PHYSICAL REVIEW B 69, 104404 (2004

Spin-cluster expansion: Parametrization of the general adiabatic magnetic energy surface
with ab initio accuracy
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Based on the adiabatic approximation, a method for the evaluation of magnetic interactions in solids is
presented which includes arbitrarily complex multispin interactions on the atomic levedlvitiitio accuracy.
The spin-cluster expansion method thereby allows the accurate and fast treatment of the energetics of spin-
canted systems and of the dynamic and thermodynamic properties in adiabatic approximation. It comprises the
cluster expansion method of a generalized Ising model that is frequently employed in alloy theory.
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[. INTRODUCTION bilinear form becomes completely unreliaBfeln this case
the magnitudes of the magnetic momefits| can depend
The investigation of strongly noncollinear spin systems isstrongly® on the spin configuratioor=(s;,S,, . . . ,Sy) (€s-

indispensable for engineering magnetism on the nanoscalpecially for Ni), and from theoretical reasonirfhased, e.g.,
Examples for noncollinear spin systems are domain walls on the Hubbard modgbne has to take into account explic-
the atomic scale in quasi-one-dimensional Fe nanostriges itly multispin interactions. In the past tentatively one or the
W(110),, magnetization singularities in the interior of spin other multispin interaction term has been added to the bilin-
curl structure€,and noncollinearities in small magnetic clus- ear form of Eq(1).}* However, to the best knowledge of the
ters or magnetization reversal processes in small systems.authors no method exists that generalizes the bilinear
For a theoretical modeling of such situations the coarséleisenberg model systematically.
graining inherent in the continuum approach of micromag- In this paper we present a new method, the spin-cluster
netism is not appropriate and has to be replaced by atomistiexpansioSCE method, which represents a parametrization
calculations. The use of thab initio density functional elec- of the adiabatic magnetic energy surface including arbitrary
tron theory for noncollinear spin systefnd! thereby yields complex multispin interactions on the atomic level. Thereby,
highly accurate results but is extremely costly for nanoscal¢he SCE is not limited to the dominant exchange interaction,
materials. An often used alternative appro&ctherefore but it includes also other spin interactions like the magnetic
models the dominant spin interactions, i.e., the exchange iranisotropy, the dipolar and the Zeeman interaction. For a
teractions, within the framework of the classical nearestgiven system, all relevant parameters can be calculated by

neighbor Heisenberg model, the ab initio electron theory. Once a numerically converged
SCE expansion has been constructed, it yields the magnetic
__ M energy for any spin configuration withb initio accuracy
Ex .Z‘, In(Mi-Mj), @ hile being orders of magnitude faster than tie initio

. . . electron theory for noncollinear spin systems. The SCE en-
whereJy, is the nearest-neighbor exchange coupling taken ag, oy then can be used for an efficient dynamical or thermo-

independent of the posm.onsI of the u}terac_tlng zt%ms in _th ynamical modeling of magnetic properties.
nanostructure. In most simulations of static and dynamical” \ya termed our method SCE as it extends the cluster ex-

phenomena in nanostructures the quantum character of ﬂb%nsion methodCE) of alloy theory!® The CE allowed a
spin is totally neglectedf,i.e., theM; represent classical spin systematic generalization of the Ising model in lattice sys-

variables. Thereby it is assumed that the magnitutgsof  1oms and led to a unified approach to the calculation of phase
the atomic momentd; =|M;|s are fixed, so that the direc- giagrams. We are hopeful that the SCE developed in the
tion_al unit vectorss (which we will call “spins” in the fol- present paper will have an equally strong impact.
lowing) are the only degrees of freedom, henég Our theory is based on two major steps. In the first step
=—3i.;du(s-s) with Jy=Jy[M;||M;]. we define the basic spin variables for the parametrization of
Simulations based on the nearest-neighbor Heisenbetie energy surfacéSec. Il A). We use adiabatic spin vari-
model are certainly able to give a qualitative feeling for ables, and therefore confine ourselves to situations for which
some aspects of nanoscale magnetism, but quantitatiely the adiabatic approximation holds. The adiabatic approxima-
was observed to fail badly, as revealed by dfeinitio elec-  tion was successfully used iab initio calculations of the
tron theory*® For small relative spin cantings a bilinear ex- ground states and of the spin dynamics in the recent’p&st.
pression of the form of Eql) may indeed be valid, how- No attempt is made in the present paper to go beyond this
ever, in general one has to go far beyond the nearestpproximation or to include the orbital magnetization. In the
neighbor approximatioh® (especially for Feand one has to  second stegSec. Il B) we present the parametrization of the
take into account coupling constants which can depend general energy surface for the adiabatic spin variables.
very sensitively on the positions of the interacting atoms inFormer parametrizations of the energy surface were per-
the nanostructur€- For large noncollinearity, however, the formed in terms of the cosines of the angles between spin
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vectors (“two-spin basis functionsj. This is outlined, for  tions ofs , whereas the magnitudés!;| are completely de-
instance, in Ref. 16, but to the best of our knowledge thigermined by the momentary spin configuratienin contrast
kind of parametrization never has been worked out explicitlyto the classical Heisenberg model we thus allow for longitu-
to the end, i.e., it has not been specified which of the variouginal degrees of freedom, i.e., changes of the magnetic mo-
possible multispin terms survive in view of the symmetry ments|M;|, but the longitudinal fluctuations are not indepen-
restrictions. In the present paper we follow the strategy of thejent but “slaved” by the transversal fluctuations. This
conventional cluster expansion for alloy systetand use condition is fulfilled by a very large class of materials but
one-spin rather than two-spin basis functions for a represenhere are few exception.g., ZrZn).

tation of the adiabatic energy surface. The advantage of one- The quantitiess will be treated as classical variables in
spin basis functions is that they allow to include systematithe following. Quantum mechanical effects on the time scale
cally contributions to the magnetic energy which depend oryf the fast degrees of freedom will be included in the theory
the directions of the SpinS and not Only on the angles beby Ca|cu|ating the magnetic momermi for given S Via
tween the spin vectors, for instance, the magnetic anisotropylectron theory. Quantum mechanical effects on the slow
and the Zeeman interaction. It is shown how a complet§ime scale of the adiabatic variablgswill be neglected to-
basis for the representation of the energy surface includinggly. |t should be noted that the adiabatic approximation
arbitrarily high multispin interactions may be constructedyhjch parametrizes the total energy completely in terms of
from the one-spin basis functions. In Sec. Il C the evaluationhe spin directions has been used successfully in the past to
of the interaction parameters of the SCE is related to methstudy the static and dynamical properties of the spin systems
ods of theab initio electron theory. In a practical calculation iy solids*~*! For instance, exactly the same arguments for a
the SCE which represents an infinite sum of contributiongyarametrization in terms of spin directions were given by
from arbitrarily large spin clusters has to be terminated at &syorffy et al® for a justification of their disordered local

maximum cluster. It is argued that only a relatively small yoment treatment of the ferromagnetic-paramagnetic transi-
number of spin clusters is required to arrive at a terminategjon.

SCE which hasab initio accuracy, and it is demonstrated
how the interaction parameters of this terminated SCE can be
obtained from a relatively small number al initio calcula-
tions of the total energy of selected reference spin configu- We now demonstrate in a mathematically rigorous manner
rations. In Sec. Il D it is shown how the spin clusters whichhow the adiabatic energy surface, including all relevant mag-
have to be considered in the SCE can be extracted from tHeetic interactions in the solidexchange energy, anisotropy
whole set of conceivable spin clusters by symmetry argu€nergy, dipolar and Zeeman enexgyay be represented ex-
ments. Finally, the relation is discussed between the one-spictly in terms of one-spin basis functions, i.e., basis func-
representation of the SCE and the commonly used two-spiions which are associated so single spgnand not to the
representation based on the cosines of the angles between figles between the spin vectors as in a two-spin basis. The

spin vectors, and this relation is worked out explicitly for arguments represent a step-by-step generalization of the ar-
pair interactions. An outlook is given in Sec. IIl. guments given in the conventional cluster expansion for the

case of a general Ising modélHaving obtained the energy
surface it is possible to calculate the magnetic ground state
configuration, the dynamical properties via an atomic
A. Choice of adiabatic spin variables Landau-Lifshitz-Gilbert equation or the thermodynamic

: roperties via Monte Carlo simulations, for instance. In the
The SCE-aHOWS to study the gro_uno! state properties 0Pa per of Gyorffyet al® which is based on the same choice of
any magnetic system. For the application to dynamic and’@P y '

thermodynamic properties, the adiabatic approximation mustf1e adiabatic spin varl_ablegsno attempt was made to obtain
hold, i.e., for the system under consideration the fast Spiﬁt general representation of the adiabatic energy surface, but

degrees of freedom from single-electron spin fluctuations oﬁhe paper aimed at a variational mean field treatment of the
a time scale given by the inverse band widtypically statistical p_roblem. . L

10~ 16 5) can be neglected and only slow degrees of freedom _In spherical coordinates the spin is in general param-
which describe the dynamics of the atomic momehts etrized by two angles,

=] I_\/Ii|s on a time scale defined by t_he inver_sleAfrequencies of s=5(Q)=5s(9,0), 3)
typical long-wavelength magnoriypically 107 ** s) are rel-

evant. We thereby define the atomic moment in the commomith 9 €[0,77] and ¢ €[0,27). Special cases are the-y

way as an integral of the magnetic moment densitfy) model where the spin is confined to a plan®=<(#/2) and
over a suitably defined atomic volunmg, the Ising model where only two spin state$=0 and 9

=1 are possible. The connection to alloy thelBris made

by allowing angles d=p#/(P—1)(¢=0), with p
=0,...,P—1 inaP-component alloy. By imposing suitable
constraints on the spin directions, we can calculate, e.g.,
For dynamic and thermodynamic considerations we furtherby the spin-density functional electron theory the energy of
more assume that the primary fluctuation modedvipfare a magnetic system of atoms as a function of the spin
the transversal fluctuations given by the directional fluctuadirections,

B. Parametrization of the adiabatic energy surface

II. DEVELOPMENT OF THE SPIN CLUSTER EXPANSION

Mi=f mdv. 2)
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The basis functions of the fuNl-spin system are formally

EQO(a)=E(s,s,, ... sv). (4
) ) . ~constructed from products of one-spin basis functions,
When the electron theory includes the spin-orbit coupling

then the magnetic energy encompasses the exchange energy D=, (S)b,.(S.) ... b, (S.), (12
and the magnetic anisotropy energy. Because we can calcu- oy N
late in addition from the magnetization density(r) pro-  where the clustetr={i,,i,, .. .iy} contains all sites of the

vided by the electron theory all magnetic momehts we N-spin system and=(v,v,, ... vy) labels the corre-

also can add the ﬁipolar interaction lenerg%/ of the ma_gnetigponding one-spin basis functions. The complete set of basis
momentsM; . For the moment we exclude the Zeeman inter-nctions is obtained by summing over all possible values of

action energy which requires a separate treatnieeg¢ be-

low) and denote the sum of the exchange, anisotropy an

dipolar energy as contributiof®) to the magnetic energy.

We next develop the SCE formalism that allows us to

Hwe one-spin basis functions containedvinThe basis func-
tions of theN-spin system are orthogonal and complete,

(5 Pp) = Sapdin (13

expand systematically the magnetic energy

EQX(s;,s,, ...,5). We define the scalar product in the

N-spin system in terms of functions associated to the single i E DE-() D0 )= 80— ') (14)
spinss, QN <= T av .

(flgy=TrMf* g, ©)

wheref(s;, ...,sy) andg(s, .. .,sy) are functions of the
spin directions and the trace is defined as

TI’(N)—LJ dQ f dQ J dQ
“on 1 2. N>

with @ = [dQ) for the case of a continuous spin symmetry
(general case angky mode). For the Ising model the inte-

(6)

grations have to be replaced by summations over the tw
possible orientations. Next we introduce a set of orthogonal

and complete one-spin basis functiogs(s),v =0, ... o,
that are attached to every spin site,
1
f dQ¢7 (9, ()= 3,0, 7
1>
8 2 Pl(s)du(s)=8s-%). ®)
By demandinggq(s)=1, we get fori #j,
(Do, (5|0, (5))=(y,(3) Do(S)] 0(S) Do ()
Eq.(7)
8,000, €)
while for identical spin sites=]j we find
Eq.(7)
(b0, () bo)(S)) = 6,0, (10)
Forv,#0p,#0, Egs.(9), (10) are combined into
<¢v1(5)|¢02(%)>: 5v1v25ij . (11)

For example, one-spin basis functions for the general case

are the spherical harmonids,,(9,¢) (see beloy, for the
x—y model the exponentials expf) wheren is an integer
number, and for the Ising model we can takg(s) =s with

s==*1. In the latter case the SCE attains the same form as

the CE of a binary alloy.

The choice¢y(s)=1 allows us to recast thbl-spin basis

in order to allow a local interpretation of the spin-cluster
expansion in total analogy to the procedure adopted in
the conventional cluster expanstorfor generalized Ising
models. Let us look, for example, at one spedigbkpin
basis function ®7; with v;=0 (1<I=<N). Taking into
accounte¢g(s)=1, the basis functionb;; equals a basis
function cD;;;i of a (N—1)-spin system without the ipin
site iy, B={i1,is, - i_1sdje1s - -inp and  ou

o W1v2, 01U wn)- Hence we can formally
replace allN-spin basis functions that contain(with O<L
N) products of the basis functio#i, by their correspond-
ing basis functions in aN— L)-spin system. Basis functions

that have been reduced so that (v4,v5, . . . wy) contains
only elements),#0 are now denoted by

® o=y, (S)B0(S,) - b (S,

where in contrast to Eq12) the clustera now can contain
any numberK=0, ... N of spin sites. The one-spin basis
functions in the cluster, denoted byv=(v(,vs, ... vk)
now are all different from zeray, #0, with 1<I<K. This
allows to rewrite the orthogonality and completeness relation
Egs.(13) and(14) using Eq.(11),

=

(15

<(I)av|q)ﬁ,u>:6aﬁé (16)

v
1

o 1+ 2 P (0D, (0)|=80-0"), (17)

yCa v

where the sum over runs over all one-spin basis functions
exceptpo=1 of the sites in the subclusterof an arbitrary
clustera={iq, ... .k}, and o, ¢’ denote spin configura-
tions of the clusterw, and §(o— o) = 5(541—5{1) cen 5(S1K

s’K). The zero cluster function is given ily,=1. A spin

dependent function, e.gE(®)(s;,s,,...,sy) can be ex-
pressed in this basis,

EO(0)=3p+ 2> 2 JoP (o), (18)

104404-3



R. DRAUTZ AND M. FAHNLE PHYSICAL REVIEW B 69, 104404 (2004

where the expansion coefficients according to Bd) are tributions arising from infinitely many spin cluster figures
given by (labeled bya) and from infinitely many one-spin basis func-
) tions (labeled byv) for each sitgin the case of a continuous
Jov=(P a0, |EV(a)). (19 spin symmetry. To evaluate the infinitely many correspond-
The expansion coefficients thereby are constant, independeld expansion coefficients,, via the projection operation
of the spin configuratiomr=(s;, . .. ). As the expansion 9diven by Eq.(19) would require the knowledge of the com-
coefficients depend only on a local subclusiewith K<N  Plete energy surfac&®(o) in the infinitely dimensional
sites, the interpretation of the expansion coefficiehtsis  configuration space. It is totally clear that for a practical
straightforward. approach the series E¢18) has to be terminated with re-
Jo: Constant energy offset, independent of spin directionsSPect to the number and type of clusters which are taken into
iy, The point cluster expansion coefficients describeAccount(as in the conventional Qkand with respect to the
the energy required to rotate a spin at siteespective of the number of considered single spin basis functions in the case
spin directions of the other spins. These expansion coeffiof Systéms with continuous spin symmetiyhereas in the
cients are thus closely related to the magnetic anisotropyzonventional CE forP-component alloys alP basis func-
Also, they contain the coupling to an external magnetic fieldions are kept For the determination of the remaining

in lowest approximatiorisee below expansion coefficients,, we proceed exactly in the same
Jiijj»: The pair cluster expansion coefficient describesVay as In the conventional cluster expansion for alloy

the coupling of two spins at sitesj. systems® A set ofn,=n, appropriately chose(see below
The contribution of the Zeeman interaction energy, reference configurations;; is defined, and then the energy

E)(0,.¢) is calculated by thab initio electron theory, for
N instance, with the computational techniques described in
EZeeMans —H. M= —H- > [Mils;, (200 Refs. 4-11. Then tha; coefficientsJ,, are calculated by
=t fitting the terminated SCE series to thg energie&!®
requires a separate consideration because a magnetic fidid®)( o). Finally, the terminated SCE must be tested for
can change in principle the magnitudds;| even for fixed numerical convergence with respect to the number and type
spin configurationo, i.e.,M,:=M;.«(H, o). In principle we  of considered clustersee also Sec. Il Pand one-spin basis
could calculateab initio M,;(H, o) for various magnetic functions, and for this test the sophisticated techniques de-
fieldsH, add the Zeeman energy E5%) and perform a SCE rived for the conventional CEor a review, see Ref. 2&an
for the sumE™a9=E(0) 4 EZeeman arriving at field depen- be used. A numerically converged initio SCE is obtained
dent expansion coefficiends,, = J,,,(H). For many systems, if the error due to the termination of the series is smaller than
however, the magnitudd#/;| of the magnetic moments at a the numerical error involved in thab initio calculations
given spin configuratiorr do not depend on the magnetic themselves. We assume thatmilar to the case of the QE
field H for moderate applied fields. In the following we thus the SCE converges rather rapidly.
neglect the explicit dependence of the total magnetic mo- It should be noted that the degree of convergence depends
ment on the magnetic field, i.e., we assuMg,=M,, (o).  also on the type of chosen reference configurations. As in the
Then we can perform a SCE bf,,, arriving at an expression conventional CE, there is no strict prescription how to

for the total magnetic energy of the form choose these configurations, it is more a matter of physical
intuition and of trial and error. Of course the reference con-
EM9=EO)(g)—H- M (o). (21)  figurations will be chosen in such a way that they are repre-

sentative for the situation under consideration, i.e., no con-

g furtr;]ertn:jore t:s magtr#ttildfhofzthenr]nangnitur: momr?tlr\;lﬁ i figuration will be chosen which appears in that situation only
oes not depend oa, then the Zeeman energy co utes o negligible weight.

only to the point cluster expansion coefficient of the SCE. It

should be recalled that thus the present method incorporates

all the magnetic interactions, i.e., exchange interactions, an-

isotropy energy, dipolar and Zeeman energy in one and the

same scheme, the spin-cluster expansion, and we think that Symmetry considerations can greatly help to reduce the

this is a big advantage of our approach. number of clusters that have to be considered in the SCE.
First, time reversal symmetry implies

D. Symmetry arguments and relation to the classical
Heisenberg model

C. Practical realization of an ab initio SCE

In practice, arab initio SCE is constructed in the follow- B, .- SO=E(=S, =%, .5 (22
ing way. First we define the positions of the atoms in theln practice, this requirement leads to linear dependencies be-
system under consideration. If these are the positions of aween the expansion coefficienis,. Hence, it is useful to
regular lattice then the spin clusters appearing in(E§).can  choose the one-spin basis functiafs such that they have a
be grouped together in classes of symmetry equivalergimple transformation behavior with respect to inversion of
clusterst® The number of nonequivalent clusters increaseshe spin directions. Furthermore, in many systems the spin-
when the translational symmetry is broken, e.g., at surtcesorbit coupling(SOO energy is small compared to the cou-
and especially for small clusters. Second, it must be recalledling between the magnetic moments on different lattice
that the SCE, Eq(18), represents an infinite sum over con- sites. In what follows we treat the important special case of
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zero SOC energy. Then the energy of the electronic system is O(3) and thus only irreducible representatiofs®
invariant with respect to rotatiori® of the magnetic moment formed by the product of two sets of one-spin basis functions
density, contribute to the energy. The corresponding pair cluster basis

function is calculated from spherical harmonicéas
E[m]=E[R:m]. (23 |

According to the definition of the magnetic momént, Eq. d,. ) = * Q). O)=(21+1)P(s- S
(2), the rotational invariance of E423) translates into (s m;I Yim(4)Yim(€45) = IPi(S-5),
(30)

Bls1%, - SU=ERSLRS, . Ris). (24 with the Legendre polynomialB, .?* Thus, the contribution
Hence, the energy is invariant with respect to group elementsf pair clusters to the energy can be written as
of the inversion groupC; and rotations fron50Q(3), O(3)
=S0O(3)XC,. This invariance leads to linear dependencies
between the expansion coefficiedts, which are best sub-
sumed if the one-spin basis forms an irreducible basis of th
point group under consideration, namely spherical harmonic
Y,m2t for the groupO(3). In order to havep,=yg =1 we
multiply the spherical harmonics by a factgd,

ED=3 2‘1 Jiian(21+1)Pi(s-5). (3D

lowest orderl=1 the pair contribution reduces to the
Heisenberg model,

En=—2 Ju(s's), Ip=-3J4y. (32
Yim= \/EYIm- (25 i<l !
Spherical harmonics form an orthogonal and complete bas{@Pviously, Eq.(31) is the most general form of an exchange
set, Hamiltonian which contains two-spin interactions of the

form (s5-s). We thereby gained the relation between the
expansion coefficientdy;j, ;1) of the SCE expansion in the

one-spin basis functions and the coefficiehysof the repre-
sentation in the two-spin cosine basis.

1 = Generalizations of the Heisenberg mdfieduggest that
P Eo m:E_I Yim(2)Yim(Q22)=6(Q,—Q5), (270  also multispin interactions can be parametrized by products
(s-s). By using the relatioff

1
e f dQY} i (Y1 m, ()= 8,1,0mm, (26

with  8(Q1—Q,)= §(cost—cos,)e;—¢y). From the
SCE representation of the energy E48) it follows that _* *
only linear combinations of the cluster basis functions con- (5-5)= 3 mz,l Yim(21)Y1m(€2), (33

tribute toE( o) that are invariant with respect to point group h . el
operationsRe O(3). Hence, we need to find the irreducible these products can be represented according to a spin-cluster

representation®(© that are invariant with respect to group expansion with spherical harmonics as one-spin basis func-

operations fromO(3) that are contained in the products of t|?ns.hltl\évou!d be_fmr(])sténct:elzzre_stmg to f||nd OUtb'f the mve(;se
spherical harmonics. also holds, i.e., if the in general can be mapped on

Obviously none of the one-spin basis functions is invari-Multispin products of the form(- ;).
ant with respect to rotations faor# 0 (according td # 0 for
spherical harmonigshence,

1

IIl. OUTLOOK

We are in the process of constructing a well converged
Jipy=0. (28) SCE first for the case of bulk Fe and Co. As the general
For pair cluster expansion coefficients the product of twomultispin interactions provided by the SCE method to the
representations is evaluated. With best knowledge of the authors have never been evaluated
elsewhere, it will be most interesting to determine the actual
(0D (1) n contribution of non-Heisenberg interactions in Fg and Co.
DYV XDtz _L—F‘ | DY, (29 Our efforts are planned to cumulate in a systematic, fably
=Mt initio based treatment of small clusters of Fe and Co. The
for the special cass,=s, we see that only basis functions understanding and modeling of the properties of such clus-
with | =1,=1, contribute to the SCE as the total energy hasters is of great relevance for the design of magnetic nanos-
to be invariant with respect to point group operatidRs cale devices.

I1+1,

*Corresponding author. Email address: faehn@physix.mpi-*J. Kibler, K.-H. Hack, J. Sticht, and A.R. Williams, J. Phys. F:

stuttgart.mpg.de Met. Phys.18, 469 (1988.

IM. Pratzer, H.J. Elmers, M. Bode, O. Pietzsch, A. Kubetzka, and°B.L. Gyorffy, A.J. Pindor, J. Staunton, G.M. Stocks, and H. Win-
R. Wiesendanger, Phys. Rev. Le3¥, 127201(2001). ter, J. Phys. F: Met. Phy45, 1337(1985.

2J. Miltat and A. Thiaville, Scienc€98 555 (2002. 0. Grotheer, C. Ederer, and M. Ifide, Phys. Rev. B2, 5601

3J. Miltat and A. Thiaville, Scienc&90, 466 (2000. (2000.

104404-5



R. DRAUTZ AND M. FAHNLE PHYSICAL REVIEW B 69, 104404 (2004

"V.P. Antropov, M.l. Katsnelson, B.N. Harmon, M. van Schilf- (1984.

gaarde, and D. Kusnezov, Phys. Revo® 1019(1996. 1635.v. Tyablikov, Methods in the Quantum Theory of Magnetism
8S.V. Halilov, A.Y. Perlov, P.M. Oppeneer, and H. Eschrig, Euro-  (Plenum, New York, 1967 Chap. Il, Sec. 7.

phys. Lett.39, 91 (1997). R, Drautz, H. Reichert, M. Hramle, H. Dosch, and J.M. Sanchez,
M. Pajda, J. Kudrnovsky, I. Turek, V. Drchal, and P. Bruno, Phys.  Phys. Rev. Lett87, 236102(2002.

Rev. B64, 174402(2001). 18| the SCE the basic variablssre continuous. This allows us to
105, Moran, C. Ederer, and M. Fmle, Phys. Rev. B57, 012407 construct the expansion coefficierdts, also from the compari-

(2003. son of the derivative of the energy, E(.8), and the torques
113, Moran, C. Ederer, and M. Fmle (unpublishedl (Ref. 19 calculated by the spin density functional theory.

12y, Nowak and D. Hinzke, Adv. Solid State Phyd, 613(200).  '°0. Grotheer, C. Ederer, and M. Ifade, Phys. Rev. B3, 100401
13a 1. Liechtenstein, M.l. Katsnelson, V.P. Antropov, and V.A. (2002).

Gubanov, J. Magn. Magn. Mate7, 65 (1987); 54, 965(1986;  2°R. Drautz, Ph.D. thesis, University of Stuttgart, 2003.

A.l. Liechtenstein, M.I. Katsnelson, and V.A. Gubanov, J. Phys.?1J.D. Jackson,Classical ElectrodynamicgWiley, New York,

F: Met. Phys.14, L125 (1984). 1975.
14E. Muller-Hartmann, U. Kbler, and L. Smardz, J. Magn. Magn. 22D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskuan-
Mater. 173 133(1997). tum Theory of Angular Momentuf@orld Scientific, Singapore,
153.M. Sanchez, F. Ducastelle, and D. Gratias, Physid2& 334 1989,

104404-6



