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We present a method for studying the excitations of low-dimensional quantum spin systems based on the
Jordan-Wigner transformation. Using an extended random-phase approxirtRREAnh scheme we calculate
the correlation function of neighboring spin flips for the one-dimensional spin-1/2 chain which well approxi-
mates the optical conductivity of S2uO;. We analyze several possible generalizations of the Jordan-Wigner
approach to the two-leg spin-1/2 ladder. On the mean-field level the most accurate results are obtained when
the spin operators are numbered in a meanderlike sequence. Calculation of the optical conductivity based on an
extended RPA scheme for the meander-path approach yields very good agreement with a previous density
matrix renormalization group evaluation. For polarization along the legs higher-order correlations are impor-
tant to explain the weight of high-energy continuum excitations and we estimate the contribution of 4- and
6-fermion processes.
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[. INTRODUCTION tems. It is also realized in cuprate spin ladder compodhds,
which are of interest due to their affinity to the cuprate high-
Due to the presence of strong quantum fluctuations, lowT. superconductors. Recently, the spin-singlet excitation
dimensional spin systems show very complex behavior andpectrum of the spin ladder compound (La,G&),,0,4, has
provide a challenge for theoretical treatments. In this conbeen investigated in midinfrared(MIR) absorption
text, S= 2 Heisenberg spin ladders are especially interestingxperiments® In the optical conductivityo(w), magnetic
because they represent an interjacent system, in between tbgcitations can be observed from the simultaneous excitation
antiferromagneticS=3 Heisenberg chain and the two- of a phonon which generates a finite dipole moment for the
dimensional antiferromagnetic Heisenberg model. Early ongonsidered field polarization, a mechanism introduced by
these spin ladders were considered as systems which displagrenzana and Sawatzky for the undoped higtsuprate<®
a dimensional crossover between one and two dimensionsThe phonon, assisting the magnetic excitation, takes up mo-
However, spin ladders do not constitute a “smooth crossmentum which implies that spin excitations with all wave
over” because even-leg spin ladders acquire a spin liquidiectors in the Brillouin zone enter(w). The relative spec-
ground state and finite spin g&p.This is in contrast to the tral weight for the different wave vectors is determined by
critical systems, theS=3 chain and the odd-leg ladders, the proper form factor of the considered phoridmue to
which exhibit algebraically decaying spin correlations, and itweak magnon-phonon interaction the propagation of the pho-
is in contrast to the 2D antiferromagnetic Heisenberg modelnon is assumed to decouple from the spin excitations. Con-
for which a long-range N&-ordered ground state was sequently, the dynamical response is evaluated with a spin-
established.In a field-theoretical mapping of the low-energy only model Hamiltonian, and the phonons account merely
modes on an @) nonlinearo model this even-odd effect for the appropriate wave-vector summation and frequency
with the number of legs results from the addition of a topo-shift. Indeed, we were able to confirm through a dynamical
logical term. The term was demonstrated to be zero for everBMRG evaluatioR’ that a nearest-neighbor Heisenberg
leg ladders and the two-dimensional Heisenberg model anchodel with an additional cyclic spin-exchange term is suffi-
finite for odd-leg ladders as well as ti%e=% chain®®Cor-  cient for the two-leg spin ladders: it reproduces remarkably
respondingly the system is gapless for odd-leg ladders andell the observed MIR optical conductivity within this
gapful for even-leg ladders whereby the gap decreases expseheme of phonon-assisted magnetic excitations.
nentially with the number of legs. In order to gain control over the spin excitations and to
In this paper we will focus on the antiferromagnetic two- better identify the observed MIR resonances an analytical
leg S= 3 ladders. The two-leg ladder can be approached conapproach is required which—despite the necessary approxi-
ceptionally from the limit of strong coupling, along the mations to make the calculation feasible—is still adequate to
rungs®~* Then the elementary excitations may be consid-retrieve the considered excitations of the spin liquid state. An
ered as excitations of rung triplets which propagate throughanalytical approach which helped to identify the observed
out the ladder due to the finite leg couplidg For small  resonances as spin-singlet dispersive bound states and con-
couplingd, /J, a more natural description would seem to betinuum excitations was presented by us along with the
in terms of the spinon excitations of the isolated legs. How-experimental data of Windet al*® We proposed to use a
ever, the excitations of the two-leg spin ladders cannot bene-dimensional fermionic representation of the spin opera-
constructed perturbatively from spinons of the chains sincéors which is generated through a Jordan-Wigner
the rung coupling is a relevant perturbation. The spinons ar@gansformatiorf!?? Treatments of the spin ladder based on
confined and have to form bound states on the latfcfér. the Jordan-Wigner transformation along a one-dimensional
Of particular interest is the intermediate coupling regimepath have been suggested befot& The advantage of this
J=J,, as this case is related to the two-dimensional sysfermionic representation over many bosonic representations
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is the absence of constraints or the restriction toSaekpan-  bosonic or fermionic operators, in order to permit the appli-

sion. However, the spin operator in terms of the “Jordan-cation of standard diagrammatic perturbation theory. With

Wigner fermions” becomes a nonlocal operator with a long-any mapping, however, the algebra of the original spin op-

ranged phase factor, necessary to fulfill the spin commutatiorrators has to be preserved. In the Jordan-Wigner transfor-
relations. Conveniently, the long-range part of the phase cammation this is provided by rewriting the spin operators as

cels in the Hamiltonian as well as in the spin correlationsfermionic operators with a long-ranged phase factor

which enter the optical conductivity. For the one-dimensional

spin chain the fermionic Hamiltonian is then composed of a - D _ t z_
bilinear, kinetic part which presents th€Y interaction of S =cie (I)i_ﬂ-jEi Cjci Si=

nearest-neighbor spins and a density-density interaction hich ‘ he 1D i ic Heisenb
which presents the Ising part of the interaction of nearest?/Nch transforms  the antiferromagnetic -Heisenberg

neighbor spins. For the spin ladder this Hamiltonian is eX_HamiItonian 0>0) to the fermionic Hamiltonian

tended by interaction terms with 4- and 6-fermionic opera- 1
tors which are introduced through the exchange of spins on H=J>, [—(cfrci+l+ ¢l 1Ci)
sites which are nearest neighbor in the lattice but are not (2
adjacent along the one-dimensional path through the lattice. 1 1
These interactions originate from phase operators which are +{clei— _)<CiT+ 1Cit1— —) ] (2
not exactly matched as for adjacent sites on the path. 2 2

In order to investigate the dynamical response for the fullThe first term in Eq(2) corresponds to thXY part of the
spectrum, we apply the random-phase approximaf®®»),  original Heisenberg Hamiltonian. In the fermionic represen-
a standard perturbative approach. For the considered fermiation it acts as a nearest-neighbor hopping. The second term,
onic model, the strength of the interaction is set by the samghich originates from the Ising term of the original Heisen-
scale as the kinetic term and, correspondingly, RPA is noperg Hamiltonian, introduces a nearest-neighbor density-
controlled by a small parametéfor J~J, ). However, we  density interaction among the fermions. The chemical poten-
will compare the results with those of the dynamical densitytial of the fermions corresponds to a magnetic field for the
matrix renormalization groupDMRG) and thereby confirm  spin system. For the paramagnetic state, the chemical poten-
the validity of the approach. tial has to constrain the particle number to the respective

In the present paper, we discuss this approach to a spifyarticle number density of a half-filled band.
1/2 chain and then in detail to two-leg ladders. In Sec. lwe The fermionic Hamiltonian does not include operator
start with the simpler case of a spin-1/2 chain in order toproducts with site index distances of more than one lattice
introduce our approximation scheme for the Jordan-Wignegpacing because in products of neighboring spins the phase
fermions. We calculater(w) for the 1D-spin chain in RPA  factors drop out. This is due to the fact that the fermion
and compare it with the optical conductivity of ,8uUO;  operatorc; commutes with the phase; of the same site
measured by Suzuuet al?® In Sec. Ill A we generalize the ([ci,¢;]1=0). Correspondingly, the representation is particu-
Jordan-Wigner treatment to the two-leg spin ladder. A propefarly useful for models with nearest-neighbor exchange inter-
treatment of the phase factor turns out to be essential and We:tions. However even so, not all dynamical correlation
find that an approach based on a meander path yields th@inctions can be evaluated without further approximations or
most accurate mean-field description. As this approacklaborate techniques: for example, the transverse spin corre-
causes a slight dimerization of the spin ladder, the origin folation generates “long-range” phase factors with a summa-
this behavior and its consequences will be analyzed. In Segion over a major fraction of the lattice sites. McCeyal.
B we present an RPA scheme for the evaluation of dy-devised a scheri®with which they succeeded to calculate
namic correlation functions, which is based on the meandetthe transverse response in tK& model (see also the ap-
path formulation of the Jordan-Wigner transformation. Weproach by Luther and Pesch¥l For the longitudinal spin
use this scheme to calculate the optical conductirify) of  response and the optical conductivity, a nearest-neighbor
the two-leg ladder and check the reliability of our approachspin-singlet response, where the phase factors drop out, these
by comparing it with a DMRG correction-vecfdrevalua-  sophisticated techniques are not required and one may evalu-
tion. ate the correlators with standard diagrammatic techniques.

e %) ®

Il. JORDAN-WIGNER TRANSFORMATION A. Mean-field treatment—d=1

FOR THE 1D SPIN-1/2 CHAIN Following Wang® the Ising interaction can be treated in
mean-field approximatioiMFA) by introducing a nearest-

First we reca_ll the J_ordan—ngner transfqrmapon for theneighbor “covalent bonding” of the Jordan-Wigner fermions
1D spin-1/2 chain and introduce our approximation scheme, =<c-Tc- ):
The fact that we find good agreement with the spinon evaluX P
ation for the 1D spin chain inspired us to extend the
approach to two-leg spin ladders as will be discussed in HMF:JEK (1—-2x)coskcic,  with x=—— @

Sec. lll.
Since spin operators do not obey canonical commutatiomhe ground state of the Heisenberg model has no net mag-

relations, it is convenient to transform them either intonetization(S/)=0. Within the fermionic representation this
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implies that the fermion system is at half fillifg c;)=%. The spin-flip operatobB, is expressed in MFA by
The ground state is obtained by filling up all negative-energy

states. This leads to a Fermi surface at wave veckers 1 ipr.

==+ /2, as displayed in Fig. 1. Adding/removing a fermion 5Bp:ﬁ EI ePli(SS+1(SS+1)
to the system corresponds $= *=1 excitations,S,=0 ex-

citations can be realized by particle-hole excitations. The ip2 p
particle-hole continuum of the Jordan-Wigner fermions, dis- ~¢ N Ek (1—2x)cog k+ 3
played in Fig. 1, is very similar to the two-spinon

continuum3* The upper cutoff of the Jordan-Wigner particle- This yields for the dynamic spin-flip correlation function in
hole continuum is at (2 4/7)J~3.27] and therefore close Zubarev notation

to J which is the maximum energy for two spinons.

clckﬂ). (5)

1 p
. _- 92 Po@
B. RPA for optical conductivity—d=1 {(3B_p:3By)) N Ep (1=2x) [COS’_Z B (p,w)

Spin excitations can be observed in the midinfrared range P p
of the optical conductivityo(w) due to the simultaneous —cosz sin=[B2(p,w) + BV (p,w)]
excitation of a phonofR® The optical conductivity of the 1D 22
spin-chain compound SEu0;?°® has been nearly perfectly P
reproduced by Lorenzana and Etfeusing an ansatz based +sin25 B(Z’Z)(p,w)], (6)
on numerical results in finite chains, sum rules, and Bethe
ansatz results. Originally, a similar procedure was suggesteglith particle-hole propagators
by Mulller et al33 for the evaluation of the dynamic structure
factor S(k,w), taking advantage of the observation that the
two-spinon contribution is the class of Bethe-ansatz solutions B (p,w)=, f{(‘fs«clck+p ;cgﬂjcq)) (7)
which carries most of the weight of the continuum excita- kg
tions. Only recently, it has been possible to determine th
two-spinon contribution t&(k,w) exactly>*3

For the optical conductivity, however, an exact expression o_ 1 2
of the two-spinon contribution is not yet available. Neverthe- ) k=1, _f = cosk, fk—.smk. (8)_
less, the evaluation of Lorenzana and Etferhich so con- Summing all particle-hole scattering processes, as illus-
vincingly reproduces the shape of the cusplike, wide structrated in Fig. 2 in diagrammatic terms, a simple expression
ture in o(w), confirms that the observed resonance indeedor the renormalized particle-hole propagator can be obtained
results from two-spinon excitations of the nearest-neighbor
Heisenberg model. This motivated us to use the establishe®*”(p.®)=b"%")(p,w)+2J cosp b (p,w)B)(p,w)

%nd the following form factors:

o(w) of the 1D spin chain as a reference and to check for the _ (2,1) (1)
quality of the results of our analytical Jordan-Wigner ap- 2J b (p,w)B"(p,w)
proach. We calculate the two-particle correlation function —2J3 b2 (p,w)B@)(p,w), (9)

o(w) within an extended RPA scheme, i.e., by summing up

bubble and ladder diagrams, and compare our result with the
experimental optical conductivity of SEu0;.? — @ + Qj@
For the one-dimensional spin chain the phonon-assistec
rbnyazlggzetic contribution to the optical conductivity is given >.< > < :
~—16w >, sint Plim((sB_.: o8
o(w) ® - sin’| 5 m((6B_p; P>>(w*“’ph)'

FIG. 2. Diagrammatic scheme for the extended RPA treatment
(4) of Jordan-Wigner fermions in Eg9).
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T T T T T (1+2/7)J] is generated. The corresponding kink in the
| spectral density is replaced by the sharp cusp on the RPA
T level, as seen in Fig. 3. The interaction strength in the RPA
A - equation[Eq. (9)] is not sufficiently strong to produce a
bound state well below the continuum. Only a precursor to
- the bound state, which is a resonance along the lower edge of
the particle-hole continuum, is formethe lower curve on
the right panel of Fig. 1 Thereby it takes spectral weight
from the rest of the continuum, as seen in Fig. 3 from the
comparison of the MFA and RPA results: the high-energy
. continuum weight is partly moved to the lower edge of the
continuum, with highest weight &= /2, responsible for
m the formation of the cusp. On the RPA level, this effect is
slightly overestimated. Higher-order scattering processes of
: the Jordan-Wigner fermions should partly compensate this
. spectral shift. However, the investigation of the correspond-
0 02 04 06 08 1 ing vertex corrections is beyond the scope of this paper. A
Energy [eV] correction of the RPA line shape in Fig. 3 does not necessar-
ily introduce new aspects for the interpretation of the spin
FIG. 3. o(w) obtained with Jordan-Wigner fermions in com- correlations on the chain.
parison with the experimental optical conductivity of,Su0;
(solid line), taken from Suzuurat al. (Ref. 26. Dotted line—
mean-field approximation, dashed line—RPA approximation. Fol-
lowing Lorenzana and Edé€Ref. 32 we have subtracted the same
linear background from the experimental data and we have used the \jotivated by the convincing results of the Jordan-Wigner
same value for the exchange couplidg-0.246 eV and for the fermion treatment for the Heisenber@z% chain we
phonon frequency,,=0.08 eV. “slightly increase” the dimensionality and extend the ap-
roach to the nearest-neighbor Heisenberg twaSled lad-
er:

800

600 -

400

Optical conductivity [arb. units]

" — Sr,Cu0,
--- RPA
----- Mean Field

III. JORDAN-WIGNER TRANSFORMATION
FOR THE TWO-LEG S=3 LADDER

where the noninteracting particle-hole propagators are giveﬁ
by

b (prao)= = S o] (LT (Merp) (M H=3.20 §:82+2 (SaS+11+ 88112, (11
N (1)'*‘6;(_Ep_¢_k+|o+

A

(10) coupling along the legsg, refers to the site index along the
o+ e— €p+k_io+

legs, and the subscripts 1,2 label the two different legs.
Generalizations of the Jordan-Wigner transformation to
Evaluation of these equations determinggv) which is  higher dimensions have been sugge®étdand may be
shown in Fig. 3 in comparison with the experimental spec-adopted for spin ladders. The phase factor, however, the
trum of SpCuQ; taken from Suzuurat al?® proper treatment of which is essential as demonstrated in
A simple analysis of the experimental line shape ofSec. Ill A1, can be treated most accurately using the one-
Sr,CuQ; based on Jordan-Wigner fermions has already beedimensional Jordan-Wigner transformation, i.e., by arranging
discussed by Suzuugt al? in combination with the experi- all spins in a one-dimensional sequence. With this scheme
mental results. However, they restricted the evaluation to théne range of the interaction terms can be controlled through a
XY model which corresponds to our mean-field evaluationconvenient choice of a path which covers all sites. The ap-
apart from a renormalization of the energy scale by a factoplication of a two-dimensional representation to the spin lad-
of 1+ 2/ in Eq. (3). We find that it is important to treat the ders, on the other hand, would generate long-range interac-
two-particle correlation functior(w) at least within RPA. tion terms in the Hamiltonian.
The resonance is shifted to lower energies compared to the Possible path configurations through a two-leg ladder are
mean-field approximation. In addition we observe a cusp ashown in Fig. 4. The path displayed in Figa#tis obviously
w=J(1+2/7) as a precursor of the logarithmic singularity very close to the one-dimensional situation. As a conse-
found by Lorenzana and Ed&Although the RPA slightly quence the rung interaction is difficult to treat in this repre-
overestimates the interaction strength which results in shiftsentation because every product of neighboring rung spins
ing too much spectral weight to energies below the cusp, itontains a number of phase factors, which diverges with the
favorably reproduces the experimentglw) with respect to  length of the spin ladder. The rung coupling, however, is a
the position of the cusp and its high-energy side. relevant perturbation since the excitation spectrum of a two-
The interpretation of the absorption spectrum is as foldeg ladder remains gapped for all coupling ratids/J.
lows: On the mean-field level a Van Hove singularity at theTherefore a path which passes through all the rungs should
position of the band edge of the Jordan-Wigner fermi@is be more suitable. Possible realizations are a zigzag®bath

] whereJ, is the exchange coupling along the rundsthe

104419-4



JORDAN-WIGNER APPROACH TO DYNAMC . .. PHYSICAL REVIEW B 69, 104419 (2004

i T Teer Sip
@ Y
________________________________________ N
() Y N N (Y N N N S V7 P WY G S SN
Si.(x
©) FIG. 5. Sublattice structure for the meander path.

Su have replaced this phase factor by its average value. This
treatment, however, can be improved in a systematic way by
rewriting the phase factor:

FIG. 4. Possible path configurations for a two-leg ladder.

and a meander paffi,displayed in Figs. @) and 4c), re-

spectively. Although the zigzag path appears simpler and imng+n, VY (1_2ptpy1_2. T .

more symmetric at first sight, only a mean-field treatment erta = (128 B) (1200 i) (14)

(analogous to the preceding sechidrased on the meander and reinserting this exact expansion into Hamiltoni&8).

path yields a reasonable description of the one-triplet excita this way we obtain additional interaction terms containing

tions and only the meander path correctly reproduces théd- and 6-fermion operators which we now treat on the same

strong-coupling limit of the one-triplet dispersiog=J, footing as the Ising-interaction terms.

+Jcosk for J, /J>1 (see Sec. 1A 2 Following the mean-field treatment for the spin chain we
consider all possible nearest-neighbor bond amplitudes:

A. Meander path

_ _ o _ xo=(Blai), xi=(Blair1), x2=(a{Bii1). (15
Following Dai and S& we divide the ladder into two o ) _
sublattices as indicated in Fig. 5. Introducing two species offaking into account all possible contractions of the 4- and
Spin'ess fermionslli and Bi , the Spin operators on the two 6-fermion Operator terms we arrive at the fO”OW|ng mean-

sublattices transform as field Hamiltonian:
_ T
&fa=a?ex+w2 (af a#ﬂfﬁj)}’ Hur =2 (it He), (10
i<i
with
H '#a-Ta-
Sﬁfﬁ:BIeXF{'W; (af o+ BBy €7, (12) =31 (3= x0) +4Ixox1

o : + 1+2y2— — X1~ X2~ 2x>
where the summation in the phase factor is along the mean- J cosk(z+2xo™ 4x1x2 ™ X1 X2~ 2X1)

der path. For products of spin operators, which are not F1ainle 1 2_ _ 2
successive along the meander path, e.§,S. 1, i sink(z +2x0 Axaxa—xat xzt 2x)- (17
+S|faS,*+lﬂ, the phases corresponding to intermediate sitehis expression has already been simplified using that
along the meander path do not cancel. This is different fromy,, and y, turn out to be real. The above Hamiltonian can
the one-dimensional situation where all nearest-neighboeasily be diagonalized

spin operators are also successive along the path. Using

transformation(12) the Heisenberg Hamiltonian of E¢l1 ~ g .
becomes 12 9 @1 HMFZEK elaja—BiB with e=|yl, (18

1 1 using
of o~ 5)(3?,&— 5)]

H=3,2 E(a?ﬂﬁﬁ?aw ) )
ak:EUk(ak+73k)- ﬂkzﬁvk(ak—fgk),

1 ,
+Jzi [E[ﬁi‘rawl'*' arﬁi+1elw(nﬂi+n“i+1)+ H.C.]

1 1 u=vi =€y =|ynle% (19
+lafai— = || Bl 1B 1— = The bond amplitudes can then be calculated via
i%io9 i+1Pi+1 2
1 1 .
1 1 =-— — UZ, = — — uzef'k,

+| afypaiia- 5) BiTIBi—i)]- (13 A TR R
Unfortunately the phase factef™"s*"e;..) from spin prod- Yo= — S S p2e-ik (20)
ucts of nonsuccessive sites cannot be treated exactly. Dai and 2N ¢ 7K '
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' I ' tors with site labels not in sequence along the one-

O g 3F -7 x| 7] dimensional meander path. As the “matrix elements” of the
i L 3,2 fivmsesing | phase operator are 1 one might speculate to find a reason-
1" " e able mean-field result by replacing the operator uniformly by
20F ol el ] +1. This corresponds to a flux phase treatment of the phase
=, I 2 factor, where the flux through a plaquette is chosen to be 0
w

. and 7, respectively. Applying the same kind of mean-field
treatment as before one obtaias=|y,| for the mean-field

- -~

O W mean field N dispersion, where
== JW - Dai, Su
* DMRG Y=J1 (3= X0) +J cosk(1— x1— x2) +iJ sink(x,— x1)
0'00 ' 0|.5 ' 1 corresponds to zero flux and
k/n

¥c=31 (3~ x0) —J COSK(x1+ x2) +iJ sink(1—x1+ x>)

FIG. 6. Dispersion for the isotropic laddér=J, . Solid line— ) ) )
mean-field dispersion for Jordan-Wigner fermions; dashed line—t0 @ m-flux phase. The resulting dispersions for the zero-flux
dispersion obtained by averaging the phase factor analogous to tiase(dotted ling and ther-flux phase(dashed ling are
treatment by Dai and S(Ref. 23; circles—one-triplet dispersion displayed in the inset of Fig. 6 in comparison with the
obtained with DMRG for aN =80 site laddefRef. 20. Inset: dis- DMRG results for arN= 280 site ladder. Note that the zero-
persion obtained for a flux-phase approximation of the phase factdiux phase corresponds to simply replacing the spin operators
with 0 flux (dotted ling and = flux (dashed ling through a  S;’; by fermionic operatorse'/a or /4. The m-flux
plaquette. phase, therefore, is the first correction to the fermionic char-

) ) ] ) acter of the spin operators and improves the mean-field dis-
and for the isotropic ladder, i.eJ=J,, we obtain xo  persion notably.

=—0.3617,x,=—0.2679, andy,=0.1777. Still, this replacement by a flux phase obviously shows
The ground state of the two-leg ladder, which has no nepoor agreement with the DMRG dispersion. The mean-field
magnetization, consists of a fillggl band and an empty,  evaluation of the phase factédashed line, main panelas
band. A spin-1 excitation corresponds to addingegnfer-  has been proposed by Dai and Bimproves the form of the
mion to the System. Therefore the dispersion of the OnedisperSion at least qualitatively. For a reasonable quantitative
tnp'et excitation is s|mp|y given by the dispersi@Q of the agreem-ent with the exact dIS_peI’SIOI"I, hOWeVer, itis necessary
% band. The mean-field dispersieg for the isotropic lad- © consider aiso the correlations related to the phase factor,
der,J=J, , is displayed in Fig. 6 in comparison with the which are included within our mean-field treatment of the
VTV .

dispersion for arN=80 site ladder obtained by DMRE, meander patlisolid line, main pangl Our mean-field treat-

For momenta betweek~0.57—0.97 we find nearly perfect ment also corresponds to7flux state of the spinless fer-
agreement with the DMRG results. Only the spin gap, which'ﬁr;'ons’ttas‘i t?]e p;?vduc_lt_hgf_f'tlh()a( br(])nd ar?qs\ll'tl\idfsi a(;?flfmr(_j a
corresponds t@,.- ,, is slightly too small and the energy for plaquette IS negatve. This-Tiux phase, Nowever, 1S dilte
momentak< 7r/2 is somewhat overestimated. Still our mean-ent from the one dlscugsed above, where by construction the
field treatment even reproduces a dip for small momenta(,:OmpIGte phase factor is replaced by a flx

which is a precursor of the symmetrigvith respect tok

= 1/2) spinon dispersion of the spin chain. It has not been T
possible to attain this dispersion dip for the isotropic two-leg  In the strong-coupling limit our approach reproduces the
ladder within a mean-field treatment of the bosonic bond-correct strong-coupling form for the one-triplet dispersion

2. Strong-coupling limit

operator representation of elementary rung tript&tg. €x=J, +Jcosk. Expanding with respect to the rung-dimer
limit we obtain the following.
1. Role of the phase factor Zeroth order(J/J,)°. For J=0 the off-diagonal part of

To demonstrate the improvement of our mean-field evalu:[he mean-field Hamiltonia(l6) reduces to

ation with respect to the mean-field treatment by Dai and _J(i (21
Su?® who replaced the phase factor by its expectation value, %=1 (z = x0)- )

we have added their dispersion in Fig. 6. Qualitatively it iSThe resulting Hamiltonian can be diagonalized easily using
very similar to our mean-field dispersion. Its magnltude,uk:vkzl in Eq.(19) which yields for the nearest-neighbor
however, is by a factor of about 1.5 too small over a largeyong amplitudes, Eq(20), Xo=—1/2, x;=0, and y,=0.
section of the Brillouin zone. Therefore we conclude that antjs js the limit of rung dimers and the correct value for the

_ad_equate treatment of the phase factor is_very _important anéhergy of a single rung-triplet excitation is obtained as
it is necessary to go beyond a scheme in which the phase

factor is replaced by its average value. &=|vl=3, . (22
The importance of the “phase factor” can be conceived
also in the following way. The phase facte™("s " "«;.,) in First order (J/J,)*. Resubstituting the zeroth-order bond

Hamiltonian(13) was generated by products of spin opera-amplitudes in Eq(17) yields y,=J, +J(cosk+i sink). Ex-
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panding the resulting dispersion to first orderJfAl, one 0.0
obtains the correct strong-coupling limit

. , 1.0 0.2

€=|v=3. \/1+2—cosk+ —| ~J, +Jcosk. -
it it § 0.4
@3 O os
This expression contains already all terms to ordgl, . 06
This can be easily seen when the above results are inserted
into Eq. (20) for the bond amplitudes. To ordeWJ, one
obtains for the diagonalization transformatiap= y/| | 0.0 0.8
~1+iJ/J,sink and consequently for the bond amplitudes I, 1713,
Xo=—1/2 and y1=—x»,=J/(43,). Whereasy, remains
unchangedy; andy, are proportional td/J, and therefore FIG. 7. Mean-field evaluation for the meander pa#:spin gap
they contribute toy, and e, only in second order. and (b) expectation values of neighboring spin products as a func-
tion of J/J, .

3. Symmetry properties

Comparing the fermionic Hamiltonian, E(L3), with the H=1J T IT1+6(—1)ite
original spin Hamiltonian, Eq(11), one observes that the in SaS2 Z a:El,Z [ (DT80S 10

new fermionic operatorg; and B; do not conserve all the (25
symmetries of the original spin operat@s;, S ,. The sub-

lattice structure underlying the meander path, see Fig. 5, re- The properties of this Hamiltonian have been analyzed in
stricts the translational symmetry of the fermions to transladetail3®-4°There exists a critical line in thes(J, /J) param-
tions of an even number of sites. Nevertheless, neighboringter space, where the spin gap vanishes.J=ed, this criti-

spin correlations(S' ,S7,; s)=(aBi11) and (S ;S 1,0  cal point has been located nedg~0.43% For dimeriza-
:(ﬁi‘reiw(a?aﬁﬁfﬁi)aHl) should be equal in an exact treat- tions & smaller than the critical valueS. the spin gap
ment, because the Hamiltonians themselves are equivalent flgcreases whereas it increases againsfdarger thand. .

the sense that all matrix elements within the considered FocResides the reduction of the spin gap, however, the one-
space are identical. In a mean-field evaluation, however, thifiplet dispersion, especially for small momenta, has been
equivalence cannot be enforced, because the mean-fiefgund not to depend very sensitively on the presence of a
evaluation is a variational scheme based on two-particle exsmall dimerizatiorf?

pectation values, whereas the implementation of this symme- The analysis of Hamiltoniak25) helps to gain more in-

try would require correlations of four particles. In order to Sight into the underlying structure of our mean-field treat-
resolve this inconsistency, one either has to introduce twoment. By introducing an artificial dimerization, the meander
site cluster operators consisting of several fermions or on®ath recovers some of the physical properties of Hamiltonian
should choose a more symmetric fermionic representation. 1f25). For small leg coupling the spin expectation values on
the former case, one would have to work with nonlocal op-b0oth 1e9(S; .S 1) and(S; zS;+1,) are almost equdkee
erators which do not obey canonical commutation relationgig. 7(b)] whereas for leg coupling/J, >0.4 a noticeable
and, consequently, the merits of the fermionization would belimerization develops. Consequently, the spin gap decreases
lost. The second possibility of choosing a more symmetrignore rapidly than for a two-leg ladder without dimerization
fermionic representation will be investigated in Appendix A.[see Fig. T@]. At J/J, ~1.7 the dimerization reaches the

It turns out, however, that the meander-path representation ®itical value and the spin gap vanishes, whereas for larger
still the most favorable choice, because it allows the besteg coupling the spin gap increases again. The entire mean-
treatment of spin correlations along the legs. Therefore it iield dispersions are displayed in Fig. 8. In the opposite limit,
intriguing to explore the symmetry behavior of the meander-

path model and its consequences in more detail. ' ' T _ Tyt
Transforming the spin operators to fermionic operators 30 T mem 11p=20 730
according to Eq(12) and replacing all contractions by their == - o ;j}:ig
mean-field values as before, one obtains sol 1 -]
- - S =3 -
\M P &N, ~
2 - Y o
<Si,aSi+1,B>: _|X2|2+4X1(X0_X1X2)y ® — J/h=0-5\'\.
Lofm ML= N T A\ 110
...... /1, =10 N 3
(81 +100=—bralP+ x1. (29 e N AN
- \ \
For the isotropic spin ladder, i.el=J, , this gives rise to a o,oo"'-mio';'7 — “20.0
slight dimerization:(S; ,Si+15)~—0.22 and(S; zSi;1,) kjn K/n

~—0.34. A staggered dimerization pattern of this kind, on
the other hand, emerges naturally from a Hamiltonian with FIG. 8. Mean-field dispersiofmeander pathof Jordan-Wigner
staggered leg couplings such as fermions for different coupling ratiod/J, .
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i.e., for J/J, —», the spin correlations along the rungs TABLE I. Expectation values for neighboring spin products
(Si'asiﬁ> vanish [see Fig. ™)]. The dimerization along rungs and legs for the iso_tropic ladderJ, , obtained by the _
<5i,ﬁ51+1,a>_<51,a5i+1,ﬁ>, however, remains finitEsee Fig. Jordan-_\/\llgne!(JV\/) transformation based on the mear_lder path in
7(b)], i.e., forJ/J, —o the limiting case of two decoupled comparison with the other two approaches of Appendix A.
dimerized spin chains is approach@ae also Fig. B

In order to minimize the effect of the dimerization one (S452 (S 2728 +1202
should only consider the sum of exchange processes between pyrc —0.46 —0.35
sites i and i+1 on both legs, that is(S ,S1s) Meander path —0.49 —0.34/0.22
+(S;,5Si+1.0)- This corresponds to contracting the two sites 75,5 nath — 063 —016
on the rung of the ladder to a single site, i.e., visualizing the Symmetric JW 062 _0.16

fermionic Hamiltonian, Eq.(13), as a one-dimensional
model with two fermionic species on each lattice site. This

model has the full translational symmetry and therefore Tpg jnsyfficient treatment of the leg interactions is visible
quantities of the two-leg ladder which are compatible withgis5 in the limit of two decoupled chains, i.e., fdtd,

this ope—t_dimensional model should be the least affected by ., Only the meander path correctly reproduces uncorre-
dimerization. lated spins along the rungspproaching the limit of two
decoupled dimerized chains, howevemn the symmetric
treatment the expectation values for spin products along the
Certainly, the approach based on the meander path is ntdgs and along the rung approach the same I[sge Fig.
the only possible realization of a “Jordan-Wigner fermion- 18(b) in Appendix A] and for the zigzag path, the leg prod-
ization” for the two-leg ladder. Alternatively, the one- ucts even vanishsee Fig. 1) in Appendix AJ.
dimensional Jordan-Wigner transformation could also be ap- With these considerations we regard the Jordan-Wigner
plied along a zigzag patfsee Fig. 4b)]. Moreover, it is not  fermionization approach, based on the meander path, as the
necessary to adhere to a one-dimensional version of theost promising choice, provided one is interested in quanti-
Jordan-Wigner transformation but it is also possible to find aies which are not too sensitive to dimerization, an aspect
more symmetric formulation. These two alternative treat-which will be elucidated further in the following section.
ments are discussed in Appendix A. Nonetheless, the ap-
proach based on a meander path yields the most accurate
results despite its artificially generated dimerization pattern.
In the following we therefore address the puzzle, why the So far we have considered only one-particle excitations of
meander path is superior to the otligrore symmetricap-  the spin ladder. The Jordan-Wigner fermionization, however,
proaches. allows also the investigation of two-particle quantities. Since
The solution to this problem has to be understood fronthe approach based on the meander path proved to be the
the nonequivalent treatment of spin interactions along th@ost accurate in the previous sections, we extend it to the
same leg in the different approaches. Interactions betweednalysis of the two-particle excitations. As a suitable ex-
spins succeeding along the meander path enter the Ham@mple for a two-particle correlation function we will exam-
tonian without further phase factors whereas interactions beéne the magnetic contribution to the optical conductivity
tween the other spins transform into higher-order fermionior(w). First, o(w) constitutes a powerful probe of the spin
interaction terms and, therefore, they are captured only t@xcitations and it has been measured on the spin ladder com-
lowest order in a mean-field approximation. Due to thepound (La,Ca),Cu,4O4;."® Second, the optical conductivity
meander-path structure only half of the leg interactions “suf-can be calculated from the correlation function of neighbor-
fer” from this approximation, whereas the other half of the ing spin products, a quantity with a minimum of intermediate
leg interactions are treated on the same level as the runghase factors.
interactions. Although this leads to an inhomogeneous treat- Via the investigation of the optical conductivity of the
ment of the leg interactions, it is the advantage of thespin ladder compound (La,Cafu,40,; (Ref. 18 it was re-
meander-path approach that it is possible to treat half of theently possible to verify experimentally the existence of an
leg interactions accurately. In the other Jordan-Wigner apS=0 two triplet bound state in a two-leg spin ladder. This
proaches, as discussed in Appendix A, all leg interaction$terpretation was confirmed by an evaluation based on our
include a phase factor which is implemented in the meandJordan-Wigner treatmeni.In a more refined analysis using
field Hamiltonian in lowest order only. This insufficient the dynamical DMRG we have been able to shbilat it is
treatment of the leg interactions is reflected in the fact thatiecessary to include a 4-spin cyclic exchange interaction of
the expectation values for neighboring spin products alongboutJ.,~0.2Q), —0.27), . This demonstrates that the op-
the legs are strongly underestimatege Table)l The ap- tical conductivity is indeed an interesting quantity and is
proach based on the zigzag path and the symmetric treatmewbrth a more detailed discussion.
yield only approximately half of the DMRG value, whereas Here, for simplicity, we focus on an isotropic laddér
the stronger leg bond in the meander-path approach is very J, without cyclic spin exchangeJ(,.=0). Although an
close to the correct value. Strikingly, even the weaker legadditional cyclic spin exchange could be included straight-
bond of the meander-path approach yields a larger expectéerwardly, the number of terms in the mean-field and the
tion for neighboring spin products than the other treatmentsRPA treatment would increase considerably. As the main pur-

4. The prominent role of the meander path

B. Dynamic correlation functions
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surplus operators with their contractiofis). With this pro-

>.< — >< + + %_‘ cedure the Fourier transform of the spin-flip operators be-
~<<- %}< comes

FIG. 9. Diagrammatic representation of the processes which rung_ 1_ + +
contribute to the extended RPA treatment, in real space. 0By = \/N ; 2 Xo (@ Bprit Br@p+i),

pose of the present paper is to analyze the capability of a 1

Jordan-Wigner approach we neglect a cyclic spin-exchange 58'5% o= — 2 {alﬁp+k(a+ belk—ce (P

term in order to keep the treatment as transparent as possible. Y N

In the following we will exhibit how the spin-flip correlation

functions, which contribute to-(w), can be obtained within

the Jordan-Wigner approach. Then we discuss the resulting

correlation functions and focus on ti$e=0 bound state and leg _ _~ T o Tk —i(ptk

the continuum excitations. Bound states in the singlet and ~ PPy=7 JN Ek {eBp+ic n( —atbet—ce *)
triplet excitation channel were predicted by Uhrig and

Schulz!* by Sushkov and Koto¥# and by Damle and +Blap i o(—a—be (POl (29

SachdeV! More extensive perturbative investigations were

performed®!* and the observability of Fér%e singlet bound With

state was suggested by Jurecka and Brénig. 1 2

For the calculation of the optical conductivity we will a=4xox1. b=z H+2xo—4xix2~ X1,

concentrate on an isolated £ ladder. The phonon- ) ~ 5

assisted magnetic contribution &(w) results largely from C=2x1+x2, b=3-2xgt4xixa—x1- (30

the simultaneous excitation of two neighboring spin flips and . . ) )

a Cu-O bond-stretching phonon: In.s.ertlng the spin-flip operato(29) |n_to the optical con-
ductivity (26) produces a sum of particle-hole propagators
with different form factors. To evaluate these particle-hole

‘T(w)~_w% pZO Fo IM((B—p: 0Bp)) (0w propagators in RPA we prefer to use the original fermionic
y T

(26) operatorsa, 8 because transformation to the operatar#
(19) would increase the number of interaction terms consid-

+Blap(a+be PTRO—cdly

wherep=(p,py) and the operators erably.
1 Prior to the derivation of the RPA equations, the interac-
SBleI=— P il _ , tion terms in the Hamiltonian have to be reduced to two-
PN Z |=21,2 (S1Sr1=(SuS1) particle interactions in order to deal only with 4-particle ver-

tices. Accordingly, all 6-operator terms, which appear in Eq.
rung_ 1 ip, (13), are reduced to 4-operator terms by replacing all pos-
5By N EI ePi(§ 1S 2-(S1S5.2) (27) sible contractions with the corresponding bond amplitudes
(15). In this way, we obtain the following reduced interaction
are the spin-flip operators for polarization of the electricalterm from Hamiltonian(13):
field along the legs and the rungs, respectively.
Following our previous treatment in Ref. 20, we consider

Ji
phonon form factors given by Hrea=J g > “ O(kitko—ks—ks)

J

t ot
ay, Bk, Bry ¥k,

fleg:8 Slrﬁ(E) frung:8 S”,F(E +ei(k27k3)+(1+4X2)eii(k27k3)+2X1(ei(k1+k2)
p 2/ p 2

+4. (29)

—i(kqtko)y _ iK1 1 a—iky 1 aikg oy a—iky
Here,f',gag originates from the coupling to in-phase and out- +e )~ 2xo(€Ti e Tztelete )}

of-phase stretching modes of O ions on the legs and it is the

; . . Tt i (ko —k3)
same form factor as for an isolated spin chain. 8t we +ay g, PP, 2x187
take in addition to the out-of-phase stretching mode also the
vibration of the O ion on the rung into account, which is +Bllﬁlzaksak42)(19'(k1_k“)J- (31)
responsible for the constant contribution in E28).

A set of RPA equations for the particle-hole propagators,
which are listed in Appendix B, can be obtained by consid-
For the calculation of the spin-flip correlation function we eration of all possible vertex configurations of the interaction
apply the meander-path formulation of the Jordan-WigneHamiltonian(31). In real space these vertices correspond not
transformation (12) to the spin-flip operatorsS ;S.;;  only to a summation of bubble diagrams, but also include
*§,S412, and§ 1§ ,. All terms with 4- and 6-fermion ladder diagrams and other nonlocal terms as indicated in Fig.
operators are reduced to two-operator terms by replacing afl. For this reason we use the teaxtendedrPA treatment.

1. Extended RPA treatment

104419-9



TAMARA S. NUNNER AND THILO KOPP PHYSICAL REVIEW B69, 104419 (2004

Si,lSi+1,1+Si,ZSi+1,2

g .
3.0+ -
3 25t
20+
1.5F
Mean Field Log e — JordanWigner / RPA — bound state
F -+ DMRG - S=0-bound state
05r o0 DMRG - continuum edges 7
0.0 L 1 2 1 2 1 L 1 " 1 " 1
B 0.0 0.5 1.0 1.5 2.0 2.5 3.0
= k
(1)'2 FIG. 11. Particle-hole continuum of the Jordan-Wigner fermions
0.6 and S=0 bound state(thick solid ling in comparison with the
0.4 two-triplet continuum(open symbolsand S=0 bound stat«filled
0.2 symbolg obtained by DMRG for a ladder witiN=80 sites
0.00 g = (Ref. 20.

/] ‘

_ _ slightly too low. This indicates that the interaction strength is
FIG. 10. RPA and mean-field evaluation of the momentum re-

solved correlation functiof{6B'®9 . _,:6B°9 _ ), where a broad- somewhat overestimated in RPA.
“Ppy=0? Ty =0 In the mean-field evaluation of the out-of-phase compo-

ening of §=0.01) has been used The gray linéspper pansl . . s
designate thes—0 bound state. The dashed dark gray line is anent of the correlation function for spin flips along the legs

projection of the dark gray line in the lower panel, which links the «58'3% py=m’ 5Bleg *W» (lower panel in Fig. 12 the Van
points of sharp increase in the middle of the continuum. This is alove smgularltles at the continuum edges are suppressed.
precursor of the upper edge of the 2-spinon continuum in singléThe overall momentum dependence prappears to be re-
chains(Refs. 14 and 48 In RPA a dip structure remains at the same versed when the out-of-phase component in Fig.(d@er

position in the continuum. pane) is compared to the in-phase component in Fig. 10
o _ . (upper panel This is caused by the checkerboard sublattice
2. Spin-flip correlation functions structure of the meander path, which shifts the momentum of

In this section the correlation functions for spin flips the particle-hole propagat@?B'ep _, by 7 in relation (29).

along the |99§B|§% —0 55'{5% -, and for spin flips along  The inversion of the momentum dependence is especially
the rungssB,"™ for an |sotrop|c laddedd=J, , using the noticeable for the bound state. However, the out-of-phase
RPA treatment of the preceding section, will be discussedcomponent should not contain the bound state but only con-
The results are presented in Figs. 10, 12, and 13. For contribute to the continuum excitations, an issue that we have
parison the mean-field evaluation of each of the correlatioraddressed previously in Ref. 20. The argument is based on
functions is displayed in the lower panels. the observation that the out-of-phase component originates
In the mean-field evaluation ot(éB'ep p,~0’ B'e% _o)  from the excitation of three different rung triplétsywhen it
(lower panel of Fig. 1pone observes Van Hove smgularltles is expressed in terms of rung-triplet operatbt8 The S=0
at the upper edge of the continuum for small momenta and &ound state, on the other hand, arises from scattering pro-
the lower edge of the continuum for large momenta. With thecesses of two equal triplets and therefore cannot be present in
RPA treatment the Van Hove singularities at the continuunthe out-of-phase component. The spurious appearance of the
edges disappear. For small momenta the maximum of thbound state in the out-of-phase component demonstrates the
continuum is shifted from the upper edge downwards tosensitivity of the out-of-phase mode to an artificial dimeriza-
aboutw~3J. At large momenta we observe the formation of tion. This sensitivity is due to the fact that the out-of-phase
the S=0 bound state. The bound state emerges from thenode is calculated as the correlation function of the differ-
continuum atk~0.37, it passes through a maximum lat  ence of neighboring spin produc®;S; 11— S S 112, i.e.,
~ /2 and a minimum ak= . In Fig. 11 the dispersion of a term whose expectation value is just the dimerization. On
the bound state is compared with the DMRG calculation forthe other hand this also explains, why the in-phase mode is
an N=80 site laddef® We find good agreement between much less sensitive to dimerization as it corresponds to the
both methods, only the energy of the RPA dispersion issum of neighboring spin produc® ;S 11+ S 2S+12.
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T T T T — T T T T T
RPA RPA
Si,lsi+1,1'Si,z i+1,2 Si,lsi,z
/’N
g 10 i /ﬁk e OE——M e
= i B e =
o3 i 11 =08 =
0.6 0.6
04 0.4
0.2 0.2
0.0 ———F—+—F—F—— 0.0
Mean Field Mean Field
. o %/"ﬁ\\ . 1.0 i
. .
=¥ — < o
08 e 08 .....
—f e
06 JJI 'Ill\ A 06 ...........
j} lj”
0.4 N —— 0.4 —F
I —— 7
0.2 0.2 — e -
i
0.0 1 1 1 1 s § E— 1 OO L a 1 L 1 L 1 1 1
0.0 1.0 2.0 3.0 40 5.0 0.0 1.0 2.0 3.0 4.0 5.0
/J o/J
FIG. 12. RPA and mean-field evaluation of the correlation func- FIG. 13. RPA and mean-field evaluation of the correlation func-
tion (8B'®Y , _;6BsY _ ), where a broadening af=0.01 has  tion (8B™%; 5BI'"%), where a broadening of=0.01] has been
Py Py ) -
been used. The gray lines indicate e 0 bound state. used. The gray lines indicate tle=0 bound state. The dashed dark

gray line in the upper panel is the same as in Fig. 10.

In Fig. 13 the RPA and mean-field evaluation for the method?’” has been added in order to facilitate a judgment
correlation function of spin flips along the rungs about the accuracy of our Jordan-Wigner approach.
(6B™%; 6B, are shown in the upper and lower panels, For polarization parallel to the legs apg=0 (top panel
respectively. Fop=0 it is identical to thep=0 component of Fig. 14 two dominant peaks appear @j~1.4) and w,
of the in-phase correlation function for spin flips along the~2.0J. They are caused by Van Hove singularities arising
legs(6B'®9 | _4; B9 _ o) and both correspond to the cor- from the dispersion of th&=0 bound stat€ at p= and
relation function for the Raman resporféd5For larger mo- P~ /2. The upper peak ai, is suppressed by the inclusion
menta, the spectral weight of the rung correlation is muctPf the relevant form factor sf(p/2). For thep,=0 compo-
smaller than the in-phase component of the leg correlationgent we find reasonable agreement with the corresponding
and atp= the weight of theS=0 bound state vanishes PMRG spectrum. The frequency of ti§=0 bound state is
according to a selection ruféwhich originates in the reflec- Somewhat too low in the Jordan-Wigner approach because
tion symmetry of a singlet state of two rung triplets aboutthe RPA treatment overestimates the interaction strength as

rungséB[}‘”g is odd under this symmetry at= the weight other hand, is slightly underestimated. To some extent this is

of the singlet bound state for its excitation with momentumdue to the fact that, so far, we have considered only the
p= is zero. creatlo_n of two fermlo_ns at the external_ current vertex: we
approximated the spin-flip operators in EQR9 by a
. o particle-hole creation operator. Without this approximation
3. Optical conductivity the correlation function§sB'3, | _, ;8BS _;..) would
Once the momentum dependent spin-flip correlation funceontain the excitation of 4- and 6-fermions as well, which
tions, shown in Figs. 10, 12, and 13, are known, the opticalvould increase the amount of high-energy excitations. The
conductivity o(w) in Eq. (26) can easily be obtained by weight of these higher-order excitations will be estimated in
integration. In Fig. 14 the in-phase,=0 and the out-of- the following section.
phasep,= 7 contribution too(w) for polarization along the With respect to the out-of-phase compongniddle panel
legs are displayed in the upper two panels. The optical conef Fig. 14), however, there is only poor agreement with the
ductivity for polarization along the rungs is shown in the DMRG spectrum. To some extent this is due to the impor-
lower panel of Fig. 14. In all panels the correspondingtance of higher-order processes which make up about 50% of
DMRG spectrum, obtained with the correction-vectorthe weight of the out-of-phase mode as discussed in the fol-
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4.0 T T T T T T T T
E| leg % — IW-sin'(p/2) ]
(p,=0) it o DMRG - sin'(p/2)
201 "
(a) (b) (©
0.0 FIG. 15. Mean-field weights for the spin-flip correlation. They
08k — TW-sin'p 2) ey Elleg A corrgspond to the evaluation .of one, two, and three noninteracting
*—® DMRG -sin'(p/2) ¢ o (pm) particle-hole lines for the excitation of 2-, 4-, and 6-fermions dis-
- ‘ . 1 played in(a), (b), and(c), respectively.

04

spieo L > 28(ptkytko—ks—ky)
0.0 PPy=0"" N3y <, vt s

O RRGere ., Ellrung | |
081 g X allﬁlzlgke,akzt x (€' Ktk 1 gmilkatke)y
04 —xo(eK1+e kit g i(Ptka) 4 @=ilP—ka))
0.0 1 i(ky—k3) 1 ai(ky—Kg) i(ky—kg)
0.0 +§(e 2 "84 e\ 4)+2X28 174
®/J .
i ko—k
+ a kB, Brgx1€ 2

FIG. 14. Momentum integrated spin-flip correlation functions,
which contribute too(w) for polarization along the leg&op and - (ki — k)
middle panel and for polarization along the rungbottom panel +,3k15k201k3ak4)(1€ T,
In order to visualize the resulting contribution éd ) in Eq. (26)
each correlation function has been multiplied with the frequancy
and for each of them the momentum integration is shown without a 1
prefactor (dashed linesand with a prefactor of sfigp,/2), i.e., 556"99=0: - E 28(p+Kky+Ky+Ks—ks—Ks—Kg)
sirf(p,/2) (solid lineg. In each panel one DMRG spectruym- PPy 6
bols) has been added for comparison. X{allalzﬁlsﬁkﬁksakeei(kz_k“_ka)
lowing section. Furthermore the stronger sensitivity of the _
out-of-phase mode to dimerization is adverse, as explained in + allﬁlzﬁﬁaﬁkllaksakee'(kl*kz*kﬁ)} (32
the preceding section.

For polarization parallel to the runglsottom panel of Fig.
14) only the upper bound state at, is present in the mo-
mentum mtegrateo! spectrum pecauseSh@ bound state is tum p has to be replaced withpt-) and, in the term
suppressed at= 7 in accord with a selection rufé,see also 1 (eitko—ke) 4 gitki—kay ! gt f the 4-fermi
Fig. 13. For the rung polarization we find very good agree—Z(e € ) et B Brs i, OF the 4-fermion com-
ment with the DMRG result. Rung correlations are obviouslyPonent, the parentheses have to be replaced eitfe(?
treated quite accurately in our meander-path representation. gtk
There are no phase factors in the product of two Spin opera- In Order.to gstimate the contribution of propesses involv-
tors on the same rung because they are neighboring a|0ng tHeO the eXCItgtlon of a different number of fermlons, we com-
meander path. Therefore the only 4-fermion process resulfgare the weights
from an Ising-like term.

for the in-phase component of the leg polarization. The out-
of-phase component is very similar, except that the momen-

i ihuti e 1
| 4-. Higher-order contrlb-unons o Wgy= - Jo doy Ep fo <5Brlp,py;5Bgypy)>, (33
The contribution of 4 and 6 fermions to the spin-flip cor-
relation functions in leg polarization can be obtained analo-
gous to the 2-fermion contribution. In the spin-flip operatorwhich are obtained by integrating the=2, 4, and 6 fermion
58'5"9, Eq. (27), the spin operators are replaced by fermionicpart of the leg-correlation functions over frequensyand
operators. Terms with 6 operators are designated as thomentunp using form factord =1 andfpzsin4(p/2). To
6-fermion part. Terms with 4 and 6 operators contribute tokeep this evaluation as simple as possible the correlation
the 4-fermion part, when all surplus operators are replacetlnctions are evaluated in mean-field theory, i.e., they are
by their contractions, analogous to E(R9). With this replaced by noninteracting particle-hole lines as indicated in
scheme one obtains for the 4- and 6-fermion part of the spinFig. 15. The frequency integrals in E(B3) can be elimi-
flip operator nated using
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TABLE IIl. Mean-field weights of the 2-, 4-, and 6-fermion con- considered the 1D spin-1/2 chains as an appropriate case

tributions to the in-phasep(=0) and the out-of-phasep(= )

study and tested the validity of the approach through the

component assuming noninteracting particle-hole lines. For theyaluation of a specific dynamical spin-flip correlation func-
2-fermion contribution the weight of the RPA evaluation is given in tion. This correlation function corresponds to the phonon-

parentheses.

assisted magnetic contribution to the optical conductivity,
and we found good agreement with the experimental spec-

=0 =0 =

Iny 1 g _py.n4 Py=m _py_ v trum of SpCuO;.

o= p=sin‘(p/2) fo=1 fo=sin*(p/2) ) N
In order to extend this approach to two-18¢ 5 ladders

n=2 1.88 0.95 0.25 0.17 we have analyzed different possibilities to apply the Jordan-

(2.56 (1.47 (0.25 (0.17 Wigner transformation to a two-leg spin ladder. In contrast to
n=4 0.59 0.17 0.45 0.17 the 1D spin chain, however, operator phase factors emerge
n=6 0.01 0.01 0.01 0.01 even in the Hamiltonian. Expanding these phase factors cre-

ates new interaction terms, which can be treated within stan-
dard perturbation theory. We elaborated that it is essential to
include fluctuations which originate from the phase factors—
rather than treating the phases@aaumbers. Applying the
Jordan-Wigner transformation along a meander path through
the ladder allows us to treat half of the leg interactions on the
same level as the rung interactions. This advantage out-
weighs the artifact of introducing a slight dimerization of the

where aj/(QjIe-ii0+) are expressions for retarded and spin ladder: the resulting one-triplet dispersion agrees well
advanced Green'’s functions. The remaining momentum inte?ith the DMRG result, much better than other more symmet-
grals can be easily evaluated numerically. ric realizations of the Jordan-Wigner transformation.

The resulting weights of the 2-, 4-, and 6-fermion pro- Based on the meander-path approach we have developed
cesses are displayed in Table Il. The 4- and 6-fermion proan extended RPA scheme for calculating the dynamical two-
cesses make up only 24pa5%) of the in-phase part of the spin correlation function, the basic ingredient for the optical
spin-flip correlation function when a form factor df,  conductivity. In order to test the accuracy of our approach we
=1 [fp=sin4(p/2)] is used. On the other hand, they generatehave compared our results with spectra obtained from a dy-
a major contribution to the out-of-phase component, i.e.namical DMRG. For polarization along the rungs we find
65%[50%)]. Note that these values refer only to noninteract-very good agreement with the DMRG spectra. Spin-flip pro-
ing particle-hole propagators and may be changed when thgesses on the rungs are represented quite reliably in our ap-
evaluation is improved. For example, the weight of theproach, because two spins on the same rung are also neigh-
2-fermion contribution to the in-phase component is en+oring along the meander path. Therefore no phase factor is
hanced when the particle-hole propagator is evaluated iRresent in the corresponding spin-flip operator. For spin-flip
RPA. In Table Il these RPA weights are added in parenthesepyrocesses along the legs, however, the phase factor generates

Since the 4- and 6-fermion processes contribute only Qe excitation of 4 and 6 fermions in addition to the
the continuum excitations, they will increase the high-energy tarmion processes. With respect to e 0 bound state
weight and therefore improve the consistency with theyonyincing results already emerge from the evaluation of the
DMRG results for polarization along the legs in Fig. 14.5 termion contribution. The weight of the high-energy con-
Presumably, however, the consideration of a direct excitatioRy ,um, however, is underestimated. To some extent this can
of 4- and 6-fermion processes will not suffice to obtain full |, compensated by the consideration of 4- and 6-fermion
agreement with the DMRG spectra. It might also be necesgyitations.
sary to include higher-order vertex corrections. They may |, this paper we have focused on two-leg spin-1/2 ladders.
shift some weight from the bound state to the continuumy \oyid certainly be interesting to extend this treatment to
excitations, b.ecause the RPA overestimates the interactiQqqers with more than two legs. With respect to odd-leg
strength as discussed in Sec. 11l B 2. They may also help t@,qqers it is promising that the fermionic approach naturally
reduce the artlflmally mtrod_uced dlm_erlzatlon by the Mean-rgproduces the gapless excitation spectrum of odd-leg lad-
der path which has been discussed in Sec. Il A 3. ders. Without magnetic field the fermionic system is at half
filing and consequently, for an odd number of fermionic
bands, one band is half filled which accounts for the absence
of a spin gap.

In this paper we presented an approach to obtain dynamic
correlation functions in low-dimensional quantum spin sys-
tems. It is based on a fermionization of spin operators
through a Jordan-Wigner transformation and it treats the fer-
mionic interactions in RPA. We demonstrated that the appli- We would like to thank M. Groinger and Q. Yuan for
cation of standard perturbation theory to the new fermionicstimulating discussions. This project was supported by the
operators is appropriate even in the high-energy range. WBFG (SFB 484 and by the BMBF13N6918 A.

0 ) 1 o
o iw0™ _ . — .
771;[ a; ImJ’0 dwe H o deQ,zS(w 2 QJ)

3, b;
—+ —, (34)
Qj—6j+|0+ Qj+€j—|0+

X
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APPENDIX A: FURTHER APPROACHES 0.05 s e ; '''' - ""4-0.8
TO JORDAN-WIGNER TRANSFORMATIONS W 177

This appendix addresses other possible Jordan-Wigner
treatments of the two-leg spin ladder and their resultin
mean-field Hamiltonians. Besides the meander path, whlcS in oroducts as a function dfJ
our Jordan-Wigner approach is based on, the one- pin p t
dimensional Jordan-Wigner transformation could also be ap-
plied along a zigzag path. This alternative choice is discussed
in Sec. A1. Moreover, it is not necessary to stick to a one- )
dimensional version of the Jordan-Wigner transformation but Yax=—2JRe(xa+ x3€%),  vgx=—2IRe(x3+ x4€").
it is also possible to find a more symmetric formulation as (A4)

discussed in Sec. A2. Diagonalization of the mean-field Hamiltonian results in

FIG. 17. Mean-field treatment based on the zigzag pédh:
ispersion forJ=J, and (b) expectation values for neighboring

Yox=J1 (3= x0) +23(x0e™+ x1),

1. Zigzag path

_ _ | | Hue=2 (€qkakait eg,dBiBi)., (A5)
The sublattice structure underlying the zigzag path is very k
simple: each leg corresponds to one sublattice, as indicatggii,
in Fig. 16. Applying the one-dimensional Jordan-Wigner
transformation, Eq(12), along the zigzag path with the sub- YakT VoK Yak— VpK 2
. K . . _/a, K a, , 2
lattice structure of Fig. 16 generates the following Hamil- €alp k™ 2 = ( 2 +yol®. (AB)

tonian:
For the isotropic ladded, =J the mean-field evaluation
yields xo=—0.437, x1,=0.180, y,=—0.136, x3=x4=0
and thereforey, = vyz«=0. The expectation values of
neighboring spin products are displayed in Fig(th7as a
function of J/J, . For the zigzag path there is no dimeriza-
tion with respect to the spin products along the legs. How-
ever, a slight difference in the expectation values for the

3 sl

1
> [E[a?amu—2ﬂ?ﬁi>+ﬁrﬁi+l

1 products of spin operators situated along the diagonals ap-
X(1-2al, jai ) +Hc]+| alaj— = i i i
i+1%i+1 it pears for intermediate values dfJ, , which reflects the
type of symmetry reduction due to the zigzag path. In the
| B Biir— =]+ ol e _E ,B-T,B-—E limit (_)f strong rung c_ouplingJ_/JL=O _the correct ground
i+1Pi+l 5 i+1%i+1 5 iFa) state is recovered, which consists of singlets along the rungs.

ForJ/J, — o, however, the expectation values for spin prod-

(A1) ucts on the rungs spuriously approach the same limit as for
Here the expansion of the phase factor yields only 313, =0.

4-operator terms. Taking into account all nearest- and next-

Also the mean-field dispersion, which is displayed in Fig.
nearest-neighbor bond amplitudes P Pay g

17(a) for J=J, , shows only poor agreement with the ex-
pected one-triplet dispersion. This discrepancy already arises

_/pf _/pt ot
Xo=(Biai), x1=(Biait1), x2=(a{Bit1), in the strong-coupling limit since one obtains
xs={afaii1), xa=(BBi:+1), (A2) Yox=4J, —J(cosk+isink), y,x=v5xk=0 (A7)
the following mean-field Hamiltonian is obtained: by inserting the zeroth-order bond amplitudes=—3, x1

=x>=x3=xa=0. For the dispersion this produces to first
order inJ/J, ,

HMF:; { Yokt Bt YorBrakt Yaxehaxt v kBiBit,
(A3)

2

~J, —Jcosk,

(A8)

J
ekzl’}lo,kl:‘]l \/1 ZJ_COSk+ JL

with
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which obviously differs from the correct strong-coupling

o =J, (3 —x0) +I(2xE X1+ 2xExE +1Imys—Im
limit (23). Yok=J1(z = x0) +I(2x5 X1+ 2x5 X3 + IMy3—IMx,)

i 2
+I€M(z — X2+ X6~ X1x2— X1X3 — X1F XaX4)
2. General treatment of the two-leg ladder _— , o
) ) + — 1l + I N * _ % + * %
It is not necessary to apply the Jordan-Wigner transforma- Je = Il Xomxaxe — Xz — Xz TXaxa),
tion along a one-dimensional path through the two-leg lad-

der. More generally the Jordan-Wigner transformation can be Yak= —IIM(x1+ x2) +2Rexo(sink+2Rey,)

written as —2Re x1x5 + x2x5) ek,
SIT:CiTeiﬂ'qbi with ¢i:Z gDijCjTCj ) (A9) ’YB,kz‘J[Im(X1+X2)+ZReXO(Slnk_ZR@(3)
! +2Re x1x3 + x2x3) €], (A13)
In .order to fulfill the correct commutation relations for the For J=J, the bond amplitudes yielgo=—0.431, x1= x>
spin operators the phase factars have to obey =-0.028, y3=— x,=0.162 and the resulting mean-field
dispersion forJ=J, is displayed in Fig. 1&). Although
pij=@;*1l. (A10) thereis no artificial dimerization in this symmetric treatment,

the resulting mean-field dispersi¢solid line in Fig. 18a)]
This relation is automatically fulfilled by arranging the spins deviates more from the DMRG result than the dispersion
in a one-dimensional sequence g§.;=1 and¢;,,;=0. obtained by the meander-path treatmfgtgshed line in Fig.
The phase factor, however, can also be distributed among tHe8(a)]. In the limit of large leg couplind/J, the expectation
spins in a more symmetric way by choosing, e.g., value for spin products along the rungs approaches the same
value as the expectation value for products of neighboring

) f spins along the legs. This is certainly not the correct limit as

el ("B B, rung spins should be uncorrelated g, — .

Sira= aﬁexr{ i 71'2 (aJ-TaJ- +,BJT,8])
i<i

APPENDIX B: RPA EQUATIONS

—i(m a-Ta- . .
e (e, The RPA equations for the particle-hole propagators of the

(A11) spinless Jordan-Wigner fermions can be obtained by consid-
ering all possible vertex configurations of the RPA Hamil-
g tonian(31). The explicit form for the renormalized particle-

slfﬁ=ﬁﬂex;{ i w;i (afa;+B]B))

Now the sublattice of th& , and$§ ; spins can be arrange :
in a checkerboard-type structure such as for the meanddPle Propagators is
path (see Fig. % or with respect to the legs such as for the 5
zigzag path(see Fig. 16 wr T w3\ \,v
Here, we will only discuss the checkerboard-type sublat- Byfpvﬁ”f_bﬂp*‘s"ﬁ;o b3 a.5a1Bgtp 0
tice. Using the above version of the Jordan-Wigner transfor- n L o o
mation (A11) and expanding the phase factor the Hamil- +b% 4 55Baty pot T D5t 55tB AT aot
tonian for the checkerboard-type sublattice transforms to R gAY S g
V18,6aT2BTp,a0t " M yTB,6aTalp, pot

aiTozi - %) ( ﬁrﬁl —%) ] + blﬁzﬁ)\’gﬁTB};v’r];’agT}- (Bl)
For simplicity the momentum and frequency indigeand w

have been omitted. The noninteracting particle-hole propaga-

torsb andb, including the appropriate form factors from the
internal interaction vertices, are defined as

H=J,2 [%(a?ﬂiw?aiw

1
+JEi {E[arﬁHl(l_(i +1)BB)A+(i—1)

Xal 1 )+ Blai (L+(i—1)afe)1—(i+1)

1
by 501 = 1 2 FEFKDS, 01(PK ),

t T 1
X Bi+1Bi+1)+H.Ccl+| « ai= 5| Bit1Biv1™ 5

T
Tl Aia@iva—

1 1 1
5 (,BiT,Bi - E) ] (A12) b5 =N 2 TN (PKIBGs, 1P K,w), (B2)

L ) with form factors
Considering all nearest- and next-nearest-neighbor bond

amplitudes as in EqiA2) one obtains a mean-field Hamil- f9=1, fi=ek fl=e ik (B3)
tonian with the same structure as for the zigzag fAB).
Therefore also the mean-field dispersion is of fdi6) with and
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FIG. 18. Mean-field treatment of Hamiltoni#A12): (a) disper-
sion forJ=J, (solid line). For comparison the dispersion obtained
by the meander-path treatmddashed lingand the DMRG disper-
sion are addedb) Expectation values for neighboring spin prod-
ucts as a function od/J, .

g %p,k) ==, fi+20x0(1+e P,
g D(p,k)=J[2xo(1+€P)FR—2x,€Pfi— (1+4x,) F{],
9®d(p,k)=—I(fi+2x.87 PFD),
(2,0) _ —ip ip 0_ ipfl
g (p,k)=[J, +I{e P+ (1+4x,)eP}]f —2Ix0e'Pf}
_ZJXofﬁv
g'®M(p,k) =23(~ xoefic+ x2€"f),
9@2(p,k)=23(— xof o+ x,67PF2),
9C®O(p,k)=[J, +I{eP+(1+4x,)e P}IfR—2dxof i
—2Jy,e 'Pf2,
9®Y(p,k)=23(— xof g+ x1€"Pf1),
9®2(p,k)=23(— xoe~ P+ xse7 P,
g\ p,k) ==, fie 20 xo( 1+ P

g™ V(p,k)=—J(2x,ePfi+f2),

PHYSICAL REVIEW B69, 104419 (2004
9“2(p,k)=J[2xo(1+e P)fP—(1+4xo) fr—2x.e PFE],
g®9(p,k) =g (p,k) =23y, (eP+e P)fP,
g®(p,k) =gV (p,k)=—23x,fZ,

gG52(p,k)=g®A(p,k)=—2Jx,fi. (B4)

The noninteracting particle-hole propagatbfsare given as

bO _ 10 _ _
ata,aat™ VpTR.ARTT Vata,pptT

=93(p.k,0) — g (p.k,)],

0 0
b bt bﬁTB,aaT

b?ﬁa,aaT: b,(l)ifa,BBT: ‘l‘us%—k[g?(p!k!w) + gg(p'k,w)],

. b0+ s 5r= 105K [03(D. K@) +09(p.K,@)],

aTB,aaT:
bZTa,aﬁT: szﬁ,aﬁT: - %uﬁ[gg(pvkyw) + gg(pvkvw)]a
0t pat =Dt 5t = — FVELGNPK, @) + 03P,k )],

bgTB,aBT: - %uﬁviwrk[gg(p!k!w) - gg(p,k,w)],
b?ﬂaﬁofrz - %Uﬁufwk[gg(pak,w) - gg(p,kJﬂ)],

bgTB,ﬁaT: - %Uivrz)-%—k[gg(p’k’w)_gg(p’kvw)]r

D%t 0=~ $URUZ [ G(P.K, @) —09(p,k,@)], (B5)
with
0 Kk _ 1
9:(P, ’w)_w—ek—ep+k+i5’
0 1
gZ(p!klw): (86)

w+ Ek+ Ep+k_i5.

Here, xo, x1, andy, are the bond amplituded5), uy, vy
are the coefficients for the diagonalizati@®) of the mean-
field Hamiltonian(16), and ¢, is the mean-field dispersion
(18).
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