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A generalization of the Lieb-Schultz-Mattis theorem to higher-dimensional spin systems is shown. The
physical motivation for the result is that such spin systems typically either have long-range order, in which case
there are gapless modes, or have only short-range correlations, in which case there are topological excitations.
The result uses a set of loop operators, analogous to those used in gauge theories, defined in terms of the spin
operators of the theory. We also obtain various cluster bounds on expectation values for gapped systems. These
bounds are used, under the assumption of a gap, to rule out the first case of long-range order, after which we
show the existence of a topological excitation. Compared to the ground state, the topologically excited state
has, up to a small error, the same expectation values for all operators acting within any local region, but it has
a different momentum.

DOI: 10.1103/PhysRevB.69.104431 PACS nuni®er75.10.Jm, 71.2%a, 75.30.Ds

I. INTRODUCTION where the constart depends ort{,d, and where the result
holds for allL greater than some minimutn,, wherel,
Lieb, Schultz, and Matti§LSM) proved in 1961 that a depends orH,d,r.®
one-dimensional periodic chain of lendthwith half-integer In this paper, we use the term gap to deal specifically with
spin per unit cell, has an excitation gap bounded by canst/  the difference between the energy of the first excited state
This behavior contrasts with the possibility of a Haldane gapand the energy of the ground state. This includes two com-
in the integer spin case. pletely distinct physical cases. In the case of a one-
Despite several attemptd,this theorem has not been ex- dimensional system, a spin-1/2 Heisenberg chain has a con-
tended to higher dimensions. The basic difficulty in obtain-tinuous spectrum of excitations above the ground state. On
ing a higher-dimensional version of this theorem was pointedhe other hand, a Majumdar-Ghdsthain has a doubly de-
out in two insightful papers by Misguich and co-workeié  generate ground state with a gap to the next excited state.
spin correlations are short ranged, the ground-state wawa/eak perturbations of the Majumdar-Ghosh Hamiltonian can
function should be well described by a short-range resonabreak the exact degeneracy between the two lowest states,
ing valence bondRVB) state® The short-range RVB basis leaving a system with a gap from the ground state to the first
decomposes into different topological sectors, dependingxcited state which is exponentially small in the system size,
upon the number of dimers crossing a given line through theind then a gap from the first excited state to the next excited
system. This allows the construction of a low-energy excitedstate which is nonvanishing even in the limit of large system
state very similar to the twisted state of LSMnstead, if  sizes. We consider both of these cases as systems in which
spin correlations are long ranged, such a state will not be lowhe gapAE is vanishing in the limit of large system size.
energy, but there will exist low-energy spin wave excitations.Although they are one-dimensional systems, these two cases
In contrast to the one-dimensional case, there now exist twglosely match the two possibilities mentioned above for
distinct means of obtaining a low-energy excitation, signifi-higher-dimensional systems. The first case involves a system
cantly complicating the proof of any such theorem. with a continuous spectrum as it has algebraically decaying
In the present paper, we show a higher-dimensional verspin correlations. In the second case, the first excited state is
sion of the LSM theorem. We considedalimensional sys- very close to the twisted state of LSM.
tem of spin-1/2 spins, with finite-range, &) invariant The physical idea behind the proof of E{) is closely
Hamiltonian/, and with an odd number of spins per unit related to the two possibilities considered above for the ab-
cell on the lattice. Define the total number of unit cells in thesence of a gap. In the event of long-range order, or algebraic
lattice to beV. Let L be the number of unit cells in one long-range order, one expects that there is no gap. Con-
particular direction, and let be even; this direction will be versely, if there is a gap, one expects that there is no long-
referred to as the length. Therefokéis even(if V were odd, range order. This is the first statement we prove: we assume
there would be a trivial spin degeneracket the system be that the system has a gapE and show, in Sec. Ill, that
periodic and translationally invariant in the length direction.connected expectation values decay exponentially in the
Let V/LY be bounded by a constant(this constantr is  spacing between them. Then, to prove EH. we first as-
arbitrary, and imposes some bound on the behavior of theume that Eq(1) is violated, proceeding by contradiction.
aspect ratio of the systemrDefineV/L to be the “width” of  We assume the existence of such a gap violating(Exqin
the system, and let this number be odd. Then, we show th@ecs. IV, V, and VI. We then use the existence of the §&p
if the ground state is unique, the gafk to the first excited and the exponential decay of correlation functions to show
state satisfies an insensitivity of the system to boundary conditions in Sec.
IV. Then, this insensitivity is used to constructaav-energy
AE=cIn(L)/L, (1) twisted state in Sec. V. The construction of this twisted state
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will to some extent follow the topological attenfpit prov-  containingj. On a square lattice, for example, this is the
ing the LSM theorem in higher dimensions, with some im-Manhattan distance. Then, IBtdenote the range dft, the
portant differences outlined below. In Sec. VI we will show furthest distance between two sites in any terniinIf all
that the twisted state has a different momentum than theistances in a product of loops are less thd#, we can
ground state. It is here that the odd width of the systendefine a winding number of the given product around the
becomes essential. Despite the different momentum comattice in the length directiol? If all distances in the product
pared to the ground state, the twisted state has, up to a smadimain less thanL/2—R, then the dynamicsd,O=
error, the same expectation values for all operators acting-i[O,#] does not connect sectors with different winding
within any local region. Thus, we may refer to this state as anumbers. We will make use of the coordinates later by some-
topologically excited state. Finally, in the Appendix, we times writing loop operators ti{...) in the form
briefly consider a version of the result showing exponentiakr((x,,y;)(X,,Y>) . ..), wherei has coordinatesxg,y,), j
decay of correlation functions for systems governed by cerhas coordinatesxg,y,), and so on.
tain Markov processes, rather than quantum systems.
Since we will constantly deal with operator equations of
motion, we introduce a set of “loop operators” as a basic
technique. The loop operators, which will be suitably defined \we consider ground-state expectation values of operators
products of spin operators, can be naturally interpreted as @,,0,, ..., written (O4(t;)Oy(t,) ...). The expectation
product of gauge fields around a lopHowever, the use of yajues are not time ordered: the ordering of operators is as
these operators avoids the uncontrolled approximations ass@ritten. For a system with a unique ground state and an
ciated with the U1) andZ, gauge theory techniqueéSThe  energy gap\E, on physical grounds one expects that con-
introduction of these operators is not necessary to the maifected correlation functions, defined aA(0)B(0)),

Ill. LOCALITY

development, but provides a useful notation. =(A(0)B(0))—(A(0))(B(0)), decay exponentially in dis-
tance(without loss of generality, we will assun{é\)=(B)
Il. LOOP ALGEBRA =0 through the rest of this sectipiThe proof of this local-

ity bound will be done in this section. We will do this in two
steps: first, we consider commutators of the form
[A(t),B(0)], whereA(0) andB(0) are separated in space.
We bound the operator nofrhof the commutator for suffi-
ciently smallt, and thus bound its expectation value, in Eq.
2 (4) below. The proof in this subsection will just be sketched;
a more rigorous derivation is given by Lieb and Robinsbn.
This result provides a bound on the velocity of the system, as

We consider operators of the fority’j "?k?” . .. m*#, which  will be seen below. Then, in the following subsection, from
we refer to as loop operators, where a summation over rehis bound on the expectation value of the commutator and
peated indices is implied. Later we will often suppress thethe existence of a gap, we use a spectral representation of the
indicesu, v, writing i rather thari#* to save space. Thus, we commutator to bound the connected correlation functions,
will write the loop operator mentioned above in the form thus obtaining the desired locality bound on the expectation
tr(ijk . ..m), where the trace tr refers to a trace over thevalue, Eq.(13). Finally, we close the section by giving a
greek indicesu, v, . ... Below we also use a trace Tr; this similar locality bound for operators separated in time.
trace Tr refers to a trace of quantum operators, summing over
all states in the Hilbert space of the system. Using the rule
i#riPT=6"Pi*7 it is always possible to reduce a given prod-
uct of traces to a new product such that each site appears We define the distance between two operafisO, to
only once. Then, an operator itk ...m) permutes the bel if the minimum distance between any pair of sitg$,
spins around the sitasj, .. .. where §; appears inO; and S; appears inO,, is I.

Given an operatoO(t), the operator obeys the equation A(0),B(0) are sums of products of spin or loop operators,
of motion ¢,0(t) = —i[ O, H]. Consider, for example, a term which we suppose to be distankcapart.
tr(ij) in H. We haveli,tr(ij)]=ij —ji. As an illustration, We start with some notation. The Hamiltoni&h can be
let us give the full greek indices on this commutator: wewritten as a sum of term& = X;;, such that eaclt; only
have [i#”,(i%fjP)]=i#ejer—j*ei®” where summation contains spins operators on sitesvith |i—j|<R. Let Np
over repeated indices, 8 is assumed. denote the number of sites appearing\i{D), andNg denote

Introduce coordinatesx(y) to specify sitesi, wherex  the number of sites appearing B(0). Let J denote the
labels the unit cells along the direction of length and is de-maximum, over sites, of ||H;||.
fined up to integer multiples df. The coordinateg labels the We now bound the operator norm of the commutator
unit cells along the other lattice directions, as well as label{ A(t),B(0)] for short times. On short time scales, one ex-
ing the particular spin within the unit cell. Given two sites pects thatA(t),B(0) are still separated in space, up to small
andj on the lattice, we define the distance between themg¢orrection terms, as we now show. Consider first
written |i —j|, as the minimum number of moves by lattice |[[A(t),H;]||, and study the change in this quantity as a
vectors needed to move from the unit cell containingthat  function of time:

We define operatorig”’= 3 6*"+=,S %", whereS® are
the spin operators at siieand o, are the Pauli matrices,
=X,Y,z. Thus,i*” is the 2x2 matrix of spin operators

3+ S-is
SHis b-§

A. Finite velocity
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[ILA(t) —idt[At), H], 11| -] I[A(t),Hi]II\ inequalities, we find, for a sitewhich is at a distance greater
at | than (X—1)R from A(0), that |[[[A(t),H;]]|
<2J||Al||23S1ke® S /K1,
[|LA(t), H; +idt[H; ,H]]||—||[A(t),Hi]||‘ Finally, considerd,||[A(t),B(0)]||. Using a similar se-
= dt | guence of inequalites to Eq.(3), we find that
/LA, B(0)]]|=2]1B]|Z;lILA(t), 7,1, where the sum
[|[A(t), H; +idt[H; ,Hj]]ll—ll[A(t),Hi]ll\ over j extends over sitep which are within distanceR of
$|i7;§2R dt ‘ some sites iB(0). There are at modNgS such sites, and
each of them ha$i[A(t), H;]||<G* (), wherek=1/2R.
[ILA) —idt[ A, H; 1, Hill = [[[AD), 7]l Here, we take to be the ceiling of/2R, the smallest integer
= Iif%‘%m dt | greater than or equal 162R; we obtain this value of since

each such site is at least a distaeeR from all sites in
A(0), and so weneed |-R>[2(k—1)—1]R. Then,
<2JI_72<2RII[A(I),H;]II- 3 I[A(1),B(0)]]|<2Ngl||Al|||B]||2ISt"Re2St(1/2R)1.
= Define f(t)=([A(t),B(0)]). Since  f(t)
<|[[A(t),B(0)]]],
Here, we work to linear order imit. While the operator 2NG||Al]]|Bl[| 29 S{/2Re2ISH

[A(t),H;] is differentiable, its operator norm need not be. f(t)<

=Ngl|Al[[[B[[g(t.]).

Thus, all equations here are correct when we take the lim sup (112R)!
asdt—0. (4)
The first equality in Eq(3) is obtained by moving the For t=c;l, the large | behavior of g(t,)

time derivative fromA(t) to H; as follows: for any operator ~exg(I/R)(2JSgR+ 1/2+ (1/2)In(4JSGR))]. If we choose

P, to linear order irdt we havel|P||=||P+idt[P,H]||. Set  a sufficiently smalk,, theng(c,!,!) decays exponentially in

P=[A(t)—idt[A(t),H],H;]. Then, to linear order | for largel. Numerically, we find that the zero ofJ&gR

in dt, [|P|[=[|P+idt[P,H]||=]|[[A(t)—idt[A(t),H].Hi]  +1/2+(1/2)In(4ISGR), is atc,;~0.139 232/(3SR. Any c;

+HIdt[[AQ), M1, H]l =] [[At), i +idt[#; , H1]]|]. smaller than this valugfor example,c;=0.1/(2JSR will
The inequality is obtained becau$@(;,H;]=0 for |i  work] will causeg(c,l,) to be exponentially decaying for

—j|>2R. The next equality is obtained by moving the time largel. The velocity at which correlations spread in the sys-

derivative back toA(t), using now the equality|P||=|[P  tem is of orderc; .

—idt[P,H;]||. The final inequality results from the bound

[ Hil[<J. _ o B. Spectral decomposition
Now, let S denote the maximum number of sitewithin -
distanceR of any sitei. Equation(3) gives a set of differen- Now, we use a spectral decomposition f¢t) to relate

tial equations which bound the operator norm of variousf(t) to the desired correlation functiogf\(0)B(0)). With-
commutators; we have also the initial conditions thatout loss of generality, let us set the ground-state enEggip
|ILA(0),H;1|| vanishes for sitepwhich are further than dis- 0- The spectral decomposition bft) gives

tance R from any site in A(0), while [[[A(0),H;]||

<2J||A|| for all other sites. The number of sites within dis- f(t)=S (e TEitAyBo—eEiByAs), (5)
tanceR of A(0) is bounded byN,S. i

To bound|[[A(t),H;]||, let us then consider the following _ _
set of differential equations: fot>0, we take 4,G; whereA;, is the matrix element of operatdt between the

—2J5, 1-,sG; and for t<0 we take &G = ground state 0 and the eigenstatewith energyE;=AE
—ZJE:::}:;ZRG;, with initial conditionsG,=0 for st,itésj above the ground-state energy, and similarly for the other

which are further than distande@ from any site inA(0), Aoi1Bio,Bo - There are no termf n _EQQS) involving
and G;=2J||A|| for all other sites. Then, comparing Aoo,Boo since we have anS“TéA)_*BZg?- .

these equations to Eq(3), we see that||[A(t),H;]|| Let us define a functiorf "(t) =X;e"*"AgBjo, which
<G;(t). This set of linear equations f@; can be solved for thus contains only the negative frequer@psitive energy

- - - - terms in f(t). The significance off *(t) is that f*(t)
any given lattice. However, we are simply interested™ o
in an upper bound ofs; . Let us defineGX to be the maxi- ;KA(I%B(C?»! sg that }hff pOfSItIV? en'ergtylpallat_ bft) lfon_t'
mum of G; over all sitesi which are at a distance ains the aesired correlation function init. In this subsection,

greater than (R—1)R from all sites in A(0). Then, we combin+e the boun@) on f(t) with the existence of a gap
we have 6,G*<2JSG ! for k>0, and 3,Gk=2Jsg 0 boundf (0). ) _

for k=0, with initial conditionsG°=2J||A|| andG*=0 for Definef(t)=f(t)e" 579, with q to be chosen later.
k=1. Thus, GO(t)<2J||A||e¥S! GL(t)<[idt'2JSC(t’)  We have two bounds of(t). First, we have the boun@) on
< [pdt’' (239 (2J]|Al])eFS'=2]||A]|(2ISYePSt andGK(t)<  f(t) which gives us the bounf(t)<Ng||Al|||B||g(t,]). We
2J||A||(23SH*e?SYk!. The last set of inequalities follows also have

inductively:  GNt)<[idt' (219G t)=</dt' (2I9(2J||Al)

X (23St)< Y (k—1)1eS=2]||Al|(2ISY<e??SYk!. From these F(t)<2||Al|||B||e” *AE¥ (), (6)

104431-3



M. B. HASTINGS PHYSICAL REVIEW B69, 104431 (2004

We will use the first of these bounds for timgg<c,I, and 1
the second for long timels|>c;|. Finally, we definef * (t)
to contain only the negative frequency termsf (). 0.8

Now, the desired expectation valug¢A(0)B(0))
=f*(0). To boundf*(0), wefirst boundf*(0), andthen
boundf(0)" —f*(0). To boundf*(0), we use thébounds

onf and an integral representation of the positive energy
part!>16

. ][> - .
T (O)|=Edetf(t)/(—|t+e)

1\

FIG. 1. lllustration of the bound offf *(0)—f*(0)|, as de-
scribed in the text. The vertical line describes-éunction spike in

J f()/(—it+e)
ltl]<cyl

1
T 2m

+

J T()/(—it+e)
L

1 f(w). This produces a Gaussianfiw). The integral ovew of the
< EHA””BH 2Ngg(cql,l) Gaussian is the same as the integral of dfanction; however, the
shaded region of the curve of the Gaussian falls ahowed, and
V2q 22,2 hence does not contribute fd"(0). This leads to the difference
+25 e TARTD | (7)  betweerf*(0) andf*(0)
AEcl .

In Eqg. (7), to bound the integral ovejt|<c,l, we used
[F()1=11(0] =N/ ATl[Bl g (t.)
<NGg||AlllIBI|[|t|/(ci)1g(c4l,l). To derive this inequality
we have assumed thiat0 so that taking the ceiling df2R
above gives &=1. Then,

f(w), produced by an intermediate stateith energyE;=
—w>0. This produces a Gaussianfitw), as shown. The
integral over allw of the Gaussian is the same as the integral
of the & function; however, the shaded portion of the curve
has w>0. SinceT(0)=(27) */° . dwf(w) and f*(0)
=27 Y° dwf(w), we find a difference between" (0)
andf*(0) equal to the integral of the shaded portion of the
curve. At w=0 the height of the Gaussian is reduced by a

fl ‘ Idt~f(t)/(—it+ €)
t|<cq

SNBHAHHBHJ dtg(cyl,)/(cyl) factor e~ 9¢”2AE)  However, sinceE;=AE, this factor is
lt]<cyl bounded bye™ 92,
=2Ng||All[[B[[g(c4l,1). ®) Now, let us do the calculation more directl§:*(0)

=27 " Yf” dof()[°.dw’ (V2mq/AE)exd —q(o—w')
To bound the integral oveh|>~cll in Eq. (7) we have (2AE?)], while f*(0)=(27) f° . dwf(w). Then
used Eq.(6) to show [[fjy=c,f(t)/(—it+e)[<2||All||B
X [jj=c, dtexd —PAEY(29)]/(c)<2|All|[B[(V2ma/AEe, )~ + _1f°°
fT(0)—f7(0)=(2 dof O4—w)—0(—w)].
< ex] — 2I2AE%(29)]. (0)—17(0)=(2m) _ Uo (0)[Og(~w)=0(~w)]
To bound[f(0)"—f(0)*|, we start with the definition of (10

f. Expressed as a convolution in Fourier spHcthis is Here ©(w) is a step function:®(w)=1 for ©>0 and

5 - , O (w)=0 for ®<0. We have defined
f(w’)z(\/qu/AE)f dwf(w)e Heme) (AR (g)

Now is where the existence of an energy gap becomes essef®q(®)= f do’(vV27a/AE)ex] —q(o—o')?/(2AE?)].
tial. For motivation, let us first pictoriallfsee Fig. 1 de- 0 (11)
scribe how the gap enables us to bo(ifid(0)—f *(0)| and
then present it more mathematically. By definiti&(nO) Since the system has a gap, the integral in (@) vanishes
=1(0); this follows in Fourier space fronf” dwf(w) for |w|<AE. However, for|w|=AE, we have|0y(— o)
=[*_dwf(w). The convolution9) means that a given Fou- —0(—w)|<e %2 Thus, Eq(10) is bounded by

rier component inf which is, for example, negative fre-
quen.cy, will producerboth positi\{e and neggtive fr.equ.ency (277)*1e*q’2fx do|f(0)|<2||All[Blle 92 (12
Fourier components if. So, consider & function spike in —w
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—

Thus, combining Egs. (7) and (12, [f"(0)] .
<[F*(0)~ 1(0)| + [T/ (0)] = /2w Al |Bl|2Neg(csl.l) P J
+2(N27ql AEC,l)e G AET(D) 4 2| |All||B||le” 2. We fi-
nally chooseq=c,lAE to get

7AEdwf(w)dew’(\/ZTrq/AE)exp[w’r]
0

Xexd —q(w—w')?/(2AE?)], (15

where we have used the gapE and the relation

|<A(O)B(0)>C| fojocdw,(\IZ’lTQ/AE)exqw’T]EXF[—C]((,O—(U,)Z/(ZAEZ)]
=exf o7lexd + ?AE%(2q)]. Then, for r<qg/AE, the inte-

1 [AllB] 1 gral (15 with «<O0 is bounded in absolute value by
< 52Ng||Al[[|B][g(c,l,) +2 1+ ———= (27)~° _dow|f(w)|e” %2 We can similarly bound the por-
2 / AE —o ' y por
T 2mcy AR tion of the integral withw>0, giving the desired result.
X ||Al]||B||ec'AE?, (13 With the giveng=c,| AE the above bounds show that for
T$Cl|,
giving the desired bound. The first term in Ef3) decays as [{A(0)B(i 7))

exd —O(I/R)], while the second term decays as exp
[—clAE2]=exp—O[AEI/(JSR]}; here, byO(I/R), we
mean some quantity of ordéR.

In what follows in the next three sections, the first term in

1
<e  TAEED] N |All[[Blg(eal 1)

Eq. (13) will be negligible: we will be considering operators 1

separated by a distantevhich is of orderlL, so that the first 42114+ — ||A||||B||e‘°1AE"Zl. (16)
term in Eq.(13) will lead to only exponentially smaliin L) V2me,lAE

contributions to the correlation functions. The second term

will be more important: since we will consider gaps= IV. TWISTED BOUNDARY CONDITIONS

«In(L)/L, the second term will lead to terms which are sup-

pressed only by powers df when considering correlation In this section we derive some results on the sensitivity to

functions of operators separated by a distance of drder ~ boundary conditions, as a step towards the the main result,
Eq. (1). To derive a contradiction later, we will assume

. . throughout this and the next two sections that there is a gap
C. Operators at different times AE that violates Eq(1), with an appropriately chosen In

tion functions (A(0)B(i7)), with 7 real and 7>0. tions and the topological attempt at proving the LSM theo-
Then, in Eq.(7), we must evaluat¢~f+(—ir)| so that the 'em: In the second subsection, we show the specific results

denominator it+e) is replaced by —it+r. on the sensitivity to boundary conditions.
In this case, we are still able to find just as tight a

bound on [f*(—i7)] as we previously found A. Topological argument

for [f7(0): [fH(—in)|=<(1/2m)||Al|||B||(2Ngg(cyl,1) Here we will define a new twisted Hamiltonian, making
+Z(m/AEcll)e*Cf'zAEz’(zq)). use of the coordinatex(y) introduced previously for lattice

sitesi. To define the new twisted Hamiltonigd, , , replace

all loop operators x4,Y1)(X2,Y2)(X3,Y3) - . .) in H with
tr((X1, Y1) R(X1,X2) (X2,Y2) R(X2,X3) (X3,Y3) - . .). Here, the
twist operatorR*”(xq,X,) =exd xi(6/2)a%"] if the shortest
lattice path betweer; ,x, crosses fronx=0 tox=1, where
the sign is positive if the path crosses in the direction of
increasingx and negative if it crosses in the opposite direc-
tion. Here,R*"(x4,X5) is a 2X2 matrix of numbers, rather
than of operators,

Of course, for 7==qg/AE there is the trivial bound
[(A(0)B(i 7)< <I|Alll|Blle”™F<||All||Bl|e™9. For |]
<q/AE, we claim that [f*(—i7)—exq+72AE%(2q)]f*
(—i9|=2/|Al|||Bl|le"¥?. To show this,

[fr(—ir) —exd +AEX(2q)]f " (—i7)]

=(27T)_1J‘Oc dof(w)

o exr{tig 0
Xf do'(V27q/AE)exqd o' 7] RMY= P (17)
0 Fio
xex —q(w—w')?(2AE?)] exr{ '2}

Alternately, if the shortest lattice path betwegnx, crosses
—exd + 7°AE?/(29)]10(—w)exfwr]|. (14 fromL/2 toL/2+1, R¥"(x;,x) =exd +i(¢'/2)o"]. Other-
wise, R(X3,X,) = 6*". In Fig. 2, we show the coordinate sys-
tem usingx,y and show where the two boundary condition
The portion of the integral witlw<<0 is equal to twists are inserted.
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’ tion functions. This will be stated more precisely at the start
of the following subsection; we mention it here for motiva-
tion.

The eigenvalues are df/, ,, are invariant undeg+ 0’
— 0+ 6’ + 2, while the wave functions are invariant under
6+ 60'— 0+ 6'+47.*° To motivate the results in this sec-
tion, we recall the basic idea of the topological attehmit
proving the LSM. The idea is that if there is a gap ét
+6'=0, andif the gap remains opefor all 6+ 6, then
under an adiabatic change in the anglevith 6’ fixed at
zero, the ground state &=0 evolves into the ground state

x=0 x=L at §=2m. At 6=2, the Hamiltonian is returned to the

FIG. 2. Plot of the system, showing tlecoordinate along the original Hamiltonian, b_Ut' for a system of odd _W'dth' the
length axis. The« is shown ranging fromx=0 tox=L; due to the ~9round state expectation value of the translation operator
periodicity of the systemx=0 is identified withx=L. They co-  changes sign, as will be discussed in more detail below. This
ordinate specifies the position in the directions normal to the lengthl€ads to a contradiction: from the ground state with given
as well as specifying the particular site in each unit cell. The twist€Xpectation value of the translation operator, we construct
angles are noted; the twigt changes the boundary condition near another ground state with the opposite expectation value.
x=L, while the twistd’ changes the coupling between sites nearThe requirement that the topological attempt requires the gap
x=L/2. to remain open for alh was pointed out in Ref. 5.

What the topological argument actually succeeds in show-
ing is that the gap must close at some valugoHowever,
in order to use this argument to obtain any bound on the
magnitude of the gap a=0, we would have to show that a

Let us see what the effect of this twist is in terms of spin

operators. Consider two sitelsj. Suppose the Hamiltonan
; oz X QX

Ho,o has a term SUCh, as t;o=2(gsj +§SJ' +S'ysiy)+ 172. sufficiently large gap at=0 would prevent the gap from
Then, let us supposehasx=0 while j hasx=1. Then,  josing for all ¢; that would then lead to a contradiction,
Moo has a term GR(O,1)jR(1,0). In terms of spin  enapling us to bound the gap at0. What we will see is
operators, this is equal to [S/+cos@)(SS+SS)  that we can partially show this: for sufficiently largén Eq.
+sin(6)(§'S-5S)]+1/2. In the untwisted Hamiltonian, we (1), we can show to second order & (or indeed, to any
coupled the dot product of the two spin Vect@ﬁ,g,_; inthe finite orde) a bound on the change in ground-state energy
twisted Hamiltonian, we couple them after rotating one by arWith respect tod. However, we will be unable to show that
angle # about thez axis. A good discussion of twists can be the gap remains open for &l because to bound the change
found in Ref. 5. in ground-state energy for higher orders dnrequires pro-

We have considered two different twist anglgsg’. The ~ 9ressively increasing the constanin Eq. (1), and it is not
spectrum ofH, , depends only on the combinatiaht 6’ possible tq shqw the resglt to all orders. Thus, the tqpologlcal
Further, from ény given eigenfunctio(6,0') of H,, , attempt will uItlm_ater fail, and we will give a physical ex-
one can find an eigenfunctiony(6— 86,6+ 80)  of ample of how this can happen. In the following Sec. V, we

5o will give a successful argument.
H(}759Y€/+59 by 1,0(0_ 50,9'+50)=Hje'50 Jlﬁ(@,@’),
where the product extends over all sites(x,y) with O
<X=<L/2. B. Boundary condition sensitivity

Given that the spectrum depends only on the combination \yia now show an insensitivity of the ground-state energy
0+ 6', the reader may wonder what the reason is for i”trOEo(a,e’) to second ordéf in the twist angled+ 6’. At 6
ducing two twist angles, rather than just one angle. In fact_ 9'=0, 9,E0(0,0')=(dsHy4)=0. Indeed, taking any
the second angle is a useful trick, introduced for the follow-4q number of derivatives oEy(9,6’) leads to a vanishing
ing reason: we have previously shown that the existence of gyantity!® To second order i, 8, we write a power series:
gap causes correlation functions to decay exponentially ife (9, 9’)=E,(0,0)+a6%/2+a6’'2/2+boo’, where a
the separation of the two operators. However, physically, one PEq= (95/ E, andb=d,, Eo. We will show that, for any
expects that the existence of a gap will also imply some&yiyen negative power df, we can find a constastsuch that
insensitivity of the system to boundary conditions, enabling¢ Eq. (1) is violated for thatc, then a is bounded by a
us to bound, for example, the second derivative of they_dependent constant times the given negative powdr. of

ground-state energy with respect #o What we will do in  \we do this by calculating as a correlation function, and
the following subsection is show this insensitivity by using then showing thab=a.

the fact that the spectrum depends onlyén ¢’ to convert Recall linear perturbation theory: suppose a Hamiltonian
the second derivative&@) of the ground-state energy into a H is changed by soméH. For a nondegenerate stdig)
mixed partial derivative d,9,/) of the ground-state energy, Wwith eigenvalueE, the changedy) in |¢) is given to linear
and by then evaluating that mixed partial derivative as arder in 5K by | 84)=(E—H) *6H|). Since the ground
correlation function, using the exponential decay of correlastate is the lowest-energy state, all other states have
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energies greater than it. Thus, we can write the changbounded by a-dependent negative power bf Therefore,

in the ground state to linear order as we can boundb| by any desired negative power bf by
choosingc sufficiently large.
|80y = — = a0l gdTelEo BTy N (| SH| o) However,Eq( 8, — 6) =E(0,0), sob=a. Thus, we have
also boundeda| by the same negative power bf There-
=—[od7&H(i 7)| o), fore, atd= 6’ =0, we find tha] 93E,( 6, 6')| is bounded by a

. . negative power oL. This shows some insensitivity of the
where [y) is the ground-state wave functiofy,) are a ground-state energy to boundary conditions. This realizes the
complete set of intermediate states, and whébé(i7)  physical idefthat a spin liquid state is defined by the lack of
=exd —Hr]oHexH7] is the change in the Hamiltonian response to a twist in boundary conditions to second order in
operator, taken at imaginary timer. Here we have set g2
Eo(0,0)=0 without loss of generality. At fourth order ind, we must evaluate a correlation func-
Specializing to the case @fH{=d,H, , and writing the  tion of four operators, each of ordéiS?V/L; to bound these
change iny, in terms of thed, '-dependent ground-state correlation functions requires a largerEach higher order in
density matrixp®(6,0")=|o(6,60")){ o(6,0")| we have 0,60’ requires an even largey;, so that it is not possible to
bound the change in ground-state energy for arbitrary
o_ * N 0 . +6'. Therefore, the topological attenipto establish the
dep~=— o d7dgHg,e (i7)p"— _wdTP IoHe,0(17), LSM result fails. Indeed, a gap @+ ¢’ =0 must close for
’ 5
0+6"#0.
" 0 It is worth giving a specific physical example of this pos-
9y p°= _f drdyH, a'(iT)Po—f drp%3yHy (i 7). sibility, as the topological argument does show that the gap
0 ' —o ’ must close for somé&@+ 6. In many physical examples of
(18 spin liquids, the closing of the gap arises because a state
which is at some very low energy, of orddt.~! or less,
above the ground state at- ¢’ =0 crosses the ground-state
energy at a finited+ 0’. For example, if the Majumdar-

Note that sinc€ §H) vanishes in this case, we do not need to
worry about matrix elements @fH from the ground state to

the ground state. , , , Ghosh Hamiltonian is slightly perturbed, there is a state at an

Now, we can use the changée in the density matrix to COMgyxponentially small energy above the ground state which
puteb by b=Tr[ (g Hg 4)(dgp")]. SO, crosses the ground state &t 6’ = 7.

Howev(()ar, it is also possible for a state which is at some

N . energyJL” to cross the ground state: consider a system with

b fo d7(05H,0(0) 99 Hy,o(i7)) two competing phases, one of which is a spin liquid phase

while the other is a spin ordered phase with a spiral order.

—(dgHg g (—17)9gHg 4(0))), (199 The spiral order is chosen so that the spin ordered phase can

o , ) be frustrated at+ 0’ =0, and the spin liquid is the ground
where the derivatives are evaluatedat0’=0. The deriva-  giate there. At somé+ 6’ 0, however, the spiral phase can
tive 94H; is nonvanishing only for sites which are within - taxe over as the ground state. This taking over as the ground
distanceR of x=0; there are at mosV/L such sites. For state can happen either via a level crosgifithe two states
eachi, ||9,H||<JS, so|[dgHy ¢ ||<ISVIL. We use two have different symmetry, for example, or if the spin ordered
bounds for the given correlation functions in E@9). First,  phase has a nonvanishing net $por via an avoided cross-

each correlation function is bounded byV/L)?e"™E.  ing. This provides a specific example of a system in which a
Second, we can use E(.6) to bound each correlation func- state or phase which is at an energy of ordef at 6+ 6’
tion by =0 becomes the ground state at some nonvanisting’.

The solution to this problem is simple: it is not necessary

2S(ISPVIL)?(1+ 1\ me,LAE)exd — ¢, AE(L/2)/2], to show that there is a gap for all twist angles. Instead, we

(200  start with the ground state at vanishing twist and continu-
ously evolve this state, obtaining a state for any twist angle
which is an approximate eigenstate of the twisted Hamil-
tonian, not necessarily the ground state. This approximate
. ; . . eigenstate will be explicitly constructed in the following sec-
have used =L/2, ignoring the slight error that in fadt  (jo \hile in the section after that we demonstrate that at a
=L/2—R. Finally, we have usedg=<Sin Eq.(20). twist of 27 the expectation value of the translation operator

_Usmg these two bounds on the correlation function, wey ¢ changed sign in the new state compared to the ground
arrive at state. Thus, this gives a new low-energy state, different from
the ground state.

where we neglect the term g(c,l,l) in Eqg. (16) as it leads
to a correction which is exponentially decayinglinnot in
C,AEL, and thus is negligible in what follows. Also, we

|b|<2(JSZV/L)2f drmin{exd — 7AE],x}, (21
0 V. TWISTING THE GROUND STATE

where x=2S(1+ 1/\Jmc,LAE)exd —CAE(L/2)/2]. Thus, A. Constructing the twisted state
|b|<2(ISV/L)?(x/AE)(1+In(x)). The number of site®/ Let p(6,0) be ad-dependent density matrix that we con-

is bounded by L9, while for AE greater tharc In(L)/L, xis  struct below. Divide the system into two overlapping halves:
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below), such that the given quantity is bounded by a constant
times the given negative power bffor all L. Thus, we wish
|E1(6)| to be small. Note that, given this definition of small,
if a small quantity is multiplied by any fixed power bf the
result is a small quantity. Sometimes, we will indicate that a
quantity is made small by choosirgor by choosingg, to
specify which of the two needs to be made sufficiently large.
In differential form, we require

IipA(0.0)=2 1S pR(0.—0)]+en(0), (29
FIG. 3. Plot of the system, showing the twists and coordinates as

before. The halves of the system have been shaded in. The shading

at the left and right sides of the systédiagonal lines going up and - heree,=3d,E;. We will show that the uppé? derivative

rlght) denotes sites in ha[ﬂ), the shading in the mlddle:ilagonal D0|E1(0)| is Sma”, from which Eq(22) will follow. We will

lines going up and leftdenotes sites in hal®). The solid shading . 0 .
denotes sites in both halves; the length of the solid region is at Ieaé’j%ISO requirep,(6,0)=p5(0,0), up to a similarly bounded

2R, so that the Hamiltonian can be written as a sum of terms, each'TO €M E2(6), and d4p1(6,0)=e,(6), with a similarly
of which is contained in only one half. boundedD,|E,(6)|.

The physical motivation behind E¢R2) is to construct a
half (1) contains sites withk=3L/4—R,3L/4—R+1,... L state for the Hamiltoniart{, o that has an energy close to
—1,0,1 ... L/4+R, while half (2) contains sites witrx ~ Eo(0,0). The twisté is along a line that lies completely
=L/4-R,L/4—R+1,...,A/4+R. That is, half (1) con- within half (1) while ¢’ is along a line that lies completely
tains all sites fronx=3L/4—R up tox=L—1, as well as all Within half (2). Within half (1), the Hamiltonians},, and
sites fromx=0 up to L/4+R, while half (2) contains all Hs s a@re equal, so we construct a density matrix such that
sites fromx=L/4—R up to x=3L/4+R. The halves are within half (1) the given density matrix is close to the
shown as shaded regions in Fig. 3. ground-state density matrix @i, _,. Then, the expectation

The reason we choose two overlapping halves is that wéf any operatolO which lies completely within half1) for
will be considering density matrices which involve only sitesthe density matrix(6,0) will be within [|O[|[E4(6)| of the
within a given half. These matrices will be defined by tracinge€xpectation value of that operator for the density matrix
over sites outside the given half. Then, to evaluate the exe(6,—6). On the other hand, within ha(®), the Hamilto-
pectation value of the energy of the system, we will be abldians™, o andH, o are equal, so we also require that within
to evaluate the expectation value as a sum of operators whidhlf (2) the density matrix be close to the ground-state den-
lie completely within one or the other half. That is, by mak- Sity matrix of Ho .
ing the two halves overlap, we will deal with the question of ~ Then, the expectation value of the energy in the state de-
the “seam” where the two halves join. This is mentioned fined by p(6,0) is equal to Trp(6,0)H,0]. Once we have
here as motivation and will be done in more detail below. shown that both Eq22) and the bound ofE,(6)| are sat-

Define p1(0,0)=Tr,[ p(6,0)], where Ts denotes a trace isfied, it will follow that this expectation value will be within
over all sites not in half (1) and define p,(6,0)  anamount|, d|max(Eyl,[El) of E¢(0,0), since the Hamil-
=Tr,[p(6,0)], the trace over sites not in ha®). Similarly, ~ tonian’/ can be written as a sum of operators which are
define  pd(6,60')=Tr,[p°(6,6")], and  p3(6,60") entirely within half(1) or entirely within half(2) (it was for
=Tr,[p°(6,6')]. We will assume throughout this section this reason that the halves were chogen_to ov)a_rl'aper_e—
that there is a gap violating Eq1). Then, for sufficiently ~ fore, since|||| is bounded byvJ<rLJ, if we pick c in

large c, we will constructp; such that Eq. (1) sufficiently large, we will find that Tp(6,0)H ]
—E(0,0) will also be small ab=21r; this follows from the

o, o, statement that a small quantity multiplied by a fixed power
p1(0,00—E1(0)= ( Il € HSJ')P?(O,O)( I1 e_'asi) of L is also small.
! ! Our claim, which we show in this section, is that EB2)
= p‘f( 6, 0), (22 i; skatisfied by @(6,0) defined as follows for & §<2. We
pic

where the products extend over all sites (x,y) with 0

<x=L/4 and whereE(6) is an error term such that the

trace norm' |E;(6)| is bounded by a constant times a nega- il L o

tive power ofL for all 0<@<2. The particular negative 9op(0,0)=— JO drA"(in)=A"(=i7),p(0,0],
power ofL can be determined by choosing the constaimt (24)
Eqg. (1). As a useful terminology, we will refer to a quantity

as “small” if, for any desired negative power &f, we can

find sufficiently largec or sufficiently largeq (introduced where we define
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iT is at least/4— 2R, sincedy H includes terms withx down
At(i7) i least_/4— 2R, si ‘H includ ithx d
to L/2—R, while O is in half (1) so includesx up to L/4

=(27) *exd — (7AE)?(2q In(L))]f dtdyHeot) +R. Note that(d,H, 4)=0 at 6=6'=0. Since we have
—o bounded the trace of the right-hand side of E2f) with all
operatorsO with ||O]|=1, we have bounded the trace norm

_ 2 i
X exd — (tAE)?/(2qIn(L))]/(—it+7) @9 fthe right-hand side.
with g to be chosen later, and ™ (—i7)=(A"(i7)". The
time evolution of the operatat,H, 4 (t) is defined using the B. Bound on error terms
Hamiltonian#, _,, while the 7 dependence oA™~ is de- ) o
fined via Eq.(ZS). We now show that we can findasuch that the definition

To give some insight into the definition & A, we (24 satisfies-Eci.(23) in general. We wish to compute
note that ifq were to be infinite, then they would project onto aaPl(a’O)_z_i'[Sj p1(6,— 0) ]=e4(6) +ep(6) +ec(6).
positive and negative energy parts @fH at times=i7,  Here we define
respectively. That is, forq=«, we have A" (i7)

ciL
:(277)71f0iwdtagH010/(t)/(_it+7'). Let the matrix ele- eaz—f ' drTr[[At(i7) =A™ (—iT1),p(0,0)]
ments of the operataf,H in a basis of eigenstates &f be 0
written (J,H) ., Where the states have energies,E, . Let —[A*(in)—A"(=i7),p%6,— 0)]]. (28)

the states have energy differeneew=E_,— E,. Then, doing

the integral ovet we find thatA™ (i 7) has a matrix element cil . o 0

between statea,b equal to expw7]|(d4H) a5 for —w>0 and &p=— fo Tr[[A™(in) =A™ (=i7),p"(6,~ 0)]]
equal to zero for- w<0. Similarly, A~ (—i7) has a matrix

element equal to eXp w7|(dgH) ap for —w<0 and equal to —aop(l)(a,a’), (29

zero for—w>0. Then, for any given time, the integrand
of Eq. (24) would be the same as that of E(L.8) for 6 . , I
=0, since in that case the only nonvanishing terms in Eq. eC:a@pg( 6.6 )_; IS, ,p?(&,—ﬁ)]. (30
(24) are —A" (i 7)p(0,0)— p(0,00A (—i7). o 0. ,
What we will do later is to take a finitq instead. Physi- N Ed-(29), the derivative op; is evaluated ag=—6'. We
cally, this means that rather than taking an adiabatic chang@W consider each of these termg,e; , €. in turn.
in @ which keeps us in the ground state, we instead “pass First. consider Eq(28). In the definition of A"~ as an
through” the level crossing when the gap closes at sgme Integral overt, the integral over timeft|>c,(L/2—R) has
+0, going from the ground state to some low-energy excited" operator - norm  bounded  byi|doH||f|>c,Lr-r)
state. X exf —(tAE)?/(2q In(L))]. Thus, for any fixedy (to be cho-
Equation(24) gives the change ip equal to the commu- sen latey we can find ac such that this integral over times
tator of p with an anti-Hermitian operator, and hence gener-t|>c;(L/2—R) has small operator norm, and thus when
ates an infinitesimal unitary transformation pf Thus, p commuted withp(#,0) gives a term with small trace norm.
continues to be a density matrix which projects onto a single Equation(28) involves an integral ob,H(t) over timet
state, defined to bé(6,0). in the definition ofA* ~; we have shown that the contribu-
As a first step, we wish to show that fé= 6’ =0 we can  tions with times|t|>c,(L/2—R) may be neglected. Then,
find ac such that?,p3(6,0)—=;i[S},p3(0,0)] is small. We  considering only contributions witht|<c,(L/2-R), we

have claim that, up to an error in the operator norm of order
exp[=O(L)], d,H(t) can be written as an operator involv-
9,0 0,0)_; i[sz,p(l’(O,O)]=00p1(0,0)—<9(,p(1)(0,—0) ing only terms not in half (2). That is, ||d,H(t)

—Try[d4H(t)]|| is exponentially small irL. To show this,
0 , defineU,, to be the set of all sitgswhich lie in both half(1)
=Tr[dyp~(0,6)], (26) and half(2); there are at most2V/L such sites. These sites
where all derivatives are evaluated @&t 6’ =0. To bound are shown in the solid regions in Fig. 3. Define operators
the right-hand side of Eq26), consider the trace of this term O(t=0)=0’(t=0)=d,H, and define the time evolution of
with any operatorO with ||O||=1. This operator must be O,0" by 40=—i[O,H], while ;0" =—iZ;.y [O,H],
within half (1), so, using Eq(18) to compute the derivative i.e., the time evolution o0’ includes only the sum over
of p° with respect tod’, we obtain the expectation value  sitesi which are either in hal{1) or in half (2), but not
. in both halves. Then, using the arguments leading up to
Tr[05.9fpo(0,0')]=f79'(0>=—f dr(0dyHy g (i 7) Eq. (4), we can show that fore U, the operator norm
0 ’ [I[O(t),H;]|| is bounded by 2||O|/g(ci(L/2—R),L/2
. —R), which is of order exp-O(L/2—R)] for the
+dyHy,p (—17)0). 27 given range of timed. Then, using the difference in the
However, following the arguments from the preceding sec€volution equations for0,0", we can bound||O(t)
tion and the locality bounds, we can findcasuch that Eq.  — O' (V[ =< Zicu,, fodt' [[[O,Hi]|| <2t(2SV/L)I|| O]
(27) is small. In this case, the distance betw&eandd, H X g(c,(L/2—R),L/2—R). This quantity is also of order
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ex —O(L/2—R)] for the given range of timess Finally, we ~ +p°(6,— 0)d,H(—i7)]. This difference is equal to an inte-
use the fact that TfO']=0’ to get the desired result. gral overr=c,L. For sufficiently bigc, the trace norm of

From the above two paragraphs, it follows that up tothis integral can be bounded by any desired negative power
small error in the trace nome,(6)=—f"dr[Tr[A*(ir)  Of L. Thus,e, has small trace norm.

— A~ (=i7)],Tr[p(6,0)— p°(6,— 6)]]. Then, this is equal Finally, consider Eq(30). This is equal to

to the commutator oE;(#) with an anti-Hermitian operator.

It generates an infinitesimal unitary rotation Bf(6) and 9ep3(0,0") = gp3(0,— 0)=Tra[94p°(0,6')], (33
therefore does not lead to any change&r(6)|.

Next, consider Eq(29). First consider the terms in the where the derivatives are evaluated ét=— 6. The trace
commutator involvingA™~ acting on the left side g5°. As  norm of the right-hand side of E¢33) can be bounded by a
above, the operataf,H can be written in a basis of eigen- negative power ok using the same arguments near &y),
states of H as (I4H)a.n, Where the states have energiesby considering an operat@ that is entirely within half(1).
Ea.Ep. In d,Hp%(6,— 6) the only nonvanishing terms in- The only difference to the arguments near &) is that we
volve states with energy difference w=E,—E,=AE. compute the derivatives and expectation valueg=at- ',

Consider a matrix elemens ), With givenw. This leads ~ rather than ap=¢'=0.

to a matrix element oA~ (—i7) equal to ¢,H),p times Thus, using Eqs(28)—(30) and picking sufficiently large
q we find thatD,|E,(6)| is small for sufficiently largec. A
v27qIn(L) ) similar sequence of arguments permits one to bound
—ag @A (7AB)Y(2qIn(L))] DyE,(6)]. In the following section, we consider the expec-

tation value of the translation operator p(2r,0).

© dw’
Xf —0O(w')exd —w'7]
—w 27T VI. TRANSLATION OPERATOR

xexgd —qIn(L)(w—o')?(2AE?)],  (31) Consider the operator ({rly)(2y) ... (L,y)), which
) ] ] _translates the sites with given The translation operator
where we have converted the time integral to an integral iRyhich translates the entire system by one unit cell is the
Fourier space. Since w=AE, Eq.(31) can be made small roquct of these loop operators over ylithere are an odd
by chposmgq suffl_mently large. Thus, the.trace norm of Lumber of such loop operatorShe ground state off g is
Af(__'T)PO(e’_ ¢) is small, for all7=0. Similarly, for_A*, an eigenstate of. If the ground state is nondegenerate, then
we find that we get a matrix element equal 0%{)ap imes it has eigenvaluer1; without loss of generality we will
assume in this section that is has eigenvatuke.
v2mqIn(L) In this section we will show that the expectation value of
AE T for p(2,0) is opposite to that fop(0,0), up to small
, error. We note that if{,, were to have a gap for all96
> Jx di@)(_ o exd o’ 7] s27-r,_ then the resu_lts in this section would provide the last
—w 27T step in the topological argument discussed above. Instead,
o ) the results in this section will complete the argument started
xexd —qIn(L)(o—w")*/(2AE7)]. (32 in the preceding sectioni(27,0) gives us a density matrix
such that Trp(27,0)H 0] —Eo(0,0) is small, but which, up
to small error, has the opposite expectation valuerf@ince
the difference in the expectation #f is small, we can find a
¢ such that the difference in expectation value decays faster

exd — (7AE)?/(2qIn(L))]

By choosingq sufficiently large, the integra{32) can be
made equal to ef@7], up to small error. Thus, the
given matrix element can be made equal &%), times

exdwt], up to small error. Therefore, the trace norm ,
>
of _fclLdTTrz{[A+(iT)—(90H(iT)]po(ﬂ,—e)} is small. than 1L, and then we can find dn, such that fol.>L the

0 g i _statey(2,0) has an energy expectation value whicleiss
These statements amount to saying that, with small error g, cin(L)/L above the ground state. However, since the
the operator normA™(i7) indeed is equal to the positive expectation value of is opposite forp(2,0) compared to
energy part ofd,H(i7), while A~ is equal to the negative 4 0) up to small error, this state has an overlap on the
energy part. - L , , o ground state which is small. Thus, we will show in this sec-

Now considerA™ 'actlong to the right side 0p™(6,  {ion a contradiction under the assumption that the system had
— ), so that we considep™(6, — 0)dyH. In that case, the 5 ganAE which violated Eq.(1) and under the assumption
only nonvanishing terms indgH),p involve —w=E,—Ey,  hat the system was translation symmetric, so that the ground
<—AE. Repeating the argument above, we find that thesiate was an eigenstate Bf
trace norm ofp®(8,— 6)A"(i7) is small, as is the trace  \ye first define a twisted translation operator,
norm of [ --d 7 Tro{p%(8,— O)[A™(—i7)—d,H(—i7)]}.

Therefore, up to small error, Eq29) is equal to = i
— [ S dr Tl a,H(i7)p%(0, — 6) + p°(6, — 0)agH(~i7)] Too=Trexi(0R2)0](1y)
—9yp3(6,6'), which equals — [§1"dr Tr,[ ,H(i 7)p%(6, X(2y) ...(LI2y)exdi(6'/2)o,]
—0)+p°%0,— 0)d,H(—i7)]+ [5dTTry[ dyH(i ) p°(0,— 6) X(LI2+1y) ...(L,y)).
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Then, T, 4 is a unitary operator and a symmetry &f, 4 . small for large enoughc,® and thus the first term,
Finally, given that Ty(0,0)=¢0(0,0), we have Tr[OIOlpg(e,— 0)], is small. Therefore, we have shown the
Ty —otho(0,— 0)=1ho(6,— 6) for all 4. desired result.

We will then show tha®| T 0¢(6,0)— (6,0)| is small
for all 0= #<2. It will then follow that, up to a small error, VIl. DISCUSSION

Tr[p(0,0)To ol =Tr[p(27,0)T27 0l = = T p(27,0)To ol = 1, , , N
thus showing that the twisted state indeed has the opposite The main result is Eq(1), obtaining a bound on the en-

expectation value fol. Here we have used the fact that for €rgy gap for spin models in arbitrary dimensions. In order to
systems obdd width, T, 0= —To - obtain this result, we have introduced a set of loop operators,
Consider the derivative and proven a bound on connected correlation functions. This
bound on correlation functions did not rely on the system

being a spin system; rather, it is valid for any Hamiltonian

9o(To0(0,0) = ¥(6.0)) such that the/; have bounded operator norm, and such that
_ il . the interaction is finite range. Below, we generalize this
=i Sfy,Toot(6,0)— fo dr{TyoA"(i7) bound on correlation functions to certain other systems as
y
well.
—AT(iN—=TyA~ (—in+A (—i7)]¢(6,0). We note that for the case of higher spin representations of

SU(2), Eq. (1) follows automatically from the result for spin-
(34 1/2, so long as the total spin within all unit cells is half-odd:
o the higher spins can be written as various combinations of
This is equal to spin-1/2 spins, and if the total spin in the unit cell is half-odd
then there will result an odd number of spin-1/2 spins in each
. , il P B unit cell. Suppose, for example, a unit cell contains one spin-
{IE Sy~ fo dr{TyoA (i) Tyo—AT(I7)=TyoA 1 spin and one spin-1/2 spin, giving a total spin of 3/2 which
Y is half-odd. Then, the spin-1 can be written as two spin-1/2
o ) , spins. Let these two spins be callgd, S, and let the Hamil-

X(=inTog+A (=D 90,00 +{i> Sh, tonian include only terms symmetric under interchange of

Y S;,S,. This new Hamiltonian has three spin-1/2 spins in

cil P L each unit cell, and hence falls within the class of Hamilto-
- fo drTpoA (iT)Tyo=TooA (-7 Typ]l nians considered above. Then, there are two different sectors
of the Hilbert space with no terms in the Hamiltonian cou-
X{Ty,0p(6,0) = (6,0)}. (35 pling these two sectors: one sector in whigh,S, form a

spin-0, and one in which they form a spin-1. By adding a
term couplingS; to S, to the Hamiltonian with a sufficiently

The last term of Eq(35) is equal to an anti-Hermitian ; . -
operator acting o ,qi(6,0)— #(6,0), and thus does not large, negatwe(ferromfagnetl;c_coefﬂment, we can ensure
6,07\ e that the ground and first excited states lie in the sector in

change the norm of this state. Thus, we need to bound the, . . .
norm of the first term. This term is equal to an anti-HermitianWhICh S1,5, have total spin 1. Then, the existence of a low-

operator, which we define to #@,, acting ony. The norm lying state satisfying Eq(1) for the new system with only

: : ¥ . spin-1/2 implies the existence of such a low-lying state for
square of this term is equal to[T;04p(6,0)]. As shown in the original system with both spin-1 and spin-1/2. It would

thf E)rgacedmg sectlor_1, up to s_maII error in the op_erator NOMyiso be interesting to generalize these results to other groups
AT 7 (i7) can be written entirely as operators in hélf.

Therefore.O b it firel tor in half SU(N), as well as to consider the case of ewéfih..
erelore L, can be writien entrely as an operator in ha We finish with two conjectures. First, we conjecture that
(1); that is, the operator norm|O;—Tr,[O4]|| is small.

. the same Eq(1) holds for systems with an even width, so
Thus, the norm square is, up to small erro

1 hich ; I : | & long as the widthV/L is of orderL% ! and so long asl
TrLO;0,p4(6,0], which, again up to small error, is equal 10 1~ Forq=1 this result is of course not true, as Haldane

T 010,p9(6,— 6)1, since|p1(6,0)—p3(6,— 6)| is small. gap behavior is possible.

We claim, however, that this last expectation value is Second, consider théhermal expectation value ofT
small. To show this, considedy(Ty,—iho(0,—0)—tho(6,  at an inverse temperatures, defined by wr
—#0)). This is equal to zero. However, this derivative can be— Trlexp(-BH)T)/Tr[exp(=BH)]. We conjecture that
written as an operatoD acting onyo, with O=iX(S(;,)  there is a constant, depending ori®,d such that forg3
~ S a1y — J0d7(Ty—40gMe o (iT)To s — 9w (iT)  >cIn(L)/L the given thermal expectation valyd@); van-

— T 9dgHo o (i1 Tyt g+ dgHge(i7), wWhere the de- ishes in the limitL— for systems of odd width. We base
rivatives are taken &= — 0’. SinceOy,=0, it follows that  this conjecture on the following physical observations: for
Tr[OT0p°(6,— A)]=0. However, up to small errorO  ferromagnetic systems, there are spin-wave excitations, with
=0,+0,, with O, the operator considered above adgd  dispersion relatiofE<k?. It may be shown that the presence
defined to be a similar operator acting only in h@f. Then,  of these excitations caus¢s) 5 to vanish forg of orderlL as
2T{0]01p°(0,— 6)]+2T{0]0,p%(6,— 6)]=0. How- L—oo. For antiferromagnetic systems, the translation sym-
ever, using the locality bounds, the second term can be maduetry is broken by the antiferromagnetic orderifig fact,
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for these systems, the true ground state has translation syresemplex conjugation is necessarand we have left off all
metry and is a superposition of different broken symmetrythe indices on vectork,p and matricesA,B,exd =Tt]: the
states, but there are low-lying states with different expectaproduct is evaluated following the usual rules of matrix mul-
tion values of T so that forB of orderL, the expectation tiplication. In the sequence of equalities above, the first
value(T)z vanisheg Finally, for spin liquid systems, there equality defines the time evolution of the system, the second
is a low-lying excited state with the opposite expectationequality follows sincelexd —Tt]=I, and the last equality
value of T compared to the ground state, as we have foundollows since we definéA(t) by the equation of motion:
above. We leave a proof of both of these conjectures for A +)_act),T]. Itis then possible to extend this definition
future work. to operators separated by amaginary time separation:
(A(it)B(0)).

Now, consider a typical physical example: an Ising sys-
This work was supported by DOE Contract No. W-7405-t€Mm, governed by Monte Carlo spin-flip dynamics, with
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ENG-36. A(0),B(0) representing the value of two different spins
which are separated in space. In such a ¢asewell as in
APPENDIX: MARKOV PROCESSES AND LOCALITY many othery it is possible to obtain a bound similar to Eq.

(4). Assume that the matriX can be written as a sum of

Consider a system with a probabilipy of being in state matricesT; , with finite interaction rang& and with a bound
and a transition matriX;; so that the equation of motion is ||Ti|[[<J, where i is a site index. Define f(t)
api==;T;;p; . For the total probability to be conserved, we =([A(it),B(0)]). Sincef(t)=<||[A(it),B(0)]|l,
have =;T;;=0, which guarantees that; has at least one 2R 23S
zero eigenvalue. Let us assume, further, that all eigenvalue§(t)g 2NgS|[All[[B[[2IS§™e =Ng|AllllBlg(t,)
of T;; are real. This includes all systems for which the sta- (112R)! B e
tionary state(given by the zero eigenvector @f;) obeys (A1)
detailed balance. A typical example of such a process would . . .
be the Monte Carlo dynamics of a statistical mechanics sys- At this pqlnt, fr_om the e_X|stence ofA>0 and a spectral
tem. We will first derive a suitable generalization of the lo- EPresentation with all eigenvalues féafollows a result
cality result (13) to systems governed by such a Markov Similar to Eq.(13),
process, and then discuss the implication for statistical me- I(A(0)B(0))d]
chanics systems. ¢

Let us assume that the spectrumTois such that there is

1 1
only one zero eigenvalue, with right eigenveqdr, and that < 5 —2Ng||A[l[[Blg(cil,.) +2| 1+ ———=
. : . 2 N
all other eigenvalues are negative withh<—A, for some m 2mciAE
A>0. Assume thap? is normalized k_)yEip?=1. x||Al|||B||e~c1AE2 (A2)
Then, introduce various quantities to be measured, ) ) ) ) )
AB, ..., sothat the expectation value d& is given by Therefore,if there is a Markov dynamics that gives rise to

(A)y=3,A;p?. We can write this slightly differently by intro- the equilibrium .probability diSt'I’ibutiorp? which ha§ aA
ducing for each such quantity a diagonal matrix given by 0. thenthere is an exponential decay of correlation func-
A=A for all i andA;;=0 for i#j. Further, introduce an tions in space. An example is a spin system in the paramag-
additional vectot;, such that;=1 for alli. This vector; is netic phase with Monte Carlo spin flip dynamics. The con-

) X . ; verse is not necessarily true: a spin system in the
a left eigenvector ofT with zero eigenvalue, Sinc&;T;; ; : . X

—0 tioned ab TheAy = LA 0 ! paramagnetic phase with spin exchange dynamics does not
- Was mentioned a 0\{3. o ,>_t it' ij Py - | ; i have aA>0 but instead has spin correlations which decay

) € can .now con§| er expectation valyes 0 Aqléan "Wwith a power law time. However, this dynamics gives rise to
ties at different times: (A(t)B(0))=I"AexdTtIBp"  the same equilibrium probability distribution as the spin flip
=ITexd — TtJAexd Tt]Bp°=I"A()B(0)p°. In these equations, dynamics does, and hence has exponentially decaying corre-
IT denotes the transpose of the vectof! is real, so no lations in space.
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SFollowing standard physics notation, whenever we write-1(
+€) we are taking the limit ag— 0. The limit is taken outside
the integral sign. On the other hand, the use later of-if/(
+7) is done at a fixed, nonzero value of

PHYSICAL REVIEW B69, 104431 (2004

ground state is invariant under global SP), so that ground-
state expectation values must be unchanged under this rotation.
However, if we take an odd number of derivativestof ,» with
respect tod, #’, the resulting operator changes sign under a ro-
tation by 7 about thex axis. Therefore, the expectation value of
an odd number of derivatives @{, ,, must vanish.

2possible low-energy topological excitations do not prevent the

use of Eq(13) for spin liquids as the matrix elements @fH 4 ¢
between the ground and topologically excited states are negli-
gible.

®Equation (7) follows from contour integration. Another 2'The trace norm of an operat®, written |O|, is defined to be

way to derive it is to use a convolution and Fourier transform.
Define the Fourier transform off(t) to be f(w)
=["_dtf(t)exd—iwt] (see Ref. 1Y Then, f*(t)
=(1/2m)° . dwf(w)exdiot]. Combining these gives *(0)
=1/27[° . dwf” .dtf(t)exgd —iwt]. Doing the integral ovet
gives Eq.(7). Note thaif is rapidly decaying as— %o, so that
there are no issues with convergence.

Following standard physics notation, in E§), and throughout,
the use off (w) refers to the Fourier transform ét) The use of
f(0) always refers td(t) att=0.

BWe note that since we have assumed that the ground state it
unique, with a gapAE, then for any finiteL, the ground-state
energy is analytic irg,#’ in some neighborhood o+ 6’ =0.

1970 show this, consider rotating all the spins by anglabout the

Tr[ VO'O]. We will deal with Hermitian operators, for which it
is equal to the sum of the absolute values of the eigenvalues.

2|n fact,|E;(6)| need not be differentiable. To get around this, we

use the upper derivative(Ref.
=limsup._ o(f(t+¢€)—f(t))/e.

14, defined as Df(t)

ZWe showed before that up to small er@y is entirely within half

(1). For largerc, we can in fact ensure th&@, includes only
operators within a distande/4 of x=0 so thatO,,0, are sepa-
rated by a distanck/2 from each other. Then we can apply the
locality bounds to the given correlation function ©f ,O,.

turns out that the requirement that the eigenvalues be real is
necessary. Although one might have guessed that a similar ex-
ponential decay of correlation functions would also hold for

complex A with real part Ref)<—A, there seems to be a

x axis. Since the ground state is assumed to be unique and the counterexample to this statement. This will be discussed in a

Hamiltonian is invariant under global S(R) rotations, the
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