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Lieb-Schultz-Mattis in higher dimensions
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A generalization of the Lieb-Schultz-Mattis theorem to higher-dimensional spin systems is shown. The
physical motivation for the result is that such spin systems typically either have long-range order, in which case
there are gapless modes, or have only short-range correlations, in which case there are topological excitations.
The result uses a set of loop operators, analogous to those used in gauge theories, defined in terms of the spin
operators of the theory. We also obtain various cluster bounds on expectation values for gapped systems. These
bounds are used, under the assumption of a gap, to rule out the first case of long-range order, after which we
show the existence of a topological excitation. Compared to the ground state, the topologically excited state
has, up to a small error, the same expectation values for all operators acting within any local region, but it has
a different momentum.
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I. INTRODUCTION

Lieb, Schultz, and Mattis~LSM! proved in 1961 that a
one-dimensional periodic chain of lengthL, with half-integer
spin per unit cell, has an excitation gap bounded by constL.1

This behavior contrasts with the possibility of a Haldane g
in the integer spin case.2

Despite several attempts,3,4 this theorem has not been e
tended to higher dimensions. The basic difficulty in obta
ing a higher-dimensional version of this theorem was poin
out in two insightful papers by Misguich and co-workers5: if
spin correlations are short ranged, the ground-state w
function should be well described by a short-range reso
ing valence bond~RVB! state.6 The short-range RVB basi
decomposes into different topological sectors, depend
upon the number of dimers crossing a given line through
system. This allows the construction of a low-energy exci
state very similar to the twisted state of LSM.7 Instead, if
spin correlations are long ranged, such a state will not be
energy, but there will exist low-energy spin wave excitatio
In contrast to the one-dimensional case, there now exist
distinct means of obtaining a low-energy excitation, sign
cantly complicating the proof of any such theorem.

In the present paper, we show a higher-dimensional
sion of the LSM theorem. We consider ad-dimensional sys-
tem of spin-1/2 spins, with finite-range, SU~2! invariant
HamiltonianH, and with an odd number of spins per un
cell on the lattice. Define the total number of unit cells in t
lattice to beV. Let L be the number of unit cells in on
particular direction, and letL be even; this direction will be
referred to as the length. Therefore,V is even~if V were odd,
there would be a trivial spin degeneracy!. Let the system be
periodic and translationally invariant in the length directio
Let V/Ld be bounded by a constantr ~this constantr is
arbitrary, and imposes some bound on the behavior of
aspect ratio of the system!. DefineV/L to be the ‘‘width’’ of
the system, and let this number be odd. Then, we show
if the ground state is unique, the gapDE to the first excited
state satisfies

DE<c ln~L !/L, ~1!
0163-1829/2004/69~10!/104431~13!/$22.50 69 1044
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where the constantc depends onH,d, and where the resul
holds for all L greater than some minimumL0, whereL0

depends onH,d,r .8

In this paper, we use the term gap to deal specifically w
the difference between the energy of the first excited s
and the energy of the ground state. This includes two co
pletely distinct physical cases. In the case of a o
dimensional system, a spin-1/2 Heisenberg chain has a
tinuous spectrum of excitations above the ground state.
the other hand, a Majumdar-Ghosh9 chain has a doubly de
generate ground state with a gap to the next excited s
Weak perturbations of the Majumdar-Ghosh Hamiltonian c
break the exact degeneracy between the two lowest st
leaving a system with a gap from the ground state to the
excited state which is exponentially small in the system s
and then a gap from the first excited state to the next exc
state which is nonvanishing even in the limit of large syst
sizes. We consider both of these cases as systems in w
the gapDE is vanishing in the limit of large system size
Although they are one-dimensional systems, these two c
closely match the two possibilities mentioned above
higher-dimensional systems. The first case involves a sys
with a continuous spectrum as it has algebraically decay
spin correlations. In the second case, the first excited sta
very close to the twisted state of LSM.

The physical idea behind the proof of Eq.~1! is closely
related to the two possibilities considered above for the
sence of a gap. In the event of long-range order, or algeb
long-range order, one expects that there is no gap. C
versely, if there is a gap, one expects that there is no lo
range order. This is the first statement we prove: we ass
that the system has a gapDE and show, in Sec. III, that
connected expectation values decay exponentially in
spacing between them. Then, to prove Eq.~1! we first as-
sume that Eq.~1! is violated, proceeding by contradiction
We assume the existence of such a gap violating Eq.~1! in
Secs. IV, V, and VI. We then use the existence of the gapDE
and the exponential decay of correlation functions to sh
an insensitivity of the system to boundary conditions in S
IV. Then, this insensitivity is used to construct alow-energy,
twisted state in Sec. V. The construction of this twisted st
©2004 The American Physical Society31-1
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will to some extent follow the topological attempt4 at prov-
ing the LSM theorem in higher dimensions, with some i
portant differences outlined below. In Sec. VI we will sho
that the twisted state has a different momentum than
ground state. It is here that the odd width of the syst
becomes essential. Despite the different momentum c
pared to the ground state, the twisted state has, up to a s
error, the same expectation values for all operators ac
within any local region. Thus, we may refer to this state a
topologically excited state. Finally, in the Appendix, w
briefly consider a version of the result showing exponen
decay of correlation functions for systems governed by c
tain Markov processes, rather than quantum systems.

Since we will constantly deal with operator equations
motion, we introduce a set of ‘‘loop operators’’ as a ba
technique. The loop operators, which will be suitably defin
products of spin operators, can be naturally interpreted
product of gauge fields around a loop.10 However, the use of
these operators avoids the uncontrolled approximations a
ciated with the U~1! andZ2 gauge theory techniques.11 The
introduction of these operators is not necessary to the m
development, but provides a useful notation.

II. LOOP ALGEBRA

We define operatorsi mn[ 1
2 dmn1(aSi

asa
mn , whereSi

a are
the spin operators at sitei andsa are the Pauli matrices,a
5x,y,z. Thus,i mn is the 232 matrix of spin operators

S 1
2 1Si

z Si
x2 iSi

y

Si
x1 iSi

y 1
2 2Si

z D . ~2!

We consider operators of the formi mn j nrkrs . . . mam, which
we refer to as loop operators, where a summation over
peated indices is implied. Later we will often suppress
indicesm,n, writing i rather thani mn to save space. Thus, w
will write the loop operator mentioned above in the for
tr( i jk . . . m), where the trace tr refers to a trace over t
greek indicesm,n, . . . . Below we also use a trace Tr; th
trace Tr refers to a trace of quantum operators, summing o
all states in the Hilbert space of the system. Using the r
i mni rs5dnri ms, it is always possible to reduce a given pro
uct of traces to a new product such that each site app
only once. Then, an operator tr(i jk . . . m) permutes the
spins around the sitesi , j , . . . .

Given an operatorO(t), the operator obeys the equatio
of motion] tO(t)52 i @O,H#. Consider, for example, a term
tr( i j ) in H. We have@ i ,tr(i j )#5 i j 2 j i . As an illustration,
let us give the full greek indices on this commutator: w
have @ i mn,(i ab j ba)#5 i ma j an2 j mai an, where summation
over repeated indicesa,b is assumed.

Introduce coordinates (x,y) to specify sitesi, where x
labels the unit cells along the direction of length and is
fined up to integer multiples ofL. The coordinatey labels the
unit cells along the other lattice directions, as well as lab
ing the particular spin within the unit cell. Given two sitesi
and j on the lattice, we define the distance between th
written u i 2 j u, as the minimum number of moves by lattic
vectors needed to move from the unit cell containingi to that
10443
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containing j. On a square lattice, for example, this is th
Manhattan distance. Then, letR denote the range ofH, the
furthest distance between two sites in any term inH. If all
distances in a product of loops are less thanL/2, we can
define a winding number of the given product around
lattice in the length direction.12 If all distances in the produc
remain less thanL/22R, then the dynamics] tO5
2 i @O,H# does not connect sectors with different windin
numbers. We will make use of the coordinates later by som
times writing loop operators tr(i j . . . ) in the form
tr„(x1 ,y1)(x2 ,y2) . . . …, where i has coordinates (x1 ,y1), j
has coordinates (x2 ,y2), and so on.

III. LOCALITY

We consider ground-state expectation values of opera
O1 ,O2 , . . . , written ^O1(t1)O2(t2) . . . &. The expectation
values are not time ordered: the ordering of operators is
written. For a system with a unique ground state and
energy gapDE, on physical grounds one expects that co
nected correlation functions, defined aŝA(0)B(0)&c
[^A(0)B(0)&2^A(0)&^B(0)&, decay exponentially in dis-
tance~without loss of generality, we will assume^A&5^B&
50 through the rest of this section!. The proof of this local-
ity bound will be done in this section. We will do this in tw
steps: first, we consider commutators of the fo
@A(t),B(0)#, whereA(0) andB(0) are separated in spac
We bound the operator norm13 of the commutator for suffi-
ciently smallt, and thus bound its expectation value, in E
~4! below. The proof in this subsection will just be sketche
a more rigorous derivation is given by Lieb and Robinson14

This result provides a bound on the velocity of the system
will be seen below. Then, in the following subsection, fro
this bound on the expectation value of the commutator
the existence of a gap, we use a spectral representation o
commutator to bound the connected correlation functio
thus obtaining the desired locality bound on the expecta
value, Eq.~13!. Finally, we close the section by giving
similar locality bound for operators separated in time.

A. Finite velocity

We define the distance between two operatorsO1 ,O2 to
be l if the minimum distance between any pair of sites,i , j ,
where Si appears inO1 and Sj appears inO2, is l.
A(0),B(0) are sums of products of spin or loop operato
which we suppose to be distancel apart.

We start with some notation. The HamiltonianH can be
written as a sum of termsH5( iHi , such that eachHi only
contains spins operators on sitesj with u i 2 j u<R. Let NA
denote the number of sites appearing inA(0), andNB denote
the number of sites appearing inB(0). Let J denote the
maximum, over sitesi, of uuHi uu.

We now bound the operator norm of the commuta
@A(t),B(0)# for short times. On short time scales, one e
pects thatA(t),B(0) are still separated in space, up to sm
correction terms, as we now show. Consider fi
uu@A(t),Hi #uu, and study the change in this quantity as
function of time:
1-2
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LIEB-SCHULTZ-MATTIS IN HIGHER DIMENSIONS PHYSICAL REVIEW B69, 104431 ~2004!
Uuu@A~ t !2 idt@A~ t !,H#,Hi #uu2uu@A~ t !,Hi #uu
dt U

5Uuu@A~ t !,Hi1 idt@Hi ,H##uu2uu@A~ t !,Hi #uu
dt U

< (
u i 2 j u<2R

Uuu@A~ t !,Hi1 idt@Hi ,Hj ##uu2uu@A~ t !,Hi #uu
dt U

5 (
u i 2 j u<2R

Uuu@A~ t !2 idt@A~ t !,Hj #,Hi #uu2uu@A~ t !,Hi #uu
dt U

<2J (
u i 2 j u<2R

uu@A~ t !,Hj #uu. ~3!

Here, we work to linear order indt. While the operator
@A(t),Hj # is differentiable, its operator norm need not b
Thus, all equations here are correct when we take the lim
asdt→0.

The first equality in Eq.~3! is obtained by moving the
time derivative fromA(t) to Hi as follows: for any operato
P, to linear order indt we haveuuPuu5uuP1 idt@P,H#uu. Set
P5@A(t)2 idt@A(t),H#,Hi #. Then, to linear order
in dt, uuPuu5uuP1 idt@P,H#uu5uu@A(t)2 idt@A(t),H#,Hi #
1 idt@@A(t),Hi #,H#uu5uu@A(t),Hi1 idt@Hi ,H##uu.

The inequality is obtained because@Hi ,Hj #50 for u i
2 j u.2R. The next equality is obtained by moving the tim
derivative back toA(t), using now the equalityuuPuu5uuP
2 idt@P,Hj #uu. The final inequality results from the boun
uuHi uu<J.

Now, let S denote the maximum number of sitesj within
distanceR of any sitei. Equation~3! gives a set of differen-
tial equations which bound the operator norm of vario
commutators; we have also the initial conditions th
uu@A(0),Hj #uu vanishes for sitesj which are further than dis
tance R from any site in A(0), while uu@A(0),Hj #uu
<2JuuAuu for all other sites. The number of sites within di
tanceR of A(0) is bounded byNAS.

To bounduu@A(t),Hj #uu, let us then consider the following
set of differential equations: fort.0, we take ] tGi
52J( u i 2 j u<2RGj and for t,0 we take ] tGi5
22J( u i 2 j u<2RGj , with initial conditionsGj50 for sites j
which are further than distanceR from any site inA(0),
and Gj52JuuAuu for all other sites. Then, comparin
these equations to Eq.~3!, we see that uu@A(t),Hi #uu
<Gi(t). This set of linear equations forGi can be solved for
any given lattice. However, we are simply interest
in an upper bound onGi . Let us defineGk to be the maxi-
mum of Gi over all sites i which are at a distance
greater than (2k21)R from all sites in A(0). Then,
we have ] tG

k<2JSGk21 for k.0, and ] tG
k<2JSGk

for k50, with initial conditionsG052JuuAuu andGk50 for
k>1. Thus,G0(t)<2JuuAuue2JSt, G1(t)<*0

t dt82JSG0(t8)
<*0

t dt8(2JS)(2JuuAuu)e2JSt52JuuAuu(2JSt)e2JSt, andGk(t)<
2JuuAuu(2JSt)ke2JSt/k!. The last set of inequalities follows
inductively: Gk(t)<*0

t dt8(2JS)Gk21(t)<*0
t dt8(2JS)(2JuuAuu)

3(2JSt8)k21/(k21)!e2JSt52JuuAuu(2JSt)ke2JSt/k!. From these
10443
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inequalities, we find, for a sitej which is at a distance greate
than (2k21)R from A(0), that uu@A(t),Hj #uu
<2JuuAuuu2JStuke2JSutu/k!.

Finally, consider] tuu@A(t),B(0)#uu. Using a similar se-
quence of inequalities to Eq.~3!, we find that
] tuu@A(t),B(0)#uu<2uuBuu( j uu@A(t),Hj #uu, where the sum
over j extends over sitesj which are within distanceR of
some sites inB(0). There are at mostNBS such sites, and
each of them hasuu@A(t),Hj #uu<Gk21(t), wherek5 l /2R.
Here, we takek to be the ceiling ofl /2R, the smallest integer
greater than or equal tol /2R; we obtain this value ofk since
each such site is at least a distancel 2R from all sites in
A(0), and so we need l 2R.@2(k21)21#R. Then,
uu@A(t),B(0)#uu<2NBuuAuuuuBuuu2JStu l /2Re2JSutu/( l /2R)!.

Define f (t)[^@A(t),B(0)#&. Since f (t)
<uu@A(t),B(0)#uu,

f ~ t !<
2NBuuAuuuuBuuu2JStu l /2Re2JSutu

~ l /2R!!
[NBuuAuuuuBuug~ t,l !.

~4!

For t5c1l , the large l behavior of g(t,l )
;exp@(l/R)„2JSc1R11/21(1/2)ln(4JSc1R)…#. If we choose
a sufficiently smallc1, theng(c1l ,l ) decays exponentially in
l for large l. Numerically, we find that the zero of 2JSc1R
11/21(1/2)ln(4JSc1R), is atc1'0.139 232/(2JSR). Any c1
smaller than this value@for example,c150.1/(2JSR) will
work# will causeg(c1l ,l ) to be exponentially decaying fo
large l. The velocity at which correlations spread in the sy
tem is of orderc1

21.

B. Spectral decomposition

Now, we use a spectral decomposition off (t) to relate
f (t) to the desired correlation function,^A(0)B(0)&. With-
out loss of generality, let us set the ground-state energyE0 to
0. The spectral decomposition off (t) gives

f ~ t !5(
i

~e2 iEi tA0iBi02eiEi tB0iAi0!, ~5!

whereAi0 is the matrix element of operatorA between the
ground state 0 and the eigenstatei, with energyEi>DE
above the ground-state energy, and similarly for the ot
A0i ,Bi0 ,B0i . There are no terms in Eq.~5! involving
A00,B00 since we have assumed^A&5^B&50.

Let us define a functionf 1(t)5( ie
2Ei tA0iBi0, which

thus contains only the negative frequency~positive energy!
terms in f (t). The significance off 1(t) is that f 1(t)
5^A(t)B(0)&, so that the positive energy part off (t) con-
tains the desired correlation function in it. In this subsecti
we combine the bound~4! on f (t) with the existence of a gap
to boundf 1(0).

Define f̃ (t)5 f (t)e2t2DE2/(2q), with q to be chosen later
We have two bounds onf̃ (t). First, we have the bound~4! on
f (t) which gives us the boundf̃ (t)<NBuuAuuuuBuug(t,l ). We
also have

f̃ ~ t !<2uuAuuuuBuue2t2DE2/(2q). ~6!
1-3
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We will use the first of these bounds for timesutu,c1l , and
the second for long timesutu.c1l . Finally, we definef̃ 1(t)
to contain only the negative frequency terms inf̃ (t).

Now, the desired expectation valuêA(0)B(0)&
5 f 1(0). To bound f 1(0), we first bound f̃ 1(0), andthen
bound f̃ (0)12 f 1(0). To bound f̃ 1(0), we use thebounds
on f̃ and an integral representation of the positive ene
part,15,16

u f̃ 1~0!u5
1

2p U E
2`

`

dt f̃~ t !/~2 i t 1e!U
5

1

2p S U E
utuu,c1l

f̃ ~ t !/~2 i t 1e!U
1U E

utuu.c1l
f̃ ~ t !/~2 i t 1e!U D

<
1

2p
uuAuuuuBuuS 2NBg~c1l ,l !

12
A2pq

DEc1l
e2c1

2l 2DE2/(2q)D . ~7!

In Eq. ~7!, to bound the integral overutu,c1l , we used
u f̃ (t)u<u f (t)u<NBuuAuuuuBuug(t,l )
<NBuuAuuuuBuu@ utu/(c1l )#g(c1l ,l ). To derive this inequality
we have assumed thatl .0 so that taking the ceiling ofl /2R
above gives ak>1. Then,

E
utu,c1l

dt f̃~ t !/~2 i t 1e!

<NBuuAuuuuBuu E
utu,c1l

dtg~c1l ,l !/~c1l !

52NBuuAuuuuBuug~c1l ,l !. ~8!

To bound the integral overutu.c1l in Eq. ~7! we have
used Eq. ~6! to show u* utu.c1l f̃ (t)/(2 i t 1e)u<2uuAuuuuBuu
3*utu.c1l dtexp@2t2DE2/(2q)# /(c1l)<2uuAuu uuBuu(A2pq/DEc1l )

3exp@2c1
2l2DE2/(2q)#.

To boundu f̃ (0)12 f (0)1u, we start with the definition of
f̃ . Expressed as a convolution in Fourier space,17 this is

f̃ ~v8!5~A2pq/DE!E dv f ~v!e2q(v2v8)2/(2DE2). ~9!

Now is where the existence of an energy gap becomes es
tial. For motivation, let us first pictorially~see Fig. 1! de-
scribe how the gap enables us to boundu f̃ 1(0)2 f 1(0)u and
then present it more mathematically. By definitionf̃ (0)
5 f (0); this follows in Fourier space from*2`

` dv f (v)

5*2`
` dv f̃ (v). The convolution~9! means that a given Fou

rier component inf which is, for example, negative fre
quency, will produce both positive and negative frequen
Fourier components inf̃ . So, consider ad function spike in
10443
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f (v), produced by an intermediate statei with energyEi5

2v.0. This produces a Gaussian inf̃ (v), as shown. The
integral over allv of the Gaussian is the same as the integ
of the d function; however, the shaded portion of the cur
has v.0. Since f̃ 1(0)5(2p)21*2`

0 dv f̃ (v) and f 1(0)

5(2p)21*2`
0 dv f (v), we find a difference betweenf̃ 1(0)

and f 1(0) equal to the integral of the shaded portion of t
curve. At v50 the height of the Gaussian is reduced by
factor e2qv2/(2DE2). However, sinceEi>DE, this factor is
bounded bye2q/2.

Now, let us do the calculation more directly:f̃ 1(0)
5(2p)21*2`

` dv f (v)*2`
0 dv8(A2pq/DE)exp@2q(v2v8)2/

(2DE2)], while f 1(0)5(2p)21*2`
0 dv f (v). Then

f̃ 1~0!2 f 1~0!5~2p!21E
2`

`

dv f ~v!@Qq~2v!2Q~2v!#.

~10!

Here Q(v) is a step function:Q(v)51 for v.0 and
Q(v)50 for v,0. We have defined

Qq~v!5E
0

`

dv8~A2pq/DE!exp@2q~v2v8!2/~2DE2!#.

~11!

Since the system has a gap, the integral in Eq.~10! vanishes
for uvu,DE. However, for uvu>DE, we haveuQq(2v)
2Q(2v)u<e2q/2. Thus, Eq.~10! is bounded by

~2p!21e2q/2E
2`

`

dvu f ~v!u<2uuAuuuuBuue2q/2. ~12!

FIG. 1. Illustration of the bound onu f̃ 1(0)2 f 1(0)u, as de-
scribed in the text. The vertical line describes ad-function spike in

f (v). This produces a Gaussian inf̃ (v). The integral overv of the
Gaussian is the same as the integral of thed function; however, the
shaded region of the curve of the Gaussian falls abovev50, and
hence does not contribute tof 1(0). This leads to the difference

betweenf̃ 1(0) and f 1(0).
1-4
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Thus, combining Eqs. ~7! and ~12!, u f 1(0)u
<u f̃ 1(0)2 f 1(0)u 1 u f̃ 1(0)u < 1/2puuAuuuuBuu„2NBg(c1l ,l )

12(A2pq/DEc1l )e2c1
2l 2DE2/(2q)

…12uuAuuuuBuue2q/2. We fi-
nally chooseq5c1lDE to get

u^A~0!B~0!&cu

<
1

2p
2NBuuAuuuuBuug~c1l ,l !12S 11

1

A2pc1lDE
D

3uuAuuuuBuue2c1lDE/2, ~13!

giving the desired bound. The first term in Eq.~13! decays as
exp@2O( l /R)#, while the second term decays as e
@2c1lDE/2#5exp$2O@DEl/(JSR)#%; here, byO( l /R), we
mean some quantity of orderl /R.

In what follows in the next three sections, the first term
Eq. ~13! will be negligible: we will be considering operator
separated by a distancel which is of orderL, so that the first
term in Eq.~13! will lead to only exponentially small~in L)
contributions to the correlation functions. The second te
will be more important: since we will consider gapsDE
} ln(L)/L, the second term will lead to terms which are su
pressed only by powers ofL when considering correlation
functions of operators separated by a distance of orderL.

C. Operators at different times

It is possible to extend the result~13! to correla-
tion functions ^A(0)B( i t)&, with t real and t.0.
Then, in Eq.~7!, we must evaluateu f̃ 1(2 i t)u, so that the
denominator (2 i t 1e) is replaced by 2 i t 1t.
In this case, we are still able to find just as tight
bound on u f̃ 1(2 i t)u as we previously found
for u f̃ 1(0)u: u f̃ 1(2 i t)u<(1/2p)uuAuuuuBuu„2NBg(c1l ,l )

12(A2pq/DEc1l )e2c1
2l 2DE2/(2q)

….
Of course, for t>q/DE there is the trivial bound

u^A(0)B( i t)&cu<uuAuuuuBuue2tDE<uuAuuuuBuue2q. For utu
<q/DE, we claim that u f̃ 1(2 i t)2exp@1t2DE2/(2q)#f1

(2it)u<2uuAuuuuBuue2q/2. To show this,

u f̃ 1~2 i t!2exp@1t2DE2/~2q!# f 1~2 i t!u

5~2p!21E
2`

`

dv f ~v!

3S E
2`

0

dv8~A2pq/DE!exp@v8t#

3exp@2q~v2v8!2/~2DE2!#

2exp@1t2DE2/~2q!#Q~2v!exp@vt# D . ~14!

The portion of the integral withv,0 is equal to
10443
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~2p!21E
2`

2DE

dv f ~v!E
0

`

dv8~A2pq/DE!exp@v8t#

3exp@2q~v2v8!2/~2DE2!#, ~15!

where we have used the gapDE and the relation
*2`

` dv8(A2pq/DE)exp@v8t#exp@2q(v2v8)2/(2DE2)#
5exp@vt#exp@1t2DE2/(2q)#. Then, for t<q/DE, the inte-
gral ~15! with v,0 is bounded in absolute value b
(2p)21*2`

0 dvu f (v)ue2q/2. We can similarly bound the por
tion of the integral withv.0, giving the desired result.

With the givenq5c1lDE the above bounds show that fo
t<c1l ,

u^A~0!B~ i t!&cu

<e2t2DE/(2c1l )F 1

2p
2NBuuAuuuuBuug~c1l ,l !

12S 11
1

A2pc1lDE
D uuAuuuuBuue2c1DEl/2G . ~16!

IV. TWISTED BOUNDARY CONDITIONS

In this section we derive some results on the sensitivity
boundary conditions, as a step towards the the main re
Eq. ~1!. To derive a contradiction later, we will assum
throughout this and the next two sections that there is a
DE that violates Eq.~1!, with an appropriately chosenc. In
the first subsection, we review the twist of boundary con
tions and the topological attempt at proving the LSM the
rem. In the second subsection, we show the specific res
on the sensitivity to boundary conditions.

A. Topological argument

Here we will define a new twisted Hamiltonian, makin
use of the coordinates (x,y) introduced previously for lattice
sitesi. To define the new twisted HamiltonianHu,u8 , replace
all loop operators tr„(x1 ,y1)(x2 ,y2)(x3 ,y3) . . . … in H with
tr„(x1 ,y1)R(x1 ,x2)(x2 ,y2)R(x2 ,x3)(x3 ,y3) . . . …. Here, the
twist operatorRmn(x1 ,x2)[exp@6i(u/2)sz

mn# if the shortest
lattice path betweenx1 ,x2 crosses fromx50 to x51, where
the sign is positive if the path crosses in the direction
increasingx and negative if it crosses in the opposite dire
tion. Here,Rmn(x1 ,x2) is a 232 matrix of numbers, rathe
than of operators,

Rmn5S expF6 i
u

2G 0

0 expF7 i
u

2G D . ~17!

Alternately, if the shortest lattice path betweenx1 ,x2 crosses
from L/2 to L/211, Rmn(x1 ,x2)[exp@6i(u8/2)sz

mn#. Other-
wise,R(x1 ,x2)5dmn. In Fig. 2, we show the coordinate sys
tem usingx,y and show where the two boundary conditio
twists are inserted.
1-5
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Let us see what the effect of this twist is in terms of sp
operators. Consider two sites,i , j . Suppose the Hamiltona
H0,0 has a term such as tr(i j )52(Si

zSj
z1Si

xSj
x1Si

ySj
y)11/2.

Then, let us supposei has x50 while j has x51. Then,
Hu,u8 has a term tr„iR(0,1)jR(1,0)…. In terms of spin
operators, this is equal to 2@Si

zSj
z1cos(u)(Si

xSj
x1Si

ySj
y)

1sin(u)(Si
xSj

y2Si
ySj

x)#11/2. In the untwisted Hamiltonian, w

coupled the dot product of the two spin vectors,SW i ,SW j ; in the
twisted Hamiltonian, we couple them after rotating one by
angleu about thez axis. A good discussion of twists can b
found in Ref. 5.

We have considered two different twist angles,u,u8. The
spectrum ofHu,u8 depends only on the combinationu1u8.
Further, from any given eigenfunctionc(u,u8) of Hu,u8 ,
one can find an eigenfunctionc(u2du,u81du) of

Hu2du,u81du by c(u2du,u81du)5) je
iduSj

z
c(u,u8),

where the product extends over all sitesj 5(x,y) with 0
,x<L/2.

Given that the spectrum depends only on the combina
u1u8, the reader may wonder what the reason is for int
ducing two twist angles, rather than just one angle. In fa
the second angle is a useful trick, introduced for the follo
ing reason: we have previously shown that the existence
gap causes correlation functions to decay exponentially
the separation of the two operators. However, physically,
expects that the existence of a gap will also imply so
insensitivity of the system to boundary conditions, enabl
us to bound, for example, the second derivative of
ground-state energy with respect tou. What we will do in
the following subsection is show this insensitivity by usi
the fact that the spectrum depends only onu1u8 to convert
the second derivative (]u

2) of the ground-state energy into
mixed partial derivative (]u]u8) of the ground-state energy
and by then evaluating that mixed partial derivative as
correlation function, using the exponential decay of corre

FIG. 2. Plot of the system, showing thex coordinate along the
length axis. Thex is shown ranging fromx50 to x5L; due to the
periodicity of the system,x50 is identified withx5L. The y co-
ordinate specifies the position in the directions normal to the len
as well as specifying the particular site in each unit cell. The tw
angles are noted; the twistu changes the boundary condition ne
x5L, while the twistu8 changes the coupling between sites ne
x5L/2.
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tion functions. This will be stated more precisely at the st
of the following subsection; we mention it here for motiv
tion.

The eigenvalues are ofHu,u8 are invariant underu1u8
→u1u812p, while the wave functions are invariant und
u1u8→u1u814p.4,5 To motivate the results in this sec
tion, we recall the basic idea of the topological attempt4 at
proving the LSM. The idea is that if there is a gap atu
1u850, and if the gap remains openfor all u1u8, then
under an adiabatic change in the angleu with u8 fixed at
zero, the ground state atu50 evolves into the ground stat
at u52p. At u52p, the Hamiltonian is returned to th
original Hamiltonian, but, for a system of odd width, th
ground state expectation value of the translation oper
changes sign, as will be discussed in more detail below. T
leads to a contradiction: from the ground state with giv
expectation value of the translation operator, we constr
another ground state with the opposite expectation va
The requirement that the topological attempt requires the
to remain open for allu was pointed out in Ref. 5.

What the topological argument actually succeeds in sh
ing is that the gap must close at some value ofu. However,
in order to use this argument to obtain any bound on
magnitude of the gap atu50, we would have to show that
sufficiently large gap atu50 would prevent the gap from
closing for all u; that would then lead to a contradiction
enabling us to bound the gap atu50. What we will see is
that we can partially show this: for sufficiently largec in Eq.
~1!, we can show to second order inu ~or indeed, to any
finite order! a bound on the change in ground-state ene
with respect tou. However, we will be unable to show tha
the gap remains open for allu because to bound the chang
in ground-state energy for higher orders inu requires pro-
gressively increasing the constantc in Eq. ~1!, and it is not
possible to show the result to all orders. Thus, the topolog
attempt will ultimately fail, and we will give a physical ex
ample of how this can happen. In the following Sec. V, w
will give a successful argument.

B. Boundary condition sensitivity

We now show an insensitivity of the ground-state ene
E0(u,u8) to second order18 in the twist angleu1u8. At u
5u850, ]uE0(u,u8)5^]uHu,u8&50. Indeed, taking any
odd number of derivatives ofE0(u,u8) leads to a vanishing
quantity.19 To second order inu,u8, we write a power series
E0(u,u8)5E0(0,0)1au2/21au82/21buu8, where a
5]u

2E05]u8
2 E0 and b5]uu8E0. We will show that, for any

given negative power ofL, we can find a constantc such that
if Eq. ~1! is violated for thatc, then a is bounded by a
H-dependent constant times the given negative power oL.
We do this by calculatingb as a correlation function, and
then showing thatb5a.

Recall linear perturbation theory: suppose a Hamilton
H is changed by somedH. For a nondegenerate stateuc&
with eigenvalueE, the changeudc& in uc& is given to linear
order in dH by udc&5(E2H)21dHuc&. Since the ground
state is the lowest-energy state, all other states h

h,
t

r

1-6
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LIEB-SCHULTZ-MATTIS IN HIGHER DIMENSIONS PHYSICAL REVIEW B69, 104431 ~2004!
energies greater than it. Thus, we can write the cha
in the ground state to linear order as

udc0&52(aÞ0*0
`dte(E02Ea)tuca&^caudHuc0&

52*0
`dtdH~ i t!uc0&,

where uc0& is the ground-state wave function,uca& are a
complete set of intermediate states, and wheredH( i t)
5exp@2Ht#dHexp@Ht# is the change in the Hamiltonia
operator, taken at imaginary timei t. Here we have se
E0(0,0)50 without loss of generality.

Specializing to the case ofdH5]uHu,u8 and writing the
change inc0 in terms of theu,u8-dependent ground-stat
density matrixr0(u,u8)[uc0(u,u8)&^c0(u,u8)u we have

]ur052E
0

`

dt]uHu,u8~ i t!r02E
2`

0

dtr0]uHu,u8~ i t!,

]u8r
052E

0

`

dt]u8Hu,u8~ i t!r02E
2`

0

dtr0]u8Hu,u8~ i t!.

~18!

Note that sincêdH& vanishes in this case, we do not need
worry about matrix elements ofdH from the ground state to
the ground state.

Now, we can use the change in the density matrix to co
puteb by b5Tr@(]u8Hu,u8)(]ur0)#. So,

b52E
0

`

dt„^]uHu,u8~0!]u8Hu,u8~ i t!&

2^]u8Hu,u8~2 i t!]uHu,u8~0!&…, ~19!

where the derivatives are evaluated atu5u850. The deriva-
tive ]uHi is nonvanishing only for sitesi which are within
distanceR of x50; there are at mostSV/L such sites. For
each i, uu]uHi uu<JS, so uu]uHu,u8uu<JS2V/L. We use two
bounds for the given correlation functions in Eq.~19!. First,
each correlation function is bounded by (JS2V/L)2e2tDE.
Second, we can use Eq.~16! to bound each correlation func
tion by

2S~JS2V/L !2~111/Apc1LDE!exp@2c1DE~L/2!/2#,
~20!

where we neglect the term ing(c1l ,l ) in Eq. ~16! as it leads
to a correction which is exponentially decaying inL, not in
c1DEL, and thus is negligible in what follows. Also, w
have usedl 5L/2, ignoring the slight error that in factl
>L/22R. Finally, we have usedNB<S in Eq. ~20!.

Using these two bounds on the correlation function,
arrive at

ubu<2~JS2V/L !2E
0

`

dt min$exp@2tDE#,x%, ~21!

where x52S(111/Apc1LDE)exp@2c1DE(L/2)/2#. Thus,
ubu<2(JS2V/L)2(x/DE)„11 ln(x)…. The number of sitesV
is bounded byrL d, while for DE greater thanc ln(L)/L, x is
10443
e
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bounded by ac-dependent negative power ofL. Therefore,
we can boundubu by any desired negative power ofL by
choosingc sufficiently large.

However,E0(u,2u)5E0(0,0), sob5a. Thus, we have
also boundeduau by the same negative power ofL. There-
fore, atu5u850, we find thatu]u

2E0(u,u8)u is bounded by a
negative power ofL. This shows some insensitivity of th
ground-state energy to boundary conditions. This realizes
physical idea5 that a spin liquid state is defined by the lack
response to a twist in boundary conditions to second orde
u.20

At fourth order inu, we must evaluate a correlation func
tion of four operators, each of orderJS2V/L; to bound these
correlation functions requires a largerc. Each higher order in
u,u8 requires an even largerc, so that it is not possible to
bound the change in ground-state energy for arbitraryu
1u8. Therefore, the topological attempt4 to establish the
LSM result fails. Indeed, a gap atu1u850 must close for
u1u8Þ0.5

It is worth giving a specific physical example of this po
sibility, as the topological argument does show that the g
must close for someu1u8. In many physical examples o
spin liquids, the closing of the gap arises because a s
which is at some very low energy, of orderJL21 or less,
above the ground state atu1u850 crosses the ground-sta
energy at a finiteu1u8. For example, if the Majumdar
Ghosh Hamiltonian is slightly perturbed, there is a state a
exponentially small energy above the ground state wh
crosses the ground state atu1u85p.

However, it is also possible for a state which is at so
energyJL0 to cross the ground state: consider a system w
two competing phases, one of which is a spin liquid pha
while the other is a spin ordered phase with a spiral ord
The spiral order is chosen so that the spin ordered phase
be frustrated atu1u850, and the spin liquid is the groun
state there. At someu1u8Þ0, however, the spiral phase ca
take over as the ground state. This taking over as the gro
state can happen either via a level crossing~if the two states
have different symmetry, for example, or if the spin order
phase has a nonvanishing net spin!, or via an avoided cross
ing. This provides a specific example of a system in whic
state or phase which is at an energy of orderJL0 at u1u8
50 becomes the ground state at some nonvanishingu1u8.

The solution to this problem is simple: it is not necessa
to show that there is a gap for all twist angles. Instead,
start with the ground state at vanishing twist and contin
ously evolve this state, obtaining a state for any twist an
which is an approximate eigenstate of the twisted Ham
tonian, not necessarily the ground state. This approxim
eigenstate will be explicitly constructed in the following se
tion, while in the section after that we demonstrate that a
twist of 2p the expectation value of the translation opera
has changed sign in the new state compared to the gro
state. Thus, this gives a new low-energy state, different fr
the ground state.

V. TWISTING THE GROUND STATE

A. Constructing the twisted state

Let r(u,0) be au-dependent density matrix that we co
struct below. Divide the system into two overlapping halve
1-7
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M. B. HASTINGS PHYSICAL REVIEW B69, 104431 ~2004!
half ~1! contains sites withx53L/42R,3L/42R11, . . . ,L
21,0,1, . . . ,L/41R, while half ~2! contains sites withx
5L/42R,L/42R11, . . . ,3L/41R. That is, half ~1! con-
tains all sites fromx53L/42R up tox5L21, as well as all
sites fromx50 up to L/41R, while half ~2! contains all
sites from x5L/42R up to x53L/41R. The halves are
shown as shaded regions in Fig. 3.

The reason we choose two overlapping halves is that
will be considering density matrices which involve only sit
within a given half. These matrices will be defined by traci
over sites outside the given half. Then, to evaluate the
pectation value of the energy of the system, we will be a
to evaluate the expectation value as a sum of operators w
lie completely within one or the other half. That is, by ma
ing the two halves overlap, we will deal with the question
the ‘‘seam’’ where the two halves join. This is mentione
here as motivation and will be done in more detail below

Define r1(u,0)5Tr2@r(u,0)#, where Tr2 denotes a trace
over all sites not in half (1), and define r2(u,0)
5Tr1@r(u,0)#, the trace over sites not in half~2!. Similarly,
define r1

0(u,u8)5Tr2@r0(u,u8)#, and r2
0(u,u8)

5Tr1@r0(u,u8)#. We will assume throughout this sectio
that there is a gap violating Eq.~1!. Then, for sufficiently
largec, we will constructr1 such that

r1~u,0!2E1~u!5S)
j

eiuSj
zD r1

0~0,0!S)
j

e2 iuSj
zD

5r1
0~u,2u!, ~22!

where the products extend over all sitesj 5(x,y) with 0
,x<L/4 and whereE1(u) is an error term such that th
trace norm21 uE1(u)u is bounded by a constant times a neg
tive power ofL for all 0<u<2p. The particular negative
power ofL can be determined by choosing the constantc in
Eq. ~1!. As a useful terminology, we will refer to a quantit
as ‘‘small’’ if, for any desired negative power ofL, we can
find sufficiently largec or sufficiently largeq ~introduced

FIG. 3. Plot of the system, showing the twists and coordinate
before. The halves of the system have been shaded in. The sh
at the left and right sides of the system~diagonal lines going up and
right! denotes sites in half~1!, the shading in the middle~diagonal
lines going up and left! denotes sites in half~2!. The solid shading
denotes sites in both halves; the length of the solid region is at l
2R, so that the Hamiltonian can be written as a sum of terms, e
of which is contained in only one half.
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below!, such that the given quantity is bounded by a const
times the given negative power ofL for all L. Thus, we wish
uE1(u)u to be small. Note that, given this definition of sma
if a small quantity is multiplied by any fixed power ofL, the
result is a small quantity. Sometimes, we will indicate tha
quantity is made small by choosingc or by choosingq, to
specify which of the two needs to be made sufficiently lar

In differential form, we require

]ur1~u,0!5(
j

i @Sj
z ,r1

0~u,2u!#1e1~u!, ~23!

wheree15]uE1. We will show that the upper22 derivative
DuuE1(u)u is small, from which Eq.~22! will follow. We will
also requirer2(u,0)5r2

0(0,0), up to a similarly bounded
error termE2(u), and ]ur1(u,0)5e2(u), with a similarly
boundedDuuE2(u)u.

The physical motivation behind Eq.~22! is to construct a
state for the HamiltonianHu,0 that has an energy close t
E0(0,0). The twistu is along a line that lies completel
within half ~1! while u8 is along a line that lies completel
within half ~2!. Within half ~1!, the HamiltoniansHu,0 and
Hu,2u are equal, so we construct a density matrix such t
within half (1) the given density matrix is close to th
ground-state density matrix ofHu,2u . Then, the expectation
of any operatorO which lies completely within half~1! for
the density matrixr(u,0) will be within uuOuuuE1(u)u of the
expectation value of that operator for the density mat
r(u,2u). On the other hand, within half~2!, the Hamilto-
niansHu,0 andH0,0 are equal, so we also require that with
half ~2! the density matrix be close to the ground-state d
sity matrix of H0,0.

Then, the expectation value of the energy in the state
fined by r(u,0) is equal to Tr@r(u,0)Hu,0#. Once we have
shown that both Eq.~22! and the bound onuE2(u)u are sat-
isfied, it will follow that this expectation value will be within
an amountuuHu,0uumax(uE1u,uE2u) of E0(0,0), since the Hamil-
tonian H can be written as a sum of operators which a
entirely within half~1! or entirely within half~2! ~it was for
this reason that the halves were chosen to overlap!. There-
fore, sinceuuHuu is bounded byVJ,rL dJ, if we pick c in
Eq. ~1! sufficiently large, we will find that Tr@r(u,0)Hu,0#
2E0(0,0) will also be small atu52p; this follows from the
statement that a small quantity multiplied by a fixed pow
of L is also small.

Our claim, which we show in this section, is that Eq.~22!
is satisfied by ar(u,0) defined as follows for 0<u<2p. We
pick

]ur~u,0!52E
0

c1L

dt@A1~ i t!2A2~2 i t!,r~u,0!#,

~24!

where we define

s
ing

st
ch
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LIEB-SCHULTZ-MATTIS IN HIGHER DIMENSIONS PHYSICAL REVIEW B69, 104431 ~2004!
A1~ i t!

5~2p!21exp@2~tDE!2/„2q ln~L !…#E
2`

`

dt]uHu,0~ t !

3exp@2~ tDE!2/„2q ln~L !…#/~2 i t 1t! ~25!

with q to be chosen later, andA2(2 i t)5„A1( i t)…†. The
time evolution of the operator]uHu,u8(t) is defined using the
HamiltonianHu,2u , while thet dependence ofA1,2 is de-
fined via Eq.~25!.

To give some insight into the definition ofA1,A2, we
note that ifq were to be infinite, then they would project on
positive and negative energy parts of]uH at times 6 i t,
respectively. That is, for q5`, we have A1( i t)
5(2p)21*2`

` dt]uHu,u8(t)/(2 i t 1t). Let the matrix ele-
ments of the operator]uH in a basis of eigenstates ofH be
written (]uH)ab where the states have energiesEa ,Eb . Let
the states have energy difference2v5Ea2Eb . Then, doing
the integral overt we find thatA1( i t) has a matrix elemen
between statesa,b equal to exp@vt#(]uH)ab for 2v.0 and
equal to zero for2v,0. Similarly, A2(2 i t) has a matrix
element equal to exp@2vt#(]uH)ab for 2v,0 and equal to
zero for2v.0. Then, for any given timet, the integrand
of Eq. ~24! would be the same as that of Eq.~18! for u
50, since in that case the only nonvanishing terms in
~24! are2A1( i t)r(0,0)2r(0,0)A2(2 i t).

What we will do later is to take a finiteq instead. Physi-
cally, this means that rather than taking an adiabatic cha
in u which keeps us in the ground state, we instead ‘‘p
through’’ the level crossing when the gap closes at somu
Þ0, going from the ground state to some low-energy exci
state.

Equation~24! gives the change inr equal to the commu-
tator of r with an anti-Hermitian operator, and hence gen
ates an infinitesimal unitary transformation ofr. Thus, r
continues to be a density matrix which projects onto a sin
state, defined to bec(u,0).

As a first step, we wish to show that foru5u850 we can
find a c such that]ur1

0(u,0)2( j i @Sj
z,r1

0(0,0)# is small. We
have

]ur1
0~u,0!2(

j
i @Sj

z,r1
0~0,0!#5]ur1~u,0!2]ur1

0~u,2u!

5Tr2@]u8r
0~0,u8!#, ~26!

where all derivatives are evaluated atu5u850. To bound
the right-hand side of Eq.~26!, consider the trace of this term
with any operatorO with uuOuu51. This operator must be
within half ~1!, so, using Eq.~18! to compute the derivative
of r0 with respect tou8, we obtain the expectation value

Tr@O]u8r
0~0,u8!#5]u8^O&52E

0

`

dt^O]u8Hu,u8~ i t!

1]u8Hu,u8~2 i t!O&. ~27!

However, following the arguments from the preceding s
tion and the locality bounds, we can find ac such that Eq.
~27! is small. In this case, the distance betweenO and]u8H
10443
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is at leastL/422R, since]u8H includes terms withx down
to L/22R, while O is in half ~1! so includesx up to L/4
1R. Note that^]u8Hu,u8&50 at u5u850. Since we have
bounded the trace of the right-hand side of Eq.~26! with all
operatorsO with uuOuu51, we have bounded the trace nor
of the right-hand side.

B. Bound on error terms

We now show that we can find ac such that the definition
~24! satisfies Eq.~23! in general. We wish to compute
]ur1(u,0)2( j i @Sj

z ,r1(u,2u)#5ea(u)1eb(u)1ec(u).
Here we define

ea[2E
0

c1L

dtTr2@@A1~ i t!2A2~2 i t!,r~u,0!#

2@A1~ i t!2A2~2 i t!,r0~u,2u!##. ~28!

eb[2E
0

c1L

Tr2@@A1~ i t!2A2~2 i t!,r0~u,2u!##

2]ur1
0~u,u8!, ~29!

ec[]ur1
0~u,u8!2(

j
i @Sj

z,r1
0~u,2u!#. ~30!

In Eq. ~29!, the derivative ofr1
0 is evaluated atu52u8. We

now consider each of these termsea ,eb ,ec in turn.
First, consider Eq.~28!. In the definition ofA1,2 as an

integral overt, the integral over timesutu.c1(L/22R) has
an operator norm bounded byuu]uHuu* utu.c1(L/22R)

3exp@2(tDE)2/„2q ln(L)…#. Thus, for any fixedq ~to be cho-
sen later! we can find ac such that this integral over time
utu.c1(L/22R) has small operator norm, and thus wh
commuted withr(u,0) gives a term with small trace norm

Equation~28! involves an integral of]uH(t) over timet
in the definition ofA1,2; we have shown that the contribu
tions with timesutu.c1(L/22R) may be neglected. Then
considering only contributions withutu<c1(L/22R), we
claim that, up to an error in the operator norm of ord
exp[2O(L)], ]uH(t) can be written as an operator involv
ing only terms not in half ~2!. That is, uu]uH(t)
2Tr2@]uH(t)#uu is exponentially small inL. To show this,
defineU12 to be the set of all sitesj which lie in both half~1!
and half~2!; there are at most 2SV/L such sites. These site
are shown in the solid regions in Fig. 3. Define operat
O(t50)5O8(t50)5]uH, and define the time evolution o
O,O8 by ] tO52 i @O,H#, while ] tO852 i ( i P” U12

@O,Hi #,

i.e., the time evolution ofO8 includes only the sum ove
sites i which are either in half~1! or in half ~2!, but not
in both halves. Then, using the arguments leading up
Eq. ~4!, we can show that fori PU12, the operator norm
uu@O(t),Hi #uu is bounded by 2JuuOuug„c1(L/22R),L/2
2R), which is of order exp@2O(L/22R…# for the
given range of timest. Then, using the difference in th
evolution equations forO,O8, we can bound u u O(t)
2 O8(t) uu < ( i PU12

*0
t dt8 uu @O,Hi # uu < 2t(2SV/ L)J uu O uu

3g„c1(L/22R),L/22R…. This quantity is also of order
1-9
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exp@2O(L/22R)# for the given range of timest. Finally, we
use the fact that Tr2@O8#5O8 to get the desired result.

From the above two paragraphs, it follows that up
small error in the trace norm,ea(u)52*0

c1Ldt@Tr2@A1( i t)
2A2(2 i t)#,Tr2@r(u,0)2r0(u,2u)##. Then, this is equa
to the commutator ofE1(u) with an anti-Hermitian operator
It generates an infinitesimal unitary rotation ofE1(u) and
therefore does not lead to any change inuE1(u)u.

Next, consider Eq.~29!. First consider the terms in th
commutator involvingA1,2 acting on the left side ofro. As
above, the operator]uH can be written in a basis of eigen
states ofH as (]uH)ab , where the states have energi
Ea ,Eb . In ]uHr0(u,2u) the only nonvanishing terms in
volve states with energy difference2v5Ea2Eb>DE.
Consider a matrix element (]uH)ab with givenv. This leads
to a matrix element ofA2(2 i t) equal to (]uH)ab times

A2pq ln~L !

DE
exp@2~tDE!2/„2q ln~L !…#

3E
2`

` dv8

2p
Q~v8!exp@2v8t#

3exp@2q ln~L !~v2v8!2/~2DE2!#, ~31!

where we have converted the time integral to an integra
Fourier space. Since2v>DE, Eq. ~31! can be made smal
by choosingq sufficiently large. Thus, the trace norm o
A2(2 i t)r0(u,2u) is small, for allt>0. Similarly, forA1,
we find that we get a matrix element equal to (]uH)ab times

A2pq ln~L !

DE
exp@2~tDE!2/„2q ln~L !…#

3E
2`

` dv8

2p
Q~2v8!exp@v8t#

3exp@2q ln~L !~v2v8!2/~2DE2!#. ~32!

By choosingq sufficiently large, the integral~32! can be
made equal to exp@vt#, up to small error. Thus, the
given matrix element can be made equal to (]uH)ab times
exp@vt#, up to small error. Therefore, the trace nor
of 2*0

c1Ldt Tr2$@A1( i t)2]uH( i t)#r0(u,2u)% is small.
These statements amount to saying that, with small erro
the operator norm,A1( i t) indeed is equal to the positiv
energy part of]uH( i t), while A2 is equal to the negative
energy part.

Now considerA1,2 acting to the right side ofr0(u,
2u), so that we considerr0(u,2u)]uH. In that case, the
only nonvanishing terms in (]uH)ab involve 2v5Ea2Eb
<2DE. Repeating the argument above, we find that
trace norm ofr0(u,2u)A1( i t) is small, as is the trace
norm of *0

c1Ldt Tr2$r
0(u,2u)@A2(2 i t)2]uH(2 i t)#%.

Therefore, up to small error, Eq.~29! is equal to
2* 0

c1Ldt Tr2@]uH( i t)r0(u, 2 u) 1 r0(u, 2 u)]uH(2 i t)#

2]ur1
0(u,u8), which equals 2*0

c1Ldt Tr2@]uH( i t)r0(u,
2u)1r0(u,2u)]uH(2 i t)#1*0

`dt Tr2@]uH( i t)r0(u,2u)
10443
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1r0(u,2u)]uH(2 i t)#. This difference is equal to an inte
gral overt>c1L. For sufficiently bigc, the trace norm of
this integral can be bounded by any desired negative po
of L. Thus,eb has small trace norm.

Finally, consider Eq.~30!. This is equal to

]ur1
0~u,u8!2]ur1

0~u,2u!5Tr2@]u8r
0~u,u8!#, ~33!

where the derivatives are evaluated atu852u. The trace
norm of the right-hand side of Eq.~33! can be bounded by a
negative power ofL using the same arguments near Eq.~27!,
by considering an operatorO that is entirely within half~1!.
The only difference to the arguments near Eq.~27! is that we
compute the derivatives and expectation values atu52u8,
rather than atu5u850.

Thus, using Eqs.~28!–~30! and picking sufficiently large
q we find thatDuuE1(u)u is small for sufficiently largec. A
similar sequence of arguments permits one to bou
DuuE2(u)u. In the following section, we consider the expe
tation value of the translation operator onr(2p,0).

VI. TRANSLATION OPERATOR

Consider the operator tr„(1,y)(2,y) . . . (L,y)…, which
translates the sites with giveny. The translation operatorT
which translates the entire system by one unit cell is
product of these loop operators over ally ~there are an odd
number of such loop operators!. The ground state ofH0,0 is
an eigenstate ofT. If the ground state is nondegenerate, th
it has eigenvalue61; without loss of generality we will
assume in this section that is has eigenvalue11.

In this section we will show that the expectation value
T for r(2p,0) is opposite to that forr(0,0), up to small
error. We note that ifHu,0 were to have a gap for all 0<u
<2p, then the results in this section would provide the la
step in the topological argument discussed above. Inst
the results in this section will complete the argument star
in the preceding section:r(2p,0) gives us a density matrix
such that Tr@r(2p,0)Hu,0#2E0(0,0) is small, but which, up
to small error, has the opposite expectation value forT. Since
the difference in the expectation ofH is small, we can find a
c such that the difference in expectation value decays fa
than 1/L, and then we can find anL0 such that forL.L0 the
statec(2p,0) has an energy expectation value which isless
than cln(L)/L above the ground state. However, since t
expectation value ofT is opposite forr(2p,0) compared to
r(0,0), up to small error, this state has an overlap on
ground state which is small. Thus, we will show in this se
tion a contradiction under the assumption that the system
a gapDE which violated Eq.~1! and under the assumptio
that the system was translation symmetric, so that the gro
state was an eigenstate ofT.

We first define a twisted translation operator,

Tu,u8[)ytr„exp@ i ~u/2!sz#~1,y!

3~2,y! . . . ~L/2,y!exp@ i ~u8/2!sz#

3~L/211,y! . . . ~L,y!….
1-10
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Then,Tu,u8 is a unitary operator and a symmetry ofHu,u8 .
Finally, given that Tc0(0,0)5c0(0,0), we have
Tu,2uc0(u,2u)5c0(u,2u) for all u.

We will then show that]uuTu,0c(u,0)2c(u,0)u is small
for all 0<u<2p. It will then follow that, up to a small error
Tr@r(0,0)T0,0#5Tr@r(2p,0)T2p,0#52Tr@r(2p,0)T0,0#51,
thus showing that the twisted state indeed has the oppo
expectation value forT. Here we have used the fact that f
systems ofodd width, T2p,052T0,0.

Consider the derivative

]u„Tu,0c~u,0!2c~u,0!…

5 i(
y

S(1,y)
z Tu,0c~u,0!2E

0

c1L

dt@Tu,0A
1~ i t!

2A1~ i t!2Tu,0A
2 ~2 i t!1A2~2 i t!#c~u,0!.

~34!

This is equal to

H i(
y

S(1,y)
z 2E

0

c1L

dt@Tu,0A
1~ i t!Tu,0

212A1~ i t!2Tu,0A
2

3~2 i t!Tu,0
211A2~2 i t!#J c~u,0!1H i(

y
S(1,y)

z

2E
0

c1L

dt@Tu,0A
1~ i t!Tu,0

212Tu,0A
2~2 i t!Tu,0

21#J
3$Tu,0c~u,0!2c~u,0!%. ~35!

The last term of Eq.~35! is equal to an anti-Hermitian
operator acting onTu,0c(u,0)2c(u,0), and thus does no
change the norm of this state. Thus, we need to bound
norm of the first term. This term is equal to an anti-Hermiti
operator, which we define to beO1, acting onc. The norm
square of this term is equal to Tr@O1

†O1r(u,0)#. As shown in
the preceding section, up to small error in the operator no
A1,2( i t) can be written entirely as operators in half~1!.
Therefore,O1 can be written entirely as an operator in ha
~1!; that is, the operator normuuO12Tr2@O1#uu is small.
Thus, the norm square is, up to small err
Tr@O1

†O1r1(u,0#, which, again up to small error, is equal
Tr@O1

†O1r1
0(u,2u)#, sinceur1(u,0)2r1

0(u,2u)u is small.
We claim, however, that this last expectation value

small. To show this, consider]u„Tu,2uc0(u,2u)2c0(u,
2u)…. This is equal to zero. However, this derivative can
written as an operatorO acting onc0, with O5 i (y(S(1,y)

z

2S(L/211,y)
z ) 2 *0

`dt„Tu,2u]uHu,u8( i t)Tu,2u
21 2 ]uHu,u8( i t)

2Tu,2u]u8Hu,u8( i t)Tu,2u
21 1]u8Hu,u8( i t)…, where the de-

rivatives are taken atu52u8. SinceOc050, it follows that
Tr@O†Or0(u,2u)#50. However, up to small error,O
5O11O2, with O1 the operator considered above andO2
defined to be a similar operator acting only in half~2!. Then,
2Tr@O1

†O1r0(u,2u)#12Tr@O1
†O2r0(u,2u)#50. How-

ever, using the locality bounds, the second term can be m
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small for large enoughc,23 and thus the first term
Tr@O1

†O1r1
0(u,2u)#, is small. Therefore, we have shown th

desired result.

VII. DISCUSSION

The main result is Eq.~1!, obtaining a bound on the en
ergy gap for spin models in arbitrary dimensions. In order
obtain this result, we have introduced a set of loop operat
and proven a bound on connected correlation functions. T
bound on correlation functions did not rely on the syste
being a spin system; rather, it is valid for any Hamiltoni
such that theHi have bounded operator norm, and such t
the interaction is finite range. Below, we generalize t
bound on correlation functions to certain other systems
well.

We note that for the case of higher spin representation
SU~2!, Eq.~1! follows automatically from the result for spin
1/2, so long as the total spin within all unit cells is half-od
the higher spins can be written as various combinations
spin-1/2 spins, and if the total spin in the unit cell is half-o
then there will result an odd number of spin-1/2 spins in ea
unit cell. Suppose, for example, a unit cell contains one sp
1 spin and one spin-1/2 spin, giving a total spin of 3/2 whi
is half-odd. Then, the spin-1 can be written as two spin-
spins. Let these two spins be calledS1 ,S2 and let the Hamil-
tonian include only terms symmetric under interchange
S1 ,S2. This new Hamiltonian has three spin-1/2 spins
each unit cell, and hence falls within the class of Hamil
nians considered above. Then, there are two different sec
of the Hilbert space with no terms in the Hamiltonian co
pling these two sectors: one sector in whichS1 ,S2 form a
spin-0, and one in which they form a spin-1. By adding
term couplingS1 to S2 to the Hamiltonian with a sufficiently
large, negative~ferromagnetic! coefficient, we can ensure
that the ground and first excited states lie in the secto
which S1 ,S2 have total spin 1. Then, the existence of a lo
lying state satisfying Eq.~1! for the new system with only
spin-1/2 implies the existence of such a low-lying state
the original system with both spin-1 and spin-1/2. It wou
also be interesting to generalize these results to other gro
SU(N), as well as to consider the case of evenV/L.

We finish with two conjectures. First, we conjecture th
the same Eq.~1! holds for systems with an even width, s
long as the widthV/L is of order Ld21 and so long asd
.1. For d51, this result is of course not true, as Halda
gap behavior is possible.

Second, consider thethermal expectation value ofT
at an inverse temperatureb, defined by ^T&b
[Tr@exp(2bH)T#/Tr@exp(2bH)#. We conjecture that
there is a constantc, depending onH,d such that forb
.c ln(L)/L the given thermal expectation value^T&b van-
ishes in the limitL→` for systems of odd width. We bas
this conjecture on the following physical observations:
ferromagnetic systems, there are spin-wave excitations,
dispersion relationE}k2. It may be shown that the presenc
of these excitations causes^T&b to vanish forb of orderL as
L→`. For antiferromagnetic systems, the translation sy
metry is broken by the antiferromagnetic ordering~in fact,
1-11
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M. B. HASTINGS PHYSICAL REVIEW B69, 104431 ~2004!
for these systems, the true ground state has translation
metry and is a superposition of different broken symme
states, but there are low-lying states with different expec
tion values ofT so that forb of order L, the expectation
value ^T&b vanishes!. Finally, for spin liquid systems, ther
is a low-lying excited state with the opposite expectat
value ofT compared to the ground state, as we have fou
above. We leave a proof of both of these conjectures
future work.
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APPENDIX: MARKOV PROCESSES AND LOCALITY

Consider a system with a probabilitypi of being in statei
and a transition matrixTi j so that the equation of motion i
] tpi5( jTi j pj . For the total probability to be conserved, w
have ( iTi j 50, which guarantees thatTi j has at least one
zero eigenvalue. Let us assume, further, that all eigenva
of Ti j are real. This includes all systems for which the s
tionary state~given by the zero eigenvector ofTi j ) obeys
detailed balance. A typical example of such a process wo
be the Monte Carlo dynamics of a statistical mechanics s
tem. We will first derive a suitable generalization of the l
cality result ~13! to systems governed by such a Mark
process, and then discuss the implication for statistical
chanics systems.

Let us assume that the spectrum ofT is such that there is
only one zero eigenvalue, with right eigenvectorpi

0 , and that
all other eigenvaluesl are negative withl<2D, for some
D.0. Assume thatpi

0 is normalized by( i pi
051.

Then, introduce various quantities to be measur
A,B, . . . , so that the expectation value ofA is given by
^A&5( iAipi

0 . We can write this slightly differently by intro-
ducing for each such quantity a diagonal matrix given
Âii 5Ai for all i and Âi j 50 for iÞ j . Further, introduce an
additional vectorI i , such thatI i51 for all i. This vectorI i is
a left eigenvector ofT with zero eigenvalue, since( iTi j

50 as mentioned above. Then,^A&5I iAi j pj
0 .

We can now consider expectation values of qua
ties at different times: ^A(t)B(0)&[I †Âexp@Tt#B̂p0

5I†exp@2Tt#Âexp@Tt#B̂p05I†Â(t)B̂(0)p0. In these equations
I † denotes the transpose of the vectorI (I is real, so no
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complex conjugation is necessary!, and we have left off all
the indices on vectorsI ,p and matricesA,B,exp@6Tt#: the
product is evaluated following the usual rules of matrix m
tiplication. In the sequence of equalities above, the fi
equality defines the time evolution of the system, the sec
equality follows sinceIexp@2Tt#5I, and the last equality
follows since we defineÂ(t) by the equation of motion:
] tÂ(t)5@A(t),T#. It is then possible to extend this definitio
to operators separated by animaginary time separation:
^A( i t )B(0)&.

Now, consider a typical physical example: an Ising sy
tem, governed by Monte Carlo spin-flip dynamics, wi
A(0),B(0) representing the value of two different spin
which are separated in space. In such a case~as well as in
many others!, it is possible to obtain a bound similar to E
~4!. Assume that the matrixT can be written as a sum o
matricesTi , with finite interaction rangeR and with a bound
uuTi uu<J, where i is a site index. Define f (t)
[^@A( i t ),B(0)#&. Since f (t)<uu@A( i t ),B(0)#uu,

f ~ t !<
2NBSuuAuuuuBuuu2JStu l /2Re2JSutu

~ l /2R!!
[NBuuAuuuuBuug~ t,l !.

~A1!

At this point, from the existence of aD.0 and a spectra
representation with all eigenvalues real24 follows a result
similar to Eq.~13!,

u^A~0!B~0!&cu

<
1

2p
2NBuuAuuuuBuug~c1l ,l !12S 11

1

A2pc1lDE
D

3uuAuuuuBuue2c1DEl2. ~A2!

Therefore,if there is a Markov dynamics that gives rise
the equilibrium probability distributionpi

0 which has aD
.0, then there is an exponential decay of correlation fun
tions in space. An example is a spin system in the param
netic phase with Monte Carlo spin flip dynamics. The co
verse is not necessarily true: a spin system in
paramagnetic phase with spin exchange dynamics does
have aD.0 but instead has spin correlations which dec
with a power law time. However, this dynamics gives rise
the same equilibrium probability distribution as the spin fl
dynamics does, and hence has exponentially decaying co
lations in space.

Kivelson, Phys. Rev. Lett.61, 2376 ~1988!; N. Read and B.
Chakraborty, Phys. Rev. B40, 7133~1989!.

7N.E. Bonesteel, Phys. Rev. B40, 8954~1989!.
8It follows automatically that Eq.~1! holds for all L for somec

depending onH,d,r .
9C.K. Majumdar and D.K. Ghosh, J. Math. Phys.10, 1388~1969!.

10G. Baskaran and P.W. Anderson, Phys. Rev. B37, 580 ~1988!.
11I. Affleck and J.B. Marston, Phys. Rev. B37, 3774~1988!; X.G.

Wen, ibid. 44, 2664~1991!; N. Read and S. Sachdev, Phys. Re
Lett. 66, 1773~1991!.
1-12



er

r
m

te

t

tion.

ro-
of

the

gli-

t
s.
e

e

l is
ex-

or

n a

LIEB-SCHULTZ-MATTIS IN HIGHER DIMENSIONS PHYSICAL REVIEW B69, 104431 ~2004!
12D.S. Rokhsar and S.A. Kivelson, Phys. Rev. Lett.61, 2376
~1988!; R. Moessner and S.L. Sondhi,ibid. 86, 1881~2001!.

13This norm, writtenuuOuu, is defined to be the supremum ov
statesc, with ucu51, of uOcu, R. Bhatia, Matrix Analysis
~Springer-Verlag, New York, 1997!.

14E. Lieb and D. Robinson, Commun. Math. Phys.28, 251 ~1972!.
15Following standard physics notation, whenever we write 1/(2 i t

1e) we are taking the limit ase→0. The limit is taken outside
the integral sign. On the other hand, the use later of 1/(2 i t
1t) is done at a fixed, nonzero value oft.
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` dt f(t)exp@2ivt# ~see Ref. 17!. Then, f 1(t)
5(1/2p)*2`

0 dv f (v)exp@ivt#. Combining these givesf 1(0)
51/2p*2`

0 dv*2`
` dt f(t)exp@2ivt#. Doing the integral overt

gives Eq.~7!. Note thatf̃ is rapidly decaying ast→6`, so that
there are no issues with convergence.

17Following standard physics notation, in Eq.~9!, and throughout,
the use off (v) refers to the Fourier transform off (t) The use of
f (0) always refers tof (t) at t50.

18We note that since we have assumed that the ground sta
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19To show this, consider rotating all the spins by anglep about the
x axis. Since the ground state is assumed to be unique and
Hamiltonian is invariant under global SU~2! rotations, the
10443
.

is

he

ground state is invariant under global SU~2!, so that ground-
state expectation values must be unchanged under this rota
However, if we take an odd number of derivatives ofHu,u8 with
respect tou,u8, the resulting operator changes sign under a
tation byp about thex axis. Therefore, the expectation value
an odd number of derivatives ofHu,u8 must vanish.

20Possible low-energy topological excitations do not prevent
use of Eq.~13! for spin liquids as the matrix elements of]uHu,u8
between the ground and topologically excited states are ne
gible.

21The trace norm of an operatorO, written uOu, is defined to be
Tr@AO†O#. We will deal with Hermitian operators, for which i
is equal to the sum of the absolute values of the eigenvalue

22In fact, uE1(u)u need not be differentiable. To get around this, w
use the upper derivative~Ref. 14!, defined as Dt f (t)
[ lim supe→0„f (t1e)2 f (t)…/e.

23We showed before that up to small errorO1 is entirely within half
~1!. For largerc, we can in fact ensure thatO1 includes only
operators within a distanceL/4 of x50 so thatO1 ,O2 are sepa-
rated by a distanceL/2 from each other. Then we can apply th
locality bounds to the given correlation function ofO1 ,O2.

24It turns out that the requirement that the eigenvalues be rea
necessary. Although one might have guessed that a similar
ponential decay of correlation functions would also hold f
complex l with real part Re(l)<2D, there seems to be a
counterexample to this statement. This will be discussed i
future publication.
1-13


