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Defective vortex lattices in layered superconductors with point pins at the extreme type-II limit
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The mixed phase of layered superconductors with no magnetic screening is studied through a partial duality
analysis of the corresponding frustratéd model in the presence of weak random point pins. Isolated layers
exhibit a defective vortex lattice at low temperature that is phase coherent. Sufficiently weak Josephson
coupling between adjacent layers results in an entangled vortex solid that exhibits weak superconductivity
across layers. The corresponding vortex liquid state shows an inverted specific-heat anomaly that we propose
accounts for that seen in yttrium barium copper oxide. A three-dimensional vortex lattice with dislocations
occurs at stronger coupling. This crossover sheds light on the apparent discrepancy concerning the observation
of a vortex-glass phase in recent Monte Carlo simulations of the 3ammodel.
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High-temperature superconductors are layered and ex-
tremely type-1I* This fact led to the suggestion early on that EQ()=— 2 > J,co§A,h—A,l 1)
a state with phase-coherent yet decoupled layers is pogsible. MRV
It was later demonstrated, however, tlaaty amount of Jo- for the superfluid kinetic energy of each laylewritten in
sephson coupling between layers results in a macroscopterms of the superconducting pha;é(aF,I). HereAM¢(F,I)
Josephson effect across layers at low temperdtimethe :¢(;+ a,ZL,I)—¢(F,I) and,&=(0,2wfx/a) make up the lo-
presence of external magnetic field perpendicular to the laycal supercurrent, wheredenotes the concentration of vorti-
ers, other workers made the analogous proposal that suffies over the square lattice, with lattice consrithe local
C|hently Wiak C?“E’"”Qd_(?ou'd _|ea;2[t3(; a detcoupllef[?_ S?‘gk hhase rigidityd ,(r,1) is assumed to be constant over most of
E/Ioﬁi (C::Oarforesri]mul\iavt(i)ori;srgigsiaogartial d\lj(;rlitilxan:IyIE% 6f the nearest-neighbor I_ink$ t Jr.a’“.) in Iayerlz Wi.th thg ex:
the corresponding frustratedY model demonstrate, how- ception of those links in the vicinity of the pinning sites _that

. . . are located at random. After taking the Villain approxima-

ever, that a highly entangled vortex lattice state with rela'tion, which is generally valid at low temperatufea series
tiv_ely_small or no phase coherence across layers does ngt standard manipulations then lead to a Coulomb gas en-
exist in practice. _ ~ semble with pins that describes the vortex degrees of free-

The elusive decoupled vortex lattice state may exist ajom on the dual square latti€&he ensemble for each layer

low temperature in the presence of random point pins| js weighted by the Boltzmann distribution set by the energy
however° In this paper, we show that this is indeed the functional

case through a partial duality analysis of the corresponding
layeredX 'Y model with uniform frustratiort! We show first
that a defective vortex lattice statean exist in isolated lay-
ers. It exhibits macroscopic phase coherence in the zero- R
temperature limit, despite the presence of unbound dislocawritten in terms of the integer vorticity fiel@(R,|) over the
tions that are assumed to be quenched in by the randogitesR of the dual lattice in that layer, and of the fluctuation
pins?We next turn on Josephson coupling between adjacendQ=Q—f. A logarithmic interactionG(®)= —V 2, exists
layers and find that weak superconductivity exists across laysetween the vortices, with a strength equal to the Gauss-
ers at sufficiently high layer anisotroyin the zero- jan phase rigidity. LastV,(R,1) is the resulting pinning
temperature limit. After assuming a continous 2D orderingpotential®

transition for each layer in isolation, we then find that an  we shall next assume that the array of random pins in
inverted specific heat jump can occur inside of the vortex,, -h layerV (ﬁ 1), quenches in unbound dislocations into
liquid state at weak coupling. This prediction compares fay,q triangu,lapr vortex lattice at zero temperatti@o check

vprably with the recent observations_of such a peak in th‘?or superconductivity in such a defective 2D vortex lattice,
kggfg-tempe):r%ture superconductor yttrium barium copper OXive now compute the macroscopic phase rigidity, which is
ide (YBCO). '

En()=(2m)2 2, 8Q3,GP6Q'+ 2> V,IQ% (2
R

(RR")

. . . . given by one over the dielectric constant of the 2D Coulomb
2D. Consider a stack of isolated superconducting layers "gas(Z .15
a perpendicular external magnetic field. In the absence o '
Josephson coupling as WeII' as of magr]etlc screenlngﬁhe ngD)/JOZ 1— lim (2/ ﬂsw)<5Q|25Q—E>/kzaz/\fH )
model over the square lattice with uniform frustration pro- k—0

vides a qualitatively correct description of the mixed phase . o ]
in each layer. The corresponding Boltzmann distribution isHere 6Qg=Qig—(Qp) is the fluctuation in the Fourier trans-
set by the sum of energy functionals, form of the vorticity in layerl: Qz==zQ(R,1)e'*'R. Also,
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nsw=KgT/2mJy is the spin-wave component of the phase- n

correlation exponent, antij denotes the number of points in |Cilall =go+exr{ ﬂzD(%) a(1)In(ry2/ro)a(2)

the square-lattice grid. Now suppose that a given vortex is

displaced bysu with respect to its location at zero tempera- &t the asymptotic limit ;,—cc, with a net correlation expo-

ture. Conservation of vorticity dictates that its fluctuation is"€nt approan/ately equal tgop= ’75\3/; 7vx for small vortex

given by — V- 60. Substitution into Eq(3) then yields the =~ COMPONENS7y,< 775y Here,go=p*™)/J is the ratio of the

result 2D stiffness with its value at zero terpperatu.ﬂewhlle n,
counts half the number of probes gfr). Also, rq denotes

pPP130=1— (5l 7sw) (4)  the natural ultraviolet scale.

L 3D. We shall now add a weak Josephson coupling energy
for the phase r_|g|d|ty in terms of the vortex component to the—JZcos(Aqu—AZ) to all of the vertical links in between ad-
phase-correlation exponent, jacent layers of the three-dimensioriaD) XY model. Here,

2 J,=J/y'? is the perpendicular coupling constant, with an-
Doy = 7T< > / viasx_ (5) isotropy parametery’>1. The layeredXY model can be
The latter monitors fluctuations of the center of mass of th

effectively analyzed in the selective high-temperature limit,
kgT>J,, through apartial duality transformation. This

vortex lattice’® Above, N,, denotes the number of vortices

while a,,=a/f'2

8eads to a dilute Coulomb gd€G) ensemble that describes
' the nature of the Josephson coupling in terms of dual charges
To proceed further, we now express the displacement fiel
as a superposition giure wave and defect components of

that live on the vertical links. Phase correlations across layers
the triangular vortex latticé® Su= U, + dUg. Notice by .
e exg i p(r)e(r)
-

)

> éu
R

an then be computed from the quotient
Eq. (5) that phase coherence is insensitive to the wave con-

tribution if rigid translations are excluded, sin&asu,,,=0

in such case. The former is achieved through bulk pinfling,
and the latter then follows under periodic boundary condi-

tions. Consider now a single unbound dislocation with Bur- Zedpl= 2 yg'[”21H|C|[q|]e‘iZ NZAz, 9

gers vectob that slides along it glide plahe distancesRy inz(}

with respect to its location at zero temperature. The relativgyhere the dual chargez(F,I) is an integer field that lives on
displacement fieldﬁﬁdf then corresponds to that of mure  links between adjacent layerandl + 1 located at 2D points
dislocation pair of extendR that is oriented along its glide . The ensemble is weighted by a product of phase autocor-
plane. After following steps similar to those taken in Ref. 16relation functions for isolated layeris probed at the dual

for the pristine case, it can be shown that E@ yields a Charge that accumulates onto that |aye|’:
fluctuation of the center of mass,

> =Zcd p)/Zcd 0] ®

of partition functions for a layered CG ensembte:

QN =p(r,H+n,r,1—1)—nyr,1). (10)

It is also weighted by a bare fugaciyy that is raised to the

for the vortex solid, whereny denotes the density of un- powerN[n,] equal to the total number of dual charges,
bound dislocationsay; is the core diameter of a dislocation, = =1. The fugacity is given by,=J,/2kgT in the selective
and R, is an infrared cutoff. Above, the overbar denotes ahigh-temperature regime),<kgT, reached at large model
bulk average. Observe now that both,, and 7,, vanish  anisotropy.
linearly with temperature. By Ed4), we conclude that the In the absence of Josephson coupling, random point pins
defective 2D vortex lattice shows a positive phase rigidity inlead to zero-temperature phase configuratiopg(r,!),
the zero-temperature limit at sufficiently dilute concentra-which are completely uncorrelated across layers. At zero par-
tions of unbound dislocationsi4— 0. The above is borne allel field, Egs.(8) and(9) therefore yield the expressidfis
out by direct Monte Carlo simulatioisof the 2D Coulomb
gas ensembl€2). . *

The previous positive result for macroscopic phase coher- <cos¢|’,+1)=y0§l‘, Ci(0.)- G4 (0.1 1D
ence[Eq. (4)] in the zero-temperature limit can be confirmed
by calculation of generalized phase autocorrelation functiongnd
within an _isc_)Iated Iaye(C|[q]=(ex;{i_Em(F)¢(F,I)])9. F_ol— W
lowing a similar calculation in the pristine caapplication
of the Villain approximatior{see Eq(2) and Ref. 14 yields ) - ~
the form C,[q]=|Ci[q]lexdiSq(F ()] for these auto- =y52 2 Ci(0DC}(0,2):Ci+1(0,2Cf4(0.)
correlations, WherebO(F,I) represent the zero-temperature (12
configurations of isolated layers. In the low-temperature re-
gime, phase correlations are then found to decay algebraickpr the interlayer “cosine” and the interlayer phase correla-
as tion, to lowest order in the fugacity. The overbar represents a

7o~ Nar(| SRyl %) (b/2a,,)?IN Ry /ag, (6)
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bulk (disordej average, while ¢, 1(r)=¢(r,1+1)
—¢(r,1)=A,(r.l) is the gauge-invariant phase difference
across adjacent layers. Macroscopic phase coherence shown
by each layer in isolation(4) is lost at a transition
temperaturt/ TéZD’>O. Only short-range phase correlations
on the scale of¢, exist at higher temperature following
C(1,2)=gge "12/t20e'%o(e~140(2) By analogy with 2D
melting physics®1® the presence of quenched-in unbound
dislocations also implies that only short-range phase correla-
tions exist inside of each layer in isolation, on average,
at zero  temperature. Specifically,  we have
exdidf s (1)]exd —igi),(2)]=e 212/ asymptotically,
where (P, ()= do(r,1+1)— do(r,1)—ALr,]) is the
guenched interlayer phase difference, and whegerepre-
sents a zero-temperature disorder scale set pySubstitu-

fy’

-
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FIG. 1. Shown is the proposed phase diagram assuming weak
point pins and a continuous vortex glass phase transition for iso-
lated layers. The concentration of in-plane vortidess held fixed,
and a mean-field temperature dependedeel ,— T, is assumed.

tion into expressior(12) then yields the resul(e'”'“1)[*  Monte Carlo simulations of the sameY model studied here find
”[QS(J/kBT)UszzD /Ag)]z for the interlayer phase corre- evidence for a second-order transition between the vortex-glass and
lation inside the critical regimeS,p>1,5, WhereAg=vy'a  the vortex-liquid phaseésee Ref. 22 When confronted with the
is the Josephson penetration length. This approximate resultst-order decoupling transition that is expected to separate the vor-

reaches unity at a crossover field

tex liquid from the 3D vortex latticdsee Refs. 11 and 23this

implies the existence of a critical end point consistent with experi-
fy/2~g5(IksT)(Iapéap as), (13)  ments on YBCO(Ref. 13 and with other numerical simulations
(Ref. 29 of the presentXY model. A transition to a 3D vortex
in units of the naive decoupling sca@ao/A?J that separates |attice without defects is reported in Ref. 25fat’2<1.

2D from 3D vortex-liquid behaviof. Substitution into ex-

pression(11) for the interlayer cosine, on the other hand, CG partition function(9) reveald! that it is equivalent to a

yields a nondivergent result

functional that is given b

(coS¢y 1+1)~95(Ike T30+ é20) " Y Ao%,  (14)

which is valid in the decoupled vortex liquid that exists at
fields much larger thariy.?. It can be showtf that the

renormalized Lawrence-Donia¢hD) model with an energy

1. -
Eip=p{” f d’r, [zweoZ—Aozcosﬂlm . (19

next-leading-order term for the interlayer cosid#) is nega- whereg, |, 1= ¢|(,(f)+1+ 0,1~ 6, . A standard thermodynamic
tive, that it diverges just like the leading-order term for theanalysié then yields that the strength of the local Josephson
interlayer correlatiori12), and that it becomes comparable to coupling is given by(cosd,;.1)=Yo+0x(C0S ;1). It can

its own leading-order term precisely at fields below thealso be showtt that phase coherence exists across a macro-

2D-3D crossover scale, E¢L3). Last, Eq.(14) implies an  scopic number of layers, with a corresponding phase rigidity
anomalous interlayer contribution to the specific heat Peequal tops/J,=go(COSH 11 1)-

volume equal to
Scr=2[1+(&xp/150)]1 HdIn x0Ty, (19

wheree;= <cos¢|y|+l)-J/ASd is the Josephson energy density
andd denotes the spacing in between adjacent layers. It also

—~ V260 + Ay [ sin 6

O, —sing(P1=0. (17

)

In order to computgcosé,. 1) at low temperature, we
must first determine the configuration that optimizgs, .
Equation(16) implies that it satisfies the field equation

notably shows an inverted specific-heat jump that is followedn the weak-coupling limitA ,—, we therefore have that
by a tailoff at a temperatur§£ such thaté,p(Ty)~1op if  6(0(r) is constant inside each layer. The fact that
&,p diverges faster thanT(— T?P)) 1. This approximate re- g %D 1%0(*) = O then implies thatosé ..=0 at zero tem-
2D g p 0141
sult is again valid at high anisotropy, > y{ , which yields  perature in the weak-coupling limit. Indeed, the LD cosine
the boundl 2D<ggl(kBT/J)1’2A0 on the 2D disorder scale can be calculated perturbatively, where one finds that
by Eq.(13). cosb, 41~ (10 /Ag)?In(Ag/lp) at zero temperatur€:°In the
The previous analysis clearly demonstrates that a sele@pposite limit of weak disordel,p—, Eq.(17) yields that
tive high-temperature expansion in powers of the fugagity sin ¢}, =siné?,,, on the other hand. This then implies that
necessarily breaks down in the ordered phaeT(™,  cosd),=1 in the weak disorder limit. The bulk average
where¢,p is infinite. At this stage it becomes l_JsefuI to re- cosg ., at zero temperature must therefore pass between
express the layered CG enesemt® by replacingCi[q]  zero and unity at\o~1,p. This condition defines a decou-
with its magnitude(7), and by compensatmgﬁ this change pling crossover field fy2(0)~(I,p/ay)? in units of
with the additional replacement ofA,(r,I) with @ /A2, at which point the reversible magnetization shows a
— #{%,1(r). A Hubbard-Stratonovich transformation of the broad diamagnetic peak. By the discussion following Eq.
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(16), we conclude that random point pins result in a vortexphase-coherent vortex glass’®afy’?=16 and & fy'?

glass at sufficiently high layer anisotrop}’ Ag>l,p, =8, another o€ usingfy'?2=2 does not. We believe that

which exhibits weak superconductivity across layérs: the zero-temperature crossover shown in Fig. 1 between an

ps<d,. entanglgd vortex glass and a 3I_:) vortex lattice containing
The results of the above duality method are summarizedlislocations is the origin of this discrepancy. _

by the phase diagram displayed in Fig. 1. The present theor% In conclusion, a duality analysis of the€Y model finds

notably predicts that an inverted specific heat anortjalyp at random point piris® drive a crossover transition in the
followed by a tailoff occurs at weak coupling in the vortex zero-temperature limit between defective vortex lattices that

liquid when the 2D correlation lengté,, matches the 2D ShOW. strong vs weak superconductivity across layers as a
disorder scald,p if &,y diverges faster tharT(— TZ®) 1 function of the Josephson couplifjwe further propose that

[see Eq.(15)] ZSDuch 26'13 feature has. in fact been observedn€ inverted specific heat anomaly observed recently inside
within tﬁe vértex—liquid phase of, YBC(l)g., The weight of the vortex-liquid phase of YBCO does not signal a phase

. ~ . transition’® but rather is due to the thermodynamic reso-
of the latter peak is aboulieq,=6 mJ/c, Wh'l.e the peak nance found here, E¢15). Recent Monte Carlo simulations
shown by Eg. (15 has a weight Ae,

- of the sameXY model studied here also find a noncritical
= (®§/16mNEAG)A(cosd 1) Equating these and using

X specific-heat anomaly in the vortex-liquid phasee Ref.
values of A\ =140 nm andA,=7 nm for the penetration -

depths in YBCO(Ref. 1) yields a 10% jump in the cosine.
Last, although recent Monte Carlo simulations of the The author thanks O. Bernal and Y. Nonomura for discus-
sameXY model studied here do indeed find evidence for asions.
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