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Quasiparticle number fluctuations in superconductors
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We present a general theory of quasiparticle number fluctuations in superconductors. The theory uses the
master equation formalism. First, we develop the theory for a single occupation variable. Although this simple
system is insufficient to describe fluctuations in a physical superconductor, it is illustrative, allowing this
discussion to serve as a self-contained introduction. We go on to develop a multivariate theory that allows for
an arbitrary number of levels with transitions of arbitrary size between levels. We specialize the multivariate
theory for two particular cases. First, we consider intrinsic quasiparticle fluctuations. In a previous Letter, these
results were used to describe time-resolved measurements of thermodynamic fluctuations in a superconducting
Al box [C.M. Wilson, L. Frunzio, and D.E. Prober, Phys. Rev. L&f, 067004(2001)]. Finally, we extend
these results to include fluctuations due to extrinsic loss processes.
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I. INTRODUCTION magnitude of the fluctuations iNP)'? (Ref. 4. In a recent
Letter, we confirmed the prediction for the magnitude and we
Superconductivity is a rich, physical phenomenon withdemonstrated that, at low temperatures, the time scale of the
many aspects that have been studied for their possible tecfuctuations is the recombination time .°
nological importance. The most basic property of supercon- In this paper, we present a general theory of quasiparticle
ductors, their ability to transport electrical currents withoutfluctuations in superconductor®revious treatments of qua-
resistance, has been applied broadly for many years. A nesiparticle fluctuations were restricted to basic thermody-
generation of superconducting electronic devices aims tmamic argument. We use the master equation formalism,
take advantage of more subtle aspects of superconductivityhich has been used to describe fluctuations in semiconduc-
including flux quantization, quantum tunneling and the quan+tors for many years. The master equation formalism repro-
tum coherence of the superconducting state. Examples irduces and expands the thermodynamic results, while also
clude superconducting quantum interference devices, higheing applicable to nonequilibrium systems. In Sec. II, we
speed electronics superconducting detectofsand various  develop the theory for a single occupation variable. This
implementations of quantum bits for quantum informationsimple system is insufficient to describe fluctuations in a
processing. The ultimate sensitivity and usefulness of thesephysical superconductor, but we have included it because it
devices will be determined in part by the physical processeis illustrative, allowing the article to serve as a self-contained
that add noise to them. introduction to researchers in superconductivity that are un-
In this article, we present a theory of one such noisefamiliar with the semiconductor research. In addition, the
source: fluctuations in the number of quasiparticle excitaimore complete theory will show that the simpler results of
tions. In its ground state, all of the conduction electrons in ¢he one-variable system can be used with the appropriate
superconductor form bound pairs, called Cooper pairs. Thdefinition of effective parameters. In Sec. lll, we develop a
binding energy of the pairs is the spectroscopic gap multivariate theory that allows for an arbitrary number of
=2A, whereA is the energy gap for a single excitation. At levels with transitions of arbitrary size between levels. We
finite temperature, some pairs will be broken, resulting inthen specialize the multivariate theory to two particular
single-particle excitations known as quasiparticles. In equicases. In Sec. 1l B, we consider intrinsic quasiparticle fluc-
librium, the average number of quasipartichs8 is deter- tuations where quasiparticles are only creataanihilated
mined by thermodynamics. In particular, the average occui pairs due to thermal generatiérecombination In a pre-
pation of quasiparticles levels is determined by the Fermivious Letter, this specialized case was used to describe time-
Dirac distribution, with the energy measured from the Fermiresolved measurements of thermodynamic fluctuations in a
energye ¢ and the minimum quasiparticle energy beiigAt  superconducting Al box.In Sec. Il C, we also allow quasi-
a microscopic level, it is the balance of quasiparticle generaparticles to be lost and created individually. This second case
tion and recombination that determines the average numb@an be applied to systems with normal metal traps, diffusive
of quasiparticles. Quasiparticle generation refers to the crgoss, etc.
ation of two quasiparticle excitations when a Cooper pair is
broken by a thefrr.nal' phonon. Qua_sipar_ticle recombination Il. SINGLE-VARIABLE MASTER EQUATION
refers to the annihilation of two quasiparticles as they form a
Cooper pair and emit a phonon. Generation and recombina- To treat fluctuations in our system, we construct a master
tion are random processes, meaning that individual generaquation similar to the Fokker-Planck equation. This differ-
tion or recombination events occur at random intervals. Beential equation describes the probability distribution of the
cause of this, the instantaneous density of quasiparticlesccupancies of various subsystefisvelg. We follow the
fluctuates in time. Statistical mechanics tells us that the r.m.4reatment by van Vliet of generation-recombination noise in
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semiconductor$ except that we generalize the description toside of the master equation to zero. If we then multiply the

allow for transitions that involve an arbitrary number of par- equation byN, and sum over all possibldl, we get the

ticles, e.g., two quasiparticles recombining. The master equaimple relationship

tion formalism can in fact predict the fluctuations of an arbi-

trary number of coupled levels. However, that development (g(N))=(r(N)),

is not particularly illuminating. For this reason, we will start

with the derivation for a two-level system described by awhere the angle brackets mean the expectation value over all

one-variable master equation. N. If we expand botlg(N) andr(N) in a Taylor expansion

We can consider one level of our system to be quasiparn N around the equilibrium valubl®, we get

ticles. The second level could be Cooper pairs or quasiparti-

cles in traps or something else, depending on the exact nature o L, 0 o Lo )

of the system that we are trying to model. In this section, we ~ 9(N")+59"(N )(AN)=r(N )+ 5" (N )(AN%), (2)

will refer to any processes that creatasnihilate$ quasipar-

ticles as a generatiofrecombination process, although in where the primes indicate the derivative with respecNto

general these terms have the specific meanings defined #ind AN=N—N°. The first order terms vanish because

Sec. |. Regardless of exactly what the second level is, it iSANY=0 in equilibrium. In addition, in most cases

not in general independent of the first level because the totgj(N),r(N)«N?, and(AN2>ocN, so we can neglect the sec-

number of excitations in the two levels is constrained. Forond order terms and simplify to

instance, the number of quasiparticles plus Cooper pairs is

constrained by the total number of electrons, due to overall g(N%)~r(NO).

charge neutrality. Furthermore the creation of two quasipar-

ticles implies the loss of one pair, and vice versa. ThereforeThis is the reasonable statement that the generation and re-

we only need to count the number of quasipartidlesnd  combination rates must balance in equilibrium.

can describe our system with a one variable master equation If we again set the left-hand side of the master equation
(1) to zero, multiply byN? and sum over alN, we get the

dP(N,t|k,0 ; X
( at| )=—[g(N)+r(N)]P(N,tlk,0)+g(N relationship

SN SN
— SN)P(N— 8N, t|k,0)+ 1 (N+ SN)P(N <(N+7 g(N)>=<<N—7)r(N)>.
+6N,t|Kk,0),

If we again expandy(N) andr(N) aroundN° and use Eq.
where P(N,t|k,0) is the probability that there aé quasi-  (2) to simplify, we can find the following expression for the
particles at timet given that there wer& quasiparticles at variance of the fluctuations:
t=0. The functiong(N) is the probability per unit time that
there will be a generation event in the box when thereNare r(N°)
quasiparticles. In other wordg(N)dt is the probability of a (AN?)= 5Nm,
generation event in the time intervét. Similarly, the func- g
tion r(N) describes the probability per unit time of recombi- \yhere we have again neglected second order terms in the
nation. The parameteN is the number of quasiparticles fing| expression.
added(removed by a generatiorirecombinatioh event. We We can also use the master equation to calculate the
can understand the structure of the master equation quitgs\er spectrum of the fluctuations. To do this, we first cal-
simply. It describes the rate of change of the probability thagjate the autocorrelation function of the fluctuations and
there areN quasiparticles in the system. The rate of decreasgnen compute its Fourier transform. The autocorrelation
in the probability equals the probability that there Brgua-  fynction at lagu is defined as
siparticles times the probability per unit time that there will
be a generation or recombination event. This is what the first
term in the master equation represents. The rate of increase CI>(u):(N(O)N(u)>=E > kjP(k,0;j,u),
in the probability is equal to the probability that the system is ko
one generation event away from havify quasiparticles
times the probability per unit time that there will be a gen-
eration event, plus a similar term for recombination.

The master equation is a countably infinite set of couple
differential equations. Luckily, we do not need to solve the
master equation for it to be useful. We can instead use th
master equation to construct much simpler equations fo
guantities such as the variance and correlation function of the
fluctuations. _ D _

We begin by calculating the variance of the fluctuations. o) Ek: kP(k,O)Ej: iP(.ulk.0) Ek: K{N)(P(k.0),
The variance is a steady-state property, so we can set the left 4

()

where P(k,0;j,u) is the joint probability that there ard

quasiparticles at=0 and that there arp quasiparticles at

q U- (By lag we mean the amount of time that one signal is

shifted with respect to the othgie can simplify this ex-
ression by factoring the joint probability distribution into
(k,0;j,u)=P(j,ulk,0)P(k,0) giving
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where P(j,ulk,0) is the conditional probability of having
quasiparticles at=u given that there wer& at t=0 and
(N) is the expectation value dfl given that there weré
guasiparticles at=0.

To further simplify this expression, we start by deriving a
differential equation foKN), using the master equation. In
this case, we need to use the full master equdtipmvithout
setting the time derivative equal to zero. If we multiply both
sides byN and sum over alN, we get the equation

r(N)

g(N)

Probability per unit time

d

—(N)= N((g(N)) —(r (N))).
du Number of Quasiparticles
We cannot solve this equation explicitly, because we do not
know the expectation values on the right-hand side. How-
ever, we can find an approximate solution by again expano@
ing g(N) andr(N) aroundN°. We find the simple result

FIG. 1. Sketch of the generation and recombination parameters
(N) andr(N). The intersection of the curves yields the steady-
tate number of quasiparticles.

d (AN)_no simple physical interpretation. In Fig. 1 we sketch the recom-
ﬁ(AN)k_NF - bination parameter(N) and generation parametg{N) as a
function of N. First, we note that the value &f where the
curves intersect is the equilibrium valdé. Next, we notice
1 1 I X
= — 0> (5)  that for a stable system the derivativergN) will always be
SN r’(N®)—g’(N")

positive and the derivative @f(N) will always be negative.

where r appears as the effective relaxation time of the fluc-This is what maintains equilibrium. For example Nffluc-
tuations. This equation has the simple solution tuates greater thaN®, then the recombination rate increases

and the generation rate decreases. Both of these changes

drive the system back to equilibrium. Even more, the steeper
' the change in the rates around equilibrium, the faster the
. ) o ) ) system is driven back to equilibrium. This is why the time
Inserting this solution into Eq4) we find the autocorrelation  constants depend on the derivativesr oK) and g(N) and

(AN no=(k— No)exp( - ;

function of the fluctuations to be why their contributions sum together.
To be able to apply the formulas derived above we must
A@(U)Z<AN(0)AN(U)>:(AN2>eXF{ - E) , know whatr (N) andg(N) are for our system. Luckily, if we
T already understand the dynamics of the system, it is general

easy to deduce(N) andg(N). In general, the rate equation

where(AN?) is the variance of the fluctuations. We can then .
of our system will be of the form

directly compute the power spectru@y ») of the fluctua-
tions as the Fourier transform of the autocorrelation function.

We find dN
St = ON[GN) —r(N)]. 6)
_A(AN% T
1t wlr? i i i
If we can derive or know an appropriate rate equation for our

We now have general expressions for the variance anayStem' we can then read @{N) andr(N).

ower spectrum of the fluctuations in our two-level system We can consider, as an example, the case of simple gen-
P P o ) y ‘eration and recombination of quasiparticles. By simple, we
Before we specialize the equations more, we can make so

general comments. First, if we combine E8) with Eq. (5), Mfean that quasiparticles are only lost to recombination with

; . . : other quasiparticles and we ignore the effects of phonon trap-
we find the much simpler expression for the variance of theping (which we will return to latex. In this case, the two
fluctuations X y

levels of our system are quasiparticles and Cooper pairs,
(AN2)=(5N)2r(N°) 7. with the total number c_)f electrons constrained to be the nor-

mal state value. We will further assume that we are working
This says that the variance &f is of order the number of at low temperatures and that the number of quasiparticles is
particles that recombine in one correlation time. Now, look-small compared to the number of Cooper pairs. In general,
ing at Eq.(5), we see that is inversely proportional t&N. we would expecg(N) to depend on the number of Cooper
This says the more quasiparticles that are (ostatedlby a  pairs. However, since the relative size of the fluctuations will
single recombinatiorigeneratioh event, the faster the fluc- be small compared to the number of Cooper pairs, we will
tuations. Also, looking at Eq5) we see that the time scale of assumeg(N) is constant and equal to the equilibrium recom-
fluctuations is inversely proportional the sum of the deriva-bination rate. With that we can write the rate equation for our
tives of the generation and recombination rates. This has simple system as
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dN 1R a thin-film superconductor the phonon emitted when a pair of
ar - (FG_ 5 v_oIN2 ; guasiparticles recombines can break another pair before the
phonon escapes the film into the bath. This process, known
wherel's is the constant generation rate, vol is the volumeas phonon trapping, extends the effective lifetime of a qua-
of the system, an® is the recombination constant. The re- siparticle. To account for this process, or others similar to it,
combination constant is basically a constant of proportionalwe must increase the number of levels in our model system.
ity between the recombination rate and the number of way3he basic idea is the same as before, except we now describe

to combineN quasiparticles, which i8l%/2. the state of the system with levels (1)S)(by a vectora
From this rate equation, we can read off the parameters of (N;,N,,...,Ng) which represents the occupation of each
our model level. In general on\§—1 levels will be independent since
1 R the total number of excitations is constrained. We start by
g(N)=Tg, r(N)= 5 \HNZ‘ Sn=2. writing down the master equation for the system:
i . . dP(at|a’,0)
We can then easily put these parameters into the equation R b 2 P(a’,t|]a’,00Q(a;a")
above to find a familiar result for the variance of the fluctua- at d'+a
tions (AN2)=NC°. We can also easily write down the power
spectrum of the fluctuations - > P(atla’,00Q(a";a), (8
a'+a
4NOr vol . 3 o
G(w)= 17022 T 2R\ (7)  where P(at|a’,0) is the probability that the system is in

statea at timet given that it was in stata’ att=0, etc., and
We see that the spectrum has a simple Lorentzian form witlQ(a;a”) is the transition probability per unit time from state

a bandwidth given by ¥/ a’ to a. Again, the first term says that the rate of change in
the probability of finding the system in stateis the prob-
lll. MULTIVARIABLE MASTER EQUATION ability of it being one transition away frora times the rate

of transition toa. The second term accounts for transitions
out of statea. We can make this less abstract if we notice that

The simple one-variable master equation derived above ithe only allowed transitions in our system involve a single
illustrative, but it is not sufficient to describe generation andloss event in one level causing a creation event in a second
recombination in a physical superconductor. For example, itevel. We can then write

A. General theory

Pij » a'={Ng,...N; A -

Q(a;a”): a:{Nl,...,Ni_ﬁnij,...,Nj+5nji,...} s
0, otherwise
|
where onj; is the “shot size.” The physical meaning oh;; We can define a second matiix (which describes the sec-

is the change in the occupation of levelvhen making a ond order Fokker-Plank momentwhose elements are
transition to or from levej. This is one important generali-

zation of the master equation formalism for superconductors. _ 2 2 0

In typical semiconductor systems, transitions between all B“_gi oNii (Pyi + Pik)“ZEi ONiPik

levels change the occupation by one, i&n;;=én=1 for

all transitions. In superconductors, however, not only can S SN — — S, Sh.. (PO 4 0
different levels have a different shot size, they can have a Bij = — onij on;i(pij + pji) = — oni; on;i (pij + pji)- (10
different shot size depending on what the other level in-The covariance matrix-2=(Aa-Aa"), is then determined

volved in the transition is. _ _ by the following matrix equation:
We can then proceed along the same lines as the deriva-

tion in Sec. Il. We will not include the detailed derivation, o2 MT+M.o2=B, (119
instead presenting the results and referring to Ref. 7 for a

more detailed treatment. In analogy to the linearized timevhereAa=a—a’. We can also write the cross power spec-
constant found in Eq(5), we can write a linearized rate trum matrix as

matrix M, where the elements are

_ IPik  IPxi
Mii_Ek: 5nik(a_Nj (9—,\11)

G(w)=2Rd(M+iwl) B(MT—iwl)" 1], (129

L (9 where R¢ -] means the real part ards the identity matrix.
NP =1N7} The diagonal terms d& describe the power spectrum of the
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fluctuations of each level in the system. The off-diagonal An important special case of E¢L2b) is the quasiequi-
terms of G describe the cross power spectrum between thdbrium, two-variable result. Since we are always free to la-
various levels. Each spectru@;; is a sum of individual bel the quasiparticles as level 1, we will give the general
Lorentzian spectra, similar to EG/), with characteristic fre- expression foiG4; in the two variable case
guencies determined by the eigenvalued/of

At this point, we wish to add some general comments. 1Ty 2
First, we note that in the Fokker-Plank approximation to the Gi(@)=22, —— )1+ )2
master equatioryl would describe the “drift” of the system 12 (2= 70) [1+(@m)]
and B would describe the “diffusion.” In this context, Eq.
(119 can be viewed as a generalized Einstein relation, con- +M B, (13
necting drift(mobility) and diffusion® Second, we note that

these results implicitly assume that our system is linear With/vherey: 1/7, are the eigenvalues & and the summation
respect to fluctuations, meaning that the fluctuations do ngt oo Iadd a{nother term with and 7, interchanged. The

drive our inherently nonlinear system out of the regime of,oq it forG,, has the same form but with the indices 1 and 2
linear responsgThis property is also referred to as quasilin- interchanged on the componentshfand B

earity) If this assumption is violated, then a different formal- We will not discuss in detail any examples of systems

'sm must be usef. o driven out of quasiequilibrium, but a thorough discussion of

. quatlons('l.lal-(lza) can be S|mpl!f!ed for some systems, such systems can be found in Ref. 9. Reference 9 discusses a

including equilibrium systems. Specifically, they can be sim-,.aa |evel system driven through a cycle of transitio3:

plified in systems that have a symmetric correlation matrix’photoexcitation of carrierg2) trapping of carriers, and3)

l.e., systems, where recombination in the traps. It is found that tzhis dr(i)ven system

AAT _ AAT can exhibit super-Poissonian noise, i€ N“)>N", while

(Aa(t)-Aa’(0))=(Aa(0)-Aa'(t)). quasiequilibrium systems can only exhibit sub-Poissonian

If this condition holds, then we can demonstrate thatoise, i.e.{AN?)<N°.

0?-MT=M.¢?, and Egs(11a and (123 reduce to

1
——Mx|Bn

T1

B. Intrinsic quasiparticle fluctuations

o’=(Aa-Aa")= >M 1B (11b) The first specific example that we will consider is intrinsic
quasiparticle fluctuations in a thin-film superconductor. By
and intrinsic fluctuations we meafi) that quasiparticles are only
created in pairs through generation, whereby a Cooper pair is
broken by a high-energy phonon af®) quasiparticles are
only lost in pairs through recombination, whereby a Cooper
pair is formed with the emission of a high-energy phonon.
Note that the symmetry of the correlation matrix requiresThis system can be described by three levels whose popula-
that both the correlatorgAN;(t)AN;(0)) and the cross- tions are labeled b, N,,, andN,, 5 which are the number
correlators AN;(t)AN;(0)) exhibit time-reversal symmetry, of quasiparticles in the superconducting electrode, the num-
.e., (AN;(t)AN;(0))=(AN;(0)AN;(t)). For classical par- per of phonons with energf,,>2A in the superconducting
ticles (meaning that th¢n;} are numbers and not operators  electrode, and the number of phonons With>2A in the
the symmetry of the correlators is trivial. However, the crossyath respectively. We only keep track of phonons vih
correlators are not required to be symmetric. In an equilib—~2A pecause they are the only phonons that can generate
rium system, the cross correlatase symmetric as a result pew quasiparticles. In thin-film systems, the “bath” would
of the time-reversal symmetry of the underlying microscopicgenera||y be the substrate on which the superconducting
dynamics(microscopic reversibility® Therefore, the simpli-  glectrode is fabricated. The important distinction between
fied results(11b) and (12b) can always be used in equilib- phonons in the electrode and phonons in the bath is that
rium. They also approximately apply to systems in quasiphonons in the bath cannot generate quasiparticles.
equilibrium, which we define as a steady-state condition that |n sec. 1, we thought of two quasiparticles recombining
obeys the principle of detailed balance, igh=pj} foralli o form a Cooper pair, instead of quasiparticles recombining
andj (Ref. 9. In equilibrium, detailed balance is a conse-to form a phonon. In the end, howeve, is a more natural
quence of microscopic reversibility, but it does not generallyvariable than the number of Cooper pairs for several reasons.
apply to systems in nonequilibrium steady state. In stead¥rom a statistical point of view, we can account for the re-
state, we have the more general relationstip.;pj  combination of two quasiparticles equally well as a transition
= Ei;e]-p?i , which simply means that the total transition rate to a Cooper pair or a transition to a phonon. From a dynami-
into a level must balance the total transition rate out. How-cal point of view, however, keeping track of phonons is
ever, depending on the details of the level structure, thisnuch more important then keeping track of Cooper pairs. As
more general relationship can reduce to the expression fave will see shortly, the presence of phonons created by re-
detailed balance even in steady state. In particular, this resombination can significantly change the effective recombi-
duction can apply in steady-state systems where levels amation rate measured in experiments. On the other hand, the
coupled in pairgsee Sec. I ¢ ratel'g at which phonons break pairs and generate quasipar-

-1
BJ. (12D

2 M
G(w)= FRE{( 1+ .
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ticles is proportional to the number of Cooper pairs, but as () N
long as the number of pairs is much greater than the number
of quasiparticles, thel'y is approximately constant. Thus,
we see thalN,, is a better choice. Py P,
We can describe the dynamics of the levels with the fol-
lowing system of three coupled differential equations:

) - N
dN—Z 1—RN2+F N 14
at 22 vor TleNeys (19 o o
32 23
dN, 1RN? v
dt :Ev_c)l_FBNw_resI\lw+FKNw,Bv (1569 (3) N(,l),B
dN,, g FIG. 2. Schematic representation of our three level system.
dc,:’ =T'eN,—T'kN, 5, (16)  From top to bottom, the levels are quasiparticles, phonons in the

electrode, and phonons in the bath.

wherel s is the rate at which phonons escape from the elec-
trode to the bath anfly is the rate at which phonons enter =2I'. This is a consequence of quasiparticles recombining
the electrode. We have neglected the anharmonic decay of pairs.[Formally, it arises from the linearization of tié?
phonons as a loss process because it happens on a time saglen in Eq.(14).]
much longer than phonon escape at these energies. We can now specialize the multivariable master equation
We can simplify these equations with the approximationto describe the fluctuations in our intrinsic system. Our three
thatN,, g is constant, which is justified because the exchangéevels are connected by various transitions labgleg} in
of phonons with the electrode is a very small perturbation td=ig. 2. Each transition represents a physical process that
the bath. This simplification reduces H36) to the equality changes the occupation of the three levels. Transitign
FesNg=FKNS)YB, where the superscripts indicate steady-statelescribes two quasiparticles recombining to create one pho-
values. We can then rewrite E(.59 as non in the electrode. Transitiqn,, describes the reverse pro-
cess, a phonon being absorbed and generating two quasipar-
ticles. Transitionp,; describes a phonon escaping from the
electrode into the bath. Finallps;, describes a phonon en-
tering the electrode from the bath. We note that there is no
We then see that Eq¢14) and (15b) are the well known gjrect connection between levels 1 and 3, the quasiparticles
Rothwarf-Taylor eqluat|on£°. o . and the bath. Since we have a three level system, our under-
Following Gray,* we can linearize these equations for lying master equation is a two variable equation. We choose
small perturbations by writing\=N°+AN and N,=NJ  as our two variables the number of quasipartidleand the
+AN, and simplifying. If we define the vecta=(N,N,)  number of phonons in the electroble, . Referring to the rate
then we can write the linearized equations in matrix form equations for the systeii4)—(16) we can read off the tran-
sition probabilities, which we tabulate in Table I.
g —2I'g 17) In addition to the transition probabilities, we can also read
- T, /)’ off the shot size for each level, which i&n,=2 for the

0 quasiparticles andn,=1 for the phonons. Plugging these
where we have takehi,=I'g+I'esandI'r=RN’/vol as the  parameters into the above equations we find

steady-state recombination rate. The eigenvaluds aéter-
mine the time constants of the system’s response to small

dN, 1RN?

=-—— — _NO
at =2 vor ~TeNo—TedN,—N;). (15D

A28 1 aa

“dt - =

w

perturbations. Gray showed that the dominant time constant oF. _or 4 -2
for the quasiparticle response in the limig<I'g+ T is M= R B B=T"gN° r
_FR Fw ’ _2 1+ F—es ’
r B
T%=2TgF.% F,=1+ F—B (18) (19
es

whereF , is called the phonon trapping factor. It accounts for ~ TABLE I. Allowed transitions and the probability per unit time
a phonon emitted by a recombination event breaking anothd@r each one.
pair before it escapes to the bath. We note Frfgi is just the

probability that a phonon escapes to the b#th.is the time ' ansition Symbol Probability per unit time
constant with which a small perturbation of the quasiparticlerecombination P1a (1/2)RN?/vol
system will decay, and it is the rate we expect to measure igeneration Pa1 I'sN,
experiments. We see that the measured recombination rafonon escape Pas TN,

I'k is generally very different from the true equilibrium re- phonon entry Pas TN

combination ratel'y. Even for F,=1, we see thafi'y
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wherel' , =T+ 'g. With these matrices we can then write ticle and phonon time scales are widely separated. Basically,

the covariance matrix for our system. We find the quasiparticle system cannot respond to the fast phonon
0 fluctuations and is only affected by the average number of
NCR N 0 phonons.
2= = ir
7 (o NO) 0 Z-_RnoJ: . - _
@ 2T, C. Extrinsic quasiparticle fluctuations

where we have used the principle of detailed balance to re- FOr our second case, we consider extrinsic quasiparticle
late N to N°. Thus, we again find that the variance of thefluctuatlons where we allow quasiparticles to be lost to pro-

occupation of each level is equal to the average occupatioﬁ,e“:'.sfas other than recombination. In particular, we (_:ons!der
%ddltlonal processes that change the number of quasiparticles

as we expect from basic thermodynamic arguments. We alsb 1 Th hvsical | f this Kind of
note that the off-diagonal terms are identically zero, imply- y 1. There are many physical examples ol tis Kind of pro-
cess including trapping into material defettsdiffusion,

ing that the quasiparticle and phonon fluctuations are inde T . .
pendent. This is somewhat surprising since, as we will seff@pping into normal-metal regions induced by fluxdhand

. . o 4 .
later, the presence of the phonons does significantly modi y apping into external normal-metal “sinks. The multi-
the spectrum of the quasiparticle fluctuations. a_mable thepry presented here could b? apphed to a system
Experimentally, we can only measure the spectrum of th ith an arbitrary number of these extrinsic loss processes.
quasiparticle fluctuations, so we will only calculate that spec- owever, we will develop the theory for only one extrinsic

trum. Using Eq(13) and quite a bit of algebra, we obtain the loss Ft)rocess_dln addlr?on totlntrlfnslllc _reclor;blnatrl]on. If we
quasiparticle spectrum were to consider such a system fully, including phonons, we

would have a four level system described by a three variable
2a,7N®  2a,7,N° master equation. However, we saw in the previous section

S(w)=Gyy(w)= 2 5, (200 that in many relevant experimental systems the effect of the
1+ (w7)” 1+ (wm) : g C
phonons reduces to simply modifying the recombination
where constant. We therefore consider only a three level system
with an effective recombination constaRrt .
—> T1™ Tes —> Tes™ T2 Our three levels arél) the number of free quasiparticles,
e T e T, (2) the number of trapped quasiparticles, &8rthe number

] of pairs. The levels are described by the occupation numbers

and y, ,=1/7, ; are the eigenvalues & and 7ei=1/es. It N N, andN,, respectively, and we takd and N, to be
Is straightforward to show that if we integrai¢w) over all —jndependent. We assume the allowed transition parameters
w we recoverN” for the variance. This expression is com- 5re Po=TN, pu=T4N;, p;z=R*N?(2vol), and ps;
p}etely generql. However, in the I|mHR<1;B+ eswe can _ p(1’3= R* (N°)2/(2vol) wherel, is the trapping rate anbl
S'mpl'iyl the elger:v.alues. oM to m=1Tg aqd 72=(I'es s the detrapping rate. We also write the shot sizesras
J_rFB) , whereFR is defined in Eq(18). In this case, oné =1, $n,=1, dny3=2, and sng;=1. We have made some
time constant basically corresponds to the effective quasipaimplicit assumptions in writing these transition parameters.
ticle lifetime and one Corresponds to the phonon lifetime. Wq:irst, we have assumed that we are Working at low tempera-
can then interpret the first term of EO) as “intrinsic”  tures such that the number of pairs is much greater than the
quasiparticle fluctuations and the second term as phonofumber of quasiparticles. Second, we have assumed that our
driven fluctuations. o traps are far from being saturated, such that the transition

In many experimental situations at low temperatures, Weyarameters do not depend on the number of available trap

expect thatl'gr<I'g+I'es by several orders of magnitude states. With these parameters and assumptions we can apply
(Sec. IVB). In this extreme limit, we have that;~2 and  Egs.(9) and(10) to find

a,~0. This gives us a simplified expression for the spectrum

47ENO Vo rg+T, —Fd)

SW)*m- Iy Ty
If we compare this simplifiedS(w) with the one-variable 2(TE+TON®  —(T' N+ T4N?)
result found in Eq.(7), we see that this power spectrum B=| 0 0 0
could have been obtained from a simpler one-variable master (FNTHTaN) 2TaN;
equation assuming effective generation and recombination £+T, T,
parameters =2N° ,

-y Ty
r(N)== N?, N)=r(N?), whereI'% =2R*N%vol. In simplifying B, we have applied
2Fvol ' 9 R

the principle of detailed balance, i.e., assurpdg=p?, and
where the generation parametgiN) is just a constant equal p3,=pis. As discussed earlier, this is always valid for a sys-
to the equilibrium recombination rate. This simplification is tem in thermodynamic equilibrium, but it must also be true
not general, but it is possible in samples where the quasipafer our system in steady-state N and N, would not have
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well-defined steady-state values. We can therefore use the IV. DISCUSSION
qyasiequilibrium resulf1l) to calculate the covariance ma- A. Theoretical connections
trix
We note that comparing the two rate matri¢d3) and
N O N° 0 (19), I'=M for the intrinsic fluctuation problem. As we have
02:( 0) _ I, seen, the eigenvalues ™ determine the spectrum of the
0 N; 0 NC fluctuations. On the other hand, the eigenvalue§ afeter-

d mine the time constants of the dynamical response to small
We see that, even though the quasiparticles are now corperturbations. The fact that these two matrices are equal im-
nected to more than one level, the variance of their fluctuaplies that the timescales of the dynamical response and the
tion is still simply N°. fluctuations are the same. We will now take some time to

We could now calculate the general power spectra of thi€xplore the generality of this connection beyond the specific
model, but the equations are not particularly illuminating.example of intrinsic fluctuations.
Instead, we will further simplify the model to the experimen- ~When we write rate equations such @s)—(16) we are
tally interesting case where trapping and detrapping are theaking some implicit approximations. First, we approximate
faster processes. Specifically, we will assume tat I’y  the occupation numbers of the levels, suciNaandN,,, as

>T% . In this limit, the eigenvalues d¥l are continuous variable_s, when they are in fact discrete varia_b_les.
Second, we approximate the discrete and random transitions
I'y between levels as continuous and deterministic “flows.” To

IR, 7v=Tg+T understand the implications of these approximations, we start

o ) ) by deriving a differential equation for the expectation values
The spectrum of the quasiparticle fluctuations is then of the level occupations from the master equatin We
find the following system of equations:

MITT 4T,

S(0)= G 0) = Tyt 2 (21)
o 1+(w7)? 1+ (w7p)?’ J
where gr(Ni=20 ang((pyi(N) (P (). (22
S — aNO a— IR ~4NO Iy where the indices andj run over all levels. We can compare
SRR T +T, this equation to a general expression for the rate equations
and [similar to Eq.(6)], which is
1%
7’2+F§J I'y —N;=>, snii[pii(N)—pii (N 23
:4NOF T 2 ~4NOT , i 4 n”[p“( j) p|]( |)] ( )
SZ t( 2) Yo— V1 2rd+ Ft ot j

where the final simplification 08, andS, represent extreme The only apparent difference is that we have dropped the
limits. As before, the spectrum is the sum of two Lorentziansexpectation value brackets from the second system of equa-
each with a bandwidth determined by the eigenvaluell of tions. However, we must also keep in mind the subtle differ-

The relative weight of each Lorentzian depends on the deptbnce that the first equation is an exact differential equation

of the traps. We call the traps “deep” if,>1"y, meaning for the continuous expectation value of a discrete variable.

that once a quasiparticle is trapped it takes a relatively londhe second equation is only approximate, for the reasons
time for it to escape. Conversely, we call the traps “shallow” mentioned above.

if I'q>T;, meaning that quasiparticles escape relatively However, in the special case where t#®;(N;)} are all

quickly. For very deep trapsy,~I'; and S, dominatesS;, linear functions of the occupation numbgps;}, we have
such that that (p;;(N;))=pi;({N;)) and we can actually interpret the
0 rate equationg23) as exact equations for the expectation
Syoe @)~ 47N values. In many physical systems, although, the transition
deed l+(an't)z’ rates are at least quadratic in the occupation numbers, such
that, pij~Ni2 or p;j~N;N;. In this case, we have, for ex-

where 7.=1/MT";. This is the result we would expect for a
two-level system where quasiparticles can be lost only t
traps. For very shallow traps, we instead find

0ample, that

(pij)~(NFy=(N;)?+(AN?).

Thus, in the case of quadratic transition rates we must inter-
pret the full nonlinear rate equations as only approximate
which is the result we expect for quasiparticles in the presequations for the expectation values, ignoring terms of order
ence of recombination only. Equati¢@1) varies smoothly the variance of the occupation number. In general though, we
between these two cases and it is easy to show that the intexpect tha{ AN?)~(N;) and we can say that neglecting the
gral of the power spectrum N° for any trap depth. variance terms is a valid approximation to ordgf1/N). In

47EN°
1+ (w7g)?’

Sshallow @) =~
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other words, for a large system the rate equations actually ]
describe the expectation values of the occupation numbers,
to good approximation.

We can develop this idea a little further. If we take Eq.
(22) and Taylor expand the transition probabilities to first

><;I eV.‘. ATa

order we get the following equation for small variations: @*® Al
EMNi)_; omij Ek: ANy (AN FIG. 3. Energy band diagram of the Al box in a modified exci-

tation representation. The circles represent quasiparticles. Tunneling
Ip;j is shown as diagonal transitions across the barrier, indicating that
_Ek (9_Nk<ANk> |{Nk}:{N2} quasiparticles gairilose energy as they are accelerat@tkceler-
ated by the bias voltage. Quasiparticles are confined in both Al
electrodes by high gap Ta. At high bias voltage, only electron tunnel
= 2 Mi(AN), is allowed from left to right and only hole tunneling is allowed from
K right to left. This hole process is known as backtunneling. The two

whereM, are the elements of the matr defined in Eq. Eé?g?isrsiz allow a single quasiparticle to circulate, tunneling mul-

(9). If we follow the same procedure for the rate equations,

and we find that the linearized rate equations , ) .
whereD(gg) is the electron density of states at the Fermi

energy. In our measuremerkgT <A, so the Fermi gas of
|{Nk}:{NE} quasiparticles is nondegenerate. In particular, the density of
quasiparticles is about 16 that of conduction electrons and
the occupation probability of each quasiparticle state is less
EE i AN, than 103, much smaller than in the normal state at the
K Fermi energy.
We measure the number of the quasiparticles in the gas by
dividing the box with a tunnel barrier and measuring the

linearized rate equations as equations for the expectation Va?__urrelnt througt:[\_ thebtlinnel btz:]rrler. A'Llarg? b|as,_ thet_rel IS a
ues around their steady-state values. This result is the gene [npe connéction between the number of quasipartcies in
connection between fluctuations and dynamics we wer e box and th? cur.rent, given by th? next equation. In.Flg. 3
seeking. It says that the timescales measured from dynam e STOW quas;?artlcllez_dls_glbpted inan fenergy r:kﬁﬁen
perturbations and from steady-state fluctuations must be thg€ Al- (For a thermal distributiongE is a few timeskgT.)

same. We can also view this result as a statistical fluctuation '€ Ovals represent Cooper pairs at the Fermi energy. Each

dissipation theorem for our system. In fact, in equilibrium,quaSipa”iCIe is a quantum superposition of electron and hole.

we can derive the fluctuations of our system in a thermody—Biased ata _voltage eYJE, a quasi_pgrticle can only tunnel
from left to right as an electron, gaining energy eV. It cannot

namic framework using the more conventional fluctuation- X ,

dissipation theorerf® tunnel from left to rlght as a hole, because it Wpuld Ipsg
energy eV and tunnel into the gap on the right side. Simi-

larly, a quasiparticles can only tunnel from right to left as a

hole (through a process called backtunnejity Thus, for

In a previous Letter, we presented experimental verificaeV> SE, tunneling events from left to right and from right to

tion of our theory by measuring intrinsic quasiparticle num-left transfer a charge in the same direction and the associated

ber fluctuations in an Al boX.The box was formed by a currents add. The time-dependent current is then given by

volume volk= 100 um?, of thin-film superconducting Al. Two

sides of the box were contacted by superconducting Ta leads.

The Ta leads allow electrical contact to the box through the I(t)=e(

Cooper pair system, while still confining quasiparticles in the

Al (Fig. 3. Thermal quasiparticles in the Al cannot enter theyhereN, andN, are the numbers of quasiparticles in the left

Ta because the energy difference between the superconduging right side andr, is the tunnel timé’ In writing this

ing energy gap of TaXr,= 700 neV) and the energy gap of equation, we have assumed that any variations (it) hap-

Al (Ay=180peV) is much greater thankgT~20 pen on a time scale> 7. As we will show later, the time

—30 neV and confines the quasiparticles. There are no thelscale of the fluctuations in the box meets this condition.

mal quasiparticles in the Ta at the temperatures used. |t is a good approximation to treat the two halves as one

_ The number of quasiparticles in the box in thermal equi-quasiparticle system if the halves are strongly coupled. The

librium is condition for strong coupling is%> 7, where 7}, is the
effective recombination time for a quasiparticle. If this con-

— Ap dition is met, a typical quasiparticle tunnels many times be-
N(T)=D(e¢)volv2mAnksT exp{ kB_T) fore it recombines, and thus can interact with quasiparticles

d _ IPji Ip;j
ﬁtANI_JE;H 5nij ; &NKANK ; aNkANk

where we have defined the linearized rate mditixVe see,
in general now, thal'’=M and that we can interpret the

B. Experimental connections

Ttun Ttun Ttun

NI Nr(t)> _ N
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f

n

in both halves of the box. In our measurements, 75/ 7, is

between 10 and 50. The fact that a quasiparticle in a super- 100
conductor is a superposition of electron and hole allows it to
tunnel back and forth multiple timé§.

We also directly measured the recombination time of qua-
siparticles in the box with single-photon absorption
experiments? A single photon from the mercury emission
line at 4.89 eV(256 nm) was absorbed in one Ta lead, pro-
ducing about 4000 quasiparticles. These quasiparticles dif- ® Gray 19712 [1
fuse to the Al where they can emit phonons and drop down O wilson 2001°|.
in energy, becoming trapped. These trapped quasiparticles
are a small perturbation to tHé°~10° steady-state quasi- 14e e
particles in the Al box. The trapped quasiparticles circulate, 5 4 é :3 1'0 12
tunneling and backtunneling, until they are lost to recombi- NKT
nation with a thermal quasiparticle. This produces a current
pulse that decays exponentially on a time scale of the effec- FIG. 4. Comparison of quasiparticle lifetime measurements de-
tive recombination timer . scribed here to previous measurements by GRef. 22. Measure-

In thin-film Al electrodes at the temperatures used weMents by Gray were on Al on sapphire with=195uV. Our films
expectl’ g~ 104 Sfl, Fo 10° 371, andFB~101° g1 (Ref. are pn SiQ Wlth A.=180HV. The solid line shows the.theqretlcal
20). Thus, referring to Eq.(20), we expect aj~2(1 scaling of the lifetime with the BC_:S _number of_ qua5|part|cles_ for
—107%) and a,~2(10°%). This gives us a simplified ex- our value ofA. Our data show the lifetime following the theoretical
pression for the spectrum dependence to lower temperatyRef. 5.

P‘~.. ]
®

N

o
o
il

N

10

s O ®

— Fit to Wilson

.10 as 7y, can be inferred from measurements of quasiparticle-
- 47N guasiparticle recombinatiofThe parameter, is material

1+ (w7h)?’ dependent and its value has been predicted for a variety of

metals?®) In particular, for a pair of quasiparticles at the gap

This result contains three important predictions. First, it preedge, the expression for the recombination constant is
dicts that the power spectrum of the fluctuations should be
Lorentzian. Second, it predicts the temperature dependence [ 2A 3 1
of the bandwidth of the noise. Basically, the bandwidth is | kgT./ 2AD(eg)7o’
proportional to the average number of quasiparticles, since . . .
175 ~N°. NO is an exponential function of T/well below whereA is the superconducting energy gag, is the super-

T., so, we predict that the bandwidth is also an exponentiagg?]gﬁdg;gs:;?gss'g??hfEgrer;?gjrzz’r aa‘?jgzv:vé?e T]Iiﬁtormra i
function of 1T in our temperature range. The theory also Y gy- P P

predicts how the low-frequency magnitude of the noiseping complicates the extraction af, from recombination

S(w=0), changes as a function of temperature. All factorgTeasurements at temperatures much lessTgann fact, in

in the magnitude o8(w=0) are approximately independent thet'hmlt ?frs:r(;ng phonon trapping, the measured recombi-
of temperature excepN® and 7%. However, 75 only nation ratel r becomes

S(w)

(29)

changes with temperature because the number of quasiparti- Ts

cles changes. Specifically}(T)~1/N°(T). Thus, the prod- FEZZF—Fes~Fes

uct N°7% is constant and, therefor&(w=0) should be in- B

dependent of temperature. because the pair-breaking ralg is also proportional to

Our measurements showed good agreement with all of/7y. Thus, measurements &f; in the presence of strong
these predictions. First, we confirmed that the quasiparticlphonon trapping have no dependencergn
fluctuations had a Lorentzian form. We also confirmed that As described above, we have used both fluctuations and
the characteristic time of the fluctuations was in faft, photoexcitation to measurgy in Al. If we ignore phonon
over a range of temperatures, by comparing the noise meaapping for the moment and insert our measured value of
surements to the direct measurementpfgiven by photon into Eq.(24), we extract a tentative value fog of 1.65 us.
excitation. We were also able to indirectly confirm the tem-Numerous other measurementsgfin Al by various meth-
perature dependence 8{w=0). We were not able to di- ods find values of order 100 A%?* This discrepancy sug-
rectly confirm the temperature dependence because the dgests that our measurements are, in fact, in the limit of strong
vices were heated by the bias power and, therefore, had grhonon trapping, so that they do not represent a direct mea-
effective temperature higher than the bath temperature. Stilsurement ofry. Our measurements do, however, confirm
we demonstrated that the magnitude of the noise was indéhat the quasiparticle recombination rate is proportional to
pendent of the quasiparticle density, which is a measure dhe quasiparticle density at lower temperatures and longer
the effective temperature. recombination times than previous experiments. In Fig. 4, we

In superconducting systems, at least in principle, the funcompare the recombination time measured by us to previous
damental time scale of electron-phonon interactions, knowexperiments and to theory. The previous measurements
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showed recombination times that begin to deviate from thesity of quasiparticles. At least one experiment has directly
expected dependence @t~400 mK and r5~20 us and demonstrated the impact of this quasiparticle background on
completely saturate at a maximum value 7§f~80 us be-  the measured coherence tinfé&Jnderstanding the effect of
low T~300 mK?2? Quasiparticle loss into normal-metal re- quasiparticle fluctuations on coherence may therefore be im-
gions created by trapped flux was proposed as the explangertant for the development of quantum bits.
tion for the deviation from theory in those measurements, In conclusion, we have developed a general theory of qua-
although this explanation was not experimentally confirmedsiparticle number fluctuations in superconductors. We ap-
Therefore, our measurements extend the range over whigflied this general theory to the problem of intrinsic quasipar-
the basic physics of recombination has been verified in Al. ticle fluctuations related to generation and recombination.
While quasiparticle number fluctuations may be helpful inThe validity of these results have been demonstrated in pre-
studying the microscopic dynamics of superconductors, theyjous experimental work. We have also applied the theory to
are also a source of noise in superconducting electronic dem example of extrinsic quasiparticle fluctuations where qua-
vices. We have discussed in detail how they can limit thesiparticles are also lost to traps. We conclude that studies of
performance of single-photon spectrometers based on supgjuasiparticle fluctuations provide a useful probe of micro-

conducting tunnel junctior.In addition, quasiparticle fluc-  scopic dynamics and are also important for the understand-
tuations may be an important source of noise, and thereforigg of noise in superconducting devices.

decoherence, in superconducting quantum (ojtits. The
majority of solid-state systems that have been used to dem-
onstrate coherent quantum manipulation of a single qubit
have involved superconductotsll of these measurements
have been performed at very low temperaturédT( We would like to thank Luigi Frunzio, Michel Devoret,
~0.01), where there would be essentially zero quasiparticleRobert Schoelkopf, and Liqun Li for help and useful discus-
in equilibrium. However, all of the readout schemes in thesesions. Funding for this work was provided by Grant Nos.
experiments produce nonequilibrium quasiparticles, whiclNASA-NAG5-5255 and NSF-DMR-0072722. C.M.W. was
can accumulate in the qubits, leading to a steady-state desupported in part by NASA GSRP and the Keck Foundation.
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