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Spin-cluster expansion: Parametrization of the general adiabatic magnetic energy surface
with ab initio accuracy

R. Drautz and M. Fa¨hnle*
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Based on the adiabatic approximation, a method for the evaluation of magnetic interactions in solids is
presented which includes arbitrarily complex multispin interactions on the atomic level withab initio accuracy.
The spin-cluster expansion method thereby allows the accurate and fast treatment of the energetics of spin-
canted systems and of the dynamic and thermodynamic properties in adiabatic approximation. It comprises the
cluster expansion method of a generalized Ising model that is frequently employed in alloy theory.
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I. INTRODUCTION

The investigation of strongly noncollinear spin systems
indispensable for engineering magnetism on the nanosc
Examples for noncollinear spin systems are domain walls
the atomic scale in quasi-one-dimensional Fe nanostripes1 on
W~110!, magnetization singularities in the interior of sp
curl structures,2 and noncollinearities in small magnetic clu
ters or magnetization reversal processes in small system3

For a theoretical modeling of such situations the coa
graining inherent in the continuum approach of microma
netism is not appropriate and has to be replaced by atom
calculations. The use of theab initio density functional elec-
tron theory for noncollinear spin systems4–11 thereby yields
highly accurate results but is extremely costly for nanosc
materials. An often used alternative approach12 therefore
models the dominant spin interactions, i.e., the exchange
teractions, within the framework of the classical neare
neighbor Heisenberg model,

EH52(
i , j

JH~M i•M j !, ~1!

whereJH is the nearest-neighbor exchange coupling taken
independent of the positions of the interacting atoms in
nanostructure. In most simulations of static and dynam
phenomena in nanostructures the quantum character o
spin is totally neglected,12 i.e., theM i represent classical spi
variables. Thereby it is assumed that the magnitudesuM i u of
the atomic momentsM i5uM i usi are fixed, so that the direc
tional unit vectorssi ~which we will call ‘‘spins’’ in the fol-
lowing! are the only degrees of freedom, henceEH

52( i , j J̃H(si•sj ) with J̃H5JHuM i uuM j u.
Simulations based on the nearest-neighbor Heisen

model are certainly able to give a qualitative feeling f
some aspects of nanoscale magnetism, but quantitativelyEH
was observed to fail badly, as revealed by theab initio elec-
tron theory.13 For small relative spin cantings a bilinear e
pression of the form of Eq.~1! may indeed be valid, how
ever, in general one has to go far beyond the near
neighbor approximation9,10 ~especially for Fe! and one has to
take into account coupling constantsJi j which can depend
very sensitively on the positions of the interacting atoms
the nanostructure.11 For large noncollinearity, however, th
0163-1829/2004/69~10!/104404~6!/$22.50 69 1044
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bilinear form becomes completely unreliable.13. In this case
the magnitudes of the magnetic momentsuM i u can depend
strongly13 on the spin configurations5(s1 ,s2 , . . . ,sN) ~es-
pecially for Ni!, and from theoretical reasoning~based, e.g.,
on the Hubbard model! one has to take into account explic
itly multispin interactions. In the past tentatively one or t
other multispin interaction term has been added to the bi
ear form of Eq.~1!.14 However, to the best knowledge of th
authors no method exists that generalizes the bilin
Heisenberg model systematically.

In this paper we present a new method, the spin-clu
expansion~SCE! method, which represents a parametrizati
of the adiabatic magnetic energy surface including arbitr
complex multispin interactions on the atomic level. There
the SCE is not limited to the dominant exchange interacti
but it includes also other spin interactions like the magne
anisotropy, the dipolar and the Zeeman interaction. Fo
given system, all relevant parameters can be calculated
the ab initio electron theory. Once a numerically converg
SCE expansion has been constructed, it yields the magn
energy for any spin configuration withab initio accuracy
while being orders of magnitude faster than theab initio
electron theory for noncollinear spin systems. The SCE
ergy then can be used for an efficient dynamical or therm
dynamical modeling of magnetic properties.

We termed our method SCE as it extends the cluster
pansion method~CE! of alloy theory.15 The CE allowed a
systematic generalization of the Ising model in lattice s
tems and led to a unified approach to the calculation of ph
diagrams. We are hopeful that the SCE developed in
present paper will have an equally strong impact.

Our theory is based on two major steps. In the first s
we define the basic spin variables for the parametrization
the energy surface~Sec. II A!. We use adiabatic spin vari
ables, and therefore confine ourselves to situations for wh
the adiabatic approximation holds. The adiabatic approxim
tion was successfully used inab initio calculations of the
ground states and of the spin dynamics in the recent past4–11

No attempt is made in the present paper to go beyond
approximation or to include the orbital magnetization. In t
second step~Sec. II B! we present the parametrization of th
general energy surface for the adiabatic spin variab
Former parametrizations of the energy surface were p
formed in terms of the cosines of the angles between s
©2004 The American Physical Society04-1
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vectors ~‘‘two-spin basis functions’’!. This is outlined, for
instance, in Ref. 16, but to the best of our knowledge t
kind of parametrization never has been worked out explic
to the end, i.e., it has not been specified which of the vari
possible multispin terms survive in view of the symme
restrictions. In the present paper we follow the strategy of
conventional cluster expansion for alloy systems15 and use
one-spin rather than two-spin basis functions for a repres
tation of the adiabatic energy surface. The advantage of o
spin basis functions is that they allow to include system
cally contributions to the magnetic energy which depend
the directions of the spins and not only on the angles
tween the spin vectors, for instance, the magnetic anisotr
and the Zeeman interaction. It is shown how a compl
basis for the representation of the energy surface includ
arbitrarily high multispin interactions may be construct
from the one-spin basis functions. In Sec. II C the evaluat
of the interaction parameters of the SCE is related to m
ods of theab initio electron theory. In a practical calculatio
the SCE which represents an infinite sum of contributio
from arbitrarily large spin clusters has to be terminated a
maximum cluster. It is argued that only a relatively sm
number of spin clusters is required to arrive at a termina
SCE which hasab initio accuracy, and it is demonstrate
how the interaction parameters of this terminated SCE ca
obtained from a relatively small number ofab initio calcula-
tions of the total energy of selected reference spin confi
rations. In Sec. II D it is shown how the spin clusters whi
have to be considered in the SCE can be extracted from
whole set of conceivable spin clusters by symmetry ar
ments. Finally, the relation is discussed between the one-
representation of the SCE and the commonly used two-
representation based on the cosines of the angles betwee
spin vectors, and this relation is worked out explicitly f
pair interactions. An outlook is given in Sec. III.

II. DEVELOPMENT OF THE SPIN CLUSTER EXPANSION

A. Choice of adiabatic spin variables

The SCE allows to study the ground state properties
any magnetic system. For the application to dynamic a
thermodynamic properties, the adiabatic approximation m
hold, i.e., for the system under consideration the fast s
degrees of freedom from single-electron spin fluctuations
a time scale given by the inverse band width~typically
10216 s) can be neglected and only slow degrees of freed
which describe the dynamics of the atomic momentsM i
5uM i usi on a time scale defined by the inverse frequencie
typical long-wavelength magnons~typically 10214 s) are rel-
evant. We thereby define the atomic moment in the comm
way as an integral of the magnetic moment densitym(r)
over a suitably defined atomic volumeVi ,

M i5E
Vi

mdV. ~2!

For dynamic and thermodynamic considerations we furth
more assume that the primary fluctuation modes ofM i are
the transversal fluctuations given by the directional fluct
10440
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tions of si , whereas the magnitudesuM i u are completely de-
termined by the momentary spin configurations. In contrast
to the classical Heisenberg model we thus allow for longi
dinal degrees of freedom, i.e., changes of the magnetic
mentsuM i u, but the longitudinal fluctuations are not indepe
dent but ‘‘slaved’’ by the transversal fluctuations. Th
condition is fulfilled by a very large class of materials b
there are few exceptions~e.g., ZrZn2).

The quantitiessi will be treated as classical variables
the following. Quantum mechanical effects on the time sc
of the fast degrees of freedom will be included in the theo
by calculating the magnetic momentsM i for given si via
electron theory. Quantum mechanical effects on the s
time scale of the adiabatic variablessi will be neglected to-
tally. It should be noted that the adiabatic approximati
which parametrizes the total energy completely in terms
the spin directions has been used successfully in the pa
study the static and dynamical properties of the spin syst
in solids.4–11 For instance, exactly the same arguments fo
parametrization in terms of spin directions were given
Gyorffy et al.5 for a justification of their disordered loca
moment treatment of the ferromagnetic-paramagnetic tra
tion.

B. Parametrization of the adiabatic energy surface

We now demonstrate in a mathematically rigorous man
how the adiabatic energy surface, including all relevant m
netic interactions in the solid~exchange energy, anisotrop
energy, dipolar and Zeeman energy!, may be represented ex
actly in terms of one-spin basis functions, i.e., basis fu
tions which are associated so single spinssi and not to the
angles between the spin vectors as in a two-spin basis.
arguments represent a step-by-step generalization of the
guments given in the conventional cluster expansion for
case of a general Ising model.15 Having obtained the energ
surface it is possible to calculate the magnetic ground s
configuration, the dynamical properties via an atom
Landau-Lifshitz-Gilbert equation or the thermodynam
properties via Monte Carlo simulations, for instance. In t
paper of Gyorffyet al.5 which is based on the same choice
the adiabatic spin variablessi no attempt was made to obtai
a general representation of the adiabatic energy surface
the paper aimed at a variational mean field treatment of
statistical problem.

In spherical coordinates the spin is in general para
etrized by two angles,

si5si~V!5si~q,w!, ~3!

with qP@0,p# and wP@0,2p). Special cases are thex2y
model where the spin is confined to a plane (q5p/2) and
the Ising model where only two spin states,q50 and q
5p are possible. The connection to alloy theory15 is made
by allowing angles q5pp/(P21)(w50), with p
50, . . . ,P21 in aP-component alloy. By imposing suitabl
constraints on the spin directions, we can calculate, e
by the spin-density functional electron theory the energy
a magnetic system of atoms as a function of the s
directions,
4-2
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SPIN-CLUSTER EXPANSION: PARAMETRIZATION . . . PHYSICAL REVIEW B69, 104404 ~2004!
E(0)~s!5E(0)~s1 ,s2 , . . . ,sN!. ~4!

When the electron theory includes the spin-orbit coupl
then the magnetic energy encompasses the exchange e
and the magnetic anisotropy energy. Because we can ca
late in addition from the magnetization densitym(r) pro-
vided by the electron theory all magnetic momentsM i we
also can add the dipolar interaction energy of the magn
momentsM i . For the moment we exclude the Zeeman int
action energy which requires a separate treatment~see be-
low! and denote the sum of the exchange, anisotropy
dipolar energy as contributionE(0) to the magnetic energy.

We next develop the SCE formalism that allows us
expand systematically the magnetic ener
E(0)(s1 ,s2 , . . . ,sN). We define the scalar product in th
N-spin system in terms of functions associated to the sin
spinssi ,

^ f ug&5Tr(N) f * •g, ~5!

where f (s1 , . . . ,sN) and g(s1 , . . . ,sN) are functions of the
spin directions and the trace is defined as

Tr(N)5
1

QNE dV1E dV2 . . . E dVN , ~6!

with Q5*dV for the case of a continuous spin symme
~general case andx-y model!. For the Ising model the inte
grations have to be replaced by summations over the
possible orientations. Next we introduce a set of orthogo
and complete one-spin basis functionsfv(s),v50, . . . ,̀ ,
that are attached to every spin site,

1

QE dVfv1
* ~s!fv2

~s!5dv1v2
, ~7!

1

Q (
v50

`

fv* ~s1!fv~s2!5d~s12s2!. ~8!

By demandingf0(s)51, we get foriÞ j ,

^fv1
~si !ufv2

~sj !&5^fv1
~si !f0~sj !uf0~si !fv2

~sj !&

5
Eq. ~7!

dv10d0v2
, ~9!

while for identical spin sitesi 5 j we find

^fv1
~si !ufv2

~si !& 5
Eq. ~7!

dv1v2
. ~10!

For v1Þ0,v2Þ0, Eqs.~9!, ~10! are combined into

^fv1
~si !ufv2

~sj !&5dv1v2
d i j . ~11!

For example, one-spin basis functions for the general c
are the spherical harmonicsYlm(q,w) ~see below!, for the
x2y model the exponentials exp(ınw) wheren is an integer
number, and for the Ising model we can takef1(s)5s with
s561. In the latter case the SCE attains the same form
the CE of a binary alloy.
10440
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The basis functions of the fullN-spin system are formally
constructed from products of one-spin basis functions,

Fãñ5fv1
~si 1

!fv2
~si 2

! . . . fvN
~si N

!, ~12!

where the clusterã5$ i 1 ,i 2 , . . . i N% contains all sites of the
N-spin system andñ5(v1 ,v2 , . . . ,vN) labels the corre-
sponding one-spin basis functions. The complete set of b
functions is obtained by summing over all possible values
the one-spin basis functions contained inñ. The basis func-
tions of theN-spin system are orthogonal and complete,

^FãñuFb̃m̃&5dãb̃dñm̃ ~13!

1

QN (
ñ

Fãñ
* ~s!Fãñ~s8!5d~s2s8!. ~14!

The choicef0(s)51 allows us to recast theN-spin basis
in order to allow a local interpretation of the spin-clust
expansion in total analogy to the procedure adopted
the conventional cluster expansion15 for generalized Ising
models. Let us look, for example, at one specialN-spin
basis function Fãñ with v l50 (1< l<N). Taking into
accountf0(sl)51, the basis functionFãñ equals a basis
function Fb̃m̃ of a (N21)-spin system without the spin
site i l , b̃5$ i 1 ,i 2 , . . . ,i l 21 ,i l 11 , . . . ,i N% and m̃
5(v1 ,v2 , . . . ,v l 21 ,v l 11 , . . . ,vN). Hence we can formally
replace allN-spin basis functions that containL ~with 0<L
<N) products of the basis functionf0 by their correspond-
ing basis functions in a (N2L)-spin system. Basis function
that have been reduced so thatm̃5(v1 ,v2 , . . . ,vN) contains
only elementsv lÞ0 are now denoted by

Fan5fv1
~si 1

!fv2
~si 2

! . . . fvK
~si K

!, ~15!

where in contrast to Eq.~12! the clustera now can contain
any numberK50, . . . ,N of spin sites. The one-spin bas
functions in the clustera, denoted byn5(v1 ,v2 , . . . ,vK)
now are all different from zero,v lÞ0, with 1< l<K. This
allows to rewrite the orthogonality and completeness relat
Eqs.~13! and ~14! using Eq.~11!,

^FanuFbm&5dabdnm , ~16!

1

QK S 11 (
g#a

(
n

Fgn* ~s!Fgn~s8! D 5d~s2s8!, ~17!

where the sum overn runs over all one-spin basis function
exceptf051 of the sites in the subclusterg of an arbitrary
cluster a5$ i 1 , . . . ,i K%, and s, s8 denote spin configura
tions of the clustera, andd(s2s8)5d(si 1

2si 1
8 ) . . . d(si K

2si K
8 ). The zero cluster function is given byF051. A spin

dependent function, e.g.,E(0)(s1 ,s2 , . . . ,sN) can be ex-
pressed in this basis,

E(0)~s!5J01(
a

(
n

JanFan~s!, ~18!
4-3
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where the expansion coefficients according to Eq.~16! are
given by

Jan5^FanuE(0)~s!&. ~19!

The expansion coefficients thereby are constant, indepen
of the spin configurations5(s1 , . . . ,sN). As the expansion
coefficients depend only on a local subclustera with K,N
sites, the interpretation of the expansion coefficientsJan is
straightforward.

J0: Constant energy offset, independent of spin directio
J$ i %n : The point cluster expansion coefficients descr

the energy required to rotate a spin at sitei irrespective of the
spin directions of the other spins. These expansion co
cients are thus closely related to the magnetic anisotr
Also, they contain the coupling to an external magnetic fi
in lowest approximation~see below!.

J$ i , j %n : The pair cluster expansion coefficient describ
the coupling of two spins at sitesi , j .

The contribution of the Zeeman interaction energy,

EZeeman52H•Mtot52H•(
i 51

N

uM i usi , ~20!

requires a separate consideration because a magnetic
can change in principle the magnitudesuM i u even for fixed
spin configurations, i.e.,Mtot5Mtot(H,s). In principle we
could calculateab initio Mtot(H,s) for various magnetic
fieldsH, add the Zeeman energy toE(0) and perform a SCE
for the sumEmag5E(0)1EZeeman, arriving at field depen-
dent expansion coefficientsJan5Jan(H). For many systems
however, the magnitudesuM i u of the magnetic moments at
given spin configurations do not depend on the magnet
field H for moderate applied fields. In the following we thu
neglect the explicit dependence of the total magnetic m
ment on the magnetic field, i.e., we assumeMtot5Mtot(s).
Then we can perform a SCE ofMtot arriving at an expression
for the total magnetic energy of the form

Emag5E(0)~s!2H•Mtot~s!. ~21!

If furthermore the magnitude of the magnetic momentsuM i u
does not depend ons, then the Zeeman energy contribut
only to the point cluster expansion coefficient of the SCE
should be recalled that thus the present method incorpor
all the magnetic interactions, i.e., exchange interactions,
isotropy energy, dipolar and Zeeman energy in one and
same scheme, the spin-cluster expansion, and we think
this is a big advantage of our approach.

C. Practical realization of an ab initio SCE

In practice, anab initio SCE is constructed in the follow
ing way. First we define the positions of the atoms in t
system under consideration. If these are the positions
regular lattice then the spin clusters appearing in Eq.~18! can
be grouped together in classes of symmetry equiva
clusters.15 The number of nonequivalent clusters increa
when the translational symmetry is broken, e.g., at surfac17

and especially for small clusters. Second, it must be reca
that the SCE, Eq.~18!, represents an infinite sum over co
10440
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tributions arising from infinitely many spin cluster figure
~labeled bya) and from infinitely many one-spin basis func
tions ~labeled byn) for each site~in the case of a continuou
spin symmetry!. To evaluate the infinitely many correspon
ing expansion coefficientsJan via the projection operation
given by Eq.~19! would require the knowledge of the com
plete energy surfaceE(0)(s) in the infinitely dimensional
configuration space. It is totally clear that for a practic
approach the series Eq.~18! has to be terminated with re
spect to the number and type of clusters which are taken
account~as in the conventional CE! and with respect to the
number of considered single spin basis functions in the c
of systems with continuous spin symmetry~whereas in the
conventional CE forP-component alloys allP basis func-
tions are kept!. For the determination of the remainingn1
expansion coefficientsJan we proceed exactly in the sam
way as in the conventional cluster expansion for all
systems.15 A set of n2>n1 appropriately chosen~see below!
reference configurationssre f is defined, and then the energ
E(0)(sre f) is calculated by theab initio electron theory, for
instance, with the computational techniques described
Refs. 4–11. Then then1 coefficientsJan are calculated by
fitting the terminated SCE series to then2 energies18,19

E(0)(sre f). Finally, the terminated SCE must be tested
numerical convergence with respect to the number and t
of considered clusters~see also Sec. II D! and one-spin basis
functions, and for this test the sophisticated techniques
rived for the conventional CE~for a review, see Ref. 20! can
be used. A numerically convergedab initio SCE is obtained
if the error due to the termination of the series is smaller th
the numerical error involved in theab initio calculations
themselves. We assume that~similar to the case of the CE!
the SCE converges rather rapidly.

It should be noted that the degree of convergence depe
also on the type of chosen reference configurations. As in
conventional CE, there is no strict prescription how
choose these configurations, it is more a matter of phys
intuition and of trial and error. Of course the reference co
figurations will be chosen in such a way that they are rep
sentative for the situation under consideration, i.e., no c
figuration will be chosen which appears in that situation o
with negligible weight.

D. Symmetry arguments and relation to the classical
Heisenberg model

Symmetry considerations can greatly help to reduce
number of clusters that have to be considered in the S
First, time reversal symmetry implies

E~s1 ,s2 , . . . ,sN!5E~2s1 ,2s2 , . . . ,2sN!. ~22!

In practice, this requirement leads to linear dependencies
tween the expansion coefficientsJan . Hence, it is useful to
choose the one-spin basis functionsfv such that they have a
simple transformation behavior with respect to inversion
the spin directions. Furthermore, in many systems the s
orbit coupling~SOC! energy is small compared to the co
pling between the magnetic moments on different latt
sites. In what follows we treat the important special case
4-4
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zero SOC energy. Then the energy of the electronic syste
invariant with respect to rotationsR of the magnetic momen
density,

E@m#5E@R:m#. ~23!

According to the definition of the magnetic momentM i , Eq.
~2!, the rotational invariance of Eq.~23! translates into

E~s1 ,s2 , . . . ,sN!5E~R:s1 ,R:s2 , . . . ,R:sN!. ~24!

Hence, the energy is invariant with respect to group eleme
of the inversion groupCi and rotations fromSO(3), O(3)
5SO(3)3Ci . This invariance leads to linear dependenc
between the expansion coefficientsJan which are best sub
sumed if the one-spin basis forms an irreducible basis of
point group under consideration, namely spherical harmo
Ylm

21 for the groupO(3). In order to havef05y0051 we
multiply the spherical harmonics by a factorA4p,

ylm5A4pYlm . ~25!

Spherical harmonics form an orthogonal and complete b
set,

1

4pE dVyl 1m1
* ~V!yl 2m2

~V!5d l 1l 2
dm1m2

, ~26!

1

4p (
l 50

`

(
m52 l

l

ylm* ~V1!ylm~V2!5d~V12V2!, ~27!

with d(V12V2)5d(cosq12cosq2)d(w12w2). From the
SCE representation of the energy Eq.~18! it follows that
only linear combinations of the cluster basis functions c
tribute toE(s) that are invariant with respect to point grou
operationsRPO(3). Hence, we need to find the irreducib
representationsD (0) that are invariant with respect to grou
operations fromO(3) that are contained in the products
spherical harmonics.

Obviously none of the one-spin basis functions is inva
ant with respect to rotations fornÞ0 ~according tolÞ0 for
spherical harmonics!, hence,

J$ i %n50. ~28!

For pair cluster expansion coefficients the product of t
representations is evaluated. With

D ( l 1)3D ( l 2)5 (
L5u l 12 l 2u

l 11 l 2

D (L), ~29!

for the special cases15s2 we see that only basis function
with l 5 l 15 l 2 contribute to the SCE as the total energy h
to be invariant with respect to point group operationsR

*Corresponding author. Email address: faehn@physix.m
stuttgart.mpg.de
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PO(3) and thus only irreducible representationsD (0)

formed by the product of two sets of one-spin basis functio
contribute to the energy. The corresponding pair cluster b
function is calculated from spherical harmonics as21

F$ i j %( l l )~si ,sj !5 (
m52 l

l

ylm* ~V i !ylm~V j !5~2l 11!Pl~si•sj !,

~30!

with the Legendre polynomialsPl .21 Thus, the contribution
of pair clusters to the energy can be written as

E(2)5(
l

(
i , j

J$ i j %( l l )~2l 11!Pl~si•sj !. ~31!

In lowest orderl 51 the pair contribution reduces to th
Heisenberg model,

EH52(
i , j

J̃H~si•sj !, J̃H523J$ i j %$11% . ~32!

Obviously, Eq.~31! is the most general form of an exchang
Hamiltonian which contains two-spin interactions of th
form (si•sj ). We thereby gained the relation between t
expansion coefficientsJ$ i j %(11) of the SCE expansion in the
one-spin basis functions and the coefficientsJ̃H of the repre-
sentation in the two-spin cosine basis.

Generalizations of the Heisenberg model14 suggest that
also multispin interactions can be parametrized by produ
(si•sj ). By using the relation22

~si•sj !5
1

3 (
m521

1

y1m* ~V i !y1m~V j !, ~33!

these products can be represented according to a spin-cl
expansion with spherical harmonics as one-spin basis fu
tions. It would be most interesting to find out if the inver
also holds, i.e., if the SCE in general can be mapped
multispin products of the form (si•sj ).

III. OUTLOOK

We are in the process of constructing a well converg
SCE first for the case of bulk Fe and Co. As the gene
multispin interactions provided by the SCE method to t
best knowledge of the authors have never been evalu
elsewhere, it will be most interesting to determine the act
contribution of non-Heisenberg interactions in Fe and C
Our efforts are planned to cumulate in a systematic, fullyab
initio based treatment of small clusters of Fe and Co. T
understanding and modeling of the properties of such c
ters is of great relevance for the design of magnetic nan
cale devices.
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