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Defective vortex lattices in layered superconductors with point pins at the extreme type-II limit
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Department of Physics and Astronomy, California State University, Los Angeles, California 90032, USA
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The mixed phase of layered superconductors with no magnetic screening is studied through a partial duality
analysis of the corresponding frustratedXY model in the presence of weak random point pins. Isolated layers
exhibit a defective vortex lattice at low temperature that is phase coherent. Sufficiently weak Josephson
coupling between adjacent layers results in an entangled vortex solid that exhibits weak superconductivity
across layers. The corresponding vortex liquid state shows an inverted specific-heat anomaly that we propose
accounts for that seen in yttrium barium copper oxide. A three-dimensional vortex lattice with dislocations
occurs at stronger coupling. This crossover sheds light on the apparent discrepancy concerning the observation
of a vortex-glass phase in recent Monte Carlo simulations of the sameXY model.
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High-temperature superconductors are layered and
tremely type-II.1 This fact led to the suggestion early on th
a state with phase-coherent yet decoupled layers is poss2

It was later demonstrated, however, thatany amount of Jo-
sephson coupling between layers results in a macrosc
Josephson effect across layers at low temperature.3 In the
presence of external magnetic field perpendicular to the
ers, other workers made the analogous proposal that s
ciently weak coupling could lead to a decoupled stack
phase-coherent two-dimensional~2D! vortex lattices.4,5

Monte Carlo simulations6 and a partial duality analysis7,8 of
the corresponding frustratedXY model demonstrate, how
ever, that a highly entangled vortex lattice state with re
tively small or no phase coherence across layers does
exist in practice.

The elusive decoupled vortex lattice state may exist
low temperature in the presence of random point pi
however.9,10 In this paper, we show that this is indeed t
case through a partial duality analysis of the correspond
layeredXY model with uniform frustration.11 We show first
that a defective vortex lattice state5 can exist in isolated lay-
ers. It exhibits macroscopic phase coherence in the z
temperature limit, despite the presence of unbound dislo
tions that are assumed to be quenched in by the ran
pins.12 We next turn on Josephson coupling between adjac
layers and find that weak superconductivity exists across
ers at sufficiently high layer anisotropy11 in the zero-
temperature limit. After assuming a continous 2D order
transition for each layer in isolation, we then find that
inverted specific heat jump can occur inside of the vor
liquid state at weak coupling. This prediction compares
vorably with the recent observations of such a peak in
high-temperature superconductor yttrium barium copper
ide ~YBCO!.13

2D. Consider a stack of isolated superconducting layer
a perpendicular external magnetic field. In the absence
Josephson coupling as well as of magnetic screening, theXY
model over the square lattice with uniform frustration pr
vides a qualitatively correct description of the mixed pha
in each layer. The corresponding Boltzmann distribution
set by the sum of energy functionals,
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(

rW
Jmcos@Dmf2Am#, ~1!

for the superfluid kinetic energy of each layerl written in
terms of the superconducting phasef(rW,l ). HereDmf(rW,l )
5f(rW1am̂,l )2f(rW,l ) andAW 5(0,2p f x/a) make up the lo-
cal supercurrent, wheref denotes the concentration of vort
ces over the square lattice, with lattice constanta. The local
phase rigidityJm(rW,l ) is assumed to be constant over most
the nearest-neighbor links (rW,rW1am̂) in layer l, with the ex-
ception of those links in the vicinity of the pinning sites th
are located at random. After taking the Villain approxim
tion, which is generally valid at low temperature,14 a series
of standard manipulations then lead to a Coulomb gas
semble with pins that describes the vortex degrees of f
dom on the dual square lattice.8 The ensemble for each laye
l is weighted by the Boltzmann distribution set by the ene
functional

Evx~ l !5~2p!2 (
(RW ,RW 8)

dQJ0G(2)dQ81(
RW

VpuQu2, ~2!

written in terms of the integer vorticity fieldQ(RW ,l ) over the
sitesRW of the dual lattice in that layer, and of the fluctuatio
dQ5Q2 f . A logarithmic interaction,G(2)52¹22, exists
between the vortices, with a strengthJ0 equal to the Gauss
ian phase rigidity. Last,Vp(RW ,l ) is the resulting pinning
potential.8

We shall next assume that the array of random pins
each layer,Vp(RW ,l ), quenches in unbound dislocations in
the triangular vortex lattice at zero temperature.12 To check
for superconductivity in such a defective 2D vortex lattic
we now compute the macroscopic phase rigidity, which
given by one over the dielectric constant of the 2D Coulo
gas~2!:15

rs
(2D)/J0512 lim

k→0
~2p/hsw!^dQkWdQ2kW&/k

2a2Ni . ~3!

HeredQkW5QkW2^QkW& is the fluctuation in the Fourier trans
form of the vorticity in layerl: QkW5(RW Q(RW ,l )eikW•RW . Also,
©2004 The American Physical Society03-1
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hsw5kBT/2pJ0 is the spin-wave component of the phas
correlation exponent, andNi denotes the number of points i
the square-lattice grid. Now suppose that a given vorte
displaced byduW with respect to its location at zero temper
ture. Conservation of vorticity dictates that its fluctuation
given by 2¹W •duW . Substitution into Eq.~3! then yields the
result

rs
(2D)/J0512~hvx8 /hsw! ~4!

for the phase rigidity in terms of the vortex component to
phase-correlation exponent,

hvx8 5pK F( 8
RW

duW G2L Y Nvxavx
2 . ~5!

The latter monitors fluctuations of the center of mass of
vortex lattice.16 Above, Nvx denotes the number of vortice
while avx5a/ f 1/2.

To proceed further, we now express the displacement fi
as a superposition ofpure wave and defect components
the triangular vortex lattice:16 duW 5duW wv1duW df . Notice by
Eq. ~5! that phase coherence is insensitive to the wave c
tribution if rigid translations are excluded, since(duW wv50
in such case. The former is achieved through bulk pinnin8

and the latter then follows under periodic boundary con
tions. Consider now a single unbound dislocation with B
gers vectorbW that slides along it glide plane1 a distancedRdf
with respect to its location at zero temperature. The rela
displacement fieldduW df then corresponds to that of apure
dislocation pair of extentdRdf that is oriented along its glide
plane. After following steps similar to those taken in Ref.
for the pristine case, it can be shown that Eq.~5! yields a
fluctuation of the center of mass,

hvx8 'ndf^udRdfu2&~b/2avx!
2ln R0 /adf , ~6!

for the vortex solid, wherendf denotes the density of un
bound dislocations,adf is the core diameter of a dislocation
and R0 is an infrared cutoff. Above, the overbar denotes
bulk average. Observe now that bothhsw and hvx8 vanish
linearly with temperature. By Eq.~4!, we conclude that the
defective 2D vortex lattice shows a positive phase rigidity
the zero-temperature limit at sufficiently dilute concent
tions of unbound dislocations,ndf→0. The above is borne
out by direct Monte Carlo simulations17 of the 2D Coulomb
gas ensemble~2!.

The previous positive result for macroscopic phase coh
ence@Eq. ~4!# in the zero-temperature limit can be confirm
by calculation of generalized phase autocorrelation functi
within an isolated layer:Cl@q#5^exp@i(rWq(rW)f(rW,l)#&0. Fol-
lowing a similar calculation in the pristine case,16 application
of the Villain approximation@see Eq.~2! and Ref. 14# yields
the form Cl@q#5uCl@q#uexp@i(rWq(rW)f0(rW,l)# for these auto-
correlations, wheref0(rW,l ) represent the zero-temperatu
configurations of isolated layers. In the low-temperature
gime, phase correlations are then found to decay algebra
as
10050
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n1expFh2D (

(1,2)
q~1!ln~r 12/r 0!q~2!G ~7!

at the asymptotic limitr 12→`, with a net correlation expo-
nent approximately equal toh2D>hsw1hvx8 for small vortex
components,hvx8 !hsw. Here,g05rs

(2D)/J is the ratio of the
2D stiffness with its value at zero temperature,J, while n1

counts half the number of probes inq(rW). Also, r 0 denotes
the natural ultraviolet scale.

3D. We shall now add a weak Josephson coupling ene
2Jzcos(Dzf2Az) to all of the vertical links in between ad
jacent layers of the three-dimensional~3D! XY model. Here,
Jz5J/g82 is the perpendicular coupling constant, with a
isotropy parameterg8.1. The layeredXY model can be
effectively analyzed in the selective high-temperature lim
kBT@Jz , through a partial duality transformation. This
leads to a dilute Coulomb gas~CG! ensemble that describe
the nature of the Josephson coupling in terms of dual cha
that live on the vertical links. Phase correlations across lay
can then be computed from the quotient

K expF i(
r

p~r !f~r !G L 5ZCG@p#/ZCG@0# ~8!

of partition functions for a layered CG ensemble:11

ZCG@p#5 (
$nz(r )%

y0
N[nz]P lCl@ql #e

2 i(
r

nzAz, ~9!

where the dual chargenz(rW,l ) is an integer field that lives on
links between adjacent layersl andl 11 located at 2D points
rW. The ensemble is weighted by a product of phase auto
relation functions for isolated layersl probed at the dua
charge that accumulates onto that layer:

ql~rW !5p~rW,l !1nz~rW,l 21!2nz~rW,l !. ~10!

It is also weighted by a bare fugacityy0 that is raised to the
power N@nz# equal to the total number of dual charges,nz
561. The fugacity is given byy05Jz/2kBT in the selective
high-temperature regime,Jz!kBT, reached at large mode
anisotropy.

In the absence of Josephson coupling, random point p
lead to zero-temperature phase configurationsf0(rW,l ),
which are completely uncorrelated across layers. At zero
allel field, Eqs.~8! and ~9! therefore yield the expressions18

^cosf l ,l 11&>y0(
1

Cl~0,1!•Cl 11* ~0,1! ~11!

and

u^eif l ,l 11&u2

>y0
2(

1
(

2
Cl~0,1!Cl* ~0,2!•Cl 11~0,2!Cl 11* ~0,1!

~12!

for the interlayer ‘‘cosine’’ and the interlayer phase corre
tion, to lowest order in the fugacity. The overbar represen
3-2
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bulk ~disorder! average, while f l ,l 11(rW)5f(rW,l 11)
2f(rW,l )2Az(rW,l ) is the gauge-invariant phase differen
across adjacent layers. Macroscopic phase coherence s
by each layer in isolation~4! is lost at a transition
temperature17 Tg

(2D).0. Only short-range phase correlatio
on the scale ofj2D exist at higher temperature followin
Cl(1,2)5g0e2r 12 /j2Deif0(1)e2 if0(2). By analogy with 2D
melting physics,16,19 the presence of quenched-in unbou
dislocations also implies that only short-range phase corr
tions exist inside of each layer in isolation, on avera
at zero temperature. Specifically, we ha
exp@ifl,l11

(0) (1)#exp@2ifl,l11
(0) (2)#5e22r12 / l 2D asymptotically,

where f l ,l 11
(0) (rW)5f0(rW,l 11)2f0(rW,l )2Az(rW,l ) is the

quenched interlayer phase difference, and wherel 2D repre-
sents a zero-temperature disorder scale set byndf . Substitu-
tion into expression~12! then yields the resultu^eif l ,l 11&u2

;@g0
2(J/kBT)( l 2Dj2D /L0

2)#2 for the interlayer phase corre
lation inside the critical regime,j2D@ l 2D , whereL05g8a
is the Josephson penetration length. This approximate re
reaches unity at a crossover field

f g38
2;g0

2~J/kBT!~ l 2Dj2D /avx
2 !, ~13!

in units of the naive decoupling scaleF0 /L0
2 that separates

2D from 3D vortex-liquid behavior.7 Substitution into ex-
pression~11! for the interlayer cosine, on the other han
yields a nondivergent result

^cosf l ,l 11&;g0
2~J/kBT!@~ l 2D

211j2D
21!21/L0#2, ~14!

which is valid in the decoupled vortex liquid that exists
fields much larger thanf g38

2 . It can be shown20 that the
next-leading-order term for the interlayer cosine~11! is nega-
tive, that it diverges just like the leading-order term for t
interlayer correlation~12!, and that it becomes comparable
its own leading-order term precisely at fields below t
2D-3D crossover scale, Eq.~13!. Last, Eq.~14! implies an
anomalous interlayer contribution to the specific heat
volume equal to

dcv
'>2@11~j2D / l 2D!#21~] ln j2D

21/]T!eJ , ~15!

whereeJ5^cosfl,l11&•J/L0
2d is the Josephson energy dens

andd denotes the spacing in between adjacent layers. It
notably shows an inverted specific-heat jump that is follow
by a tailoff at a temperatureTp such thatj2D(Tp); l 2D if
j2D diverges faster than (T2Tg

(2D))21. This approximate re-
sult is again valid at high anisotropy,g8.g38 , which yields
the boundl 2D,g0

21(kBT/J)1/2L0 on the 2D disorder scale
by Eq. ~13!.

The previous analysis clearly demonstrates that a se
tive high-temperature expansion in powers of the fugacityy0

necessarily breaks down in the ordered phase,T,Tg
(2D) ,

wherej2D is infinite. At this stage it becomes useful to r
express the layered CG enesemble~9! by replacingCl@q#
with its magnitude~7!, and by compensating this chang
with the additional replacement ofAz(rW,l ) with
2f l ,l 11

(0) (rW). A Hubbard-Stratonovich transformation of th
10050
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CG partition function~9! reveals21 that it is equivalent to a
renormalized Lawrence-Doniach~LD! model with an energy
functional that is given by11

ELD5rs
(2D)E d2r(

l
F1

2
~¹W u l !

22L0
22cosu l ,l 11G , ~16!

whereu l ,l 115f l ,l 11
(0) 1u l 112u l . A standard thermodynamic

analysis7 then yields that the strength of the local Josephs
coupling is given by^cosfl,l11&5y01g0^cosul,l11&. It can
also be shown11 that phase coherence exists across a ma
scopic number of layers, with a corresponding phase rigid
equal tors

'/Jz>g0^cosul,l11&.
In order to computê cosul,l11& at low temperature, we

must first determine the configuration that optimizesELD .
Equation~16! implies that it satisfies the field equation

2¹2u l
(0)1L0

22@sinu l 21,l
(0) 2sinu l ,l 11

(0) #50. ~17!

In the weak-coupling limitL0→`, we therefore have tha
u l

(0)(rW) is constant inside each layer. The fact th
eif0(1)e2 if0(`)50 then implies thatcosul,l1150 at zero tem-
perature in the weak-coupling limit. Indeed, the LD cosi
can be calculated perturbatively, where one finds t
cosul,l11;(l2D /L0)

2ln(L0 /l2D) at zero temperature.10,20 In the
opposite limit of weak disorder,l 2D→`, Eq. ~17! yields that
sinul21,l

(0) 5sinul,l11
(0) , on the other hand. This then implies th

cosul,l11
(0) 51 in the weak disorder limit. The bulk averag

cosul,l11 at zero temperature must therefore pass betw
zero and unity atL0; l 2D . This condition defines a decou
pling crossover field f gD8

2(0);( l 2D /avx)
2 in units of

F0 /L0
2, at which point the reversible magnetization show

broad diamagnetic peak. By the discussion following E

FIG. 1. Shown is the proposed phase diagram assuming w
point pins and a continuous vortex glass phase transition for
lated layers. The concentration of in-plane vortices,f, is held fixed,
and a mean-field temperature dependence,J}Tc02T, is assumed.
Monte Carlo simulations of the sameXY model studied here find
evidence for a second-order transition between the vortex-glass
the vortex-liquid phases~see Ref. 22!. When confronted with the
first-order decoupling transition that is expected to separate the
tex liquid from the 3D vortex lattice~see Refs. 11 and 23!, this
implies the existence of a critical end point consistent with exp
ments on YBCO~Ref. 13! and with other numerical simulation
~Ref. 24! of the presentXY model. A transition to a 3D vortex
lattice without defects is reported in Ref. 25 atf g82,1.
3-3
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~16!, we conclude that random point pins result in a vort
glass at sufficiently high layer anisotropy,9,10 L0@ l 2D ,
which exhibits weak superconductivity across layers11

rs
'!Jz .

The results of the above duality method are summari
by the phase diagram displayed in Fig. 1. The present the
notably predicts that an inverted specific heat anomaly~jump
followed by a tailoff! occurs at weak coupling in the vorte
liquid when the 2D correlation lengthj2D matches the 2D
disorder scalel 2D if j2D diverges faster than (T2Tg

(2D))21

@see Eq.~15!#. Such a feature has, in fact, been observ
within the vortex-liquid phase of YBCO.13 The weight
of the latter peak is aboutDeexp>6 mJ/cm3, while the peak
shown by Eq. ~15! has a weight DeJ

5(F0
2/16p3lL

2L0
2)D^cosfl,l11&. Equating these and usin

values of lL>140 nm andL0>7 nm for the penetration
depths in YBCO~Ref. 1! yields a 10% jump in the cosine.

Last, although recent Monte Carlo simulations of t
sameXY model studied here do indeed find evidence fo
d

C
s.

,

10050
x

d
ry

d

a

phase-coherent vortex glass at24 f g82516 and at22 f g82

58, another one26 using f g8252 does not. We believe tha
the zero-temperature crossover shown in Fig. 1 between
entangled vortex glass and a 3D vortex lattice contain
dislocations is the origin of this discrepancy.

In conclusion, a duality analysis of theXY model finds
that random point pins9,10 drive a crossover transition in th
zero-temperature limit between defective vortex lattices t
show strong vs weak superconductivity across layers a
function of the Josephson coupling.11 We further propose tha
the inverted specific heat anomaly observed recently ins
of the vortex-liquid phase of YBCO does not signal a pha
transition,13 but rather is due to the thermodynamic res
nance found here, Eq.~15!. Recent Monte Carlo simulation
of the sameXY model studied here also find a noncritic
specific-heat anomaly in the vortex-liquid phase~see Ref.
27!.
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