§(w_w0)2+ 65- panel of Fig. 7. The real component Rg(w) also diverges
as the inverse square root, but it does so on the “outer” sides
Here we have assumed thatdy(w) varies very little in the  of roton-maxon bandsee upper panel of Fig).7These two
region close tow, and can consequently be replaceddyy divergences of Re;(w) and hence ofy;(w)—#%w at the
=Im2,(wy). The weight of the peak is obtained by integra- roton-maxon band are clearly responsible for the occurrence
tion of the peak of two roots w*) and w®. In the pseudohydrodynamical
model presented in Sec. IV F we retain only the linear pho-
o non dispersion and there is no roton-maxon band. Conse-
J diw S)(w)=r— quently, R& ;(w) does not diverge anywhere and we find
|l only a single peak for each in the pseudohydrodynamic

Hence we find the position of a peak by solving the equatiorealculations.

and obtain a Lorentzian centereda,

Sy(w)=

yi(®)—hw=0 APPENDIX B: ¢ CUTOFF FOR g,(p)

for one or several root®; . We obtain the width of the peak Sinceg(r,cosa), and thereforey,(p), is affected by sta-
from Im3,(w;) and its weight from of |dy;(w;)/dw tistical noise, the self-energy;(w) is also affected by this.
—1|L. All this applies only when I ;(w;) is small. For large€, g,(p) is small and the noise will exceed the true
In Fig. 7 we showy;(w)—#Aw as a function ofiw for  value ofg,(p). But X ;(w) is a functional ofg?(p), i.e., for
J=2. In the range shown in the plotg;(w)—7%w has two large€, the summation ovef in Eq.(2.34 adds only noise
roots, ") and w®, indicated by black points. Since the to 3 ; instead of converging. For that reason we introduce a
imaginary parts oF ;(w®) is small,S;(w) has a sharp peak cutoff €, to g,(p), such thaig,(p)=0 for £> €. In Fig.
at o1, see Fig. 5. In contrast, By(»®) is much larger, 8, we show the rati®./B, for HCN as a function of the
resulting in a broad peak ai{®). Furthermore, both the real cutoff ¢, where the phenomenological self-energy with the
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FIG. 8. The effective rotational constant raBg,/B, as a func- FIG. 9. The error of calculated vs experimental effective rota-

tion of the cutoff €, for HCN in bulk “He, approximated by tional constantBgs/Bgg, for HCN and DCN as a function of the
=256 “He in a box subject to periodic boundary conditions. We effective mass ratiM /M. That the intersections of the curves
have truncated the Legendre expansion of the pair distributiomith Bo;/Bgk=1 occurs at the same valuesMf;/M is clearly not
g(r,a) at{,. The expansion has reached convergence at a valustatistically significant because of the large error bars. The value of
slightly higher than the experimentally measured rafef. 1 Bk is taken from Ref. 1. See Appendix C for a discussion of the

which is indicated by the horizontal line. phenomenological corrections used in this figure.
experimental rather than the Bijl-Feynman excitation spec- s _ 82(477)292 dp p?
trum was used in the denominator. Figure 8 shows clearly @)=~ 2J+1 4 | (2m)° S(p)

that for HCN the largest contribution ;(w) comes from
€=2, i.e., the quadrupole deviation from a spherical distri-
bution around the molecule. Beyoiid-4, g,(p) contributes
very little to 35, therefore we choosé.,=6. The uncer-
tainty associated witlfi.; is much smaller than the statistical
error of Bgg/Bg that is propagated from the error of
g(r,cosa).

> L3609 (p)
(I

X . (C2
hoe+ e(p)+h2p%12M —hw,

We take the real part of the self-energy, assuming that the
imaginary part is small, since only then we have well-defined
excitations, albeit decaying ones. We note that Jor1l,
each one of Eqs(C1) has more than one solution, but we
APPENDIX C: CORRECTION TO %,(w) restrict ourselves to the solution which we believe corre-

The self-energys ;(w) (2.34 was obtained by allowing sponds to the effective rotational excitation of the molecule,
for fluctuations of two-body correlations and using the uni-'Be" to tr;ﬁ_ prclrgary peaﬂ< chH This correhspondence can only
form limit approximation. As mentioned above, we can try to el estaoJls ec 3u'p: th;33’ ence é"f Jf\ie t(l) restrict our-
improve 2 ;(w) without changing its analytic form, but in- SeIVes t0Jma=3. For we useBJ( ). In our view,

. . . . solving Eqs(C1) for all other solutions as well and retaining
stead by introducing a phenomenological energy denoming;_ " . -
tor, obtained by () using the experimental excitation athe imaginary part ok ;(w) would stretch the validity of a

spectrum®® instead of the Bijl-Feynman spectrurii) us- \pl)vf;errn;nr?eednologlcal correction &f ;(w) and is therefore not
ing the effective mass of HCN or DCN instead of the bare The resulting four combinations of correctiofsand(iii )

mass inf*p/2M, or (iii_) usingfiw, instead 9fB€(€+l)’ for 2 ;(w) for HCN in bulk *He are compared in Table III.
as well as by combinations of these corrections. Clearly, the replacement of the Bijl-Feynman spectrum by
For the last replacement, we have to solve @83 self- e experimental excitation spectrum constitutes a significant
consistently not only fod=1, but simultaneously for abl, correction ofS ,(w) and manages to come close to the ex-
because of t_he occurrencefob, in 3 ;. Hence we solve the perimental values oB. On the other hand, the self-
set of equations consistent replacement 8f¢ (¢ +1) by A, leads only to a
minor further reduction oB.4, almost within the statistical
error of 3 ;(w). Hence, we do not apply the latter correction
hw;=BJJ+1)+Re j(wy), J=1,...Jmax (C1)  inourcalculations.
It is instructive to consider the effect of the molecular
mass more carefully. Unfortunately, the effective miksg;
with of HCN and DCN in “He is unknown. CBF permits the
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calculation of effective masses but this would be beyond they /M, whereBs=2w, has been obtained from Eq€1)
scope of the paper. Therefore we used the bare Mdeshe  and (C2), using the experimentatHe spectrum fore(p).
denominator of Eq(C?2) for all our calculations. In principle, The error bars in Fig. 9 are estimated from the statistical
we can turn the argument around and compare the solutiogrror of B, obtained from Eqs(2.33 and (2.34, with

w; of Eq. (C1) for J=1 with the value forw; from the = Mg;=M. The curves interse®.;/Bgk=1 at the same val-
experiments of Ref. 1. However, on the level of CBF theoryues ofM /M. However, the error bars are very large, and
implemented in this paper, a precise prediction of the effecfor the entire range in Fig. 9, the dependenc@8gf on M ¢
tive mass cannot be made, becausedepends only weakly is not statistically significant. Note also that we have ne-
on M. In Fig. 9 we show the ratios of calculated versusglected the effect of coupling of translation and rotation on
experimental effective rotational constarBe;/Bgk, for ~ Mgs. Coupling would of course introduce directional depen-
HCN and DCN as a function of the effective mass ratiodence ofM .4 in the molecular coordinate frame.
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