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Quasiparticle number fluctuations in superconductors

C. M. Wilson* and D. E. Prober†

Yale University, P.O. Box 208284, New Haven, Connecticut 06520-8284, USA
~Received 14 October 2003; published 30 March 2004!

We present a general theory of quasiparticle number fluctuations in superconductors. The theory uses the
master equation formalism. First, we develop the theory for a single occupation variable. Although this simple
system is insufficient to describe fluctuations in a physical superconductor, it is illustrative, allowing this
discussion to serve as a self-contained introduction. We go on to develop a multivariate theory that allows for
an arbitrary number of levels with transitions of arbitrary size between levels. We specialize the multivariate
theory for two particular cases. First, we consider intrinsic quasiparticle fluctuations. In a previous Letter, these
results were used to describe time-resolved measurements of thermodynamic fluctuations in a superconducting
Al box @C.M. Wilson, L. Frunzio, and D.E. Prober, Phys. Rev. Lett.87, 067004~2001!#. Finally, we extend
these results to include fluctuations due to extrinsic loss processes.
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I. INTRODUCTION

Superconductivity is a rich, physical phenomenon w
many aspects that have been studied for their possible t
nological importance. The most basic property of superc
ductors, their ability to transport electrical currents witho
resistance, has been applied broadly for many years. A
generation of superconducting electronic devices aims
take advantage of more subtle aspects of superconduct
including flux quantization, quantum tunneling and the qu
tum coherence of the superconducting state. Examples
clude superconducting quantum interference devices, h
speed electronics,1 superconducting detectors,2 and various
implementations of quantum bits for quantum informati
processing.3 The ultimate sensitivity and usefulness of the
devices will be determined in part by the physical proces
that add noise to them.

In this article, we present a theory of one such no
source: fluctuations in the number of quasiparticle exc
tions. In its ground state, all of the conduction electrons i
superconductor form bound pairs, called Cooper pairs.
binding energy of the pairs is the spectroscopic gapEg
52D, whereD is the energy gap for a single excitation. A
finite temperature, some pairs will be broken, resulting
single-particle excitations known as quasiparticles. In eq
librium, the average number of quasiparticlesN0 is deter-
mined by thermodynamics. In particular, the average oc
pation of quasiparticles levels is determined by the Fer
Dirac distribution, with the energy measured from the Fer
energy«F and the minimum quasiparticle energy beingD. At
a microscopic level, it is the balance of quasiparticle gene
tion and recombination that determines the average num
of quasiparticles. Quasiparticle generation refers to the
ation of two quasiparticle excitations when a Cooper pai
broken by a thermal phonon. Quasiparticle recombinat
refers to the annihilation of two quasiparticles as they form
Cooper pair and emit a phonon. Generation and recomb
tion are random processes, meaning that individual gen
tion or recombination events occur at random intervals.
cause of this, the instantaneous density of quasiparti
fluctuates in time. Statistical mechanics tells us that the r.m
0163-1829/2004/69~9!/094524~11!/$22.50 69 0945
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magnitude of the fluctuations is (N0)1/2 ~Ref. 4!. In a recent
Letter, we confirmed the prediction for the magnitude and
demonstrated that, at low temperatures, the time scale o
fluctuations is the recombination timetR* .5

In this paper, we present a general theory of quasipart
fluctuations in superconductors.~Previous treatments of qua
siparticle fluctuations were restricted to basic thermo
namic arguments.6! We use the master equation formalism
which has been used to describe fluctuations in semicon
tors for many years. The master equation formalism rep
duces and expands the thermodynamic results, while
being applicable to nonequilibrium systems. In Sec. II,
develop the theory for a single occupation variable. T
simple system is insufficient to describe fluctuations in
physical superconductor, but we have included it becaus
is illustrative, allowing the article to serve as a self-contain
introduction to researchers in superconductivity that are
familiar with the semiconductor research. In addition, t
more complete theory will show that the simpler results
the one-variable system can be used with the appropr
definition of effective parameters. In Sec. III, we develop
multivariate theory that allows for an arbitrary number
levels with transitions of arbitrary size between levels. W
then specialize the multivariate theory to two particu
cases. In Sec. III B, we consider intrinsic quasiparticle flu
tuations where quasiparticles are only created~annihilated!
in pairs due to thermal generation~recombination!. In a pre-
vious Letter, this specialized case was used to describe t
resolved measurements of thermodynamic fluctuations
superconducting Al box.5 In Sec. III C, we also allow quasi
particles to be lost and created individually. This second c
can be applied to systems with normal metal traps, diffus
loss, etc.

II. SINGLE-VARIABLE MASTER EQUATION

To treat fluctuations in our system, we construct a mas
equation similar to the Fokker-Planck equation. This diff
ential equation describes the probability distribution of t
occupancies of various subsystems~levels!. We follow the
treatment by van Vliet of generation-recombination noise
©2004 The American Physical Society24-1
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semiconductors,7 except that we generalize the description
allow for transitions that involve an arbitrary number of pa
ticles, e.g., two quasiparticles recombining. The master eq
tion formalism can in fact predict the fluctuations of an ar
trary number of coupled levels. However, that developm
is not particularly illuminating. For this reason, we will sta
with the derivation for a two-level system described by
one-variable master equation.

We can consider one level of our system to be quasip
ticles. The second level could be Cooper pairs or quasip
cles in traps or something else, depending on the exact na
of the system that we are trying to model. In this section,
will refer to any processes that creates~annihilates! quasipar-
ticles as a generation~recombination! process, although in
general these terms have the specific meanings define
Sec. I. Regardless of exactly what the second level is,
not in general independent of the first level because the t
number of excitations in the two levels is constrained. F
instance, the number of quasiparticles plus Cooper pair
constrained by the total number of electrons, due to ove
charge neutrality. Furthermore the creation of two quasip
ticles implies the loss of one pair, and vice versa. Therefo
we only need to count the number of quasiparticlesN and
can describe our system with a one variable master equa

]P~N,tuk,0!

]t
52@g~N!1r ~N!#P~N,tuk,0!1g~N

2dN!P~N2dN,tuk,0!1r ~N1dN!P~N

1dN,tuk,0!, ~1!

whereP(N,tuk,0) is the probability that there areN quasi-
particles at timet given that there werek quasiparticles at
t50. The functiong(N) is the probability per unit time tha
there will be a generation event in the box when there arN
quasiparticles. In other words,g(N)dt is the probability of a
generation event in the time intervaldt. Similarly, the func-
tion r (N) describes the probability per unit time of recomb
nation. The parameterdN is the number of quasiparticle
added~removed! by a generation~recombination! event. We
can understand the structure of the master equation q
simply. It describes the rate of change of the probability t
there areN quasiparticles in the system. The rate of decre
in the probability equals the probability that there areN qua-
siparticles times the probability per unit time that there w
be a generation or recombination event. This is what the
term in the master equation represents. The rate of incr
in the probability is equal to the probability that the system
one generation event away from havingN quasiparticles
times the probability per unit time that there will be a ge
eration event, plus a similar term for recombination.

The master equation is a countably infinite set of coup
differential equations. Luckily, we do not need to solve t
master equation for it to be useful. We can instead use
master equation to construct much simpler equations
quantities such as the variance and correlation function of
fluctuations.

We begin by calculating the variance of the fluctuatio
The variance is a steady-state property, so we can set the
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side of the master equation to zero. If we then multiply t
equation byN, and sum over all possibleN, we get the
simple relationship

^g~N!&5^r ~N!&,

where the angle brackets mean the expectation value ove
N. If we expand bothg(N) andr (N) in a Taylor expansion
in N around the equilibrium valueN0, we get

g~N0!1
1

2
g9~N0!^DN2&5r ~N0!1

1

2
r 9~N0!^DN2&, ~2!

where the primes indicate the derivative with respect toN
and DN5N2N0. The first order terms vanish becau
^DN&50 in equilibrium. In addition, in most case
g(N),r (N)}N2, and^DN2&}N, so we can neglect the sec
ond order terms and simplify to

g~N0!'r ~N0!.

This is the reasonable statement that the generation an
combination rates must balance in equilibrium.

If we again set the left-hand side of the master equat
~1! to zero, multiply byN2 and sum over allN, we get the
relationship

K S N1
dN

2 Dg~N!L 5 K S N2
dN

2 D r ~N!L .

If we again expandg(N) and r (N) aroundN0 and use Eq.
~2! to simplify, we can find the following expression for th
variance of the fluctuations:

^DN2&5dN
r ~N0!

r 8~N0!2g8~N0!
, ~3!

where we have again neglected second order terms in
final expression.

We can also use the master equation to calculate
power spectrum of the fluctuations. To do this, we first c
culate the autocorrelation function of the fluctuations a
then compute its Fourier transform. The autocorrelat
function at lagu is defined as

F~u!5^N~0!N~u!&5(
k

(
j

k jP~k,0;j ,u!,

where P(k,0;j ,u) is the joint probability that there arek
quasiparticles att50 and that there arej quasiparticles att
5u. ~By lag we mean the amount of time that one signa
shifted with respect to the other.! We can simplify this ex-
pression by factoring the joint probability distribution int
P(k,0;j ,u)5P( j ,uuk,0)P(k,0) giving

F~u!5(
k

kP~k,0!(
j

jP~ j ,uuk,0!5(
k

k^N&kP~k,0!,

~4!
4-2
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whereP( j ,uuk,0) is the conditional probability of havingj
quasiparticles att5u given that there werek at t50 and
^N&k is the expectation value ofN given that there werek
quasiparticles att50.

To further simplify this expression, we start by deriving
differential equation for̂ N&k using the master equation. I
this case, we need to use the full master equation~1! without
setting the time derivative equal to zero. If we multiply bo
sides byN and sum over allN, we get the equation

d

du
^N&k5dN~^g~N!&2^r ~N!&!.

We cannot solve this equation explicitly, because we do
know the expectation values on the right-hand side. Ho
ever, we can find an approximate solution by again expa
ing g(N) and r (N) aroundN0. We find the simple result

d

du
^DN&k2N052

^DN&k2N0

t
;

t[
1

dN

1

r 8~N0!2g8~N0!
, ~5!

wheret appears as the effective relaxation time of the flu
tuations. This equation has the simple solution

^DN&k2N05~k2N0!expS 2
u

t D .

Inserting this solution into Eq.~4! we find the autocorrelation
function of the fluctuations to be

DF~u!5^DN~0!DN~u!&5^DN2&expS 2
u

t D ,

where^DN2& is the variance of the fluctuations. We can th
directly compute the power spectrumG(v) of the fluctua-
tions as the Fourier transform of the autocorrelation functi
We find

G~v!5
4^DN2&t

11v2t2 .

We now have general expressions for the variance
power spectrum of the fluctuations in our two-level syste
Before we specialize the equations more, we can make s
general comments. First, if we combine Eq.~3! with Eq. ~5!,
we find the much simpler expression for the variance of
fluctuations

^DN2&5~dN!2r ~N0!t.

This says that the variance ofN is of order the number o
particles that recombine in one correlation time. Now, loo
ing at Eq.~5!, we see thatt is inversely proportional todN.
This says the more quasiparticles that are lost~created! by a
single recombination~generation! event, the faster the fluc
tuations. Also, looking at Eq.~5! we see that the time scale o
fluctuations is inversely proportional the sum of the deriv
tives of the generation and recombination rates. This ha
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simple physical interpretation. In Fig. 1 we sketch the reco
bination parameterr (N) and generation parameterg(N) as a
function of N. First, we note that the value ofN where the
curves intersect is the equilibrium valueN0. Next, we notice
that for a stable system the derivative ofr (N) will always be
positive and the derivative ofg(N) will always be negative.
This is what maintains equilibrium. For example, ifN fluc-
tuates greater thanN0, then the recombination rate increas
and the generation rate decreases. Both of these cha
drive the system back to equilibrium. Even more, the stee
the change in the rates around equilibrium, the faster
system is driven back to equilibrium. This is why the tim
constants depend on the derivatives ofr (N) and g(N) and
why their contributions sum together.

To be able to apply the formulas derived above we m
know whatr (N) andg(N) are for our system. Luckily, if we
already understand the dynamics of the system, it is gen
easy to deducer (N) andg(N). In general, the rate equatio
of our system will be of the form

dN

dt
5dN@g~N!2r ~N!#. ~6!

If we can derive or know an appropriate rate equation for
system, we can then read offg(N) and r (N).

We can consider, as an example, the case of simple
eration and recombination of quasiparticles. By simple,
mean that quasiparticles are only lost to recombination w
other quasiparticles and we ignore the effects of phonon t
ping ~which we will return to later!. In this case, the two
levels of our system are quasiparticles and Cooper pa
with the total number of electrons constrained to be the n
mal state value. We will further assume that we are work
at low temperatures and that the number of quasiparticle
small compared to the number of Cooper pairs. In gene
we would expectg(N) to depend on the number of Coop
pairs. However, since the relative size of the fluctuations w
be small compared to the number of Cooper pairs, we w
assumeg(N) is constant and equal to the equilibrium recom
bination rate. With that we can write the rate equation for o
simple system as

FIG. 1. Sketch of the generation and recombination parame
g(N) and r (N). The intersection of the curves yields the stead
state number of quasiparticles.
4-3



e-
a
ay

s

ti
a

er

i

e
n
,

r of
the

own
ua-
it,

em.
cribe

ch
e
by

n

te
in

ns
at
le
ond
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dN

dt
52S GG2

1

2

R

vol
N2D ,

whereGG is the constant generation rate, vol is the volum
of the system, andR is the recombination constant. The r
combination constant is basically a constant of proportion
ity between the recombination rate and the number of w
to combineN quasiparticles, which isN2/2.

From this rate equation, we can read off the parameter
our model

g~N!5GG , r ~N!5
1

2

R

vol
N2, dn52.

We can then easily put these parameters into the equa
above to find a familiar result for the variance of the fluctu
tions ^DN2&5N0. We can also easily write down the pow
spectrum of the fluctuations

G~v!5
4N0t

11v2t2 , t5
vol

2RN0 . ~7!

We see that the spectrum has a simple Lorentzian form w
a bandwidth given by 1/t.

III. MULTIVARIABLE MASTER EQUATION

A. General theory

The simple one-variable master equation derived abov
illustrative, but it is not sufficient to describe generation a
recombination in a physical superconductor. For example
-
or
a

a
e
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r
m
e
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a thin-film superconductor the phonon emitted when a pai
quasiparticles recombines can break another pair before
phonon escapes the film into the bath. This process, kn
as phonon trapping, extends the effective lifetime of a q
siparticle. To account for this process, or others similar to
we must increase the number of levels in our model syst
The basic idea is the same as before, except we now des
the state of the system with levels (1) – (S) by a vectora
5(N1 ,N2 ,...,NS) which represents the occupation of ea
level. In general onlyS21 levels will be independent sinc
the total number of excitations is constrained. We start
writing down the master equation for the system:

]P~a,tua8,0!

]t
5 (

a9Þa
P~a9,tua8,0!Q~a;a9!

2 (
a9Þa

P~a,tua8,0!Q~a9;a!, ~8!

where P(a,tua8,0) is the probability that the system is i
statea at timet given that it was in statea8 at t50, etc., and
Q(a;a9) is the transition probability per unit time from sta
a9 to a. Again, the first term says that the rate of change
the probability of finding the system in statea is the prob-
ability of it being one transition away froma times the rate
of transition toa. The second term accounts for transitio
out of statea. We can make this less abstract if we notice th
the only allowed transitions in our system involve a sing
loss event in one level causing a creation event in a sec
level. We can then write
Q~a;a9!5H pi j , a95$N1 ,...,Ni ,...,Nj ,...%

a 5 $N1 ,...,Ni2dni j ,...,Nj1dnji ,...%

0, otherwise
J ,
-

c-

e

wheredni j is the ‘‘shot size.’’ The physical meaning ofdni j
is the change in the occupation of leveli when making a
transition to or from levelj . This is one important generali
zation of the master equation formalism for superconduct
In typical semiconductor systems, transitions between
levels change the occupation by one, i.e.,dni j 5dn51 for
all transitions. In superconductors, however, not only c
different levels have a different shot size, they can hav
different shot size depending on what the other level
volved in the transition is.

We can then proceed along the same lines as the de
tion in Sec. II. We will not include the detailed derivatio
instead presenting the results and referring to Ref. 7 fo
more detailed treatment. In analogy to the linearized ti
constant found in Eq.~5!, we can write a linearized rat
matrix M , where the elements are

Mi j 5(
k

dnikS ]pik

]Nj
2

]pki

]Nj
D U

$Ni %5$Ni
0%

. ~9!
s.
ll

n
a
-

a-

a
e

We can define a second matrixB ~which describes the sec
ond order Fokker-Plank moments! whose elements are

Bii 5(
kÞ i

dnik
2 ~pki1pik!'2(

kÞ i
dnik

2 pik
0 ,

Bi j 52dni j dnji ~pi j 1pji !52dni j dnji ~pi j
0 1pji

0 !. ~10!

The covariance matrixs25^Da•DaT&, is then determined
by the following matrix equation:

s2
•MT1M•s25B, ~11a!

whereDa5a2a0. We can also write the cross power spe
trum matrix as

G~v!52 Re@~M1 iv1!21B~MT2 iv1!21#, ~12a!

where Re@¯# means the real part and1 is the identity matrix.
The diagonal terms ofG describe the power spectrum of th
4-4
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fluctuations of each level in the system. The off-diago
terms ofG describe the cross power spectrum between
various levels. Each spectrumGi j is a sum of individual
Lorentzian spectra, similar to Eq.~7!, with characteristic fre-
quencies determined by the eigenvalues ofM .

At this point, we wish to add some general commen
First, we note that in the Fokker-Plank approximation to
master equation,M would describe the ‘‘drift’’ of the system
and B would describe the ‘‘diffusion.’’ In this context, Eq
~11a! can be viewed as a generalized Einstein relation, c
necting drift ~mobility! and diffusion.8 Second, we note tha
these results implicitly assume that our system is linear w
respect to fluctuations, meaning that the fluctuations do
drive our inherently nonlinear system out of the regime
linear response.~This property is also referred to as quasili
earity.! If this assumption is violated, then a different forma
ism must be used.8

Equations~11a!-~12a! can be simplified for some system
including equilibrium systems. Specifically, they can be si
plified in systems that have a symmetric correlation mat
i.e., systems, where

^Da~ t !•DaT~0!&5^Da~0!•DaT~ t !&.

If this condition holds, then we can demonstrate th
s2

•MT5M•s2, and Eqs.~11a! and ~12a! reduce to

s25^Da•DaT&5
1

2
M21

•B ~11b!

and

G~v!5
2

v2 RebS 11
M

iv D 21

Bc. ~12b!

Note that the symmetry of the correlation matrix requir
that both the correlatorŝDNi(t)DNi(0)& and the cross-
correlatorŝ DNi(t)DNj (0)& exhibit time-reversal symmetry
i.e., ^DNi(t)DNj (0)&5^DNi(0)DNj (t)&. For classical par-
ticles ~meaning that the$ni% are numbers and not operators!,
the symmetry of the correlators is trivial. However, the cro
correlators are not required to be symmetric. In an equi
rium system, the cross correlatorsare symmetric as a resul
of the time-reversal symmetry of the underlying microsco
dynamics~microscopic reversibility!.8 Therefore, the simpli-
fied results~11b! and ~12b! can always be used in equilib
rium. They also approximately apply to systems in qua
equilibrium, which we define as a steady-state condition t
obeys the principle of detailed balance, i.e.,pi j

0 5pji
0 for all i

and j ~Ref. 9!. In equilibrium, detailed balance is a cons
quence of microscopic reversibility, but it does not genera
apply to systems in nonequilibrium steady state. In ste
state, we have the more general relationship( iÞ j pi j

0

5( iÞ j pj i
0 , which simply means that the total transition ra

into a level must balance the total transition rate out. Ho
ever, depending on the details of the level structure,
more general relationship can reduce to the expression
detailed balance even in steady state. In particular, this
duction can apply in steady-state systems where levels
coupled in pairs~see Sec. III C!.
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An important special case of Eq.~12b! is the quasiequi-
librium, two-variable result. Since we are always free to
bel the quasiparticles as level 1, we will give the gene
expression forG11 in the two variable case

G11~v!52(
1,2

t1t2

~t22t1!

t1
2

@11~vt1!2# F S 1

t1
2M22DB11

1M12B12G , ~13!

whereg i51/t i are the eigenvalues ofM and the summation
means add another term witht1 and t2 interchanged. The
result forG22 has the same form but with the indices 1 and
interchanged on the components ofM andB.

We will not discuss in detail any examples of system
driven out of quasiequilibrium, but a thorough discussion
such systems can be found in Ref. 9. Reference 9 discus
three level system driven through a cycle of transitions:~1!
photoexcitation of carriers,~2! trapping of carriers, and~3!
recombination in the traps. It is found that this driven syst
can exhibit super-Poissonian noise, i.e.,^DN2&@N0, while
quasiequilibrium systems can only exhibit sub-Poisson
noise, i.e.,̂ DN2&<N0.

B. Intrinsic quasiparticle fluctuations

The first specific example that we will consider is intrins
quasiparticle fluctuations in a thin-film superconductor.
intrinsic fluctuations we mean~1! that quasiparticles are onl
created in pairs through generation, whereby a Cooper pa
broken by a high-energy phonon and~2! quasiparticles are
only lost in pairs through recombination, whereby a Coop
pair is formed with the emission of a high-energy phono
This system can be described by three levels whose pop
tions are labeled byN, Nv , andNv,B which are the number
of quasiparticles in the superconducting electrode, the n
ber of phonons with energyEv.2D in the superconducting
electrode, and the number of phonons withEv.2D in the
bath respectively. We only keep track of phonons withEv

.2D because they are the only phonons that can gene
new quasiparticles. In thin-film systems, the ‘‘bath’’ wou
generally be the substrate on which the superconduc
electrode is fabricated. The important distinction betwe
phonons in the electrode and phonons in the bath is
phonons in the bath cannot generate quasiparticles.

In Sec. II, we thought of two quasiparticles recombini
to form a Cooper pair, instead of quasiparticles recombin
to form a phonon. In the end, however,Nv is a more natural
variable than the number of Cooper pairs for several reas
From a statistical point of view, we can account for the
combination of two quasiparticles equally well as a transit
to a Cooper pair or a transition to a phonon. From a dyna
cal point of view, however, keeping track of phonons
much more important then keeping track of Cooper pairs.
we will see shortly, the presence of phonons created by
combination can significantly change the effective recom
nation rate measured in experiments. On the other hand
rateGB at which phonons break pairs and generate quasi
4-5
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ticles is proportional to the number of Cooper pairs, but
long as the number of pairs is much greater than the num
of quasiparticles, thenGB is approximately constant. Thus
we see thatNv is a better choice.

We can describe the dynamics of the levels with the f
lowing system of three coupled differential equations:

dN

dt
52H 2

1

2

RN2

vol
1GBNvJ , ~14!

dNv

dt
5

1

2

RN2

vol
2GBNv2GesNv1GKNv,B , ~15a!

dNv,B

dt
5GesNv2GKNv,B , ~16!

whereGes is the rate at which phonons escape from the e
trode to the bath andGK is the rate at which phonons ent
the electrode. We have neglected the anharmonic deca
phonons as a loss process because it happens on a time
much longer than phonon escape at these energies.

We can simplify these equations with the approximat
thatNv,B is constant, which is justified because the excha
of phonons with the electrode is a very small perturbation
the bath. This simplification reduces Eq.~16! to the equality
GesNv

0 5GKNv,B
0 , where the superscripts indicate steady-st

values. We can then rewrite Eq.~15a! as

dNv

dt
5

1

2

RN2

vol
2GBNv2Ges~Nv2Nv

0 !. ~15b!

We then see that Eqs.~14! and ~15b! are the well known
Rothwarf-Taylor equations.10

Following Gray,11 we can linearize these equations f
small perturbations by writingN5N01DN and Nv5Nv

0

1DNv and simplifying. If we define the vectora5(N,Nv)
then we can write the linearized equations in matrix form

d~Da!

dt
52G•Da, G5S 2GR 22GB

2GR Gv
D , ~17!

where we have takenGv5GB1Ges andGR5RN0/vol as the
steady-state recombination rate. The eigenvalues ofG deter-
mine the time constants of the system’s response to s
perturbations. Gray showed that the dominant time cons
for the quasiparticle response in the limitGR!GB1Ges is

GR* 52GRFv
21, Fv511

GB

Ges
, ~18!

whereFv is called the phonon trapping factor. It accounts
a phonon emitted by a recombination event breaking ano
pair before it escapes to the bath. We note thatFv

21 is just the
probability that a phonon escapes to the bath.GR* is the time
constant with which a small perturbation of the quasiparti
system will decay, and it is the rate we expect to measur
experiments. We see that the measured recombination
GR* is generally very different from the true equilibrium re
combination rateGR . Even for Fv51, we see thatGR*
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52GR. This is a consequence of quasiparticles recombin
in pairs.@Formally, it arises from the linearization of theN2

term in Eq.~14!.#
We can now specialize the multivariable master equat

to describe the fluctuations in our intrinsic system. Our th
levels are connected by various transitions labeled$pi j % in
Fig. 2. Each transition represents a physical process
changes the occupation of the three levels. Transitionp12
describes two quasiparticles recombining to create one p
non in the electrode. Transitionp21 describes the reverse pro
cess, a phonon being absorbed and generating two quas
ticles. Transitionp23 describes a phonon escaping from t
electrode into the bath. Finally,p32 describes a phonon en
tering the electrode from the bath. We note that there is
direct connection between levels 1 and 3, the quasiparti
and the bath. Since we have a three level system, our un
lying master equation is a two variable equation. We cho
as our two variables the number of quasiparticlesN and the
number of phonons in the electrodeNv . Referring to the rate
equations for the system~14!–~16! we can read off the tran
sition probabilities, which we tabulate in Table I.

In addition to the transition probabilities, we can also re
off the shot size for each level, which isdn152 for the
quasiparticles anddn251 for the phonons. Plugging thes
parameters into the above equations we find

M5S 2GR 22GB

2GR Gv
D , B5GRN0S 4 22

22 11
Ges

GB

D ,

~19!

FIG. 2. Schematic representation of our three level syst
From top to bottom, the levels are quasiparticles, phonons in
electrode, and phonons in the bath.

TABLE I. Allowed transitions and the probability per unit tim
for each one.

Transition Symbol Probability per unit time

recombination p12 (1/2)RN2/vol
generation p21 GBNv

phonon escape p23 GesNv

phonon entry p32 GesNv
0

4-6
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whereGv5Ges1GB . With these matrices we can then wri
the covariance matrix for our system. We find

s25S N0 0

0 Nv
0 D 5S N0 0

0
1

2

GR

GB
N0D ,

where we have used the principle of detailed balance to
late Nv

0 to N0. Thus, we again find that the variance of t
occupation of each level is equal to the average occupa
as we expect from basic thermodynamic arguments. We
note that the off-diagonal terms are identically zero, imp
ing that the quasiparticle and phonon fluctuations are in
pendent. This is somewhat surprising since, as we will
later, the presence of the phonons does significantly mo
the spectrum of the quasiparticle fluctuations.

Experimentally, we can only measure the spectrum of
quasiparticle fluctuations, so we will only calculate that sp
trum. Using Eq.~13! and quite a bit of algebra, we obtain th
quasiparticle spectrum

S~v![G11~v!5
2a1t1N0

11~vt1!2 1
2a2t2N0

11~vt2!2 , ~20!

where

a152
t12tes

t12t2
, a252

tes2t2

t12t2

andg1,251/t1,2 are the eigenvalues ofM andtes51/Ges. It
is straightforward to show that if we integrateS(v) over all
v we recoverN0 for the variance. This expression is com
pletely general. However, in the limitGR!GB1Ges we can
simplify the eigenvalues ofM to t151/GR* and t25(Ges

1GB)21, whereGR* is defined in Eq.~18!. In this case, one
time constant basically corresponds to the effective quasi
ticle lifetime and one corresponds to the phonon lifetime.
can then interpret the first term of Eq.~20! as ‘‘intrinsic’’
quasiparticle fluctuations and the second term as phon
driven fluctuations.

In many experimental situations at low temperatures,
expect thatGR,GB1Ges by several orders of magnitud
~Sec. IV B!. In this extreme limit, we have thata1'2 and
a2'0. This gives us a simplified expression for the spectr

S~v!'
4tR* N0

11~vtR* !2 .

If we compare this simplifiedS(v) with the one-variable
result found in Eq.~7!, we see that this power spectru
could have been obtained from a simpler one-variable ma
equation assuming effective generation and recombina
parameters

r ~N!5
1

2

R

Fvvol
N2, g~N!5r ~N0!,

where the generation parameterg(N) is just a constant equa
to the equilibrium recombination rate. This simplification
not general, but it is possible in samples where the quasi
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ticle and phonon time scales are widely separated. Basic
the quasiparticle system cannot respond to the fast pho
fluctuations and is only affected by the average numbe
phonons.

C. Extrinsic quasiparticle fluctuations

For our second case, we consider extrinsic quasipart
fluctuations where we allow quasiparticles to be lost to p
cesses other than recombination. In particular, we cons
additional processes that change the number of quasipart
by 1. There are many physical examples of this kind of p
cess including trapping into material defects,12 diffusion,
trapping into normal-metal regions induced by fluxons,13 and
trapping into external normal-metal ‘‘sinks.’’14 The multi-
variable theory presented here could be applied to a sys
with an arbitrary number of these extrinsic loss process
However, we will develop the theory for only one extrins
loss process in addition to intrinsic recombination. If w
were to consider such a system fully, including phonons,
would have a four level system described by a three varia
master equation. However, we saw in the previous sec
that in many relevant experimental systems the effect of
phonons reduces to simply modifying the recombinat
constant. We therefore consider only a three level sys
with an effective recombination constantR* .

Our three levels are~1! the number of free quasiparticles
~2! the number of trapped quasiparticles, and~3! the number
of pairs. The levels are described by the occupation numb
N, Nt , and Np , respectively, and we takeN and Nt to be
independent. We assume the allowed transition parame
are p125G tN, p215GdNt , p135R* N2/(2vol), and p31

5p13
0 5R* (N0)2/(2vol) whereG t is the trapping rate andGd

is the detrapping rate. We also write the shot sizes asdn12
51, dn2151, dn1352, anddn3151. We have made som
implicit assumptions in writing these transition paramete
First, we have assumed that we are working at low tempe
tures such that the number of pairs is much greater than
number of quasiparticles. Second, we have assumed tha
traps are far from being saturated, such that the transi
parameters do not depend on the number of available
states. With these parameters and assumptions we can a
Eqs.~9! and ~10! to find

M5S GR* 1G t 2Gd

2G t Gd
D ,

B5S 2~GR* 1G t!N
0 2~G tN

01GdNt
0!

2~G tN
01GdNt

0! 2GdNt
0 D

52N0S GR* 1G t 2G t

2G t G t
D ,

whereGR* 52R* N0/vol. In simplifying B, we have applied
the principle of detailed balance, i.e., assumedp21

0 5p12
0 and

p31
0 5p13

0 . As discussed earlier, this is always valid for a sy
tem in thermodynamic equilibrium, but it must also be tr
for our system in steady-state orNt andNp would not have
4-7
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well-defined steady-state values. We can therefore use
quasiequilibrium result~11! to calculate the covariance ma
trix

s25S N0 0

0 Nt
0D 5S N0 0

0
G t

Gd
N0D .

We see that, even though the quasiparticles are now
nected to more than one level, the variance of their fluct
tion is still simply N0.

We could now calculate the general power spectra of
model, but the equations are not particularly illuminatin
Instead, we will further simplify the model to the experime
tally interesting case where trapping and detrapping are
faster processes. Specifically, we will assume thatG t1Gd

@GR* . In this limit, the eigenvalues ofM are

g15
Gd

Gd1G t
GR* , g25Gd1G t .

The spectrum of the quasiparticle fluctuations is then

S~v![G11~v!5
S1

11~vt1!2 1
S2

11~vt2!2 , ~21!

where

S154N0t1FGd2GR*

g22g1
G'4N0t1

Gd

Gd1G t

and

S254N0G t~t2!2bg21GR*

g22g1
c'4N0t2

G t

Gd1G t
,

where the final simplification ofS1 andS2 represent extreme
limits. As before, the spectrum is the sum of two Lorentzia
each with a bandwidth determined by the eigenvalues ofM .
The relative weight of each Lorentzian depends on the de
of the traps. We call the traps ‘‘deep’’ ifG t.Gd , meaning
that once a quasiparticle is trapped it takes a relatively l
time for it to escape. Conversely, we call the traps ‘‘shallo
if Gd.G t , meaning that quasiparticles escape relativ
quickly. For very deep traps,g2'G t and S2 dominatesS1 ,
such that

Sdeep~v!'
4t tN

0

11~vt t!
2 ,

where t t51/G t . This is the result we would expect for
two-level system where quasiparticles can be lost only
traps. For very shallow traps, we instead find

Sshallow~v!'
4tR* N0

11~vtR* !2 ,

which is the result we expect for quasiparticles in the pr
ence of recombination only. Equation~21! varies smoothly
between these two cases and it is easy to show that the
gral of the power spectrum isN0 for any trap depth.
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IV. DISCUSSION

A. Theoretical connections

We note that comparing the two rate matrices~17! and
~19!, G5M for the intrinsic fluctuation problem. As we hav
seen, the eigenvalues ofM determine the spectrum of th
fluctuations. On the other hand, the eigenvalues ofG deter-
mine the time constants of the dynamical response to sm
perturbations. The fact that these two matrices are equal
plies that the timescales of the dynamical response and
fluctuations are the same. We will now take some time
explore the generality of this connection beyond the spec
example of intrinsic fluctuations.

When we write rate equations such as~14!–~16! we are
making some implicit approximations. First, we approxima
the occupation numbers of the levels, such asN andNv , as
continuous variables, when they are in fact discrete variab
Second, we approximate the discrete and random transit
between levels as continuous and deterministic ‘‘flows.’’
understand the implications of these approximations, we s
by deriving a differential equation for the expectation valu
of the level occupations from the master equation~8!. We
find the following system of equations:

]

]t
^Ni&5(

j Þ i
dni j ~^pji ~Nj !&2^pi j ~Ni !&!, ~22!

where the indicesi and j run over all levels. We can compar
this equation to a general expression for the rate equat
@similar to Eq.~6!#, which is

]

]t
Ni5(

j
dni j @pji ~Nj !2pi j ~Ni !#. ~23!

The only apparent difference is that we have dropped
expectation value brackets from the second system of e
tions. However, we must also keep in mind the subtle diff
ence that the first equation is an exact differential equa
for the continuous expectation value of a discrete variab
The second equation is only approximate, for the reas
mentioned above.

However, in the special case where the$pi j (Ni)% are all
linear functions of the occupation numbers$Ni%, we have
that ^pi j (Ni)&5pi j (^Ni&) and we can actually interpret th
rate equations~23! as exact equations for the expectati
values. In many physical systems, although, the transi
rates are at least quadratic in the occupation numbers,
that, pi j ;Ni

2 or pi j ;NiNj . In this case, we have, for ex
ample, that

^pi j &;^Ni
2&5^Ni&

21^DNi
2&.

Thus, in the case of quadratic transition rates we must in
pret the full nonlinear rate equations as only approxim
equations for the expectation values, ignoring terms of or
the variance of the occupation number. In general though,
expect that̂ DNi

2&;^Ni& and we can say that neglecting th
variance terms is a valid approximation to orderO(1/N). In
4-8
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QUASIPARTICLE NUMBER FLUCTUATIONS IN . . . PHYSICAL REVIEW B69, 094524 ~2004!
other words, for a large system the rate equations actu
describe the expectation values of the occupation numb
to good approximation.

We can develop this idea a little further. If we take E
~22! and Taylor expand the transition probabilities to fi
order we get the following equation for small variations:

]

]t
^DNi&5(

j Þ i
dni j F(

k

]pji

]Nk
^DNk&

2(
k

]pi j

]Nk
^DNk&G u$Nk%5$Nk

0%

5(
k

M ik^DNk&,

whereMik are the elements of the matrixM defined in Eq.
~9!. If we follow the same procedure for the rate equatio
and we find that the linearized rate equations

]

]t
DNi5(

j Þ i
dni j F(

k

]pji

]Nk
DNk2(

k

]pi j

]Nk
DNkG u$Nk%5$Nk

0%

[(
k

G ikDNk ,

where we have defined the linearized rate matrixG. We see,
in general now, thatG5M and that we can interpret th
linearized rate equations as equations for the expectation
ues around their steady-state values. This result is the ge
connection between fluctuations and dynamics we w
seeking. It says that the timescales measured from dyna
perturbations and from steady-state fluctuations must be
same. We can also view this result as a statistical fluctuat
dissipation theorem for our system. In fact, in equilibriu
we can derive the fluctuations of our system in a thermo
namic framework using the more conventional fluctuatio
dissipation theorem.7,15

B. Experimental connections

In a previous Letter, we presented experimental verifi
tion of our theory by measuring intrinsic quasiparticle nu
ber fluctuations in an Al box.5 The box was formed by a
volume vol5100mm3, of thin-film superconducting Al. Two
sides of the box were contacted by superconducting Ta le
The Ta leads allow electrical contact to the box through
Cooper pair system, while still confining quasiparticles in t
Al ~Fig. 3!. Thermal quasiparticles in the Al cannot enter t
Ta because the energy difference between the supercon
ing energy gap of Ta (DTa5700 meV) and the energy gap o
Al ( DAl5180 meV) is much greater thankBT'20
230 meV and confines the quasiparticles. There are no t
mal quasiparticles in the Ta at the temperatures used.

The number of quasiparticles in the box in thermal eq
librium is

N~T!5D~«F!volA2pDAlkBT expS DAl

kBTD ,
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whereD(«F) is the electron density of states at the Fer
energy. In our measurementskBT!DAl , so the Fermi gas of
quasiparticles is nondegenerate. In particular, the densit
quasiparticles is about 1028 that of conduction electrons an
the occupation probability of each quasiparticle state is l
than 1023, much smaller than in the normal state at t
Fermi energy.

We measure the number of the quasiparticles in the ga
dividing the box with a tunnel barrier and measuring t
current through the tunnel barrier. At large bias, there i
simple connection between the number of quasiparticle
the box and the current, given by the next equation. In Fig
we show quasiparticles distributed in an energy rangedE in
the Al. ~For a thermal distribution,dE is a few timeskBT.)
The ovals represent Cooper pairs at the Fermi energy. E
quasiparticle is a quantum superposition of electron and h
Biased at a voltage eV.dE, a quasiparticle can only tunne
from left to right as an electron, gaining energy eV. It cann
tunnel from left to right as a hole, because it would lo
energy eV and tunnel into the gap on the right side. Sim
larly, a quasiparticles can only tunnel from right to left as
hole ~through a process called backtunneling!.16 Thus, for
eV.dE, tunneling events from left to right and from right t
left transfer a charge in the same direction and the associ
currents add. The time-dependent current is then given b

I ~ t !5eS Nl~ t !

t tun
1

Nr~ t !

t tun
D5e

N~ t !

t tun
,

whereNl andNr are the numbers of quasiparticles in the le
and right side andt tun is the tunnel time.17 In writing this
equation, we have assumed that any variations inN(t) hap-
pen on a time scalet@t tun. As we will show later, the time
scale of the fluctuations in the box meets this condition.

It is a good approximation to treat the two halves as o
quasiparticle system if the halves are strongly coupled. T
condition for strong coupling istR* @t tun, wheretR* is the
effective recombination time for a quasiparticle. If this co
dition is met, a typical quasiparticle tunnels many times b
fore it recombines, and thus can interact with quasipartic

FIG. 3. Energy band diagram of the Al box in a modified ex
tation representation. The circles represent quasiparticles. Tunn
is shown as diagonal transitions across the barrier, indicating
quasiparticles gain~lose! energy as they are accelerated~deceler-
ated! by the bias voltage. Quasiparticles are confined in both
electrodes by high gap Ta. At high bias voltage, only electron tun
is allowed from left to right and only hole tunneling is allowed fro
right to left. This hole process is known as backtunneling. The t
processes allow a single quasiparticle to circulate, tunneling m
tiple times.
4-9
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in both halves of the box. In our measurements,n5tR* /t tun is
between 10 and 50. The fact that a quasiparticle in a su
conductor is a superposition of electron and hole allows i
tunnel back and forth multiple times.18

We also directly measured the recombination time of q
siparticles in the box with single-photon absorpti
experiments.19 A single photon from the mercury emissio
line at 4.89 eV~256 nm! was absorbed in one Ta lead, pr
ducing about 4000 quasiparticles. These quasiparticles
fuse to the Al where they can emit phonons and drop do
in energy, becoming trapped. These trapped quasipart
are a small perturbation to theN0;105 steady-state quasi
particles in the Al box. The trapped quasiparticles circula
tunneling and backtunneling, until they are lost to recom
nation with a thermal quasiparticle. This produces a curr
pulse that decays exponentially on a time scale of the ef
tive recombination timetR* .

In thin-film Al electrodes at the temperatures used
expectGR'104 s21, Ges'109 s21, andGB'1010 s21 ~Ref.
20!. Thus, referring to Eq.~20!, we expect a1'2(1
21025) and a2'2(1025). This gives us a simplified ex
pression for the spectrum

S~v!'
4tR* N0

11~vtR* !2 .

This result contains three important predictions. First, it p
dicts that the power spectrum of the fluctuations should
Lorentzian. Second, it predicts the temperature depend
of the bandwidth of the noise. Basically, the bandwidth
proportional to the average number of quasiparticles, si
1/tR* ;N0. N0 is an exponential function of 1/T well below
Tc , so, we predict that the bandwidth is also an exponen
function of 1/T in our temperature range. The theory al
predicts how the low-frequency magnitude of the no
S(v50), changes as a function of temperature. All fact
in the magnitude ofS(v50) are approximately independe
of temperature exceptN0 and tR* . However, tR* only
changes with temperature because the number of quasip
cles changes. Specifically,tR* (T);1/N0(T). Thus, the prod-
uct N0tR* is constant and, therefore,S(v50) should be in-
dependent of temperature.

Our measurements showed good agreement with al
these predictions. First, we confirmed that the quasipart
fluctuations had a Lorentzian form. We also confirmed t
the characteristic time of the fluctuations was in facttR* ,
over a range of temperatures, by comparing the noise m
surements to the direct measurement oftR* given by photon
excitation. We were also able to indirectly confirm the te
perature dependence ofS(v50). We were not able to di-
rectly confirm the temperature dependence because the
vices were heated by the bias power and, therefore, ha
effective temperature higher than the bath temperature. S
we demonstrated that the magnitude of the noise was in
pendent of the quasiparticle density, which is a measure
the effective temperature.

In superconducting systems, at least in principle, the f
damental time scale of electron-phonon interactions, kno
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as t0 , can be inferred from measurements of quasipartic
quasiparticle recombination.~The parametert0 is material
dependent and its value has been predicted for a variet
metals.20! In particular, for a pair of quasiparticles at the ga
edge, the expression for the recombination constant is

R5S 2D

kBTc
D 3 1

2DD~«F!t0
, ~24!

whereD is the superconducting energy gap,Tc is the super-
conducting transition temperature, andD(«F) is the electron
density of states at the Fermi energy. However, phonon t
ping complicates the extraction oft0 from recombination
measurements at temperatures much less thanTc . In fact, in
the limit of strong phonon trapping, the measured recom
nation rateGR* becomes

GR* 52
GR

GB
Ges;Ges

because the pair-breaking rateGB is also proportional to
1/t0 . Thus, measurements ofGR* in the presence of strong
phonon trapping have no dependence ont0 .

As described above, we have used both fluctuations
photoexcitation to measureGR* in Al. If we ignore phonon
trapping for the moment and insert our measured value oR
into Eq. ~24!, we extract a tentative value fort0 of 1.65ms.
Numerous other measurements oft0 in Al by various meth-
ods find values of order 100 ns.11,21 This discrepancy sug
gests that our measurements are, in fact, in the limit of str
phonon trapping, so that they do not represent a direct m
surement oft0 . Our measurements do, however, confir
that the quasiparticle recombination rate is proportional
the quasiparticle density at lower temperatures and lon
recombination times than previous experiments. In Fig. 4,
compare the recombination time measured by us to prev
experiments and to theory. The previous measurem

FIG. 4. Comparison of quasiparticle lifetime measurements
scribed here to previous measurements by Gray~Ref. 22!. Measure-
ments by Gray were on Al on sapphire withD5195mV. Our films
are on SiO2 with D5180mV. The solid line shows the theoretica
scaling of the lifetime with the BCS number of quasiparticles
our value ofD. Our data show the lifetime following the theoretic
dependence to lower temperature~Ref. 5!.
4-10
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showed recombination times that begin to deviate from
expected dependence atT'400 mK and tR* '20 ms and
completely saturate at a maximum value oftR* '80 ms be-
low T'300 mK.22 Quasiparticle loss into normal-metal re
gions created by trapped flux was proposed as the expl
tion for the deviation from theory in those measuremen
although this explanation was not experimentally confirm
Therefore, our measurements extend the range over w
the basic physics of recombination has been verified in A

While quasiparticle number fluctuations may be helpful
studying the microscopic dynamics of superconductors, t
are also a source of noise in superconducting electronic
vices. We have discussed in detail how they can limit
performance of single-photon spectrometers based on su
conducting tunnel junctions.23 In addition, quasiparticle fluc-
tuations may be an important source of noise, and there
decoherence, in superconducting quantum bits~qubits!. The
majority of solid-state systems that have been used to d
onstrate coherent quantum manipulation of a single q
have involved superconductors.3 All of these measurement
have been performed at very low temperatures (T/Tc
;0.01), where there would be essentially zero quasiparti
in equilibrium. However, all of the readout schemes in the
experiments produce nonequilibrium quasiparticles, wh
can accumulate in the qubits, leading to a steady-state
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sity of quasiparticles. At least one experiment has direc
demonstrated the impact of this quasiparticle background
the measured coherence times.24 Understanding the effect o
quasiparticle fluctuations on coherence may therefore be
portant for the development of quantum bits.

In conclusion, we have developed a general theory of q
siparticle number fluctuations in superconductors. We
plied this general theory to the problem of intrinsic quasip
ticle fluctuations related to generation and recombinati
The validity of these results have been demonstrated in
vious experimental work. We have also applied the theory
an example of extrinsic quasiparticle fluctuations where q
siparticles are also lost to traps. We conclude that studie
quasiparticle fluctuations provide a useful probe of mic
scopic dynamics and are also important for the understa
ing of noise in superconducting devices.
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