PHYSICAL REVIEW B 69, 104417 (2004

Spectral properties of the dimerized and frustrated S=1/2 chain
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Spectral densities are calculated for the dimerized and frust&teld2 chain using the method of continu-
ous unitary transformations. The transformation to an effective triplon model is realized in a perturbative
fashion up to high orders about the limit of isolated dimers. An efficient description in terms of triplons
(elementary tripletsis possible: a detailed analysis of the spectral densities is provided for strong and inter-
mediate dimerization including the influence of frustration. Precise predictions are made for inelastic neutron
scattering experiments probing ti$e=1 sector and for optical experimenfRaman scattering, infrared ab-
sorption probing theS=0 sector. Bound states and resonances influence the important continua strongly. The
comparison with the field theoretic results reveals that the sine-Gordon model describes the low-energy fea-
tures for strong to intermediate dimerization only at critical frustration.

DOI: 10.1103/PhysRevB.69.104417 PACS nuni®er75.40.Gb, 75.50.Ee, 75.10.Jm

[. INTRODUCTION result was recently confirmed by Hametral®
In this work, we take a closer look at the generic features

One-dimensional quantum antiferromagnets display verpf the spectral properties at finite dimerization. In this regime
interesting and fascinating physical properties. The generi@ description in terms of triplons is surely correct due to the
system to be studied in this context is the dimerized andonfinement of the spinorflsWe will learn more about the
frustrated Heisenberg chain which comprises many physicdriplon picture and try to connect the triplon-based findings at
phenomena of interest. There are gapless and gappdidite dimerization with results obtained at zero dimerization
phaseg, fractional excitationg;® and confinement. using the spinon picture.

The quantitative calculation of spectral densities is a very The paper is organized as follows. Section Il gives an
important issue in the field of strongly correlated electronintroduction to the model. Section Ill presents the method we
systems. The interplay between kinetics, interaction, and masse and introduces the basic quantities under consideration.
trix elements leads to characteristic structures in the spectrén Sec. IV results for the dynamical structure factor are
In recent years there has been significant progress in calcghown. We present results for the one-triplon contribution,
lating spectral densities in the field of quasi-one-dimensionaihe two-triplon contribution and compare with field theoret-
quantum spin systems, e.g., the uniform Heisenberg ¢hainical results. Section V shows spectral densities with total spin
spin ladders system€ and strongly dimerized spin zero. We give results for the two-triplon contribution for
chains’® nearest-neighborNN) and next-nearest-neighbdiNNN)

Besides the fascinating theoretical aspects, the determingoupling. We also provide results for Raman spectroscopy
tion of spectral densities is of direct importance for experi-and optical absorption. Section VI summarizes this paper and
mental measurements. The theoretically predicted spectra afc. VII comprises the conclusions.
relevant for inelastic neutron scattering experiments and op-
tical experiments like Raman spectroscopy and infrared ab- Il. MODEL
sorption. There is a large number of quasi-one-dimensional
compounds which can be successfully described by the The Hamiltonian for the dimerized and frustrat8er 1/2
dimerized and frustrated Heisenberg model, e.g., spin-Peierpin chain reads
compounds13 such as CuGgO (Refs. 9-12 and
a'-NaV,05, (VO),P,0; (Ref. 14 or organic compounds _ AN
such as Cu(CcHyNy),Cl, (Ref. 19 and [Cu(NOy), H=302 {[1+8(-1)'1SS 1t @SSeah ()
-2.5D,0].2%1" The limit of vanishing dimerization is real-
ized in the cuprate chain compounds such as KCEGF whered parameterizes the dimerization ang the relative
SKLCuG;,t° and Srcu@.? frustration between NNN spins. In order to apply a perturba-

We will describe the dimerized and frustrated spin chaintive treatment we transform Egl) into
in terms of elementary tripletétriplons) (Ref. 21 which
carry total spin one. The commonly accepted elementary ex-
citations for theundimerizedsystem are fractional excita-
tions, so-called spinons, carryin§=1/2.2° Recently we
have shown that a description in terms of triplons is alsovhere J=Jy(1+6), A=(1-6)/(1+6), and a=aq/(1
possible for the isotropic Heisenberg ch&rSo there is no  — 6).
necessity to use fractional excitations in one-dimensional The dimerized and frustrated spin chain exhibits very in-
systems. Remarkably, even more spectral weight is capturgdresting intrinsic physics. The phase diagram of the model is
by the states of two triplons than with two spindAsThis ~ shown in Fig. 1. At6=0 there are two regimes.

H/J=Z[sasmﬂﬂsmsm_lﬂassu], )
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SA serves the number of triplons on the strong bonds, i.e.,
1A ) [Ho,He]=0 whereHg:=H|, _o.***® The ground state of
*.Shastry-Sutherland line Hey is the triplon vacuum. Using an infinitesimal anti-
AN Hermitian generator; we have
"R = = dH
gapped o1 ~[n(.HD], (€)
] ] \l\ Majumdar- whereH(0)=H, H(®)=H¢ andl=0 is an auxiliary vari-
*<_ Ghosh able. The optimized choice fay reads
Okb--onr--- | —
| _
0 gaplessao’c 12 Oo 7,1(1) = sgri[Holii—[Hol; )Hi (1), @

where the matrix elements ; andH; ; are given in an eigen
. . ) SR "basis ofH, counting the number of triplons on the strong
berg Chf.i'n depenqlng on frustraﬂorb and dlmer.|zat|on5.. The — honds. The choiceg4) retains only triplon conserving pro-
system is always in a gapped regime except in the inteaal o oo ang it eliminates all partskfchanging the number
€[0,aq.] at zero dimerization. The dashed line marks the Shastry- f tripl FEN t be st d that th h ¢
Sutherland line where the ground-state is known exactly. Soli" '1PIoNs. "It Must be stresse at In€ approach represents
squares correspond to the parameters — U(1+8)=A & renormalization in the sense that matrix elements between
€{0.3;0.6 and ag/(1— ) = @ {0.0;0.25:0.5 used in this work. states with very different energies are transformgd strongest
in the early stages of the transformation. The matrix elements

(i) For ag<aq, the ground state is in the same universal-between energetically similar states are transformed only at a
ity class as the uniform Heisenberg chain. The excitations arkater stage of the transformation.
massless and the standard description is in terms of uncon- |n order to determine spectral weightsand spectral den-
fined spinons carrying total spi=1/2.>° In a recent work sities the observablR is mapped to an effective observable
we have shown that also a description in terms of triplons isReff by the same unitary transformatfSn3) as the Hamil-
appropriate for the isotropic Heisenberg ch&in. tonian.

(ii) At ag=aq there is a transition into a spontaneously  The continuous unitary transformation cannot be carried
dimerized phas&:**~**The ground state is two-fold degen- oyt without truncation. We use a perturbative method in
erate and the excitations are massive spinonsvfofagc.  The effective HamiltoniarH  is calculated up to order 10
At the Majumdar-Ghosh pointa,=0.5) the ground-state is and the effective observabRy is calculated up to order 7
known exactly:®~** The validity of a triplon description in i the two-triplon sector. The plain series of the important
this gapped phase is an open issue. On the other hangyantities will be made available on our home palfede-
Haldané has shown that for any finite dimerizatiahthe  tajis of the calculation will not be presented here. They are
spinons become confined and a description in terms Ofiven exemplarily for the spin ladder in Ref. 45.
triplons carrying total spits=1 is appropriate. The spectrum ~ The following extrapolation technique is employed,
is always gapped®*°and the excitations can be viewed aswhich we have introduced recently for spin-ladder
bound states of two spinofs:>*The interaction between the systemé78 After fixing « to the desired value the plain
spinons is not exhausted by the confinement and there regries in\ is converted into a series in-1A invoking the
mains a triplon-triplon interaction which can lead to two- gne-triplon gapA. The one-triplon gap is the natural internal
triplon bound states with total spi§=0 andS=1 lying  energy scale of the problem. Since in this work we are inter-
below the multitriplon continuurf?*>*>~ ested only in strong and intermediate dimerization, no further

Spectral properties are particularly difficult to address. SQextrapoIation techniques such as standard Rati@polants
far, results can be obtained either by numerical approachege used. There is no uncertainty in the obtained spectral
such as exact diagonalization or quantum Monte Carlo or byensities for strong dimerization=0.3. The uncertainty is
studies of effective continuum models. In particular, the caspout 29 of] for the worst case at intermediate dimerization
of finite frustration and th&=0 sector relevant for optical (A=0.6). In order to investigate the cases of weak or van-
experiments has not yet been investigated thoroughly.  jshing dimerization it would be important to use further ex-

_In the following we expand about the limit of isolated {ranolation tools and to treat processes with longer or infinite
dimers on the strong bonds, i.&.5=0. We present results for range explicitly.
the two-triplon contribution to the spectral density for strong At T=0, spectral densities can be calculated from the
(A=0.3) and intermediateN(=0.6) dimerization and for (etarded Green function
three representative values of the frustration=0, «
=0.25, «=0.5). These parameters are marked in Fig. 1 as 1
filled squares. l(w)=— ;Im(O|RT

FIG. 1. Phase diagram of the dimerized and frustrated Heise

1
o—(A—Eg+io+ N0 O

. METHOD . . .
Due to the conservation of triplons after the unitary transfor-
A continuous unitary transformatiéhis used to map the mation the spectral density can be split into additive parts

HamiltonianH to an effective Hamiltoniamd . which con- | ,(w), then-triplon contribution to the spectral density,
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0 1

|<w>=; In(@), (63)

—Im T
Ih(w)= T<O|Reﬁ,n

— R /0), (6b
a)—H(erf]f)-l—iO-l— eff,n| > ( )

-y —

where H{Y) =" |H.;. For the precise definitions of the
operatord o ; andRey ; the reader is referred to Ref. 45. The
total intensity can be calculated using Dirac’s identity for
Eq. (5):

FIG. 2. Sketch of the local observable f8&=1 excitations.
Double lines denote strong bonds and single lines weak bonds. The
observable couples to the lefit) and to the right(R) spin of a
strong bond.

) one-triplon contribution contains most of the spectral weight
at strong and intermediate dimerization. In the limit of small
dimerization it is highly reduced and becomes unimportant

The total intensityl ; is a sum over the spectral weight of all for zero dimerization. We expect that the two-triplon contri-

triplon sectors|=2,-¢l,. The spectral weight, in the  bution is the only relevant contribution in the limit of zero

o= fmdw' (w)= <O| lefReff|0>'

n-triplon sector is calculated by dimerization?
A discussion of the one-triplon contribution to the dy-
In=<O|R;’eﬁRnyeﬁ|O), (8)  namic susceptibility of a dimerized chain without frustration

_ o can be found in a work by Mler and Mikeska® Recently
whereR;, .+ denotes alh-triplon excitation processes of the zhenget al. published results for the one- and two-triplon
observableR. Using the sum rulé,=(0|R?|0)—(0|R[0)*>  contribution of a strongly dimerized spin chain without
we can check the reliability of the perturbative results. Forfrustration! Our results at zero frustration agree with the
later use we define the relative spectral weiglhtse  findings of Zhenggt al.

=1/l With 2 <ol p /1= 1. Here we want to extract the generic features of the two-
triplon contribution for various dimerization and frustration
IV S=1 EXCITATIONS in order to gain insight in the evolution of this contribution in

the limit of vanishing dimerization. Therefore it is interesting

This part of the paper contains results for the dynamicato compare our results with results for the dynamical struc-
structure factor of the dimerized and frustrated spin chain. Ature factor at zero dimerization.
A =0 the system consists of isolated dimers and therefore the At «=0 an exact calculation of the two-spinon contribu-
total spectral weight is in the one-triplon chanhgl Turning  tion to the dynamical structure factor using Bethe-ansatz is
on \ will reduce the spectral weight in the one-triplon chan-Possible’ The two-spinon contribution exhausts 72.89% of
nel and the spectral weight will also be distributed over thethe total spectral weight and it displays a singular divergent
multi-triplon channels. In the unfrustrated chain the spectraPehavior at the lower edge of the two-spinon continuum. At
weight is shifted almost totally from the one-triplon channelfinite frustration only numerical results using exact diagonal-
to the two-triplon channel on passing from strong to zerdzation at finite temperatures including frustration are
dimerizationz_z In an ana'ogous procedure we have ana|yze(ﬁvai|able§l In addition, there are also results Using Abelian
the spectral weight distribution on the disorder linesat bosonization extracting the universal features of the dynami-
=0.5. We find indications that again the two-triplon contri- Cal structure factor at Iqw energies for'small dimerizattbn.
bution is the dominant one, even for vanishing dimerization!n the following we will identify the major features of these
But due to the complexity of the frustrated system no unamsStudies in our triplon description at finite dimerization.
biguous extrapolations are possiBierhus we do not have a
final answer for the massive frustrated phase.

In the following we will show results for the one-triplon The local physical observabR®=1 for total S=1 excita-
and the two-triplon contribution to the spectral density. Thetions reads

A

A=0.6 . . . A=0.6

A. One-triplon contribution

1.00

0.75
FIG. 3. One-triplon dispersion
(k) (left panel$ and one-triplon
spectral weightl (k) (right pan-
el for A={0.3;0.4;0.5;0.5. In
(@ «=0.0, in(b) «=0.25, and in

k [n/(2/2)]

025 p 3 L
f (c) a=0.5.
’ 0.60.81.01.2 00 02 0._‘} 0.6 0.60.81.01.2 0.0 0.2 0_.;1- 0.6 06081012 0.0 0.2 0_.14 0.6
wlJ] (k) U1 ofJ] LK1 ofJ] LK ]
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L o1 . .
IO_OOQJ @) Ai?pl:_ E [alLe—lk(2|+ 1/2)Jral e ik(2-1/2))
J2 4

10 : L. 1
— =—\/§I2 arsink| 21+ 5 . (11
a T 2
@ A
< The sum runs over all strong bontisThe coefficienta;- is

0.5 B the amplitude for the creation of one triplon at ditey S/ .

DR The amplitudes 08, do not need to be calculated separately
due to the symmetrg= —a" . The basic unit length/2 is

the distance between two neighboring sites. In the figures
momenta between 0 and 1 are given in unitsrdfa/2). So

the comparison between our results and the conventional no-
tation for undimerized chains using the distaac¢e=a/2 be-
tween two neighboring spins as unit length is simplified. In
analytic expressions, the momerkaare given in units of
1/(a/2) (without the factors) for brevity.

In Fig. 3 the results for the one-triplon dispersiaitk)

(left panel$ and the one-triplon spectral weighi(k) (right
panel$ are shown. We present results fo\
={0.3;0.4;0.5;0.banda=0 [Fig. 3@], «=0.25[Fig. 3(b)]
and a=0.5[Fig. 3(0)].

Let us discuss first the case of vanishing frustratian (
=0). At A =0 the system consists of isolated dimers and the
one-triplon dispersion is flat. Turning onthe triplon starts
to hop from dimer to dimer and it acquires a finite dispersion
[Fig. 3(@), left panel. The dispersion has minimalat0 and
k=7 [in units of 1/@/2)], which represent the one-triplon
gapA. In the limit of zero dimerization the one-triplon gap
closes and it is to be expected that the one-triplon dispersion
equals the well-known des Cloizeaux-Peafstispersion re-
lation wcp(K) = /2| sin(K)|.

The one-triplon spectral weight;(k) is shown in the
right panel of Fig. 8a). The leading term of (k) is propor-
tional to sirf(k/2). It is called the dimer structure factdy.
'_\i The one-triplon spectral weight is concentratekatmw. At
0.5 ' = finite dimerization the reduction df; due to the interdimer
j'& exchange occurs mainly for momeriter 0.97. The spectral
T — weight increases in a small interval aroukd 7.%° For even
' smaller dimerizations the one-triplon spectral weight be-
.80 1.85 1.90 1.95 2.00 2.05 comes more concentrated abdwut 7. The total weight, in-

o[J] tegrated over momentum and frequency, vanishes for vanish-

FIG. 4. Two-triplon spectral densithy(k,w) for RS=* with A ing dimerization.
=0.3 anda=0.0 (a), ®=0.25(b), and@=0.5 (c). Gray lines de- In Fig. 3(b) the corresponding results far=0.25 are
note the lower and upper bound of the continuum. Black lines in-shown. The one-triplon dispersion is similar in shape to the
dicate dispersion of two-triplon bound states. case of zero frustration. Due to the finite frustration the ex-

citations become more local and the triplon is less dispersive.
Rﬁl:SiZ, (9) The gap vaIL_les are inghFIy larger _and the maximum valu_es
of the one-triplon dispersion are slightly lower for the vari-
wherei denotes a site of the chain. In the following we will ous values of than for the unfrustrated caf€igs. 3a) and
denote the left and the right site on a strong bond.andR,  3(b), left panels.
cf. Fig. 2. We decompose the action of the full observable The one-triplon spectral weight at=0.25 differs from
Rszllmp in the one-triplon channel on the ground state forthe one atv=0 for momenta close tk= 7 [Fig. 3(b), right

k [/(@/2)]

1.0

k [/(a/2)]

fixed one-triplon momenturk by writing panel. The spectral weight is reduced for all momentarat
=0.25 on increasing.. But the reduction is smallest fdr
Rszl|1trp|0>=AiTp1(k)|k>. (100 = Inthe limit of zero dimerization the one-triplon spectral
weightl ;(k) vanishes for all momenta. The left panel of Fig.
where the amplitudeAiTpl are given by 3(c) shows the one-triplon dispersian(k) for «=0.5. The
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dispersion is highly reduced due to the increased locality ofrhe action ofSk does not need to be calculated due to the
the triplon. Atk= /2, the one-triplon state is an eigen state q|5tjon aR:S=1= — g--5=1 The basic unit lengtra/2 is

53 : Litd = —&7-q,-1-
of the systert**and it has an energy dfindependent ok. again the distance between two neighboring sites. The spec-
In the limit of zero dimerization the system remains in a

gapped statb?-2522 tra show results for momenta between 0 and 1 in units of
The right panel of Fig. @) showsl (k) for a=0.5. The 7/(al2) (see Fig. 2 In Figs. 4—7 the results for the two-

spectral weight is reduced for increasingor all momenta triplon continua, the dispersions of the two-triplon bound

exceptk=7/2. Since the one-triplon state kt= /2 is an staltzt_as and4tr(1j_e|r IspecELal We'grt]tsl a:jre shtowr:c. the two-triol
eigen state independent of its spectral weight is also \gure ISplays the spectral densily of the two-tripion

constant? In contrast to the previous cases, there is also agontmuumf asf_a ;unctlon of 'Lr]gquE_r;tcydat\)ni_morggntum. The
one-triplon contribution for zero dimerization, at least for ~ SPECtrum for fixed momenturais shifted bykin y direction

= 7/2, but most probably also in the vicinity of this momen- in order to provide a three-dimensional view on the spectral
tum. ’ densities. The lower and upper band edge is marked by solid

gray lines. If there are any two-triplon bound states, their
dispersions are displayed as a black lines. We denot&the

] ) ] ) o =1 two-triplon bound states &g, and theS=0 two-triplon
In this section we discuss the two-triplon contribution to ) nd states as, wheren={1,2, .. }

the dynamical structure factor. The two-triplon contribution
displays additional physics in comparison to the one-triplonFi

part. The reason is that besides the kinetic part of the eXCLT’he left part shows an enlargement of the dispersion of the

tations also the triplon-triplon interaction is important and ;
has to be included. An attractive interaction can lead topound state and of the lower bound of the two-triplon con-

bound states of two triplons. Furthermore, the total momentnuum- In the r|gh.t part the corresponding spectrgl we|ght_of
tum of two triplons does not fix the state of the system. Ther he bound states is shown. The spectral weight is multiplied

is also a relative momentum between the triplons which i ywﬁ given f:;:ctors for C]"";”ty' f the obtained 5
not fixed. Thus there is a continuum of two-triplon states for at are the general features of the obtained spectra’

each given total momentum. Let us turn to the spectral propDue to the conservation of the toté component.there IS no
erties of the two-triplon continuum and the two-triplon spectral weight at zero momentum. The energies of the sys-
bound states. tem possess a reflection symmetry ablostm/2 which is a

We decompose the action of the full observaRRs 1|2trp consequence of the inversion symmekry —k and of the

in the two-triplon channel on the ground-state for fixed two-C0UPliNg of the moment& andk+ . This symmetry can
triplon momenturrk be seen clearly in the bound-state energies and in the lower

and the upper band edges of the continuum. It dag$old
- for the spectral weights’
RS 50y = 20 ASp (K, d)[K,d). (12) In Fig. 4(a) the spectral density fax=0.3 ande=0.0 is
d . .
shown. The spectral weight is mostly concentrated at the
Hered denotes the relative distance between the two triplonsower band edge of the continuum. There are two bound
and states centered abokit= 7/2 leaving the continuum at some
finite momentum. The dispersions and the spectral weights
of the bound states are plotted in Figap The points where
the bound states are leaving the continuum can also be dis-
cerned by the strong peak close to the lower band edge of the
The sum runs over all strong bontiandaj;33" is the am-  continuum. The spectral weight is mainly concentrated in the
plitude for the creation of two triplons on dimefsand|  first bound stat& ;. The spectral weight of the second bound
+d by S . Here it is convenient to use a mixed representastateT, is highly reduced.
tion in which the center-of-mass coordinate is Fourier trans- The binding energy of the bound states has its maximum
formed and the relative coordinate is dealt within real spaceat k= /2. It vanishes quadraticallyc(k—k.)?> when the

B. Two-triplon contribution

Detailed information about the bound states is given in
g. 5 which consists of two parts for each parameter set.

. (13

1
A= 23 bt K 21+ 3 +d]
S o}

1.00 ' . —
- FIG. 5. Two-triplon bound
075 b 1 1 A states forRS=! with A=0.3 and
= \ ] a=0.0 (a), «a=0.25 (b), and «
% \ H =0.5 (¢). Left panels show the
s 0%0r i J it dispersion of the bound states;
& J A 4 right panels show the spectral
05 [ 1 1l L 1L A weights of the bound states multi-
plied by the indicated factors.
(a) (b) (© ] Gray lines denote lower bound of
000 T 00 05 1018 15 00 05 10 18518 00 05 i< the continuum.

olJ] I (k) olJ] (k) o[J] I (k)
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T changes in the spectrum. The spectral weight is mainly con-
IO-OOS J' () centrated at low energies. The range of energies, where the
bound states exist, is slightly enhanced while the binding
energy is slightly reduced. We expect that this tendency con-
tinues to lower values of the dimerization. For exactly zero
dimerization, butnot for an arbitrarily small but finite one,
the first bound stat&, coincides with the lower bound of the

05 continuum leading to a square-root divergence at the lower
edge of the continuum for all momenta. Our expectation is
— strongly corroborated by the exact results for the spectral
densities in the sine-Gordon modé&f>The generic behavior

0.0 is a square-root behavior at the band edges. Only if a

1.0 1.5 2.0 25 3.0 . . .

o U] breather becomes degenerate with the multi-particle band
edge the square-root behavior switches to a square-root di-
vergence. Exactly the same characteristics appears naturally
in the triplon description. Recall also that for the uniform
spin chain at zero dimerization the square-root divergence is
well known from the exact two-spinon contribution to the
dynamical structure factdr.

In Figs. 4b) and 4c) the spectra for strong dimerization
and finite frustrationa=0.25 anda=0.5 are shown. The
corresponding information about the two-triplon bound
states is plotted in Figs.(56) and 5c¢). The frustration makes
the excitations more local and less dispersive which leads to
a narrowing of the two-triplon continuum. At the same time
the triplon-triplon interaction is enhanced causing an in-
crease of the binding energy of the bound states. It can be
nicely seen that fore=0.25 the first bound state extends
over a wide range in momentum space lying for small and
large momenta very close to the lower band edge inside the
continuum. Fora=0.5 the bound stat&, exists for all mo-
menta.

Due to the existence of the bound states only in a finite
interval of momentum for both values=0 anda=0.25 the
qualitative distribution of their spectral weight is similar.
This is true for all values of frustration between 0 and 0.25.
The same holds for the bound stétg for «=0.5. In con-
trast, the spectral weight of the first bound sfate which is

' S——— well separated from the continuum far=0.5, has its maxi-
%7 mum atk= .

1.2 1.4 16 18 The whole two-triplon contribution, i.e., the two-triplon
o[ bound states and the two-triplon continuum, vanisheskfor
FIG. 6. Two-triplon spectral densitlp(k,») for RS with A = 7/2 at @=0.5. Here the one-triplon excitation is an exact
=0.6 anda=0.0 (&), «=0.25(b), anda=0.5 (). Gray lines de-  gjgen-state of the spectrum and therefore comprises the total
npte Iower and upper bound of the continuum. Black lines i”dicatespectral Weigﬁ’f"53 (see also preceding sectjon
dispersion of two-triplon bound states. We now turn to the influence of the frustration on the
shapeof the two-triplon continuum. In the case of vanishing
bound state enters the continuum. Correspondingly theifrustration the spectral weight is distributed mainly close to
spectral weight vanishes linearly|k—k.| in accordance the lower band edge for strong and intermediate dimeriza-
with the exemplary calculation provided in Ref. 22. There ittion. The spectral weight decreases monotonically for higher
was shown for square-root-type continua that the bindingnergies. Turning on the frustration we observe a shift of
energy vanishes quadratically as function of an external paspectral weight towards higher energies. In the case of strong
rameter while the spectral weight of the bound state vanishedimerization this tendency is wedlFigs. 4b) and 4c)]
linearly. The external parameter was the attraction strengttwhile for intermediate dimerization we observe a huge trans-
In the present case it is the total momentum which controlder of spectral weigh{Figs. §b) and &c)]. This transfer
the relative strength of interaction and kinetic energy. produces a non-monotonic shape for intermediate dimeriza-
Decreasing the dimerization to intermediate valjigds tion anda=0.25, having a minimum of spectral weight in-
=0.6, see Figs. @ and 7da)], there are no qualitative side the continuuniFig. 6(b)]. Increasing the frustrationa(

1.0 ——

K [t/(a/2)]

K [t/(a/2)]

K [t/(a/2)]

0.0
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1.00 I T T T T T T T T T T T
FIG. 7. Two-triplon bound
075 | | states forRS~* with A=0.6 and
— a=0.0 (a), «=0.25 (b), and «
:é; ; =0.5 (c). Left panels show the
s 0%0r 1r \ ] dispersion of the bound states;
e right panels show the spectral
025 | i weights of the bound states multi-
plied by the indicated factors.
| () Gray lines denote the lower bound
00 T4 161800 05 10 14161800 05 10 14161800 05 1c of the continuum.
olJ] I(k) olJ] I (k) o[J] I (k)

=0.5) shifts the minimum to the lower band edge. The specédiscussion see belgwThen a simple sine-Gordon model at
tral weight is mainly at the upper band eddég. 6(c)]. K=1/2 remains of which the spectral densities are
These observations are very similar to the results obtainekinown34°°
by exact diagonalization at finite temperatures for the dy- The S=1 response function displays a square root diver-
namical structure factor of a homogeneous spin chain includgences (w— w) ~*? at the lower band edge. Here the en-
ing frustration>! There a decrease of spectral weightkat ergy of theS=1 breathemwy, s-; is exactly degenerate with
= 7 inside the continuum is observed on increasing the frusthe lower band edgef, s—;=2A). This is in agreement
tration. This results in a high-energy maximum for largewith what we find atoe=0.25, cf. Figs. 4b) and &b). With-
frustration and a minimum inside the continuum, i.e., aout any frustration, however, we find a square-root behavior
troughlike shape. From this comparison we conclude that ouk (w— wo)Y?, cf. Figs. 4a) and Ga). Hence we conclude
findings represent the generic features which are also valid ithat the sine-Gordon model does not describe the unfrus-
the limit of vanishing dimerization. trated, dimerized spin chain exhaustively. But the sine-
Gordon model applies to the spin chain at critical frustration
where the higher cosine-term co€(fivanishes. It is interest-
ing to note that we find a square-root divergence dor
In the first part of this section we concentrate on $ie ~aq. and not forap~aq.
=1 breather and the corresponding behavior of the lower The conclusion about the applicability of the sine-Gordon
band edge of the two-triplon continuum. In the second partmodel to the unfrustrated and dimerized spin chain is in
we have a closer look at the energy of ®e 0 breather and agreement with the results of the numerical investigation of
at the one-triplon gap. Finally, the importance of marginalthe bound state¥. It is known that the elementary excita-
terms for the quantitative shape of spectral densities is digions of the SW2) symmetric sine-Gordon model consist of
cussed. A detailed analysis of =0 channel which con- soliton and antisoliton excitations and two breathers, bound
tains also a discussion of the singlet two-triplon bound statestates, plus one breather which is degenerate with the lower
is presented in the following section. band edgé:>**°The lowest-lying breather is degenerate with
Let us first look at the results obtained from bosonizationthe soliton and antisoliton excitations and corresponds to the
and the continuum limit renormalization group approatt.  S*=0 triplet state in spin language. This fixes the interaction
The bosonized form of the dimerized and frustrated spin
chain reads

C. Comparison with field-theory results

=0y ¢
v [ 5 , 5 G—oO2=0.3
HFT=EJ%[K(7TH) +K™H(9,P)“]dx o4
G—FHA=0.6
o N
+J' [6Acog2®)+D cog4d)]dx, (14 g
wherev is the spin-wave velocity and = 1/2 the interaction 16}
parameter for the isotropic chain. The value of the critical
frustration ag=0.241 167 depends on the physics at short . A ,
distances and is only accessible by numerical 0.0 01 02 03 04

techniques??*~2>The §cos(2D) term is strongly relevant

while the D cos(4P) term is marginally irrelevant foig FIG. 8. Ratio of the singlet two-triplon bound state enengy

<agp. and marginally relevant fowg™> aq . It is commonly
accepted and numerically confirm®d”%®%%that the mar-
ginal term can be neglected best fep= aq. (for further

over the one-triplon gap for A ={0.3;0.4;0.5;0.p depending on
the frustrationa,. Horizontal black solid line denoted3 and ver-

tical black solid line shows the critical frustratian, .
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parameter ta&=1/2. The second breather is assigned to an the thermodynamic limit. =oc. Hence the suppression of
spin singlet excitation, since there is no counter part in thehe marginally irrelevant cosine term relative to the relevant
soliton or antisoliton sector. The ratio between the energy obne is logarithmic ins and so very slow. Thus it is possible
the S=0 breatherwy, s—o and the one-triplon gap is ex-  that the scales which we discuss in this pap&rdpwn to
actly |3 atK=1/2. 0.25) are still too large to see the emergence of the physics
In Fig. 8 this ratio is shown for various values &f  of a pure sine-Gordon model with one cosine only. But we
={0.3;0.4;0.5;0.p versus the bare frustratiom,. We have find it puzzling that no precursors of the convergence to the
used Padextrapolants fon =0.6. It can be clearly seen that predictions of the pure sine-Gordon model can be seen. The
almost all points(except the case for strong dimerizatidn  (atio of the energy gaps shown in Fig(& those obtained in

=0.3) fall onto one curve. The values fop. and V3 are  Ref. 37 appears almost independentdas far as we could
included as solid lines. The point where these two lines crosg,estigate.

lies on the calculated curve and corresponds to the prediction yote that the vanishing of the codg}term at theend of

of the SU2) symmetric sine-Gordon model. In_all other o gy of| is notidentical to the question whether this term
cases {o# o) the ratiowy,s_o/A differs from V3. This g present at the beginning of the flow. We presume that this
s due 1o corrlectllon_s resulting fr<f)m Ithe. r:narglr)al M jitterence explains the puzzling finding that the bare coeffi-
cos(4p). Our calculations agree perfectly with previous nu- o "ot the Umklapp term cos@) vanished at ag— 1/6,

merical results? that means relatively far from the quantum critical pairt
The relative importance of the two cosine terms in Eq._0 a1 y q POy

(14) at finite dimerization is a subtle issue which we discuss L
Our results in Figs. 4+@&,b show that the square-root

in the following. . X k
In the self-consistent harmonic approximafibf?we re- ~ divergence known from the sine-Gordon maiet s
2 . . changed to normal square-root behavior. So the quantitative
place® — d s+ Piuet Where only the fluctuation part is of h f the low- Hamiltonian infl the sh
operator character. The cosine terms can then be approxi- anges of the low-energy Hamiftonian infiuence the shape
mated by qf .the spectral densities qualitatively. Hencg for specFraI den-
sities one must know whether the appropriate effective low-
cogn®)— exg — (N%2) o(x)1cog NP ¢asd X) ] energy model is dsimpl¢) sine-Gordon model or a double
sine-Gordon model with two cosine terms. The answer de-
pends on the energy scale considered, i.e., the valde of
For strong frustrationr= 0.5, cf. Figs. 4c) and Gc), the
physics is dominated by bound states. Their number prolif-
where o(x):=(®dg,(x)?). This kind of approach corre- erates for decreasing dimerizati¥f®At §=0 there are in-
sponds to renormalization in first order. In the ground statdinitely many bound states densely distributed betwéen
(without solitong one hasb .= 0. In the ungapped phase and 2A. They form the continuum which can be understood
the fluctuations diverge, henae—. But in the gapped as two-spinon continuuf?:®>®¢The values ofx for which
phase, the fluctuations are cut off at low energies sodhat we display the spectral densities in Figgc)4and Gc) are
= —(K/2)In(A/Ag) whereA is the gap and\ is proportional  still too low, i.e., too far in the dimerized regime to see more
to the ultraviolet cutoff. than two bound states. This was also observed by Zheng
Since the square of the gayf is proportional to the co- et al®’ They found in a series expansion up to orde?

efficient of ®(x)2 one obtains from the termi cos(2b) the  three singlet and three triplet bound states.

n2
T 2
X|1— ?q)fluct) . (15)

self-consistency equation We attribute the fact, that only a small number of bound
states could be found so far, to the limited range of the ef-
A2 Sexp(— 20), (169 fective interaction. In the perturbative approaches éor
=0.5 an order of\" corresponds to a maximum range of
Ao sY(2=K) (16  [Nn/2]. So even calculations at=19 provide only a potential

of small finite range which does not allow for many bound
yielding the well knownAx=&®® by Cross and Fishé?  states. The alternative presumpfibthat the lacking bound
Hence the total contribution of this cosine-term is propor-states are found in the channels with more than two triplons
tional to A? or 53 The crucial point to note is that the would require that the spectral weight is passed to channels
amplitude of the second cosine-term caeBJ4s of the same  with more and more triplons. No channel with only a finite
magnitude expf80)=xA* which also yieldsA? or 6*3 for  number of bound states may retain a finite spectral weight at
K =1/2.%° Hence the self-consistent harmonic approximationzero dimerization since at zero dimerization only a con-
tells us that even in the regime where the frustration is martinuum is found?® None of our results is in favor of this
ginally irrelevanta< «. it influences the low-energy physics scenario so that we are convinced that the range of the inter-
on the quantitative level. action is the crucial point. The fact that an expansion to
Considering, however, the renormalization to second orhigher order finds more bound states in the two-triplon sector
der the marginally irrelevant term is reduced logarithmically,supports the view that the range of the interaction matters.
hence the name “marginally irrelevantRefs. 34,64 The  But the precise description of the deconfinement transition
flow is valid down to the infrared cutoff which is in our case for vanishing dimerization is still an open issue. Future de-
the energy gap due to dimerization. Note that we are workingelopments like self-similar realizations of the continuous
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-1/2} 172} 3/2) for NNN coupling wherey is proportional to the dimeriza-
bemtell tion . Rige u iS @ sum over couplings on weak and strong
: bonds.

We will restrict our discussion to the case of NN coupling
on the weak bonds and on the NNN coupling. This choice is
motivated by the relevance of various observables for Raman
spectroscopy and infrared absorption in the limit of vanish-
ing dimerization. Raman spectroscopy measures excitations
with total momentum zero while infrared absorption is gov-

5. ermned by the response at large moméfta

~e -

[ ]
®
e
N
A A
Z

FIG. 9. Sketch of the local observables f8=0 excitations.
RSN’ is a sum of couplings on strong bondsouble lines and
weak bondssingle ling. Ryyo couples next nearest neighbor spin

unitary transformations will help to release this constraint on T T . ’ T
the range of the interactidfi:®® Io.4 J! (@)
Concerning the present data at strong frustration, an im-

portant trend is that on increasingthe spectral weight is
shifted towards higher energies. 10
S
©
V. S=0 EXCITATIONS E
X

In this section we concentrate on the two-triplon contri- 05
bution to the spectral density with total spin zero which is SSSSAEESSS
relevant for optical experiments. F8=0 one needs at least \¥
two triplons which form together a state with vanishing total \g
0.0 . . .

spin. For the case of isolated dimeis< 0) the total spectral

weight is in the two-triplon contribution. At finite the spec- 18 18 0)2[3] 22 24
tral weight in the two-triplon channel is reduced and spectral
weight is also found in channels with more than two triplons. ) ) ) o

In the limit of vanishing dimerization for zero frustration IO 4J (b)

we can show in a similar analysis as for the dynamical struc-
ture factor that the two-triplon contribution possesses almost
the total spectral weight The two-triplon contribution is
therefore the only sizable contribution for the whole range of
dimerizations for the unfrustrated case. In presence of frus-
tration the analogous analysis is quantitatively more difficult
as stated before. But there are again indications that only a
small number of triplons dominates the spectral properties.
Therefore, we investigate the leading two-triplon contribu-
tion for the S=0 channel. For the dimerizations treated in
this work there is no doubt that the two-triplon contribution
is the only sizable term. The crucial point, however, is to
which extent we can obtain the generic features which gov-
ern also the limit of vanishing dimerization. All results ob-
tained so far show that the one- and two-triplon contributions
capture indeed the relevant physics.

The local physical observabRS=° for S=0 excitations

1.0 1

k[r/(a/2)]

I =
eads S 10 §

RIoc = Ioc NN+:8RI00 NNN: 17 E’ \“\\ '”'\&.\_
e., it is a sum over NN and NNN. The coefficiefitis a 05
measure for the relative strength between the two couplings. ’ .
It depends on the underlying microscopic physics and will / ——
not be discussed in this work. As illustrated in Fig. 9 these / ]
observables are given by 00.% 17 18 10 2.0

oW

IocNN =(1+ 7)), So,rt (1= ¥)SorS1,L (18

FIG. 10. Two-triplon spectral density(K, ) for R{y yeacWith

for NN coupling, and A=0.3 ande=0.0 (a), «=0.25 (b), and «=0.5 (c). Gray lines
denote lower and upper bound of the continuum. Black lines indi-
Ioc NNN =S0,.S1,L+ SRSLR 19 cate dispersion of two-triplon bound states.
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1.00 ™ T T T . ™5
. T 1r T FIG. 11. Two-triplon bound
0.75 ] 1 1L 1l \ states for Ry ueax With A =0.3
— . e and @=0.0 (a), «=0.25 (b), and
8 ] ) e — 1T 1200 @=0.5 (). Left panels show the
S 0.50 i \).g_—_: JF ¥ . .
T / . dispersion of the bound states;
2 - £ 1t + \ right panels show the spectral
0.95 1L [ *50000 1L 1 weights of the bound states multi-
//"' plied by the indicated factors.
i T ©) 1 T Gray lines denote lower bound of
171819 00 05 10 171819 00 05 10 1718 1.9 00 05 the continuum.
olJ] I (k) olJ] I (k) olJ] I (k)

In the case of a uniform spin chain without frustration the

We first discuss the symmetries of the two observables.

NN Raman operator commutes with the Hamiltonian and?ﬁi,?weak possesses a reflection symmetry ablostm/2 for
one obtains a vanishing Raman response. Therefore the NNiNe same reasons as the Hamiltonian. For any mode at
Raman operator is the leading contribution in terms of awhich is created byRSy e there is also a mode &+ 7

Loudon-Fleury scattering theofy.”? In contrast,Ryy does

which is created. In addition, each modekas degenerate

not commute for finite momenta with the Hamiltonian andwith the reflected mode at k. Therefore, the whole spectral
will be the most important contribution to the infrared ab- density will be Symmetric abolk= /2. This symmetry is

sorption. For simplicity, we do not tre&, completely but

S=0

absent forRy . For R3Ny the spectral weight is mainly

only the weak-bond part. This is no major restriction becaus@oncentrated at small and intermediate momenta while it
we are interested in the generic properties of these quantitieggnishes exactly ak= . The latter follows from the fact
In addition, the weak-bond part dominates for strong dimeryhat atk= - the observable creates an odd state with respect

ization.
We will discuss the two observabl&,y andRyny Sepa-

to reflection about the axis 1/&ee Fig. 9 while a singlet
made from two triplets is always an even state with respect

rately. For a direct comparison with experimental data ongq particle exchange.

should take the sum over all contributing partsR5f °(k) to

account for possible interference effects. The necessary s
perposition, however, depends strongly on the details of thges=o

system and cannot be discussed generally.

The action of the full observable on the ground state isF

decomposed again for fixed total momentknn the two-
triplon sector by

Rflil,oweak( k)|0> = % AStTp?NN,weab(k'd)lk’d> (203

Run(K)[0y=> A3 Ok, d)lk,d), (200

d

where

Ao nnweak K d) = ﬁ; al"ekNNog k(21 +d)]
(213

Ak, d) = ﬁZ a-\WNeog k(21 + 1/2+d)].
(21b)

Hered is the distance between the two triplomgf2"N is

the amplitude for the creation of two triplons on the dimlers

and|+d by S gS;,, andafi}y' is the amplitude for the
creation of two triplons on the dimetandl+d by &, S, |.
NNN due to the symmetry

It is not necessary to calculaséfhd
R,NNN__ ,L,NNN ; H - i
aj+q —aZ|—q—- The basic unit lengtla/2 is again the

In Figs. 10-13 the spectral densities BRyeax are
Yhown and in Figs. 14—17 the corresponding densities for
NN - First we discuss the results for the NN coupling

RRN weakP@SSINg then to the results for NNN coupliRgyy -
inally, the implications for Raman spectroscopy and infra-
red absorption will be assessed.

. pS=0
A. Case: RRn weak

In Fig. 10(@) the spectral density for strong dimerization
(A=0.3) and vanishing frustration is depicted. The corre-
sponding information about the dispersion and the spectral
weight of the two-triplon bound states is shown in Fig(al1
The same notation as in the section ®+ 1 excitations is
used. The spectrum is symmetric abduwt /2 due to the
inversion symmetry k—-—k and
= RinwealK).

We find two S=0 two-triplon bound state$; and S,.

The triplon-triplon interaction is larger in the tot&=0
channel than it was in the tot&8=1 channel. Therefore the
binding energy of the bound states is enhanced and the first
bound stateS; exists for all momenta in contrast to tig

=1 case. In general, th8=0 channel is dominated by the
bound states which carry most of the spectral weight. This
statement applies also to the experimental relevance, see be-
low.

The dispersion of the two-triplon bound stafy is
roughly sinusoidal having three extrema at momekta
={0;m/2;7}. The binding energy is largest far= /2 while
it becomes small near momentum zero andThe spectral

Rﬁ; ,Oweal( K+ )

distance between two neighboring sites. Momentum is meaweight of S; is roughly proportional to the binding energy.

sured in units ofr/(a/2).

The second singlet two-triplon bound st&gexists only in

104417-10
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a finite interval aboutk= /2. The spectral weight 08, is supported also by numerical results for the second
vanishes ak=7/2 and possesses two maxima below andbreather’
abovek= /2. For clarity, we like to emphasize again that one must

The spectral weight of the two-triplon continuum is con- clearly distinguish the case of zero dimerization and the case
centrated at small frequencies. At small and large momentaf small, but finite, dimerization. For zero dimerization
this effect is enhanced due to the Vicinity SI Lowering bosonization predicts a (,b/divergence ak= 7 which be-
the dimerization we see no qqalitati\_/e changes in comparicomes (— wy) Y2 close tok= 7. This has been used,
son to the case of strong dimerizatidgfigs. 12a) and 13a)].  for instance, in the empirical calculation of Lorenzana and
So we expect that the dispersion of the bound s&@tés  gqer74 For small, but finite, dimerization the sine-Gordon
degenerate with the lower band edge of the two-triplon cOnggqe| prediction of a square-root behavior without diver-
tinuum inducing a square-root divergence. This expectatloré|ence applies to the critical frustration and in the region

around this value. For other values of the frustration a
Io“_f @ breather may_coincide with the lower band edge implying a

' square-root divergence.

In Figs. 1@b) and 1Qc) the spectral density at finite frus-
tration for strong dimerization is shown. At=0.25 we find
three bound stateS;, S,, andS;. The binding energy 08,
increases drastically on turning on the frustration, especially
at small and large momenta. The spectral weight increases in
a similar fashion for these momenta. The third two-triplon
bound state5; exists merely in a very small region abdut
= /2. The binding energy and the spectral weight are tiny.
The spectral weight has a maximumkat /2.

The two-triplon continuum fora=0.25 does not show
much structure. This is a consequence of the fact that at
almost all momenta no bound state is close to the lower band
edge of the continuum. On decreasing the dimerization, no
gualitative changes are sefsee Fig. 1%)].

At «=0.5 we detect two bound states. The dispersion of
S, becomes flatter which holds also for the spectral weight
distribution. The biggest change can be seerSjn This
bound state exists for almost all momenta in contrast to the
NN casesa={0;0.28. In the regions close t&=0 and sym-

05 RS metrically close tok= 1, the bound stat&, does not exist,

7 2 but it can be thought to lie just above the lower band edge
= implying an almost divergent behavior of the two-triplon
continuum.

Smirnov**®° showed that the corresponding spectral den-
sity of the sine-Gordon model displays a square-root behav-
ior at the lower band edge. This applies to 80 channel
of the frustrated spin chain ai= ay, if the marginal term
Dcos(4b) of Eq. (14) is neglected. This neglect is quantita-
tively justified for = aq.. Indeed, our results clearly show
a square-root behavior far=0.25. As for theS=1 case, we
find that the predictions of the sine-Gordon model for the
physics of the spin chain are verified far= ay.. For other
values, notablyw=0 anda=0.5, we find square-root diver-
gences or strong tendencies towards square-root divergences.
Again, such divergent behavior results from the vicinity of
bound states, here in ti#&=0 sector.

K [t/(@/2)]

K [t/(@/2)]

B. Case:Rjnn

In Figs. 14 and 16 the spectral densities of the observable

o [J]
FIG. 12. Two-triplon spectral density(k, ) for Ry yeacWith o \ Cctral der ‘
A=0.6 anda=0.0 (a), @=0.25 (b), and «=0.5 (c). Gray lines  Ryyn for various values of dimerization and frustration are

denote lower and upper bound of the continuum. Black lines indi-shown. The information on the singlet two-triplon bound
cate dispersion of two-triplon bound states. states is plotted in Figs. 15 and 17. All considerations con-
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e, FIG. 13. Two-triplon bound

e ] states for Riyweax With A =0.6
and «=0.0 (a), «=0.25 (b), and
a=0.5 (c). Left panels show the
dispersion of the bound states;
right panels the spectral weights
of the bound states multiplied by
the indicated factors. Gray lines
(c) denote lower bound of the con-
tinuum.

L
L0
*
o
o
I

St trasecnnnannnansnenee e B

0 1214161800 05 1.0 1214161800 05 1.
o[J] (k) o[J] 1(k)

N I A
101214161800
olJ]

cerning the energetic properties of t8e0 channel are the two-triplon continuum. An increase of reduces the weight
same as folR3 - and need not be discussed again in thisof the bound state and gives rise to a broad featureless con-
section. tinuum.

We concentrate on the spectral differences between the In Figs. 18b) and 18c) the results for finite frustration
two observables. The spectral weight is suppressed for larg@ge plotted. The binding energy of the bound statas en-
momenta due to symmetry reasons. This can be clearly sedw@nced and one can clearly separate the contribution of the
for the two-triplon continuum and the spectral weight of thebound states; and the continuum. The spectral weight of the
two-triplon bound states. Therefore only momenka two-triplon continuum is very small.
e[0,7/2] carry significant spectral weight. In this region we
do not find qualitative changes to the results Ry Jyeax- D. Infrared absorption

The most important difference is a change of the spectral
weight distribution ofS;. At =0 the spectral weight has a

maximum ak= /2 which is similar to the case NN wealc nique allows to study the spin-spin correlation function by
Finite frustration shifts the maximum to=0. Close to the  neasuring the optical conductivity. The direct absorption of
critical frustration the spectral weight is almost constant fory,,4 magnetic excitations is generically not allowed due to
ke[0,m/2]. At «=0.5 the spectral weight is a monotoni- jnyersion symmetry. However, this selection rule can be bro-
cally decreasing functioffrom k=0 to k=). ken by simultaneously exciting a phonon. The leading
infrared-active magnetic absorption is a two-triplon-plus-
phonon proces®: "’ Due to the momentum of the excited
) o ~ phonon, the magnetic spectrék,w) have to be integrated
The dominant observable for magnetic light scatteringgyer all momenta weighted with a phonon-specific form fac-
(Raman responseising the standard Fleury-Loudon scatter-tgy.
ing theory*"?is The absorption spectra are sensitive to B0 two-
triplon bound states. Especially the extrema yield prominent
van-Hove singularities in the density of states which can be
Rramai= 2> [Risean(i)+ BRige ann(], (22)  identified in experiment. In this way, the first experimental
! evidence for the two-triplon bound state in cuprate spin lad-
der systemS was possible. We therefore expect interesting
where the sum runs over all spins. The Raman response e shapes also in the optical absorption also for dimerized
therefore thek=0 contribution to the spectral density as we and frustrated spin chain systems.
have discussed in the preceding section. We focus here on The absorption coefficient is given fy
the case of NNN coupling which is the leading process in the R
case of a uniform Heisenberg chain without frustration. a(w)=agwl (0= wo). (23

In Fig. 18 the Raman response for NN coupling is shownyerea, is a constant depending on the material agds the

at zero frustratiorta), close to critical frustratioa=0.25(b)  phonon frequency. The phonon is considered to be local and
and fora=0.5(c). In each graph the spectrum is shown for \ithout dispersion. The functiohR is given by
A={0.3;0.4;0.5;0.5. In these figures, a broadening bf

=0.01 is used and the spectra are shifteq isirection for R i
clarity. The spectral densities far=0 are multiplied by 6. | (“’):16772k sin’(k/2)1 (k,w). (24)

For the dimerizations considered here, the spectra are
dominated by the firsB=0 two-triplon bound stat&;. This  The specific form factor given is strictly valid only for a
dominance is enhanced by the frustration. In Figial&e  uniform Heisenberg chain. It was successfully used to ex-
case of vanishing frustration is shown. Due to the finiteplain the optical absorption in uniform cuprate spin
broadening and the small binding energy of the bound statehains’*"°>We use the same form factor also for the dimer-
there is no separation of the two-triplon bound state and thezed and frustrated chain in order to explore the general fea-

In this section we apply our results to phonon-assisted
infrared absorption of magnetic excitaticiis® This tech-

C. Raman spectroscopy
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T resolutions. In the insets we show the contribution of the
IO-Z J! (@) two-triplon continuum without the broadening to highlight
the shape of the continuum contributions and to distinguish it
from contributions of the bound states.
= The phonon form factor favors large momenta while it
reduces the contribution of small momenta. Hence the dis-
cussion of the spectral densities implies tﬁaﬁf’weakis more
S relevant tharRyyy for a(w). This can also be seen in the
— absolute heights of the spectra in Figs. 19 and 20. In addi-

Q\ =—— tion, we expect that the NN coupling is stronger than the
g \: NNN one because exchange processes of longer range will

generically be less important.
o] ' We start our discussion WitRR N weak- As stated above
the firstS=0 two-triplon bound stat&,; carries most of the
Ion" spectral weight for all momenta. Hence, it is of crucial im-

' (b) portance for the optical absorption. In Figs. 11 and 13, we
show that the dispersiomy,,,{k) of the bound state5;
10 : possesses three extrem&at{0,7/2,77}. So we obtain three

X van-Hove singularities in'R(w). The spectral density is
S04

W

symmetric abouk= 77/2 so that two van-Hove singularities
coincide and there are two peaks resulting from the bound
stateS; in the optical conductivity. The weight of the mini-
mum atk=0 is suppressed by the phonon form factor. This
implies that the regions abolt= /2 andk= 7 dominate.

In Fig. 19@) the optical absorption for a dimerized chain
(A={0.3,0.3,0.5,0.9 without frustration is depicted. The
spectra are shifted ipdirection for clarity. The line shape is
dominated by a small peak at low energies, a sharp peak at
intermediate energies and a broad structure at high energies.
(c) The first two features are mainly produced by the above
mentioned van-Hove singularities resulting from the extrema
of the bound state dispersion & . The second peak is
1.0 . dominant because the spectral weight has a maximurk for
=1/2, see Figs. 1) and 13a). For increasing\ this peak
looses intensity while the first peak becomes more pro-
nounced. The latter effect is due to the increasing binding
05 energy ofS, atk=r.

/" For strong dimerization the feature at low energies, which
% is rather a shoulder than a peak, is an effect of the two-
2 ! = triplon continuum[inset of Fig. 19a)]. The second bound
16 17 1.8 1.9 2.0 stateS, is of no greater relevance for the optical absorption

o[J] because it has zero spectral weight ket 7/2 which is the
_ _ S0 . only extremum of the bound-state dispersion. In addition, the

FIG. 14. Two-triplon spectral density(k,w) for Ryyy With A - yining energy is very small without frustration and so is the
=0.3 anda=0.0 (a), «=0.25(b), and@=0.5 (c). Gray lines de- . :
note lower and upper bound of the continuum. Black lines indicatecorrespondlng spectral weight. .

. . . : Lorenzana and Ed&t calculated the two-spinon-plus-

dispersion of two-triplon bound states. I . - .

phonon contribution to the optical absorption for a uniform

Heisenberg chain. The line shape consists mainly of three
tures of the optical conductivity and to compare the lineparts: a concave uprise at low energies which vanishes for
shapes at finite dimerization with the line shapes at zergero frequency, a singularity at intermediate energies, and a
dimerization. In a detailed analysis of experimental data ongonvex tail for higher frequencies. It is very interesting to see
must analyze which phonons are involved and which specifithat all these features have precursors at finite dimerization
form factors matter. which are captured in the triplon picture.

In Figs. 19a)—19c) and Figs. 20a)—20(c) the optical ab- In the limit of vanishing dimerization, the system be-
sorption a(w) for various dimerization and frustration is comes gapless and the spectra therefore start at zero energy.
shown forRy,s and Rﬁ;?weak. Herea, is set to one and,  As long as there is some finite dimerization the bound state
is set to zero. The spectra are plotted with a broadening d§; exists and produces the concave uprise at small energies
I'=0.01 which is a reasonable value in view of experimentalnd the singularity at intermediate energies resulting from

k[r/(a/2)]

0.5

0.0
1

k [n/(a/2)]

0.0
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1.00

- FIG. 15. Two-triplon bound
i states forR3yy With A=0.3 and
a=0.0 (a), «=0.25 (b), and «
=0.5 (c). Left panels show the
dispersion of the bound states;
- right panels show the spectral
weights of the bound states multi-
plied by the indicated factors.
Gray lines denote lower bound of

0.75

0.25

. | ST s . .
16171819 00 05 1.0 171819 00 05 10 17 1.8 00 05 1 the continuum.

o[J] I (k) o[J] I (k) o[J] (k)

the maximum atk==/2. We expect that for vanishing conserves the number of triplons. Results for the one-triplon
dimerization { =1) the dispersion 08; coincides with the and the two-triplon contribution to the spectral density have
lower band edge of the two-triplon continuum leading to abeen shown for strongh\(=0.3) and intermediaten(=0.6)
square-root divergence at the lower band edge for all modimerization and for various values of the frustratiom (
menta. Since the dispersions and the band edges display a10;0.25;0.5) and for total spin one and zero.

extremum ak= /2 this divergence leads to the singularity  In the first part of this paper we examined the dynamical
discernible at intermediate energies. The convex tail at thetructure factor which is relevant for inelastic neutron scat-
upper band edge is equally present even for strongly dimetering experiments. The one-triplon contribution contains
ized chains, see inset in Fig. @ It is a consequence of the most of the spectral weight at strong and intermediate dimer-
convex square-root behavior at the upper edge of the twadization. We provided results for the one-triplon dispersion
triplon continuum. (k) and thek-resolved spectral weight;(k). The one-

In Figs. 19b) and 19c) the optical absorption at finite triplon dispersion becomes larger on lowering the dimeriza-
frustrationa= 0.25 anda= 0.5 for the same value of dimer- tion while it becomes flatter on increasing the frustration.
ization is shown. As discussed earlier the frustration enThe spectral weighit; (k) is mainly concentrated &= . In
hances the triplon-triplon interaction and increases the bindthe limit A — 1 the one-triplon contribution vanishes except
ing energy of the two-triplon bound states. As can be clearlffor a=0.5 aroundk= /2.
seen in Figs. 1(b) and 11c) and Figs. 1&) and 13c) the Subsequently we discussed the two-triplon contribution to
spectral weight ofS; at k= increases compared to the the dynamical structure factor. We have provided results for
weight atk= /2. Therefore, the first peak in the optical the spectral density of the two-triplon continuum and for the
absorption becomes more and more prominent on increasingispersion and the spectral weight of the two-triplon bound
frustration. This leads to the most important features at largstates.
frustration. Ata=0.5 the spectral weight d§, is also siz- For the unfrustrated spin chain, the spectral weight is con-
able. Besides the contribution of the two-triplon continuumcentrated at the lower band edge at larger momenta. Two-
[inset of Fig. 19c)] an additional peak appearing for decreas-triplon bound states only exist in a finite region abdut
ing dimerization can be discerned. = /2. Increasing the frustration leads to a shift of spectral

The optical absorption foRﬁEﬂ is plotted in Fig. 20. In  weight to higher energies. At=0.6 anda= 0.5, the spectral
the insets an enlargement of the line shapes is depicted imeight is shifted almost totally to the upper band edgé& at
order to highlight fine structures. The main difference to the=#. This transfer of spectral weight is also found for
discussion of the optical absorption producedRay weak@r®€ =1 by exact diagonalization at finite temperatutes.
the consequences of the different symmetries of the observ- The behavior of the lower band edge changes strongly on
ables. Ryyn suppresses the spectral weight for large mo-varying the frustration. Generically, we find a square-root
menta. Thus the optical response is weak due to the phondrehavior of the lower band edge. It is a consequence of the
form factor which stresses large momenta. In addition, théardcore interaction between the triplons which makes it dif-
van-Hove singularity resulting fronk=m of S; is sup- ficult for them to pass each other. In contrast to this result,
pressed so that only a weak shoulder can be observed at lome find a square-root divergence at the lower band edge for
energies, independent of frustration and dimerizationaAt «=0.25. Here the energy of a two-triplon bound state is
=0.25 the additional side structures are produced by theegeneratéto the precision of our analysis of about 2% of
bound states, and S;. J) with the lower band edge of the two-triplon continuum.

We compared the latter finding with results obtained from
field theory>* In contrast to our finding for the unfrustrated
spin chain, field theory predicts a square-root divergence for

In this work we have presented results for the spectrathe lower band edge of the dynamical structure factor of the
densities of the dimerized and frustrated Heisenberg chairsine-Gordon model. Thus the commonly used reduction of
We used a perturbative realization of the continuous unitaryhe spin chain to a sine-Gordon by neglecting the marginal
transformations starting from the limit of isolated dimers. By operator cannot be justified quantitatively, at least not for the
the transformations an effective model is obtained whichvalues of dimerization considered here. We showed that in

VI. SUMMARY

104417-14
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i bound state, which has not yet emerged from the continuum,
10-2 J7 (a) is the third breather. We find the concomitant square-root
divergence fora~ aq.

The applicability of the sine-Gordon model to the unfrus-
1.0 = trated, but finitely dimerized spin chain is further questioned
~ by the study of the excitation energies of the bound states.

=] The ratio of the excitation energies of tBe=0 two-triplon
N bound state and the one-triplon gap is exadlly in the
SU(2)-symmetric sine-Gordon model. We find this ratio only
= : for ay= aq, in agreement with a previous numerical stddy.
e \7 At present, we do not know whyry= g, is required to
’_x% retrieve the field-theory result for the second breather, but
sy N 50 B a~ag. to retrieve the field theory result for the third
' ’ o V] ' breather. It is to be expected that one has to go to very much
lower values of the dimerization, i.e., closerxe=1, to re-
T trieve the behavior of a pure sine-Gordon model. But as long
Io_g J! (b) as the dimerization isot extremely small the marginal op-
erator cannot be neglected for a quantitative description.
Thus, the effective low-energy model to be considered is the
1.0 \ : double sine-Gordon model for which the &)Y symmetry
: condition will be different fromK=1/2 and hence also the
ratios of the breather energies will differ from the ratios
N known for the sine-Gordon mod®l.
0.5 In the second part of this work, we discussed spectral
= properties of the dimerized and frustrated spin chain for ex-
citations with total spin zero which are relevant for optical
\ experiments. We presented results for the two-triplon contri-
0.0 . . — bution which contains most of the spectral weight.
10 1o = 25 <ot We examined two different observables: a NN coupling
o] on the weak bondB3yyeax@nd a NNN couplindRiyy - The
observables obey different symmetries. The NN coupling
10_2 S © possesses a reflection symmetry abbatquz. The NNN
coupling does not have any reflection symmetry except for
k= where it is odd so that no eve®=0 two-triplon state
can be excited. The spectral densities for both observables
X ‘ = are dominated by the two-triplon bound st&ewhich con-
— tains most of the spectral weight. This bound state exists for
all momenta, independent of dimerization and frustration.
The binding energy increases by turning on the frustration.
= — The spectral weight of the two-triplon continuum is con-
= Eﬁ gt_entre_lted_ at the lower ban_d edge for_ a_LII cor_15|de_red_ values of
= imerization and frustration. For finite dimerization, the
0.0 [ lower band edge displays a square-root behavior dor
14 15 2l =0.25 in accordance with the results of the sine-Gordon
@k model. Divergences may occur only at exactly zero dimer-

FIG. 16. Two-triplon spectral density(k, ) for RSY9 with »  ization. The behavior changes similarly to tBe 1 case if a
=0.6 anda=0.0 (), @=0.25(b), and@=0.5 (c). Gray lines de-  two-triplon bound state is almost degenerate with the lower
note lower and upper bound of the continuum. Black lines indicatéddand edge of the two-triplon continuum. Such a degeneracy
dispersion of two-triplon bound states. appeared in our data far~0 and fora~0.5.

Finally, we presented results for the Raman response and
the infrared absorption. Both experiments are dominated by
the bound stat&,; for the values of dimerization considered
here. This bound state produces two van-Hove singularities

K [t/(a/2)]

= N
{

0.5

o
=}

s
L

K [t/(a/2)]

k [n/(a/2)]
/

\
N
N
\
\
0 |
. ]
/
/
7/
7
/

the self-consistent harmonic approximati¢eorresponding
to renormalization in first ordgrthe marginal operator

D 4D) i i tant as th ab 2b) at . . . ;
cos(4b) is as important as the mass operat@os(2b) & in the infrared absorption resulting frok= 77/2 andk= 7.

any finite dimerization. Renormalization in second order,_l_h ¥ inqularity at | ies b
however, predicts a slow logarithmic suppression of the mar- € van-riove singularity at lower energies becomes more

ginal tern?* below critical frustration. important for larger values of the frustration.
We_fmd that square-root behavior represents the generic VIl. CONCLUSIONS
behavior. A square-root divergence occurs if a two-triplon
bound state is degenerate with the lower band edge of the We have shown that continuous unitary transformations
continuum. In the field theoretic language this degeneratéCUT's) are an excellent tool to calculate spectral densities
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FIG. 17. Two-triplon bound
states forR3nn With A=0.6 and
a=0.0 (a), «a=0.25 (b) and, «
=0.5 (¢). Left panels show the
dispersion of the bound states;
right panels show the spectral
weights of the bound states multi-
plied by the indicated factors.
Gray lines denote lower bound of
the continuum.

FIG. 18. Raman line shape for
RYNn With additional broadening
I'=0.01:(a) =0 (b) «=0.25(c)
a=0.5. In each picture, curves
for N={0.3;0.4;0.5;0.p are
shown, shifted for increasing in
y direction. The Raman response
for @=0 is multiplied by 6. The
insets in(b) and (c) zoom on the
continua.

FIG. 19. Optical absorption for
RRnaveax With additional broaden-
ing '=0.01: (@ «=0.0 (b) «
=0.25 (¢) «=0.5. In each pic-
ture, curves for N
={0.3;0.4;0.5;0.p are shown. In-
sets: Contribution of the two-
triplon continuum without broad-

ening.

FIG. 20. Optical absorption for
RSN With additional broadening
I'=0.01: (@) «=0.0 (b) «=0.25
(c) «=0.5. In each picture, curves
for A={0.3;0.4;0.5;0.p are
shown.
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in high resolution for the dimerized and frustrated Heisenying the spin chain to a sine-Gordon model led to a number
berg chain. We provided a detailed study of the spectral deref insights. Both approaches agree that the generic singular-
sities and extracted the generic features of the spectral profly at the lower band edge is a square-root, either a diver-
erties. These data will help to analyze a large variety ofgence or a zero. The divergence occurs if and only if a bound
spectroscopic measurements for dimerized and frustrategfate is degenerate with the band edge. It turned out that the
spin chains systems. predictions of the single sine-Gordon model hold for critical
We used a description in terms of triploelementary ~ frustration only which agrees with previous conclusions

triplets) carryingS=1. Previously?2 we had shown for un- based on numerical resuftsThe general spin chain at non-

frustrated chains that a description in terms of two triplons js/anishing dimerization requires to go beyond the single sine-

sufficient even in the limit of zero dimerization. The triplon S0rdon model. We showed analytically that in the self-

may also serve as an elementary excitation of the unifornfOnsistent harmonic approximatiéequivalent to first order
Heisenberg chain besides the well-established spinon exciti€normalization the Umklapp term is as large as the mass
tion. In the present work, we found further strong support for'€M- _ _ .
this result. The two-triplon spectral densities computed at The present S.tUdY bése.d on perturbative continuous uni-
finite dimerization displayed well-developed precursors ofldy transformation is limited by the tractable maximum
the results for the uniform chain based on spinons, e.g., thE2N9€ of hopping and interaction processes which correlates
dynamical structure factor probing tt&=1 sectof or the  With the maximum order. Thus an investigation of the spec-
optical absorptioff probing theS=0 sector. trgl propgrtles for small and zero gaps, i.e., dimerizations,
In the frustrated case it is yet an open issue whether ¥ill require to develop new methods allowing for larger
triplon description works also in the limit of zero dimeriza- ranges(correlation lengths The continuous unitary transfor-

tion. Especially the gapped phaseof ao.) requires that mations do not nged to be _realized pertgrbativgly. Ongoing
the two-spinon continuum betweek and’c2A can be de- researcff deals with a self-similar realization which renders

; P ; the treatment of larger ranges possible. In this way, a closer
scribed by a dense distribution of bound many-triplon state%.O ok at critical systgms angd sfstems with massiv)(/a spinons

For this to occur an infinite-range effective interaction is nec- " o
essary which is beyond the scope of the perturbative CUT’SWIII come within reach.
But we take the nice agreement between the shifts of spectral
weight obtained by complete exact diagonalization at finite
temperature for the undimerized frustrated chain with our ~ We thank A. M. Tsvelik, I. Affleck, G. Japaridze, A.
results at finite dimerization as indication that the triplonReischl, A. Gasling, M. Gruninger, and E. Mlier-Hartmann
description can be extended to the undimerized frustratetbr stimulating and encouraging discussions and the DFG for
chain, too. financial support under the Grant Nos. SP 1073 and SFB
The comparison of our results to those obtained by map608.
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