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We have studied the zero-temperature phase diagraXxY@model in the presence of transverse magnetic
field. We show that small anisotropy €0 <1) is not relevant to change the universality class. The phase
diagram consists of two antiferromagnetic ordering and a paramagnetic phase. We have obtained the critical
exponents, fixed points, and running of coupling constants by implementing the standard quantum renormal-
ization group. The continuous phase transition from antiferromag(sgio-flop phase to a paramagnetic one
is in the universality class of Ising model in transverse field. Numerical exact diagonalization has been done to
justify our results. We have also addressed the application of our findings to the recent experiments on
Cs,CoCl,.
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Systems near criticality are usually characterized by fluc- In the case ofXXZ model a transverse field breaks the
tuations over many length scales. At the critical point itself,U(1) symmetry of the Hamiltonian to a lower, Ising-like,
fluctuations exist over all scales. At moderate temperatureghich develops a gap. The ground state then has long-range
quantum fluctuations are usually suppressed compared Withnti-ferromagnetic order (@A <1). However due to non-
the thermal ones. However if temperature is near Zero, quanero projection of order parameter on field axis it is a Spin-
tum fluctuations especially in the low-lying states dominatefiop  Neel state. In fact at a special fieldhy
thermal ones and strongly influence the critical behavior of:2 23,3+ A)] the ground state is known exactly to be of
system. Zero-temperatur@uantum phase transition may classica)l(l I<'Ie| type*S Phase diagram, scaling of gap and
occur in the area of spin systems by applying noncommutin%Ome of the low excited states By, f,1aS been studied in

magnetic field which introduces quantum fluctuations. Suc%gef' 6. The gap vanishes at a critical fi¢lg, where a tran-

a situation has been studied in the three-dimensional Ising. . . .
ferromagnet LiHoE in a transverse magnetic fieldHow- ition to paramagnetic phase occurs. Classical approach to

ever due to its high dimensionality, the system behaves in fhis model reveals the mean-fu_el_d reShM'Ch Is exact as
mean-field-like manner. In this paper we are going to conS—®- However the study of critical region needs quantum
sider the one-dimensionalY Z model in the presence of a quctuatlor_ws to be_ taken into account. Exact diagonaliztion
transverse field where quantum fluctuations of symmetry@nd density-matrix renormalization grd’L@v_e us the prop-
breaking field play an essential role. Generally renormaliza€rties of stable phases. Here we are going to present the
tion group(RG) is the proper method to give us the universalphase diagram oY Zmodel, Eq.(1), by means of RG flow
behavior at long wavelengths where other methods fail t@f coupling constants to show explicitly its universality class.

work accurately. Apart from theoretical point of view, recent experiments
The spin-6=)% Hamiltonian of this model on a periodic ©" C$CoCl, in the presence of transverse magnetic field can
chain ofN sites is be explained byXY Zmodel withA =0.25° Using quantum

renormalization grougQRG) we will show explicitly that
the anisotropy is not relevant and the universality class is
N governed by Ising model in transverse figldF). In addi-
H=Zl [0t +Iyalal  +Acfol,;—hal], (1) tion QRG results rule out the existence of spin liquid phase
- between spin-flop and paramagnetic phases which are sepa-
rated at the critical fieldh.. Exact diagonalization data sup-
where J,>0 andJ,>0 are exchange couplings in theé¥  port our QRG results by calculating the structure factor and
easy plane, & A<1 is the anisotropy iZ direction which is  magnetization of finite chain sizes. Our results are in good
in Jy units, andh is proportional to the transverse field, agreement with the experimental data. We will also discuss

a=X,y,z, are Pauli matrices. on the reasons why magnetization does not saturate just
When h=0, the XXZ model J,=J,) is known to be above critical point.
solvable and criticalgapless while —1<A<1.? The Ising Quantum RG scheme in real space is started by decom-

regime isA>1 andA< —1 is the ferromagnetic case. Mag- posing lattice into isolated blocks. The Hamiltonian of each
netic field in the anisotropy direction commutes with theblock is diagonalized exactly and some of the low-lying
Hamiltonian (=0) and extends the gapless regi@uasi- states are kept to construct the basis for renormalized Hilbert
long-range orderto a border where a transition to paramag-space. Finally the Hamiltonian is projected onto the renor-
netic phase takes place. The model is still integrable and camalized spacé* We have considered a two-site block and
be explained by a conformal field theory with central chargekept the ground |€0)) and first (el)) excited states of
c=1 (Ref. 3 and references thergin each block to construct the embedding operatdr (
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=|el)(1]+|€0)]|).** Energy elgenvalues are0=—J,—J, A
—A andel=J,— 4h?+(J,—A)Z The|1) and|1> are re—
named basis in the renormallzed Hilbert space. The interac-
tion between blocks defines the effective interaction of renor-
malized chain where each block is considered as a single
site. A remark is in order when projecting the Hamiltonian

onto the effectivdrenormalizegl Hilbert space. The effective
Hamiltonian is not exactly similar to the initial one, i.e., the
signs of o}a!,, and ofo{,, terms are changed. To avoid

this and producmg a self similar Hamiltonian we first imple-

ment asr rotation around axis for even sites and leave odd

sites unchanged. Therefore the Hamiltonian is transformed to

the following form:
N/2

H :;1 [Jxo'ixo'ixﬂ_‘]y"iyo'iyﬂ_Ao'izo'izﬂ_ho'ix]- (2

We note to interpret our final results in terms of this trans-

formation. The renormalized Hamiltonian [H'®"
=T'H(transformedT] is similar to Eq.(2) with renor-
malized coupling defined below.
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where 9= \/4h2+(J —A)2—2h. This RG flow is not valid

whenh—0 where the l(Jl) symmetry atl,=J, cannot be
recovered by Eq(3). It will be discussed Iater However due

+o0 gh

FIG. 1. Phase diagram oY model in transverse field. Arrows
show running of couplings under RG. Filled circles show fixed
points and the open circle is the tricritical point where lines sepa-
rating different phases merge. The tick line at the top of phase
diagram @,= +) is a line of fixed pointgRef. 14. Phasg() is
antiferromagnetic Ising iy direction(spin flop, (Il) paramagnetic
in x direction, and(lll) is antiferromagnet i direction.g}, is the
ITF fixed point.

saturated ferromagnet. We have linearized the RG flogy at
and found one relevant directigwhose eigenvalue is larger
than ong. The eigenvalues and corresponding eigenvectors
of linearized RG ag} in (9y,9n,94) space are the follow-
ing: [\ 1=1.59=(0,1,0); |\,=0.3)=(1,1.64,0); and\j
=0.46=(0,0.62,1). The relevant direction\()) is the
horizontal line passing througly; and|\,) is the tick line
ending atgy . The critical exponents at this fixed point are
B=0.41,v=1.48, andz=0.55. The discrepancies of expo-
nents from exact valuesB=0.125,v=1, andz=1, Ref.

13) are the result of two-site blocking, however these are
exactly equal to the exponents of ITF chain which is calcu-
lated by QRG" As far asg,<1, the control parameter is

to level crossing which happens for the eigenstates of blocRy, . Wheng,<gy, [phase(l)], the staggered magnetization in

Hamiltonian, Eq(3) is valid wheng,<(1+ \/1+29h2)/2 and
gasgy<1. This coversXYZ model J,=<Jy) in transverse
field when 0<sA<1. The new parameterg,=J,/J,, g
=A/Jy, andgp=
ally define competing phases.

We have plotted the RG flowarrowsg and different
phases in Fig. 1. The RG equatiditsy. (3)] show running of

y direction (SM) is nonzero which is the order parameter to
represent the phase transitionggt (the line which ends at
gn). However magnetization irdirection (M) is also non-

h/J, are defined because these ratios actuzero which causes to consider this phase as a spin-flop phase.

This is an Ising-like phase which has a nonzero gap. This gap
is going to be closed ay, where the transition to paramag-
netic phase takes place. At this point the quantum fluctuation

A to zero. In other words the anisotropy term is irrelevantof TF destroys the antiferromagnetié&F) ordering com-

(0=<A<1). So we have only plotted thA=0 plane. It
means that the universality classXY¥ Zmodel in transverse
field (TF) is the same a¥XY model in TF. Moreover the
exchange interaction in th& direction is also irrelevant
while J,<J, . As J, vanishes under RG, there are only two

pletely. The paramagnetic phadp appears ag,> gy, where
spins are aligned in the field direction and will be saturated
in high TF. Note that the proper order parameter for this
phase transition istaggered magnetization in y directiocBo
it is not necessary to gain the saturation value fay jist

effective terms in the Hamiltonian. This is exactly the case ofaftergﬁ_ This also happens in ITF model. We have plotted

ITF model. So the interplay ol,o7o?,; andh(o}+ o, ;)
defines either ordering iy or paramagnetic irx direction.

Solving the RG equation for fixed points, we found the non-

trivial fixed point gjy =(g,=
the other which is atd,=

0,0,=1.26g,=0) apart from
0,0,=>,g,=0) and represents

both SM, and M, in Fig. 2(a). The comparison with Lanczos
results shows a very good qualitative agreement. Although it
is not expected that QRG gives good quantitative results we
got fairly well agreement with Lanczos results.

To discuss the behavior close he=0, we need to take

100402-2



QUANTUM RENORMALIZATION GROUP OFXY ZMODEL . ..

1

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 69, 10040ZR) (2004

7 T T e T T—— divides the AF, h/J,<1, from paramagnetich/J,>1,
@ //-/ ] phases. A line of fixed points comes out of a three-sites block
038 / ! n QRG (Ref. 19 for h/J,<1 which has been shown as a tick
7/ A=025 1 line at the top of phase diagraffrig. 1). Thus a line with
06 =yl N slopeg,/gn=1 (asJ,—0) constructs the boundary of phase
SMy (QRG) 1 transition between phasés) and(lll). This phase transition
04 — xxgg}fp@mmos) . is in the universality class of AF Ising in a magnetic field. To
- = . complete the structure of phase diagram we propose a tri-
02 = critical point (open circle in Fig. 1 which is the coexistence
- . point of three phases. Still we do not have a RG equation at
L ' this point.

<
—_
Ny =
w
&
w
=N

We have implemented the Lanczos algorithm on finite
sizes N=12,16,20,24) using periodic boundary conditions
to calculate M and structure factors both xandy direc-

________________ tions. In Fig. Zb) we have plotted M for different chain
L s sizes atA =0.25 and an extrapolation %— . The value of
| A=0.25 is chosen to fit the case of oCl,. The general
_ behavior is similar to what we have obtained from QRG
[Fig. 2(@)]. There is no sharp transition to the saturation
value at a giverh because Mis not the proper order param-
eter to this phase transition. Oscillations of &t finite N for
h<h. are the result of level crossing between ground and
first excited states of this model. The last level crossing hap-

0.6

02—

p—— 4

o - I ! 1 vl ) > 4| > pens athy. We have also plotted the case®d&0 to show
0 ! 2 ? ¢ 5 ¢ the same qualitative behavior As=0.25 in the inset of Fig.
h 2(b). Lanczos results lead to SMO0 for any value ofh,

FIG. 2. (a) The order parameter (SMand magnetization ix 8
direction (M) vs transverse field. QRG and extrapolated Lanczos L

results are compared for (M (b) Lanczos results of Mvs trans- 7
verse field forN=12,16,20,24 and extrapolation t¢—x, at A F
=0.25 andJ,=J,=1. The inset shows that Mbehaves qualita- . 6
tively the same foh =0 and 0.25. g'c'; 5'

into account the (Il) symmetry in the QRG scheme. So we .
will consider theXY model ath=0 and the effect of TF is L
taken into account by perturbation. In this case the only rel- 3}~
evant parameter ig,. Implementing a three-site blocking, r
the RG flow isg,=g>, which has two stablg? =0 and iz 1.6 2 =
an unstable fixed poirg} = 1. The stable fixed points define N

two AF Ising phases ordered indirection @} =0) andx
direction @ =«). Thegy =1 is the critical point where a

transition occurs between two stable phases. Now the trans
verse field is considered perturbatively which gives the fol- [
lowing RG flow forgy,: 5
I
[ 2901+ 05— g2 Tt
=l ————> g 9—0. (4) oL
1+09;
The perturbation approach is justified sirgge—0. For any WL ¥

value ofg,, Eq. (4) leads tog/<gp, which means the di-
rection of flow is toward they, axis. As a result of QRG at
0n,=0 we expect to have a phase transition at srggalby N

changinggy close tog,=1. The boundary of this phase tran- G 3. structure factota) 9/Y(q=1), (b) S*(q=0) vsN for

sition is shown by dashed line in Fig. 1. This line representiterent transverse fieldsS"Y(q= ) shows divergence a¥—

the phase transition between phadgand(lll), AF Ising in  whijle h<h.=3.1 (in the ordered phageAll plots for S*(q=0)

y and x directions, respectively. Ag,—= (Jy—0) the  show divergence in thermodynamic limi(- ). However super-
model behaves as an AF Ising in a longitudinal magnetiginear behavior forh<h,=3.1 and almost linear behavior fdr

field. In this limit a first-order phase transition atJ,=1 >h, is the sign of two different phases.
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since in a finite system no symmetry breaking happens. Summing up the QRG and numerical results, we claim
However the structure factdiS’Y(q=)] diverges in the that the universality class &Y Zmodel in TF (0<A<1) is
ordered phase d¢— . The structure factor at momentun the ITF model. Thus there exist only two stable phases,
is defined as namely, (I) and (II), which are distinguished by a critical
field ath;. In this respect there is no spin liquid phase just
vy oo qigr _ after transition point. We found a very good agreement in the
S (q)_Z (ogoy)e, a=xy. ) sense of universal behavior with the experimental reSuilts
on CsCoCl,. We have obtained the corresponding critical
In Fig. 3@, $Y(q=m) is plotted versusN for different magnetic fieldH.=1.3" comparing with the reportedH,
transverse fields. As far &s>3.1, $Y(q=m) grows slowly — =2.1". The difference should come from two-doublet nature
and shows saturation at a finite value whHen-~. On the (s=3/2) of actual material and the effective Hamiltonian of
other hand a superlinear behavior verdishows a diver- s=1/2 in our calculation which is responsible for low fields.
gence of structure factor fan<3.1. It corresponds to or- The other mismatching is the observed crossover behavior in
dered phase which is AF indirection. Thus the critical field M. As proposed in Ref. 10 the crossover behavior is related
at A=0.25 ish,=3.1+0.05. A similar computation results to the saturation of the lower doublet of €oand the inset
to h.=2.9+0.05 for A=0. To get an impression that the Of 'higher doublet effects. However for th€Y Z chain as a
QRG results are very surprising we just mention the value ofPinz model this does not happen. At=J,, applying
critical field for comparison with Lanczos one$i(A small noncommuting fields break the1) rotational symme-
=0.25)=3.32 andh, (A =0)=3.12. try qnd develops a gap Whlch has the consequence_of pro-
We have also plotted the structure fac&¥(q=0) ver- Moting long-range order in a spin-flop phasg Increasing
susN in Fig. 3(b). This shows divergence for any valueof field stabilizes the_perpe_ndmular. AF order which can bg ob-
, i R A . served by the maximum in SM Higher TF reduces ordering
asN— o which verifies ordering ix direction. The spin-flop

2 up to a critical fieldh, where gap vanishes. Just after this
ph_ase(l) has_ nonzero Mwh'Ch increases by to the satu- transition point a gapped paramagnetic phase appears, phase
ration value in paramagnetic pha#k. However we observe (.
different qualitative behaviors fon<h.=3.1 andh>h..

The former is superlinear and the latter is almost linear. As The author would like to thank D. V. Dmitriev, V. Ya.
mentioned before, Mis not the proper order parameter and Krivnov, A. A. Ovchinnikov, M. Peyravy, T. Vojta, K. Yang,
is not expected to be saturated at a spetifithe saturation and A. P. Young for fruitful discussions and useful
happens for enough large value of TF. comments.
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