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We present the zero-temperature phase diagram of a square lattice quantum 3pirigglel with four-site
ring exchange in a uniform external magnetic field. Using quantum Monte Carlo techniques, we identify
various quantum phase transitions betweenXNeorder, striped or valence bond solid, staggeree!Nti-
ferromagnet and fully polarized ground states of the model. We find no evidence for a quantum spin liquid
phase.
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Studies of two-dimensional spin-1/2 quantum magnet anévhere S is the z component of a quantum spin 1/B;;
boson models have provided insight into novel quantum= si+sj—+s|—sj+ is a near-neighbor exchange, ari;
phases and quantum critical poiftRecently, interest has :Si+5j—5;3|—+3—3j+3;3+ generates a four-site ring ex-
focused on models which have multisite ring exchafide. change. Here(ij) denotes a pair of nearest-neighbor sites
The ring exchange interaction, either alone or in COmpetitioyng (jjki) are sites on the corners of a square plaguette on
with the usual spin or boson near-neighbor exchange, hage| x | lattice. Fork =0, this is the standard Y model in
been shown to promote a variety of exotic quantum ground; yniform magnetic field, or alternatively hard-core bosons
states; including in some cases a spin-liquid Sta®f par- \itp 5 chemical potential. Fdi=0, this model is in arXY

ticulglr irrllportakr:ce is the class of two-dimensional modelygered or superfluid phase for temperatures less than the
Hamiltonians that contain quantum spin-1/2 or boso_n OP€rdg sterlitz-Thouless transition temperatureTof; /J~0.688
tors interacting with ring exchange that can be simulate

; . . ith the application of a uniform magnetic field the average
using quantum Monte CarlgQMC) techniques without a magnetizatiorm=(S?) of the XY superfluid increases from

negative sign problem. With modern algorithms, such mod ero (M=0) until it saturates into a full in oolarizedn
els can be studied numerically on large lattices without ap-Z (m=0) until it saturates | ully spin polarizedn(

_ 49 _ _
proximation, providing a laboratory for surveying the critical — /2) State ab/J=4." ForJ=0 andh=0, the ground state
behavior that separates various quantum phases. of the system has N# antiferromagnetic ordér For h

One important model in this respect is the easy-plae =0, it was found” that an intermediate VBS phase exists
modeP that has quantun®=1/2 spins on a square lattice for 7.9=K/J=14.5, in which the expectation valu®;;.)
with a near-neighbor exchangkand a four-site ring ex- alternates in strength with a period of two lattice spacings in
changeK. This Hamiltonian is partially motivated by the one of the lattice directions, suggesting the term “striped”
undoped cuprate materidlsyhere ring-exchange processes order.
are believed to contribute to experimental signatures beyond To study the effect of the uniform magnetic figicbn the
those explained by the near-neighbor Heisenberg model. THground-state properties of the easy-pldrié model, we use
two-parameted-K model, despite its simplicity, displays a the SSE quantum Monte Carlo simulation metlatat was
surprisingly rich and complex phase diagrifwith three  previously applied to thér=0, J-K model>’ In order to
distinct zero-temperature phases. These aé¥aordered or  implement the SSE method, the operators in the Hamiltonian
superfluid phase for largd, a staggered Mg or boson (1) are represented as four-spilaquetteoperators. Diagonal
charge-density waveCDW) phase for largdk, and a striped ~operators involvingh terms are added to or removed from
or valence bond solidVBS) phase for intermediat&/J.  the SSE basis-state expansion using a simple Metropolis
The zero-temperature phase transition between the VBS arfifobability algorithm. Off-diagonalJ or K term) operators
Neéel phases is first order, however previous numericapre sampled using thdirected-loopalgorithm/*which be-
resultS’’ indicate the existence of a continuous quantumcomes increasingly important for simulation efficiency with
critical point (QCP) at the zero-temperature superfluid-VBS increasing magnetic-field strength. The directed-loop
boundary. equationd’ for the J-K-h model are only slightly more com-

The question naturally arises as to the behavior of thelicated than for the purd-K model] and are presented
easy-planeJ-K model under the influence of a magnetic elsewheré! The QMC algorithms were tested ar=4 lat-
field. This is interesting both as a study of the evolution oftice sizes against exact diagonalization results and previous
the QCP, as well as the behavior of the ground-state phaséVC simulations on the pur¥Y andJ-K models. In this
away from half filling. Using stochastic series expansionpaper, simulations were carried out on square lattices of lin-
(SSB QMC, we present here the basic features of the zeroear dimensiorL (number of spindN=L?) at temperatures
temperature phase diagram of the easy-plane model dd-=1/B low enough to ensure convergence into the ground

scribed by the Hamiltonian state.
A variety of physical observables of direct relevance to
H=-3, B, —K > Pijkl_hz g, (1)  the ground states of the model are accessible through the
) (i7kl) i SSE method. It is straightforward to calculate the internal
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energy’ since its statistical estimator is just the numhesf
plaquette operators in the SSE basis-expansion operator se-
quence multiplied byl: E=—(n)/B. The spin stiffnesgor
superfluid density in the boson representatisndefined in
terms of the energy response to a twistin the periodic gl
boundary of the lattice by

Fully Polarized
m=1/2

(B)

9°E @ 61
Ps= 5
5 o2 hJ Néel
m=10
and is directly estimated using the winding number fluctua- 47 e
tions in the SSE simulatiolf. In addition we calculate the )
plaquette structure factor Superfluid
2¢ m >0
VBS
1 o m=0
Sp(vaqy): F ;) g'fa q<Pala2a3a4Pblb2b3b4>- 3 _ Qcp | ) |
: 0 5 10 15 20
Here,a,, ... ,a, are the sites belonging to plaquetelo- KiJ

cated ar,. In the VBS phase, the. Squ.are 0‘; the magnitude FIG. 1. The schematic zero-temperature phase diagram of the
of the orderz parameter per site i6Mp)°=[Sy(7.0)  easy-plang-K-h model. Phase boundaries are drawn as solid lines.
+S,(0,m)]/2L°. Similarly, the square of the order parameter pashed lines indicate cuts along which we have examined the tran-

(Mg) of the Neel ordered phase is obtained from t82  sjtions between the various phases, as discussed in the text.
structure factor

1 parameteftfor large system siz¢®r for double-peaked prob-
_ = i(ri—r)-q/ QZqz ability histograms for data in the transition region. To illus-
Ss( 0 y) = L? 2k e <Sj Sd): @ trate this we turn now to a detailed set of simulation results
_ ) ) ) ) ) for the superfluid-Nel phase boundary along cBtin Fig. 1.
with (Ms)“=Sy(ar,m)/L*. Here,j andk are lattice sites lo- - As jllustrated in Fig. 3, the boson and superfluid densities
cated at lattice coordinate;. The quantities(Mp)® and  gevelop significant discontinuities for larger systems as the
(Mg)? are expected to decrease a&l(signifying short-  phase boundary is traversed. This abrupt discontinuity does
range correlationsin phases without the respective order, not appear fot. < 20, illustrating that the transition is caused
but tend to a finite value for large in phases where long- py an avoiding level crossing and that large lattices sizes are
range o_rder occurs. ) o necessary to quantify the behavior of this model. The first-
By directly observing the behavior of the spin stiffness orger nature is apparent in double-peaked magnetization his-
(superfluid densityand the VBS and Nel order parameters, tograms, which were observed for data in the “discontinu-

we are able to map out the phase boundaries olJtHeh  jty” regions for L=16, indicating a phase coexistence. For
model as illustrated in Fig. 1. In general, we find no persis-

tent regions of quantum disordére., a spin liquid stajein

the vicinity of theh=0 quantum critical point. Rather, the 04
QCP appears to evolve smoothly into a quantum phase tran- -05 ¢
sition between the superfluid and VBS regions fosl® E g6l
=<6. The J-K-h model also exhibits a direct superfluid to
Neel order transition for h=<11, a feature not contained -0.7 | Szﬁ ;“e‘ir:;:‘l':i
in the h=0 phase diagram. Finally, for largge the model 08 ‘ L , ,
finds a fully polarized spin state witm=1/2. This latter 05 [ ‘ ; ; ; }
phase transition is strongly first order fidf J=5, displaying
- ) ! . 04 f
pronounced metastability and hysteresis effects in the simu-
lation (see Fig. 2. Renormalization group treatments of two- m 0.3 1
dimensional bosons as well as spin-wave corrected mean- 0.2
field theory and simulations of a hard-core boson 0.1}
Hamiltoniar? indicate that ak =0, the pureXY model ex- 0 cese s : s
hibits a continuous transition to the fully polarized state at 6 8 10 12 14
h=4J. This suggests that a tricritical poififCP in Fig. 1 h7J
exists on the phase boundary somewhere betweeK/Q FIG. 2. The ground-state energf) and magnetizatiorim) of
55, above Wh|Ch the transition to the fu”y polarized Stateaans System a|ong cW in the phase diagram F|g 1. This set of
becomes first order. simulations was performed with parametekdJ=14 and BJ

The energy crossover and magnetization hysteresis of Fig=3.2. The hysteresis effects were obtained by systematically in-
2 provide one indicator of a first-order transition. Alterna- creasing and then decreasikgJ in steps, with system configura-
tively, one may look for an abrupt discontinuity in the order tions stored at the end of o&/J step and used to begin the next.
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FIG. .3. ,Magnet_iz_ation(m) and .spin stiffness_ ds) of t_he c o o f g B
superfluid-Nel transition, along cuB in the phase diagram Fig. 1. 0 ! L
Model parameters ate/J=8, 8J=3.2 forL=16 andBJ=4.0 for 1 11.5 - 12

the larger lattice sizes. The inset shows a double-peaked magneti-
zation probability hl_stograrrP(m) representlng_ 510 Mon_t(_a FIG. 4. Details of the magnetization, spin stiffness, and the VBS
Car_lo steps at a point on the=16 df”‘ta curve in the transition structure factor of the superfluid-VBS transition, along Cuh the
region. The lower peak is ngt Gau33|a_n in shape, as the system b%ase diagram Fig. 1. Model parameters laté=4, BJ=3.2 for
attracted to zero magnetizatigtne half-filled state. L=24 andBJ=4.0 for the larger lattice sizes. The inset shows a
double-peaked magnetization probability histogr&{m) repre-
K/J=16.3, the spin-spin structure factdq. (4)] develops senting 3.X 10° Monte Carlo steps at a point on the=48 data
Bragg peaks at#, ) (not illustrated, indicating Nesl order. ~ curve in the transition region.
It is interesting to note that a similar phase transition be-
tween a superfluid and ar() staggered solid is found in show no preference for the or y directions when stripe
hard-core boson Hubbard models with nearest and nexwrder is present. Rather, bop{ and pg show very strong
nearest-neighbor repulsidf!® anticorrelations whenevéM)? develops Bragg peaks.
Finally we examine theXY superfluid-VBS transition In summary, using SSE QMC techniques, we have deter-
along cutC. As illustrated in Fig. 4, simulation data for sys- mined the ground-state phase diagréfig. 1) of the easy-
tem sizel =24 do not display an obvious sharp discontinuity planeJ-K-h model. In addition to theXY superfluid, VBS,
as in Fig. 3. However, the presence of a small discontinuitand Neel ordered phases observed for0,> we observe a
in mandp, for L =32-48 is suggested by the data. The insetfarge region of fully polarized order, which dominates the
of Fig. 4 displays a double-peaked magnetization probabilityphase diagram for large The phase transition to the polar-
histogram in the transition region, which indicates the presized state is continuous at sm&llJ and strongly first order
ence of a first-order phase coexistence. This clearly prefor largeK/J, suggesting the existence of a tricritical point
cludes the existence of a continuous quantum phase trangsemewhere on the phase boundary for intermediaté.
tion, at least for the field valule/ J=4 that was studied in cut Two other phase transitions were studied in detail, the
C (see Fig. 1L The most immediate conclusion to draw is superfluid-Nel and superfluid-VBS transitions. Both were
that the superfluid-VBS phase transition is weakly first orderfirst order for the parameter values investigated in detail
either along its entiretyexcluding then=0 QCP, oruptoa here.
tricritical point at a field G<h<4. In this case, the difficulty As indicated by our data, th&K-h model does not ap-
in seeing a large discontinuity in the superfluid density orpear to support a region of superfluid-VBS coexistetiee,
plaguette structure factor is due to the sniallalue and the a supersolig which is observed near a similar transition be-
closeness of the magnetization to zero. The persistence oftaween a superfluid andn(,0) striped solid phase in a hard-
small region of superfluid density in apparent coexistenc&ore boson Hubbard modE® No additional ordered
with a finite VBS order parametéfor example, the two data phases were observed in this model, in particular, incommen-
points forL=48, K/J=11.60, and 11.65 in Fig.)4s due to  surate VBS stripesgor striped order away from half filling
the first-order metastability between the superfluid phase andghich would have been indicated by Bragg peaks in the
the VBS phase that is obscured by statistical averaging. As @-dependent structure fact§(q,,q,) away from (r,0).
check, we observed the Monte Carlo time correlation be- In the context of then=0 superfluid-VBS transition at
tweenS,(,0), Sp(0,m), and the superfluid densipy in the T=0,>" the existence of a continuous QCP does not require
x andy directions at these points. In fact, we find that a continuous phase transition to develop smoothijhas
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increased from zero. Conversely, the existence of a true con/BS order near the QCP and promote the development of an

tinuous phase transition would provide additional supportingextended region of disord&t. Work on this model is in

evidence for the existence of the=0 QCP" as well as a  progresst

further region in which to explore the nature of the critical

behavior associated with the transition frofiY superfluid to

VBS order. Ultimately, one would like to determine whether ~ The authors would like to thank L. Balents and M. P. A.

this QCP is an example of the “deconfined” quantum criti- Fisher for insightful discussions and a critical reading of the

cality recently discussed by Sentkil al® manuscript. This work was supported by the National Sci-
Finally, the inability of any significant region of a spin- ence Foundation, Grant No. DMR02-111@8.J.S), and by

liguid phase to develop in the vicinity of the QCP motivatesThe Academy of Finland, Project No. 2617A.W.S). Su-

further searches on related models. Of particular interest ipercomputer time was provided by NCSA under Grant No.

the square latticd-K ring model in astaggeredmagnetic = DMRO020029N. A.W.S. would like to thank the Department

field, which could conceivably destabilize the superfluid orof Physics at UCSB for hospitality and support during a visit.
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