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Jordan-Wigner approach to dynamic correlations in spin ladders
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We present a method for studying the excitations of low-dimensional quantum spin systems based on the
Jordan-Wigner transformation. Using an extended random-phase approximation~RPA! scheme we calculate
the correlation function of neighboring spin flips for the one-dimensional spin-1/2 chain which well approxi-
mates the optical conductivity of Sr2CuO3. We analyze several possible generalizations of the Jordan-Wigner
approach to the two-leg spin-1/2 ladder. On the mean-field level the most accurate results are obtained when
the spin operators are numbered in a meanderlike sequence. Calculation of the optical conductivity based on an
extended RPA scheme for the meander-path approach yields very good agreement with a previous density
matrix renormalization group evaluation. For polarization along the legs higher-order correlations are impor-
tant to explain the weight of high-energy continuum excitations and we estimate the contribution of 4- and
6-fermion processes.
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I. INTRODUCTION

Due to the presence of strong quantum fluctuations, lo
dimensional spin systems show very complex behavior
provide a challenge for theoretical treatments. In this c
text, S5 1

2 Heisenberg spin ladders are especially interes
because they represent an interjacent system, in betwee
antiferromagneticS5 1

2 Heisenberg chain and the two
dimensional antiferromagnetic Heisenberg model. Early
these spin ladders were considered as systems which dis
a dimensional crossover between one and two dimensio1

However, spin ladders do not constitute a ‘‘smooth cro
over’’ because even-leg spin ladders acquire a spin liq
ground state and finite spin gap.2,3 This is in contrast to the
critical systems, theS5 1

2 chain and the odd-leg ladder
which exhibit algebraically decaying spin correlations, and
is in contrast to the 2D antiferromagnetic Heisenberg mo
for which a long-range Ne´el-ordered ground state wa
established.4 In a field-theoretical mapping of the low-energ
modes on an O~3! nonlinears model this even-odd effec
with the number of legs results from the addition of a top
logical term. The term was demonstrated to be zero for ev
leg ladders and the two-dimensional Heisenberg model
finite for odd-leg ladders as well as theS5 1

2 chain.5–8 Cor-
respondingly the system is gapless for odd-leg ladders
gapful for even-leg ladders whereby the gap decreases e
nentially with the number of legs.

In this paper we will focus on the antiferromagnetic tw
leg S5 1

2 ladders. The two-leg ladder can be approached c
ceptionally from the limit of strong couplingJ' along the
rungs.9–14 Then the elementary excitations may be cons
ered as excitations of rung triplets which propagate throu
out the ladder due to the finite leg couplingJ. For small
couplingJ' /J, a more natural description would seem to
in terms of the spinon excitations of the isolated legs. Ho
ever, the excitations of the two-leg spin ladders cannot
constructed perturbatively from spinons of the chains si
the rung coupling is a relevant perturbation. The spinons
confined and have to form bound states on the ladder.15,16

Of particular interest is the intermediate coupling regim
J'J' , as this case is related to the two-dimensional s
0163-1829/2004/69~10!/104419~17!/$22.50 69 1044
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tems. It is also realized in cuprate spin ladder compound17

which are of interest due to their affinity to the cuprate hig
Tc superconductors. Recently, the spin-singlet excitat
spectrum of the spin ladder compound (La,Ca)14Cu24O41 has
been investigated in midinfrared~MIR! absorption
experiments.18 In the optical conductivitys(v), magnetic
excitations can be observed from the simultaneous excita
of a phonon which generates a finite dipole moment for
considered field polarization, a mechanism introduced
Lorenzana and Sawatzky for the undoped high-Tc cuprates.25

The phonon, assisting the magnetic excitation, takes up
mentum which implies that spin excitations with all wav
vectors in the Brillouin zone enters(v). The relative spec-
tral weight for the different wave vectors is determined
the proper form factor of the considered phonon.19 Due to
weak magnon-phonon interaction the propagation of the p
non is assumed to decouple from the spin excitations. C
sequently, the dynamical response is evaluated with a s
only model Hamiltonian, and the phonons account mer
for the appropriate wave-vector summation and freque
shift. Indeed, we were able to confirm through a dynami
DMRG evaluation20 that a nearest-neighbor Heisenbe
model with an additional cyclic spin-exchange term is su
cient for the two-leg spin ladders: it reproduces remarka
well the observed MIR optical conductivity within thi
scheme of phonon-assisted magnetic excitations.

In order to gain control over the spin excitations and
better identify the observed MIR resonances an analyt
approach is required which—despite the necessary appr
mations to make the calculation feasible—is still adequate
retrieve the considered excitations of the spin liquid state.
analytical approach which helped to identify the observ
resonances as spin-singlet dispersive bound states and
tinuum excitations was presented by us along with
experimental data of Windtet al.18 We proposed to use a
one-dimensional fermionic representation of the spin ope
tors which is generated through a Jordan-Wign
transformation.21,22 Treatments of the spin ladder based
the Jordan-Wigner transformation along a one-dimensio
path have been suggested before.23,24 The advantage of this
fermionic representation over many bosonic representat
©2004 The American Physical Society19-1
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is the absence of constraints or the restriction to a 1/S expan-
sion. However, the spin operator in terms of the ‘‘Jorda
Wigner fermions’’ becomes a nonlocal operator with a lon
ranged phase factor, necessary to fulfill the spin commuta
relations. Conveniently, the long-range part of the phase c
cels in the Hamiltonian as well as in the spin correlatio
which enter the optical conductivity. For the one-dimensio
spin chain the fermionic Hamiltonian is then composed o
bilinear, kinetic part which presents theXY interaction of
nearest-neighbor spins and a density-density interac
which presents the Ising part of the interaction of neare
neighbor spins. For the spin ladder this Hamiltonian is
tended by interaction terms with 4- and 6-fermionic ope
tors which are introduced through the exchange of spins
sites which are nearest neighbor in the lattice but are
adjacent along the one-dimensional path through the lat
These interactions originate from phase operators which
not exactly matched as for adjacent sites on the path.

In order to investigate the dynamical response for the
spectrum, we apply the random-phase approximation~RPA!,
a standard perturbative approach. For the considered fe
onic model, the strength of the interaction is set by the sa
scale as the kinetic term and, correspondingly, RPA is
controlled by a small parameter~for J'J'). However, we
will compare the results with those of the dynamical dens
matrix renormalization group~DMRG! and thereby confirm
the validity of the approach.

In the present paper, we discuss this approach to a s
1/2 chain and then in detail to two-leg ladders. In Sec. II
start with the simpler case of a spin-1/2 chain in order
introduce our approximation scheme for the Jordan-Wig
fermions. We calculates(v) for the 1D-spin chain in RPA
and compare it with the optical conductivity of Sr2CuO3
measured by Suzuuraet al.26 In Sec. III A we generalize the
Jordan-Wigner treatment to the two-leg spin ladder. A pro
treatment of the phase factor turns out to be essential an
find that an approach based on a meander path yields
most accurate mean-field description. As this appro
causes a slight dimerization of the spin ladder, the origin
this behavior and its consequences will be analyzed. In S
III B we present an RPA scheme for the evaluation of d
namic correlation functions, which is based on the mean
path formulation of the Jordan-Wigner transformation. W
use this scheme to calculate the optical conductivitys(v) of
the two-leg ladder and check the reliability of our approa
by comparing it with a DMRG correction-vector27 evalua-
tion.

II. JORDAN-WIGNER TRANSFORMATION
FOR THE 1D SPIN-1Õ2 CHAIN

First we recall the Jordan-Wigner transformation for t
1D spin-1/2 chain and introduce our approximation sche
The fact that we find good agreement with the spinon eva
ation for the 1D spin chain inspired us to extend t
approach to two-leg spin ladders as will be discussed
Sec. III.

Since spin operators do not obey canonical commuta
relations, it is convenient to transform them either in
10441
-
-
n
n-
s
l

a

n
t-
-
-
n

ot
e.
re

ll

i-
e
t

y

in-
e
o
r

r
we
he
h
r
c.
-
r-

h

e.
-

in

n

bosonic or fermionic operators, in order to permit the app
cation of standard diagrammatic perturbation theory. W
any mapping, however, the algebra of the original spin
erators has to be preserved. In the Jordan-Wigner trans
mation this is provided by rewriting the spin operators
fermionic operators with a long-ranged phase factor

Si
25cie

iF i, F i5p(
j , i

cj
†cj , Si

z5S ci
†ci2

1

2D , ~1!

which transforms the 1D antiferromagnetic Heisenbe
Hamiltonian (J.0) to the fermionic Hamiltonian

H5J(
i

H 1

2
~ci

†ci 111ci 11
† ci !

1S ci
†ci2

1

2D S ci 11
† ci 112

1

2D J . ~2!

The first term in Eq.~2! corresponds to theXY part of the
original Heisenberg Hamiltonian. In the fermionic represe
tation it acts as a nearest-neighbor hopping. The second t
which originates from the Ising term of the original Heise
berg Hamiltonian, introduces a nearest-neighbor dens
density interaction among the fermions. The chemical pot
tial of the fermions corresponds to a magnetic field for t
spin system. For the paramagnetic state, the chemical po
tial has to constrain the particle number to the respec
particle number density of a half-filled band.

The fermionic Hamiltonian does not include operat
products with site index distances of more than one lat
spacing because in products of neighboring spins the ph
factors drop out. This is due to the fact that the fermi
operatorci commutes with the phasef i of the same site
(@ci ,f i #50). Correspondingly, the representation is partic
larly useful for models with nearest-neighbor exchange in
actions. However even so, not all dynamical correlat
functions can be evaluated without further approximations
elaborate techniques: for example, the transverse spin co
lation generates ‘‘long-range’’ phase factors with a summ
tion over a major fraction of the lattice sites. McCoyet al.
devised a scheme28 with which they succeeded to calcula
the transverse response in theXY model ~see also the ap
proach by Luther and Peschel29!. For the longitudinal spin
response and the optical conductivity, a nearest-neigh
spin-singlet response, where the phase factors drop out, t
sophisticated techniques are not required and one may ev
ate the correlators with standard diagrammatic technique

A. Mean-field treatment—dÄ1

Following Wang,30 the Ising interaction can be treated
mean-field approximation~MFA! by introducing a nearest
neighbor ‘‘covalent bonding’’ of the Jordan-Wigner fermion
x5^ci

†ci 11&:

HMF5J(
k

~122x!coskck
†ck with x52

1

p
. ~3!

The ground state of the Heisenberg model has no net m
netization^Si

z&50. Within the fermionic representation thi
9-2
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FIG. 1. Left panel: mean-field dispersion fo
the Jordan-Wigner fermions ind51, gray shad-
ing denotes the filling in the ground state. Rig
panel: continuum of Jordan-Wigner particle-ho
excitations ind51.
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implies that the fermion system is at half fillinĝci
†ci&5 1

2 .
The ground state is obtained by filling up all negative-ene
states. This leads to a Fermi surface at wave vectorskf
56p/2, as displayed in Fig. 1. Adding/removing a fermio
to the system corresponds toSz561 excitations,Sz50 ex-
citations can be realized by particle-hole excitations. T
particle-hole continuum of the Jordan-Wigner fermions, d
played in Fig. 1, is very similar to the two-spino
continuum.31 The upper cutoff of the Jordan-Wigner particl
hole continuum is at (214/p)J'3.27J and therefore close
to pJ which is the maximum energy for two spinons.

B. RPA for optical conductivity—dÄ1

Spin excitations can be observed in the midinfrared ra
of the optical conductivitys(v) due to the simultaneou
excitation of a phonon.25 The optical conductivity of the 1D
spin-chain compound Sr2CuO3

26 has been nearly perfectl
reproduced by Lorenzana and Eder32 using an ansatz base
on numerical results in finite chains, sum rules, and Be
ansatz results. Originally, a similar procedure was sugge
by Müller et al.33 for the evaluation of the dynamic structu
factor S(k,v), taking advantage of the observation that t
two-spinon contribution is the class of Bethe-ansatz soluti
which carries most of the weight of the continuum exci
tions. Only recently, it has been possible to determine
two-spinon contribution toS(k,v) exactly.34,35

For the optical conductivity, however, an exact express
of the two-spinon contribution is not yet available. Neverth
less, the evaluation of Lorenzana and Eder,32 which so con-
vincingly reproduces the shape of the cusplike, wide str
ture in s(v), confirms that the observed resonance inde
results from two-spinon excitations of the nearest-neigh
Heisenberg model. This motivated us to use the establis
s(v) of the 1D spin chain as a reference and to check for
quality of the results of our analytical Jordan-Wigner a
proach. We calculate the two-particle correlation functi
s(v) within an extended RPA scheme, i.e., by summing
bubble and ladder diagrams, and compare our result with
experimental optical conductivity of Sr2CuO3.26

For the one-dimensional spin chain the phonon-assi
magnetic contribution to the optical conductivity is give
by25,32

s~v!;216v(
p

sin4S p

2D Im^^dB2p ;dBp&& (v2vph) .

~4!
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The spin-flip operatordBp is expressed in MFA by

dBp5
1

N (
i

eipr i~SiSi 112^SiSi 11&!

'e2 ip/2
1

N (
k

~122x!cosS k1
p

2D ck
†ck1p . ~5!

This yields for the dynamic spin-flip correlation function
Zubarev notation

^^dB2p ;dBp&&5
1

N (
p

~122x!2H cos2
p

2
B(1,1)~p,v!

2cos
p

2
sin

p

2
@B(1,2)~p,v!1B(2,1)~p,v!#

1sin2
p

2
B(2,2)~p,v!J , ~6!

with particle-hole propagators

B(m,n)~p,v!5(
k,q

f k
m f q

n^^ck
†ck1p ;cq1p

† cq&& ~7!

and the following form factors:

f k
051, f k

15cosk, f k
25sink. ~8!

Summing all particle-hole scattering processes, as ill
trated in Fig. 2 in diagrammatic terms, a simple express
for the renormalized particle-hole propagator can be obtai

B(m,n)~p,v!5b(m,n)~p,v!12J cosp b(m,0)~p,v!B(0,n)~p,v!

22J b(m,1)~p,v!B(1,n)~p,v!

22J b(m,2)~p,v!B(2,n)~p,v!, ~9!

FIG. 2. Diagrammatic scheme for the extended RPA treatm
of Jordan-Wigner fermions in Eq.~9!.
9-3
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TAMARA S. NUNNER AND THILO KOPP PHYSICAL REVIEW B69, 104419 ~2004!
where the noninteracting particle-hole propagators are g
by

b(m,n)~p,v!5
1

N (
k

f k
m f k

nH ~12^nk1p&!^nk&

v1ek2ep1k1 i01

2
~12^nk&!^np1k&

v1ek2ep1k2 i01J . ~10!

Evaluation of these equations determiness(v) which is
shown in Fig. 3 in comparison with the experimental sp
trum of Sr2CuO3 taken from Suzuuraet al.26

A simple analysis of the experimental line shape
Sr2CuO3 based on Jordan-Wigner fermions has already b
discussed by Suzuuraet al.26 in combination with the experi-
mental results. However, they restricted the evaluation to
XY model which corresponds to our mean-field evaluat
apart from a renormalization of the energy scale by a fac
of 112/p in Eq. ~3!. We find that it is important to treat th
two-particle correlation functions(v) at least within RPA.
The resonance is shifted to lower energies compared to
mean-field approximation. In addition we observe a cusp
v5J(112/p) as a precursor of the logarithmic singulari
found by Lorenzana and Eder.32 Although the RPA slightly
overestimates the interaction strength which results in sh
ing too much spectral weight to energies below the cusp
favorably reproduces the experimentals(v) with respect to
the position of the cusp and its high-energy side.

The interpretation of the absorption spectrum is as
lows: On the mean-field level a Van Hove singularity at t
position of the band edge of the Jordan-Wigner fermions@at

FIG. 3. s(v) obtained with Jordan-Wigner fermions in com
parison with the experimental optical conductivity of Sr2CuO3

~solid line!, taken from Suzuuraet al. ~Ref. 26!. Dotted line—
mean-field approximation, dashed line—RPA approximation. F
lowing Lorenzana and Eder~Ref. 32! we have subtracted the sam
linear background from the experimental data and we have use
same value for the exchange couplingJ50.246 eV and for the
phonon frequencyvph50.08 eV.
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(112/p)J] is generated. The corresponding kink in th
spectral density is replaced by the sharp cusp on the R
level, as seen in Fig. 3. The interaction strength in the R
equation @Eq. ~9!# is not sufficiently strong to produce
bound state well below the continuum. Only a precursor
the bound state, which is a resonance along the lower edg
the particle-hole continuum, is formed~the lower curve on
the right panel of Fig. 1!. Thereby it takes spectral weigh
from the rest of the continuum, as seen in Fig. 3 from
comparison of the MFA and RPA results: the high-ener
continuum weight is partly moved to the lower edge of t
continuum, with highest weight atk.p/2, responsible for
the formation of the cusp. On the RPA level, this effect
slightly overestimated. Higher-order scattering processe
the Jordan-Wigner fermions should partly compensate
spectral shift. However, the investigation of the correspo
ing vertex corrections is beyond the scope of this pape
correction of the RPA line shape in Fig. 3 does not neces
ily introduce new aspects for the interpretation of the s
correlations on the chain.

III. JORDAN-WIGNER TRANSFORMATION
FOR THE TWO-LEG SÄ 1

2 LADDER

Motivated by the convincing results of the Jordan-Wign
fermion treatment for the HeisenbergS5 1

2 chain we
‘‘slightly increase’’ the dimensionality and extend the a
proach to the nearest-neighbor Heisenberg two-legS5 1

2 lad-
der:

H5J'(
i

Si ,1Si ,21J(
i

~Si ,1Si 11,11Si ,2Si 11,2!, ~11!

where J' is the exchange coupling along the rungs,J the
coupling along the legs,i refers to the site index along th
legs, and the subscripts 1,2 label the two different legs.

Generalizations of the Jordan-Wigner transformation
higher dimensions have been suggested36,37 and may be
adopted for spin ladders. The phase factor, however,
proper treatment of which is essential as demonstrated
Sec. III A 1, can be treated most accurately using the o
dimensional Jordan-Wigner transformation, i.e., by arrang
all spins in a one-dimensional sequence. With this sche
the range of the interaction terms can be controlled throug
convenient choice of a path which covers all sites. The
plication of a two-dimensional representation to the spin l
ders, on the other hand, would generate long-range inte
tion terms in the Hamiltonian.

Possible path configurations through a two-leg ladder
shown in Fig. 4. The path displayed in Fig. 4~a! is obviously
very close to the one-dimensional situation. As a con
quence the rung interaction is difficult to treat in this rep
sentation because every product of neighboring rung s
contains a number of phase factors, which diverges with
length of the spin ladder. The rung coupling, however, is
relevant perturbation since the excitation spectrum of a tw
leg ladder remains gapped for all coupling ratiosJ' /J.
Therefore a path which passes through all the rungs sh
be more suitable. Possible realizations are a zigzag pa24

l-

he
9-4
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JORDAN-WIGNER APPROACH TO DYNAMIC . . . PHYSICAL REVIEW B 69, 104419 ~2004!
and a meander path,23 displayed in Figs. 4~b! and 4~c!, re-
spectively. Although the zigzag path appears simpler
more symmetric at first sight, only a mean-field treatm
~analogous to the preceding section! based on the meande
path yields a reasonable description of the one-triplet exc
tions and only the meander path correctly reproduces
strong-coupling limit of the one-triplet dispersionek5J'

1J cosk for J' /J@1 ~see Sec. III A 2!.

A. Meander path

Following Dai and Su23 we divide the ladder into two
sublattices as indicated in Fig. 5. Introducing two species
spinless fermionsa i and b i , the spin operators on the tw
sublattices transform as

Si ,a
1 5a i

†expF ip(
j , i

~a j
†a j1b j

†b j !G ,
Si ,b

1 5b i
†expF ip(

j , i
~a j

†a j1b j
†b j !Geipa i

†a i, ~12!

where the summation in the phase factor is along the me
der path. For products of spin operators, which are
successive along the meander path, e.g.,Si ,a

1 Si 11,b
2

1Si ,a
2 Si 11,b

1 , the phases corresponding to intermediate s
along the meander path do not cancel. This is different fr
the one-dimensional situation where all nearest-neigh
spin operators are also successive along the path. U
transformation~12! the Heisenberg Hamiltonian of Eq.~11!
becomes

H5J'(
i

H 1

2
~a i

†b i1b i
†a i !1S a i

†a i2
1

2D S b i
†b i2

1

2D J
1J(

i
H 1

2
@b i

†a i 111a i
†b i 11eip(nb i

1na i 11
)1H.c.#

1S a i
†a i2

1

2D S b i 11
† b i 112

1

2D
1S a i 11

† a i 112
1

2D S b i
†b i2

1

2D J . ~13!

Unfortunately the phase factoreip(nb i
1na i 11

) from spin prod-
ucts of nonsuccessive sites cannot be treated exactly. Da

FIG. 4. Possible path configurations for a two-leg ladder.
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Su have replaced this phase factor by its average value.
treatment, however, can be improved in a systematic way
rewriting the phase factor:

eip(nb i
1na i 11

)5~122b i
†b i !~122a i 11

† a i 11! ~14!

and reinserting this exact expansion into Hamiltonian~13!.
In this way we obtain additional interaction terms containi
4- and 6-fermion operators which we now treat on the sa
footing as the Ising-interaction terms.

Following the mean-field treatment for the spin chain w
consider all possible nearest-neighbor bond amplitudes:

x05^b i
†a i&, x15^b i

†a i 11&, x25^a i
†b i 11&. ~15!

Taking into account all possible contractions of the 4- a
6-fermion operator terms we arrive at the following mea
field Hamiltonian:

HMF5(
k

~gkak
†bk1H.c.!, ~16!

with

gk5J'~ 1
2 2x0!14Jx0x1

1J cosk~ 1
2 12x0

224x1x22x12x222x1
2!

1 iJ sink~ 1
2 12x0

224x1x22x11x212x1
2!. ~17!

This expression has already been simplified using thatx0 ,
x1, andx2 turn out to be real. The above Hamiltonian ca
easily be diagonalized

HMF5(
k

ek~ ãk
†ãk2b̃k

†b̃k! with ek5ugku, ~18!

using

ak5
1

A2
uk~ ãk1b̃k!, bk5

1

A2
vk~ ãk2b̃k!,

uk5vk* 5eifk/2, gk5ugkueifk. ~19!

The bond amplitudes can then be calculated via

x052
1

2N (
k

uk
2 , x152

1

2N (
k

uk
2e2 ik,

x252
1

2N (
k

vk
2e2 ik, ~20!

FIG. 5. Sublattice structure for the meander path.
9-5
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TAMARA S. NUNNER AND THILO KOPP PHYSICAL REVIEW B69, 104419 ~2004!
and for the isotropic ladder, i.e.,J5J' , we obtain x0
520.3617,x1520.2679, andx250.1777.

The ground state of the two-leg ladder, which has no
magnetization, consists of a filledb̃k band and an emptyãk

band. A spin-1 excitation corresponds to adding anãk fer-
mion to the system. Therefore the dispersion of the o
triplet excitation is simply given by the dispersionek of the
ãk band. The mean-field dispersionek for the isotropic lad-
der, J5J' , is displayed in Fig. 6 in comparison with th
dispersion for anN580 site ladder obtained by DMRG.20

For momenta betweenk'0.5p –0.9p we find nearly perfect
agreement with the DMRG results. Only the spin gap, wh
corresponds toek5p is slightly too small and the energy fo
momentak,p/2 is somewhat overestimated. Still our mea
field treatment even reproduces a dip for small mome
which is a precursor of the symmetric~with respect tok
5p/2) spinon dispersion of the spin chain. It has not be
possible to attain this dispersion dip for the isotropic two-
ladder within a mean-field treatment of the bosonic bo
operator representation of elementary rung triplets.10,12

1. Role of the phase factor

To demonstrate the improvement of our mean-field eva
ation with respect to the mean-field treatment by Dai a
Su,23 who replaced the phase factor by its expectation va
we have added their dispersion in Fig. 6. Qualitatively it
very similar to our mean-field dispersion. Its magnitud
however, is by a factor of about 1.5 too small over a la
section of the Brillouin zone. Therefore we conclude that
adequate treatment of the phase factor is very important
it is necessary to go beyond a scheme in which the ph
factor is replaced by its average value.

The importance of the ‘‘phase factor’’ can be conceiv
also in the following way. The phase factoreip(nb i

1na i 11
) in

Hamiltonian~13! was generated by products of spin ope

FIG. 6. Dispersion for the isotropic ladderJ5J' . Solid line—
mean-field dispersion for Jordan-Wigner fermions; dashed lin
dispersion obtained by averaging the phase factor analogous t
treatment by Dai and Su~Ref. 23!; circles—one-triplet dispersion
obtained with DMRG for aN580 site ladder~Ref. 20!. Inset: dis-
persion obtained for a flux-phase approximation of the phase fa
with 0 flux ~dotted line! and p flux ~dashed line! through a
plaquette.
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tors with site labels not in sequence along the o
dimensional meander path. As the ‘‘matrix elements’’ of t
phase operator are61 one might speculate to find a reaso
able mean-field result by replacing the operator uniformly
61. This corresponds to a flux phase treatment of the ph
factor, where the flux through a plaquette is chosen to b
and p, respectively. Applying the same kind of mean-fie
treatment as before one obtainsek5ugku for the mean-field
dispersion, where

gk5J'~ 1
2 2x0!1J cosk~12x12x2!1 iJ sink~x22x1!

corresponds to zero flux and

gk5J'~ 1
2 2x0!2J cosk~x11x2!1 iJ sink~12x11x2!

to ap-flux phase. The resulting dispersions for the zero-fl
phase~dotted line! and thep-flux phase~dashed line! are
displayed in the inset of Fig. 6 in comparison with th
DMRG results for anN580 site ladder. Note that the zero
flux phase corresponds to simply replacing the spin opera
Sa,b

1/2 by fermionic operatorsa†/a or b†/b. The p-flux
phase, therefore, is the first correction to the fermionic ch
acter of the spin operators and improves the mean-field
persion notably.

Still, this replacement by a flux phase obviously sho
poor agreement with the DMRG dispersion. The mean-fi
evaluation of the phase factor~dashed line, main panel!, as
has been proposed by Dai and Su,23 improves the form of the
dispersion at least qualitatively. For a reasonable quantita
agreement with the exact dispersion, however, it is neces
to consider also the correlations related to the phase fa
which are included within our mean-field treatment of t
meander path~solid line, main panel!. Our mean-field treat-
ment also corresponds to ap-flux state of the spinless fer
mions, as the product of the bond amplitudes around
plaquette is negative. Thisp-flux phase, however, is differ
ent from the one discussed above, where by construction
complete phase factor is replaced by a fluxp.

2. Strong-coupling limit

In the strong-coupling limit our approach reproduces
correct strong-coupling form for the one-triplet dispersi
ek5J'1J cosk. Expanding with respect to the rung-dime
limit we obtain the following.

Zeroth order(J/J')0. For J50 the off-diagonal part of
the mean-field Hamiltonian~16! reduces to

gk5J'~ 1
2 2x0!. ~21!

The resulting Hamiltonian can be diagonalized easily us
uk5vk51 in Eq. ~19! which yields for the nearest-neighbo
bond amplitudes, Eq.~20!, x0521/2, x150, andx250.
This is the limit of rung dimers and the correct value for t
energy of a single rung-triplet excitation is obtained as

ek5ugku5J' . ~22!

First order (J/J')1. Resubstituting the zeroth-order bon
amplitudes in Eq.~17! yields gk5J'1J(cosk1i sink). Ex-

the

or
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JORDAN-WIGNER APPROACH TO DYNAMIC . . . PHYSICAL REVIEW B 69, 104419 ~2004!
panding the resulting dispersion to first order inJ/J' one
obtains the correct strong-coupling limit

ek5ugku5J'A112
J

J'

cosk1S J

J'
D 2

'J'1J cosk.

~23!

This expression contains already all terms to orderJ/J' .
This can be easily seen when the above results are ins
into Eq. ~20! for the bond amplitudes. To orderJ/J' one
obtains for the diagonalization transformationuk5gk /ugku
'11 iJ/J'sink and consequently for the bond amplitud
x0521/2 and x152x25J/(4J'). Whereasx0 remains
unchanged,x1 andx2 are proportional toJ/J' and therefore
they contribute togk andek only in second order.

3. Symmetry properties

Comparing the fermionic Hamiltonian, Eq.~13!, with the
original spin Hamiltonian, Eq.~11!, one observes that th
new fermionic operatorsa i and b i do not conserve all the
symmetries of the original spin operatorsSi ,1 , Si ,2 . The sub-
lattice structure underlying the meander path, see Fig. 5
stricts the translational symmetry of the fermions to trans
tions of an even number of sites. Nevertheless, neighbo
spin correlations^Si ,a

† Si 11,b
2 &5^a i

†b i 11& and ^Si ,b
† Si 11,a

2 &
5^b i

†eip(a i
†a i1b i

†b i )a i 11& should be equal in an exact trea
ment, because the Hamiltonians themselves are equivale
the sense that all matrix elements within the considered F
space are identical. In a mean-field evaluation, however,
equivalence cannot be enforced, because the mean-
evaluation is a variational scheme based on two-particle
pectation values, whereas the implementation of this sym
try would require correlations of four particles. In order
resolve this inconsistency, one either has to introduce t
site cluster operators consisting of several fermions or
should choose a more symmetric fermionic representation
the former case, one would have to work with nonlocal o
erators which do not obey canonical commutation relati
and, consequently, the merits of the fermionization would
lost. The second possibility of choosing a more symme
fermionic representation will be investigated in Appendix
It turns out, however, that the meander-path representatio
still the most favorable choice, because it allows the b
treatment of spin correlations along the legs. Therefore
intriguing to explore the symmetry behavior of the meand
path model and its consequences in more detail.

Transforming the spin operators to fermionic operat
according to Eq.~12! and replacing all contractions by the
mean-field values as before, one obtains

^Si ,aSi 11,b&52ux2u214x1~x0
22x1x2!,

^Si ,bSi 11,a&52ux1u21x1 . ~24!

For the isotropic spin ladder, i.e.,J5J' , this gives rise to a
slight dimerization: ^Si ,aSi 11,b&'20.22 and ^Si ,bSi 11,a&
'20.34. A staggered dimerization pattern of this kind,
the other hand, emerges naturally from a Hamiltonian w
staggered leg couplings such as
10441
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H5J'(
i

Si ,1Si ,21(
i

(
a51,2

J @11d~21! i 1a#Si ,aSi 11,a .

~25!

The properties of this Hamiltonian have been analyzed
detail.38–40There exists a critical line in the (d,J' /J) param-
eter space, where the spin gap vanishes. ForJ5J' this criti-
cal point has been located neardc'0.4.39,40 For dimeriza-
tions d smaller than the critical valuedc the spin gap
decreases whereas it increases again ford larger thandc .
Besides the reduction of the spin gap, however, the o
triplet dispersion, especially for small momenta, has be
found not to depend very sensitively on the presence o
small dimerization.40

The analysis of Hamiltonian~25! helps to gain more in-
sight into the underlying structure of our mean-field tre
ment. By introducing an artificial dimerization, the meand
path recovers some of the physical properties of Hamilton
~25!. For small leg coupling the spin expectation values
both legŝ Si ,aSi 11,b& and^Si ,bSi 11,a& are almost equal@see
Fig. 7~b!# whereas for leg couplingJ/J'.0.4 a noticeable
dimerization develops. Consequently, the spin gap decre
more rapidly than for a two-leg ladder without dimerizatio
@see Fig. 7~a!#. At J/J''1.7 the dimerization reaches th
critical value and the spin gap vanishes, whereas for la
leg coupling the spin gap increases again. The entire me
field dispersions are displayed in Fig. 8. In the opposite lim

FIG. 7. Mean-field evaluation for the meander path:~a! spin gap
and ~b! expectation values of neighboring spin products as a fu
tion of J/J' .

FIG. 8. Mean-field dispersion~meander path! of Jordan-Wigner
fermions for different coupling ratiosJ/J' .
9-7
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TAMARA S. NUNNER AND THILO KOPP PHYSICAL REVIEW B69, 104419 ~2004!
i.e., for J/J'→`, the spin correlations along the rung
^Si ,aSi ,b& vanish @see Fig. 7~b!#. The dimerization
^Si ,bSi 11,a&2^Si ,aSi 11,b&, however, remains finite@see Fig.
7~b!#, i.e., for J/J'→` the limiting case of two decouple
dimerized spin chains is approached~see also Fig. 8!.

In order to minimize the effect of the dimerization on
should only consider the sum of exchange processes betw
sites i and i 11 on both legs, that is,^Si ,aSi 11,b&
1^Si ,bSi 11,a&. This corresponds to contracting the two sit
on the rung of the ladder to a single site, i.e., visualizing
fermionic Hamiltonian, Eq.~13!, as a one-dimensiona
model with two fermionic species on each lattice site. T
model has the full translational symmetry and theref
quantities of the two-leg ladder which are compatible w
this one-dimensional model should be the least affected
dimerization.

4. The prominent role of the meander path

Certainly, the approach based on the meander path is
the only possible realization of a ‘‘Jordan-Wigner fermio
ization’’ for the two-leg ladder. Alternatively, the one
dimensional Jordan-Wigner transformation could also be
plied along a zigzag path@see Fig. 4~b!#. Moreover, it is not
necessary to adhere to a one-dimensional version of
Jordan-Wigner transformation but it is also possible to fin
more symmetric formulation. These two alternative tre
ments are discussed in Appendix A. Nonetheless, the
proach based on a meander path yields the most acc
results despite its artificially generated dimerization patte
In the following we therefore address the puzzle, why
meander path is superior to the other~more symmetric! ap-
proaches.

The solution to this problem has to be understood fr
the nonequivalent treatment of spin interactions along
same leg in the different approaches. Interactions betw
spins succeeding along the meander path enter the Ha
tonian without further phase factors whereas interactions
tween the other spins transform into higher-order fermio
interaction terms and, therefore, they are captured only
lowest order in a mean-field approximation. Due to t
meander-path structure only half of the leg interactions ‘‘s
fer’’ from this approximation, whereas the other half of th
leg interactions are treated on the same level as the
interactions. Although this leads to an inhomogeneous tr
ment of the leg interactions, it is the advantage of
meander-path approach that it is possible to treat half of
leg interactions accurately. In the other Jordan-Wigner
proaches, as discussed in Appendix A, all leg interacti
include a phase factor which is implemented in the me
field Hamiltonian in lowest order only. This insufficien
treatment of the leg interactions is reflected in the fact t
the expectation values for neighboring spin products al
the legs are strongly underestimated~see Table I!. The ap-
proach based on the zigzag path and the symmetric treat
yield only approximately half of the DMRG value, where
the stronger leg bond in the meander-path approach is
close to the correct value. Strikingly, even the weaker
bond of the meander-path approach yields a larger expe
tion for neighboring spin products than the other treatme
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The insufficient treatment of the leg interactions is visib
also in the limit of two decoupled chains, i.e., forJ/J'

→`. Only the meander path correctly reproduces unco
lated spins along the rungs~approaching the limit of two
decoupled dimerized chains, however!. In the symmetric
treatment the expectation values for spin products along
legs and along the rung approach the same limit@see Fig.
18~b! in Appendix A# and for the zigzag path, the leg prod
ucts even vanish@see Fig. 17~b! in Appendix A#.

With these considerations we regard the Jordan-Wig
fermionization approach, based on the meander path, as
most promising choice, provided one is interested in qua
ties which are not too sensitive to dimerization, an asp
which will be elucidated further in the following section.

B. Dynamic correlation functions

So far we have considered only one-particle excitations
the spin ladder. The Jordan-Wigner fermionization, howev
allows also the investigation of two-particle quantities. Sin
the approach based on the meander path proved to be
most accurate in the previous sections, we extend it to
analysis of the two-particle excitations. As a suitable e
ample for a two-particle correlation function we will exam
ine the magnetic contribution to the optical conductiv
s(v). First, s(v) constitutes a powerful probe of the sp
excitations and it has been measured on the spin ladder c
pound (La,Ca)14Cu24O41.18 Second, the optical conductivity
can be calculated from the correlation function of neighb
ing spin products, a quantity with a minimum of intermedia
phase factors.

Via the investigation of the optical conductivity of th
spin ladder compound (La,Ca)14Cu24O41 ~Ref. 18! it was re-
cently possible to verify experimentally the existence of
S50 two triplet bound state in a two-leg spin ladder. Th
interpretation was confirmed by an evaluation based on
Jordan-Wigner treatment.18 In a more refined analysis usin
the dynamical DMRG we have been able to show20 that it is
necessary to include a 4-spin cyclic exchange interaction
aboutJcyc'0.20J'20.27J' . This demonstrates that the op
tical conductivity is indeed an interesting quantity and
worth a more detailed discussion.

Here, for simplicity, we focus on an isotropic ladderJ
5J' without cyclic spin exchange (Jcyc50). Although an
additional cyclic spin exchange could be included straig
forwardly, the number of terms in the mean-field and t
RPA treatment would increase considerably. As the main p

TABLE I. Expectation values for neighboring spin produc
along rungs and legs for the isotropic ladderJ5J' , obtained by the
Jordan-Wigner~JW! transformation based on the meander path
comparison with the other two approaches of Appendix A.

^Si ,1Si ,2& ^Si ,1/2Si 11,1/2&

DMRG 20.46 20.35
Meander path 20.49 20.34/20.22
Zigzag path 20.63 20.16
Symmetric JW 20.62 20.16
9-8
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JORDAN-WIGNER APPROACH TO DYNAMIC . . . PHYSICAL REVIEW B 69, 104419 ~2004!
pose of the present paper is to analyze the capability o
Jordan-Wigner approach we neglect a cyclic spin-excha
term in order to keep the treatment as transparent as poss
In the following we will exhibit how the spin-flip correlation
functions, which contribute tos(v), can be obtained within
the Jordan-Wigner approach. Then we discuss the resu
correlation functions and focus on theS50 bound state and
the continuum excitations. Bound states in the singlet
triplet excitation channel were predicted by Uhrig a
Schulz,11 by Sushkov and Kotov,12 and by Damle and
Sachdev.41 More extensive perturbative investigations we
performed13,14 and the observability of the singlet boun
state was suggested by Jurecka and Brenig.42

For the calculation of the optical conductivity we wi
concentrate on an isolated Cu2O3 ladder. The phonon-
assisted magnetic contribution tos(v) results largely from
the simultaneous excitation of two neighboring spin flips a
a Cu-O bond-stretching phonon:

s~v!;2v(
p

(
py50,p

f p Im^^dB2p ;dBp&& (v2vph) ,

~26!

wherep5(p,py) and the operators

dBp
leg5

1

N (
i

(
l 51,2

eip"r i ,l~Si ,lSi 11,l2^Si ,lSi 11,l&!,

dBp
rung5

1

N (
i

eip"r i~Si ,1Si ,22^Si ,1Si ,2&! ~27!

are the spin-flip operators for polarization of the electri
field along the legs and the rungs, respectively.

Following our previous treatment in Ref. 20, we consid
phonon form factors given by

f p
leg58 sin4S p

2D , f p
rung58 sin2S p

2D14. ~28!

Here, f p
leg originates from the coupling to in-phase and o

of-phase stretching modes of O ions on the legs and it is
same form factor as for an isolated spin chain. Forf p

rung we
take in addition to the out-of-phase stretching mode also
vibration of the O ion on the rung into account, which
responsible for the constant contribution in Eq.~28!.

1. Extended RPA treatment

For the calculation of the spin-flip correlation function w
apply the meander-path formulation of the Jordan-Wig
transformation ~12! to the spin-flip operatorsSi ,1Si 11,1
6Si ,2Si 11,2, and Si ,1Si ,2 . All terms with 4- and 6-fermion
operators are reduced to two-operator terms by replacing

FIG. 9. Diagrammatic representation of the processes wh
contribute to the extended RPA treatment, in real space.
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surplus operators with their contractions~15!. With this pro-
cedure the Fourier transform of the spin-flip operators
comes

dBp
rung5

1

AN
(

k
S 1

2
2x0D ~ak

†bp1k1bk
†ap1k!,

dBp,py50
leg 5

1

AN
(

k
$ak

†bp1k~a1beik2ce2 i (p1k)!

1bk
†ap1k~a1be2 i (p1k)2ceik!%,

dBp,py5p
leg 5

1

AN
(

k
$ak

†bp1k1p~2a1b̃eik2ce2 i (p1k)!

1bk
†ap1k1p~2a2b̃e2 i (p1k)1ceik!%, ~29!

with

a54x0x1 , b5 1
2 12x0

224x1x22x1 ,

c52x1
21x2 , b̃5 1

2 22x0
214x1x22x1 . ~30!

Inserting the spin-flip operators~29! into the optical con-
ductivity ~26! produces a sum of particle-hole propagato
with different form factors. To evaluate these particle-ho
propagators in RPA we prefer to use the original fermio
operatorsa,b because transformation to the operatorsã,b̃
~19! would increase the number of interaction terms cons
erably.

Prior to the derivation of the RPA equations, the intera
tion terms in the Hamiltonian have to be reduced to tw
particle interactions in order to deal only with 4-particle ve
tices. Accordingly, all 6-operator terms, which appear in E
~13!, are reduced to 4-operator terms by replacing all p
sible contractions with the corresponding bond amplitud
~15!. In this way, we obtain the following reduced interactio
term from Hamiltonian~13!:

H red5J
1

N (
k1 , . . . ,k4

d~k11k22k32k4!H ak1

† bk2

† bk3
ak4FJ'

J

1ei (k22k3)1~114x2!e2 i (k22k3)12x1~ei (k11k2)

1e2 i (k11k2)!22x0~eik11e2 ik21eik31e2 ik4!G
1ak1

† ak2

† bk3
bk4

2x1ei (k22k3)

1bk1

† bk2

† ak3
ak4

2x1ei (k12k4)J . ~31!

A set of RPA equations for the particle-hole propagato
which are listed in Appendix B, can be obtained by cons
eration of all possible vertex configurations of the interact
Hamiltonian~31!. In real space these vertices correspond
only to a summation of bubble diagrams, but also inclu
ladder diagrams and other nonlocal terms as indicated in
9. For this reason we use the termextendedRPA treatment.

h

9-9
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TAMARA S. NUNNER AND THILO KOPP PHYSICAL REVIEW B69, 104419 ~2004!
2. Spin-flip correlation functions

In this section the correlation functions for spin flip
along the legsdBp,py50

leg , dBp,py5p
leg and for spin flips along

the rungsdBp
rung for an isotropic ladderJ5J' , using the

RPA treatment of the preceding section, will be discuss
The results are presented in Figs. 10, 12, and 13. For c
parison the mean-field evaluation of each of the correla
functions is displayed in the lower panels.

In the mean-field evaluation of̂̂dB2p,py50
leg ;dBp,py50

leg &&
~lower panel of Fig. 10! one observes Van Hove singularitie
at the upper edge of the continuum for small momenta an
the lower edge of the continuum for large momenta. With
RPA treatment the Van Hove singularities at the continu
edges disappear. For small momenta the maximum of
continuum is shifted from the upper edge downwards
aboutv'3J. At large momenta we observe the formation
the S50 bound state. The bound state emerges from
continuum atk'0.3p, it passes through a maximum atk
'p/2 and a minimum atk5p. In Fig. 11 the dispersion o
the bound state is compared with the DMRG calculation
an N580 site ladder.20 We find good agreement betwee
both methods, only the energy of the RPA dispersion

FIG. 10. RPA and mean-field evaluation of the momentum
solved correlation function̂̂dB2p,py50

leg ;dBp,py50
leg &&, where a broad-

ening of d50.01J has been used. The gray lines~upper panel!
designate theS50 bound state. The dashed dark gray line is
projection of the dark gray line in the lower panel, which links t
points of sharp increase in the middle of the continuum. This
precursor of the upper edge of the 2-spinon continuum in sin
chains~Refs. 14 and 43!. In RPA a dip structure remains at the sam
position in the continuum.
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slightly too low. This indicates that the interaction strength
somewhat overestimated in RPA.

In the mean-field evaluation of the out-of-phase comp
nent of the correlation function for spin flips along the le
^̂ dB2p,py5p

leg ;dBp,py5p
leg && ~lower panel in Fig. 12! the Van

Hove singularities at the continuum edges are suppres
The overall momentum dependence onp appears to be re
versed when the out-of-phase component in Fig. 12~upper
panel! is compared to the in-phase component in Fig.
~upper panel!. This is caused by the checkerboard sublatt
structure of the meander path, which shifts the momentum
the particle-hole propagatordBp,py5p

leg by p in relation ~29!.

The inversion of the momentum dependence is espec
noticeable for the bound state. However, the out-of-ph
component should not contain the bound state but only c
tribute to the continuum excitations, an issue that we h
addressed previously in Ref. 20. The argument is based
the observation that the out-of-phase component origin
from the excitation of three different rung triplets,20 when it
is expressed in terms of rung-triplet operators.9,10 The S50
bound state, on the other hand, arises from scattering
cesses of two equal triplets and therefore cannot be prese
the out-of-phase component. The spurious appearance o
bound state in the out-of-phase component demonstrate
sensitivity of the out-of-phase mode to an artificial dimeriz
tion. This sensitivity is due to the fact that the out-of-pha
mode is calculated as the correlation function of the diff
ence of neighboring spin productsSi ,1Si 11,12Si ,2Si 11,2, i.e.,
a term whose expectation value is just the dimerization.
the other hand this also explains, why the in-phase mod
much less sensitive to dimerization as it corresponds to
sum of neighboring spin productsSi ,1Si 11,11Si ,2Si 11,2.

-

a
le

FIG. 11. Particle-hole continuum of the Jordan-Wigner fermio
and S50 bound state~thick solid line! in comparison with the
two-triplet continuum~open symbols! andS50 bound state~filled
symbols! obtained by DMRG for a ladder withN580 sites
~Ref. 20!.
9-10
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JORDAN-WIGNER APPROACH TO DYNAMIC . . . PHYSICAL REVIEW B 69, 104419 ~2004!
In Fig. 13 the RPA and mean-field evaluation for t
correlation function of spin flips along the rung
^̂ dB2p

rung;dBp
rung&& are shown in the upper and lower pane

respectively. Forp50 it is identical to thep50 component
of the in-phase correlation function for spin flips along t
legs ^̂ dB2p,py50

leg ;dBp,py50
leg && and both correspond to the co

relation function for the Raman response.44,45For larger mo-
menta, the spectral weight of the rung correlation is mu
smaller than the in-phase component of the leg correlat
and atp5p the weight of theS50 bound state vanishe
according to a selection rule,18 which originates in the reflec
tion symmetry of a singlet state of two rung triplets abo
any rung axis. Since the operator for spin flips along
rungsdBp

rung is odd under this symmetry atp5p the weight
of the singlet bound state for its excitation with momentu
p5p is zero.

3. Optical conductivity

Once the momentum dependent spin-flip correlation fu
tions, shown in Figs. 10, 12, and 13, are known, the opt
conductivity s(v) in Eq. ~26! can easily be obtained b
integration. In Fig. 14 the in-phasepy50 and the out-of-
phasepy5p contribution tos(v) for polarization along the
legs are displayed in the upper two panels. The optical c
ductivity for polarization along the rungs is shown in th
lower panel of Fig. 14. In all panels the correspondi
DMRG spectrum, obtained with the correction-vect

FIG. 12. RPA and mean-field evaluation of the correlation fu
tion ^̂ dB2p,py5p

leg ;dBp,py5p
leg &&, where a broadening ofd50.01J has

been used. The gray lines indicate theS50 bound state.
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method,27 has been added in order to facilitate a judgme
about the accuracy of our Jordan-Wigner approach.

For polarization parallel to the legs andpy50 ~top panel
of Fig. 14! two dominant peaks appear atv1'1.4J andv2
'2.0J. They are caused by Van Hove singularities arisi
from the dispersion of theS50 bound state18 at p5p and
p'p/2. The upper peak atv2 is suppressed by the inclusio
of the relevant form factor sin4(p/2). For thepy50 compo-
nent we find reasonable agreement with the correspon
DMRG spectrum. The frequency of theS50 bound state is
somewhat too low in the Jordan-Wigner approach beca
the RPA treatment overestimates the interaction strengt
discussed in Sec. III B 2. The continuum contribution, on t
other hand, is slightly underestimated. To some extent thi
due to the fact that, so far, we have considered only
creation of two fermions at the external current vertex:
approximated the spin-flip operators in Eq.~29! by a
particle-hole creation operator. Without this approximati
the correlation functionŝ̂dB2p,py50,2p

leg ;dBp,py50,p
leg && would

contain the excitation of 4- and 6-fermions as well, whi
would increase the amount of high-energy excitations. T
weight of these higher-order excitations will be estimated
the following section.

With respect to the out-of-phase component~middle panel
of Fig. 14!, however, there is only poor agreement with t
DMRG spectrum. To some extent this is due to the imp
tance of higher-order processes which make up about 50%
the weight of the out-of-phase mode as discussed in the

- FIG. 13. RPA and mean-field evaluation of the correlation fun
tion ^̂ dB2p

rung;dBp
rung&&, where a broadening ofd50.01J has been

used. The gray lines indicate theS50 bound state. The dashed da
gray line in the upper panel is the same as in Fig. 10.
9-11
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TAMARA S. NUNNER AND THILO KOPP PHYSICAL REVIEW B69, 104419 ~2004!
lowing section. Furthermore the stronger sensitivity of t
out-of-phase mode to dimerization is adverse, as explaine
the preceding section.

For polarization parallel to the rungs~bottom panel of Fig.
14! only the upper bound state atv2 is present in the mo-
mentum integrated spectrum because theS50 bound state is
suppressed atp5p in accord with a selection rule,18 see also
Fig. 13. For the rung polarization we find very good agre
ment with the DMRG result. Rung correlations are obviou
treated quite accurately in our meander-path representa
There are no phase factors in the product of two spin op
tors on the same rung because they are neighboring alon
meander path. Therefore the only 4-fermion process res
from an Ising-like term.

4. Higher-order contributions

The contribution of 4 and 6 fermions to the spin-flip co
relation functions in leg polarization can be obtained ana
gous to the 2-fermion contribution. In the spin-flip opera
dBp

leg, Eq. ~27!, the spin operators are replaced by fermion
operators. Terms with 6 operators are designated as
6-fermion part. Terms with 4 and 6 operators contribute
the 4-fermion part, when all surplus operators are repla
by their contractions, analogous to Eq.~29!. With this
scheme one obtains for the 4- and 6-fermion part of the s
flip operator

FIG. 14. Momentum integrated spin-flip correlation function
which contribute tos(v) for polarization along the legs~top and
middle panel! and for polarization along the rungs~bottom panel!.
In order to visualize the resulting contribution tos(v) in Eq. ~26!
each correlation function has been multiplied with the frequencv
and for each of them the momentum integration is shown witho
prefactor ~dashed lines! and with a prefactor of sin4(px/2), i.e.,
sin2(px/2) ~solid lines!. In each panel one DMRG spectrum~sym-
bols! has been added for comparison.
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dBp,py50
4,leg 5

1

N3/2 (
k1 , . . . ,k4

2 d~p1k11k22k32k4!

3H ak1

† bk2

† bk3
ak4Fx1~ei (k11k2)1e2 i (k31k4)!

2x0~eik11e2 ik41e2 i (p1k2)1e2 i (p2k3)!

1
1

2
~ei (k22k3)1ei (k12k4)!12x2ei (k12k4)G

1ak1

† ak2

† bk3
bk4

x1ei (k22k3)

1bk1

† bk2

† ak3
ak4

x1ei (k12k4)J ,

dBp,py50
6,leg 5

1

N5/2 (
k1 , . . . ,k6

2d~p1k11k21k32k42k52k6!

3$ak1

† ak2

† bk3

† bk4
bk5

ak6
ei (k22k42k6)

1ak1

† bk2

† bk3

† bk4
ak5

ak6
ei (k11k22k6)% ~32!

for the in-phase component of the leg polarization. The o
of-phase component is very similar, except that the mom
tum p has to be replaced with (p1p) and, in the term
1
2 (ei (k22k3)1ei (k12k4))ak1

† bk2

† bk3
ak4

of the 4-fermion com-

ponent, the parentheses have to be replaced with (ei (k22k3)

2ei (k12k4)).
In order to estimate the contribution of processes invo

ing the excitation of a different number of fermions, we com
pare the weights

Wpy

n 52E
0

`

dv
1

N (
p

f p^̂ dB2p,py

n ;dBp,py

n &&, ~33!

which are obtained by integrating then52, 4, and 6 fermion
part of the leg-correlation functions over frequencyv and
momentump using form factorsf p51 andf p5sin4(p/2). To
keep this evaluation as simple as possible the correla
functions are evaluated in mean-field theory, i.e., they
replaced by noninteracting particle-hole lines as indicated
Fig. 15. The frequency integrals in Eq.~33! can be elimi-
nated using

,

a

FIG. 15. Mean-field weights for the spin-flip correlation. The
correspond to the evaluation of one, two, and three noninterac
particle-hole lines for the excitation of 2-, 4-, and 6-fermions d
played in~a!, ~b!, and~c!, respectively.
9-12
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JORDAN-WIGNER APPROACH TO DYNAMIC . . . PHYSICAL REVIEW B 69, 104419 ~2004!
p)
j

aj52ImE
0

`

dv eiv01

)
j

1

2p i E2`

`

dV jdS v2(
j

V j D
3S aj

V j2e j1 i01
1

bj

V j1e j2 i01D , ~34!

where aj /(V j7e j6 i01) are expressions for retarded an
advanced Green’s functions. The remaining momentum i
grals can be easily evaluated numerically.

The resulting weights of the 2-, 4-, and 6-fermion pr
cesses are displayed in Table II. The 4- and 6-fermion p
cesses make up only 24%@15%# of the in-phase part of the
spin-flip correlation function when a form factor off p
51 @ f p5sin4(p/2)# is used. On the other hand, they gener
a major contribution to the out-of-phase component, i
65% @50%#. Note that these values refer only to nonintera
ing particle-hole propagators and may be changed when
evaluation is improved. For example, the weight of t
2-fermion contribution to the in-phase component is e
hanced when the particle-hole propagator is evaluated
RPA. In Table II these RPA weights are added in parenthe

Since the 4- and 6-fermion processes contribute only
the continuum excitations, they will increase the high-ene
weight and therefore improve the consistency with
DMRG results for polarization along the legs in Fig. 1
Presumably, however, the consideration of a direct excita
of 4- and 6-fermion processes will not suffice to obtain f
agreement with the DMRG spectra. It might also be nec
sary to include higher-order vertex corrections. They m
shift some weight from the bound state to the continu
excitations, because the RPA overestimates the interac
strength as discussed in Sec. III B 2. They may also hel
reduce the artificially introduced dimerization by the mea
der path which has been discussed in Sec. III A 3.

IV. CONCLUSIONS

In this paper we presented an approach to obtain dyna
correlation functions in low-dimensional quantum spin s
tems. It is based on a fermionization of spin operat
through a Jordan-Wigner transformation and it treats the
mionic interactions in RPA. We demonstrated that the ap
cation of standard perturbation theory to the new fermio
operators is appropriate even in the high-energy range.

TABLE II. Mean-field weights of the 2-, 4-, and 6-fermion con
tributions to the in-phase (py50) and the out-of-phase (py5p)
component assuming noninteracting particle-hole lines. For
2-fermion contribution the weight of the RPA evaluation is given
parentheses.

py50 py50 py5p py5p
f p51 f p5sin4(p/2) f p51 f p5sin4(p/2)

n52 1.88 0.95 0.25 0.17
~2.56! ~1.47! ~0.25! ~0.17!

n54 0.59 0.17 0.45 0.17
n56 0.01 0.01 0.01 0.01
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considered the 1D spin-1/2 chains as an appropriate
study and tested the validity of the approach through
evaluation of a specific dynamical spin-flip correlation fun
tion. This correlation function corresponds to the phono
assisted magnetic contribution to the optical conductiv
and we found good agreement with the experimental sp
trum of Sr2CuO3.

In order to extend this approach to two-legS5 1
2 ladders

we have analyzed different possibilities to apply the Jord
Wigner transformation to a two-leg spin ladder. In contras
the 1D spin chain, however, operator phase factors em
even in the Hamiltonian. Expanding these phase factors
ates new interaction terms, which can be treated within s
dard perturbation theory. We elaborated that it is essentia
include fluctuations which originate from the phase factors
rather than treating the phases asc numbers. Applying the
Jordan-Wigner transformation along a meander path thro
the ladder allows us to treat half of the leg interactions on
same level as the rung interactions. This advantage
weighs the artifact of introducing a slight dimerization of th
spin ladder: the resulting one-triplet dispersion agrees w
with the DMRG result, much better than other more symm
ric realizations of the Jordan-Wigner transformation.

Based on the meander-path approach we have devel
an extended RPA scheme for calculating the dynamical t
spin correlation function, the basic ingredient for the optic
conductivity. In order to test the accuracy of our approach
have compared our results with spectra obtained from a
namical DMRG. For polarization along the rungs we fin
very good agreement with the DMRG spectra. Spin-flip p
cesses on the rungs are represented quite reliably in ou
proach, because two spins on the same rung are also n
boring along the meander path. Therefore no phase fact
present in the corresponding spin-flip operator. For spin-
processes along the legs, however, the phase factor gene
the excitation of 4 and 6 fermions in addition to th
2-fermion processes. With respect to theS50 bound state
convincing results already emerge from the evaluation of
2-fermion contribution. The weight of the high-energy co
tinuum, however, is underestimated. To some extent this
be compensated by the consideration of 4- and 6-ferm
excitations.

In this paper we have focused on two-leg spin-1/2 ladde
It would certainly be interesting to extend this treatment
ladders with more than two legs. With respect to odd-
ladders it is promising that the fermionic approach natura
reproduces the gapless excitation spectrum of odd-leg
ders. Without magnetic field the fermionic system is at h
filling and consequently, for an odd number of fermion
bands, one band is half filled which accounts for the abse
of a spin gap.
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APPENDIX A: FURTHER APPROACHES
TO JORDAN-WIGNER TRANSFORMATIONS

This appendix addresses other possible Jordan-Wig
treatments of the two-leg spin ladder and their result
mean-field Hamiltonians. Besides the meander path, wh
our Jordan-Wigner approach is based on, the o
dimensional Jordan-Wigner transformation could also be
plied along a zigzag path. This alternative choice is discus
in Sec. A 1. Moreover, it is not necessary to stick to a o
dimensional version of the Jordan-Wigner transformation
it is also possible to find a more symmetric formulation
discussed in Sec. A 2.

1. Zigzag path

The sublattice structure underlying the zigzag path is v
simple: each leg corresponds to one sublattice, as indic
in Fig. 16. Applying the one-dimensional Jordan-Wign
transformation, Eq.~12!, along the zigzag path with the sub
lattice structure of Fig. 16 generates the following Ham
tonian:

H5J'(
i

H 1

2
~a i

†b i1b i
†a i !1S a i

†a i2
1

2D S b i
†b i2

1

2D J
1J(

i
H 1

2
@a i

†a i 11~122b i
†b i !1b i

†b i 11

3~122a i 11
† a i 11!1H.c.#1S a i

†a i2
1

2D
3S b i 11

† b i 112
1

2D1S a i 11
† a i 112

1

2D S b i
†b i2

1

2D J .

~A1!
Here the expansion of the phase factor yields o

4-operator terms. Taking into account all nearest- and n
nearest-neighbor bond amplitudes

x05^b i
†a i&, x15^b i

†a i 11&, x25^a i
†b i 11&,

x35^a i
†a i 11&, x45^b i

†b i 11&, ~A2!

the following mean-field Hamiltonian is obtained:

HMF5(
k

$g0,kak
†bk1g0,k* bk

†ak1ga,kak
†ak1gb,kbk

†bk%,

~A3!

with

FIG. 16. Sublattice structure for the zigzag path.
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g0,k5J'~ 1
2 2x0!12J~x0eik1x1!,

ga,k522JRe~x41x3eik!, gb,k522JRe~x31x4eik!.
~A4!

Diagonalization of the mean-field Hamiltonian results in

HMF5(
k

~ea,kãk
†ãk1eb,kb̃k

†b̃k!, ~A5!

with

ea/b,k5
ga,k1gb,k

2
6AS ga,k2gb,k

2 D 2

1ug0u2. ~A6!

For the isotropic ladderJ'5J the mean-field evaluation
yields x0520.437, x150.180, x2520.136, x35x450
and thereforega,k5gb,k50. The expectation values o
neighboring spin products are displayed in Fig. 17~b! as a
function of J/J' . For the zigzag path there is no dimeriz
tion with respect to the spin products along the legs. Ho
ever, a slight difference in the expectation values for
products of spin operators situated along the diagonals
pears for intermediate values ofJ/J' , which reflects the
type of symmetry reduction due to the zigzag path. In
limit of strong rung couplingJ/J'50 the correct ground
state is recovered, which consists of singlets along the ru
For J/J'→`, however, the expectation values for spin pro
ucts on the rungs spuriously approach the same limit as
J/J'50.

Also the mean-field dispersion, which is displayed in F
17~a! for J5J' , shows only poor agreement with the e
pected one-triplet dispersion. This discrepancy already ar
in the strong-coupling limit since one obtains

g0,k5J'2J~cosk1 i sink!, ga,k5gb,k50 ~A7!

by inserting the zeroth-order bond amplitudesx052 1
2 , x1

5x25x35x450. For the dispersion this produces to fir
order inJ/J' ,

ek5ug0,ku5J'A122
J

J'

cosk1S J

J'
D 2

'J'2J cosk,

~A8!

FIG. 17. Mean-field treatment based on the zigzag path:~a!
dispersion forJ5J' and ~b! expectation values for neighborin
spin products as a function ofJ/J' .
9-14
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JORDAN-WIGNER APPROACH TO DYNAMIC . . . PHYSICAL REVIEW B 69, 104419 ~2004!
which obviously differs from the correct strong-couplin
limit ~23!.

2. General treatment of the two-leg ladder

It is not necessary to apply the Jordan-Wigner transform
tion along a one-dimensional path through the two-leg l
der. More generally the Jordan-Wigner transformation can
written as

Si
†5ci

†eipf i with f i5(
j Þ i

w i j cj
†cj . ~A9!

In order to fulfill the correct commutation relations for th
spin operators the phase factorsw i j have to obey

w i j 5w j i 61. ~A10!

This relation is automatically fulfilled by arranging the spi
in a one-dimensional sequence asw i ,i 1151 andw i 11,i50.
The phase factor, however, can also be distributed among
spins in a more symmetric way by choosing, e.g.,

Si ,a
1 5a i

†expF ip(
j , i

~a j
†a j1b j

†b j !Gei (p/2)b i
†b i,

Si ,b
1 5b i

†expF ip(
j , i

~a j
†a j1b j

†b j !Ge2 i (p/2)a i
†a i.

~A11!

Now the sublattice of theSi ,a andSi ,b spins can be arrange
in a checkerboard-type structure such as for the mea
path ~see Fig. 5! or with respect to the legs such as for t
zigzag path~see Fig. 16!.

Here, we will only discuss the checkerboard-type sub
tice. Using the above version of the Jordan-Wigner trans
mation ~A11! and expanding the phase factor the Ham
tonian for the checkerboard-type sublattice transforms to

H5J'(
i

H 1

2
~a i

†b i1b i
†a i !1S a i

†a i2
1

2D S b i
†b i2

1

2D J
1J(

i
H 1

2
@a i

†b i 11„12~ i 11!b i
†b i…„11~ i 21!

3a i 11
† a i 11…1b i

†a i 11„11~ i 21!a i
†a i…„12~ i 11!

3b i 11
† b i 11…1H.c.#1S a i

†a i2
1

2D S b i 11
† b i 112

1

2D
1S a i 11

† a i 112
1

2D S b i
†b i2

1

2D J . ~A12!

Considering all nearest- and next-nearest-neighbor b
amplitudes as in Eq.~A2! one obtains a mean-field Hami
tonian with the same structure as for the zigzag path~A3!.
Therefore also the mean-field dispersion is of form~A6! with
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g0,k5J'~ 1
2 2x0!1J~2x0* x112x0* x2* 1Imx32Imx4!

1Jeik~ 1
4 2ux2u21x0

22x1x22x1x2* 2x11x3x4!

1Je2 ik~ 1
4 2ux1u21x0

22x1* x2* 2x1x2* 2x2* 1x3* x4* !,

ga,k52J@ Im~x11x2!12Rex0~sink12Rex4!

22Re~x1x4* 1x2x4* !eik#,

gb,k5J@ Im~x11x2!12Rex0~sink22Rex3!

12Re~x1x3* 1x2x3* !eik#. ~A13!

For J5J' the bond amplitudes yieldx0520.431, x15x2
520.028, x352x450.162i and the resulting mean-field
dispersion forJ5J' is displayed in Fig. 18~a!. Although
there is no artificial dimerization in this symmetric treatme
the resulting mean-field dispersion@solid line in Fig. 18~a!#
deviates more from the DMRG result than the dispers
obtained by the meander-path treatment@dashed line in Fig.
18~a!#. In the limit of large leg couplingJ/J' the expectation
value for spin products along the rungs approaches the s
value as the expectation value for products of neighbor
spins along the legs. This is certainly not the correct limit
rung spins should be uncorrelated forJ/J'→`.

APPENDIX B: RPA EQUATIONS

The RPA equations for the particle-hole propagators of
spinless Jordan-Wigner fermions can be obtained by con
ering all possible vertex configurations of the RPA Ham
tonian ~31!. The explicit form for the renormalized particle
hole propagators is

Bg†r,ds†
m,n

5b̃g†r,ds†
m,n

1 (
l50

2

$bg†a,da†
m,3l Bb†r,bs†

l,n

1bg†a,db†
m,1l Ba†r,bs†

l,n
1bg†a,db†

m,6l Bb†r,as†
l,n

1bg†b,da†
m,4l Bb†r,as†

l,n
1bg†b,da†

m,5l Ba†r,bs†
l,n

1bg†b,db†
m,2l Ba†r,as†

l,n %. ~B1!

For simplicity the momentum and frequency indicesp andv
have been omitted. The noninteracting particle-hole propa
tors b̃ andb, including the appropriate form factors from th
internal interaction vertices, are defined as

b̃g†r,ds†
m,n

5
1

N (
k

f k
m f k

nbg†r,ds†
0

~p,k,v!,

bg†r,ds†
m,sl

5
1

N (
k

f k
mg(s,l)~p,k!bg†r,ds†

0
~p,k,v!, ~B2!

with form factors

f k
051, f k

15eik, f k
25e2 ik, ~B3!

and
9-15
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g(1,0)~p,k!52J' f k
012Jx0~11e2 ip! f k

2 ,

g(1,1)~p,k!5J@2x0~11eip! f k
022x1eip f k

12~114x2! f k
2#,

g(1,2)~p,k!52J~ f k
112x1e2 ip f k

2!,

g(2,0)~p,k!5@J'1J$e2 ip1~114x2!eip%# f k
022Jx0eip f k

1

22Jx0f k
2 ,

g(2,1)~p,k!52J~2x0eip f k
01x1eip f k

1!,

g(2,2)~p,k!52J~2x0f k
01x1e2 ip f k

2!,

g(3,0)~p,k!5@J'1J$eip1~114x2!e2 ip%# f k
022Jx0f k

1

22Jx0e2 ip f k
2 ,

g(3,1)~p,k!52J~2x0f k
01x1eip f k

1!,

g(3,2)~p,k!52J~2x0e2 ip f k
01x1e2 ip f k

2!,

g(4,0)~p,k!52J' f k
012Jx0~11eip! f k

1 ,

g(4,1)~p,k!52J~2x1eip f k
11 f k

2!,

*Present address: Department of Physics, University of Flor
Gainesville, FL 32611.
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FIG. 18. Mean-field treatment of Hamiltonian~A12!: ~a! disper-
sion for J5J' ~solid line!. For comparison the dispersion obtaine
by the meander-path treatment~dashed line! and the DMRG disper-
sion are added.~b! Expectation values for neighboring spin pro
ucts as a function ofJ/J' .
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g(4,2)~p,k!5J@2x0~11e2 ip! f k
02~114x2! f k

122x1e2 ip f k
2#,

g(5,0)~p,k!5g(6,0)~p,k!52Jx1~eip1e2 ip! f k
0 ,

g(5,1)~p,k!5g(6,1)~p,k!522Jx1f k
2 ,

g(5,2)~p,k!5g(6,2)~p,k!522Jx1f k
1 . ~B4!

The noninteracting particle-hole propagatorsb0 are given as

ba†a,aa†
0

5bb†b,bb†
0

5ba†a,bb†
0

5bb†b,aa†
0

5 1
4 @g1

0~p,k,v!2g2
0~p,k,v!#,

bb†a,aa†
0

5bb†a,bb†
0

5 1
4 up1k

2 @g1
0~p,k,v!1g2

0~p,k,v!#,

ba†b,aa†
0

5ba†b,bb†
0

5 1
4 vp1k

2 @g1
0~p,k,v!1g2

0~p,k,v!#,

ba†a,ab†
0

5bb†b,ab†
0

52 1
4 uk

2@g1
0~p,k,v!1g2

0~p,k,v!#,

ba†a,ba†
0

5bb†b,ba†
0

52 1
4 vk

2@g1
0~p,k,v!1g2

0~p,k,v!#,

ba†b,ab†
0

52 1
4 uk

2vp1k
2 @g1

0~p,k,v!2g2
0~p,k,v!#,

bb†a,ba†
0

52 1
4 vk

2up1k
2 @g1

0~p,k,v!2g2
0~p,k,v!#,

ba†b,ba†
0

52 1
4 vk

2vp1k
2 @g1

0~p,k,v!2g2
0~p,k,v!#,

bb†a,ab†
0

52 1
4 uk

2up1k
2 @g1

0~p,k,v!2g2
0~p,k,v!#, ~B5!

with

g1
0~p,k,v!5

1

v2ek2ep1k1 id
,

g2
0~p,k,v!5

1

v1ek1ep1k2 id
. ~B6!

Here,x0 , x1, andx2 are the bond amplitudes~15!, uk , vk
are the coefficients for the diagonalization~19! of the mean-
field Hamiltonian~16!, and ek is the mean-field dispersion
~18!.
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