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Effect of an electron-phonon interaction on the one-electron spectral weight of d-wave
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We analyze the effects of an electron-phonon interaction on the one-electron spectral Aq&ighit of a
dy2_y2 superconductor. We study the case of an Einstein phonon mode with various momentum-dependent
electron-phonon couplings and compare the structure produokkim) with that obtained from coupling to
the magneticr-resonant mode. We find that if the strength of the interactions are adjusted to give the same
renormalization at the nodal point, the differenced\ik,») are generally small but possibly observable near
k= (,0).
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[. INTRODUCTION tions in the cuprate materiaté Although simplified, the sud-
den approximation leads to a useful picture in which the

The role of the electron-phonon coupling in the high  ARPES intensity is equal to the square of a matrix element
cuprates remains a puzzle. The initial finding of the absenc#hich depends upon the photon energy, polarization, and the
of a phonon signature in the temperature dependence of tf@mple geometry times a product of the single-particle spec-
resistivity' and the small size of the isotope effect in the tral weight
optimally doped cupratéssuggested that the electron- 1
phonon interaction played a relatively unimportant role in Ak,w)==Im{G(k, )} (1)
these strongly-correlated materials. However, large isotope ™

effects away from optimal dopirfy? significant phonon  anq 5 Fermi factoff (w). Here G(k,w) is the one-electron
renormalization induced in the superconducting stafend Green’s function. Thus, the idea is that from tkeand o
recent interpretations of angle-resolved photoemission SPegrependence of the ARPES data, one can extract information
troscopy(ARPES datd*® continue to raise questions regard- apout the spectral weigh(k, ). Then, from this, one seeks
ing the nature and role of the electron-phonon interaction Iﬂo learn about the electron se|f-ene®yk7w) and the struc-
the highT, cuprates. ture of the effective interaction. In particular, the role of spin
One point of view is that the effects of the strong Cou-fluctuations and ther resonance on the superconducting
lomb interaction act to suppress the electron-phonon interastate spectral function have been studi&d® With the re-
tion and that while the electron-lattice interaction enters thecent suggestiofisrom ARPES measurements that there may
problem, it does so on a secondary level coming along as lte a significant coupling of the electrons to a phonon with an
were for the ride. For example, in this view the large isotopeenergy of order 40 meV, one would like to understand how
effects observed in some of the cuprates away from optimahis would effect the ARPES spectrum.
doping arises from the influence of the lattice on stripe fluc- From the number of atoms in a unit cell, it is clear that
tuations, acting to stabilize these and thus suppressindjere are a large number of phonon modes in the cuprates.
superconductivity’ Similarly, the superconductivity-induced Here we will focus on several of the modes associated with
phonon renormalizaton and the possible Engelsthe motion of the O ions. We will treat these as Einstein
berg-Schrieffet* signature in the ARPES data could be inter- phonons. Then for a Hubbard-like model in which the Cu
preted as naturally occurring in an interacting system busites form the Hubbard lattice, the effective electron-electron
having little effect on the underlying superconducting pairinginteraction is
mechanism. Alternatively one might interpret the isotope ef-
fect and the phonon renormalization as supporting the exis-
tence of a significant electron-phonon coupling. Further-
more, ARPES measurements have been specifically
interpreted in terms of phonon modes that could ddye > If [g(q)|?=]g|® is independent of the momentum transfer,
pairing? Here, we analyze a simple model of an electron-V(q,w) does not couple to the,2_y2-pairing channel. This
phonon interaction with the goal of obtaining insight into could model the coupling to theaxis vibration of the apical
what one expects to see in the ARPES data dfa 2 su-  oxygen. Alternatively, if the electron-phonon matrix element
perconductor with electron-phonon interactions. is momentum dependent, the interaction given by(Egcan
Continuing technological advances along with improvedcouple to thed,:_2-pairing channel.
sample quality have allowed ARPES to probe details of the The possibility that an electron-phonon interaction could
energy and momentum structure of the one-electron excitegive rise tod-wave pairing has been discussed by various

~ 2|g(q)|*Q,

V(g 0) = .
()= aris

@
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authors'®=%In one approach, thé-wave pairing interac- 7-resonance mode has been extensively discussed in Refs.
tion occurs as the result of the interplay of the O half-14,15. Section IV contains a summary of the results and our
breathing mode and the exchange interactiabther ap-  conclusions.

proaches suggest that the Coulomb interaction can lead to a

peaking of the electron-phonon coupling at small momentum II. A CYLINDRICAL FERMI SURFACE AND AN

transfers which favorsl,z_,2 pairing®~?° This type of mo- EINSTEIN PHONON

mentum dependence also occurs directly for certain phonon

modes. For example, for the Cu-O-Cu bucklinglike In this section we consider the case of a cylindrical Fermi
modél=25 the square of the electron-phonon coupling con-surface and an interaction arising from the exchange of an

stant is Einstein phonon of frequend;
O dy 2[g(6,0")7Q
l9(a)*=1g|? cos’| - +co§(—) : 3 V(6,60 0)=—————. 7
2 2 O s “

Setting q=k—k’, the momentum-dependent part of this

. ! Here, 6 and ¢’ denote differenk vectors on the cylindrical
coupling factors into a sum of separable terms

Fermi surface. With Eq4) in mind, we will take|g(8,6")|?
|g(k—k’)|2:|g|2[1+%(coskx—cosky)(cosk;—cosk)’,)+ . to have the separable form
@ 9(6,6")[2=|g°+|g,|>cos cos 26, (8)

including additional (cok,+cosk,) and (sirk,=sink,) fac-
tors. The plus sign in front of thd-wave term implies that
this type of phonon exchange provides an attractive channel
for d-wave pairing. The key point is that if the electron- G(k,w)= Z(w)ot e 9)
phonon couplindg(k,k")| falls off at large|lk—k’| momen- ’ (Z(0) )2~ 2~ ¢?(b,0)
tum transfers, then such a phonon exchange can mediate
d-wave pairing. with ek=k2/2m—,u, the renormalization paramet@i w),

Alternatively, an in-plane O breathinglike mode has and the gap parametef( 6, w) = ¢(w)cos(2). The Eliash-
berg equations foZ(w) and ¢ (w) are

The one-electron Green’s function can be written as

.5 .5
swl=lof{sie{ 3] +si 3] @ Qo [~ [ do
[l—Z(w)]wZ)\Z—f dw’j —
2 0 2
This increases at large momentum transfers giving rise to a
repulsive interaction in thed,2_ 2-channel. Settingg=k Z(o)o'
—k’ in Eq. (5) one finds that e 1(Z(@) o P—d(a' )coL2012
|g(k—K")[*=|gI[1~ Z(cosk,— cosk,) (cosky — cosky) + - - ((]5) 1 1
. o o . 0'+ot+tQi—i16 o' —-—wt+tQy—id
and the minus sign in the second term implies that this pho-
non suppressedwave pairing. (103

In Sec. Il we discuss the simplified case of a cylindrical

Fermi surface and a separable phonon mediated interaction. (@) =\ 220 °°d , ﬁ

This provides insight into the differences betweensiveave Pl@)=hg7| do’ | 5

andd-wave cases and establishes the structure of the singu-

larities in the self-energy that are reflectedAfk, w) for an ( d(w')cog26 )
Einstein mode. While in the actual materials, the singularities {[Z(w’)w’]z— ¢2(w')005220}l/2

are broadened by the dispersion of the phonon mode, quasi-

particle lifetime effects due to other interactions and impuri- 1 1 ) }
ties, as well as finite temperature effects, these results show X + ,
the type of structure that can appear Afk,») due to o' +to+tQe=id o' -wtQo—id
phonons. It also provides an example for which one can (10b)

study the difference i\(k,») which occurs for modes that

couple only to the normaZ part of the self-energysuch as ~ with \,=2|gq|°N(0)/Qo and X\ ,=2|g4/°N(0)/Q. Here

the Holstein modg only to thed,2_2 channel or to both. In . N(0O) is the one-electron density of states at the Fermi sur-
Sec. I, we include the effects of at’ band structure and face.

the momentum dependence of the coupling. We consider the In order to determine the effect of the phonon Bfw)
three different electron-phonon coupling constants discusseahd ¢ (w), we will adapt an approximation used in the early
above and compare these with the response to thstudies of the role of phonons on the supercondudt{ivd
m-resonance spin-fluctuation mode. The analysis of theharacteristi®® From the form of Eq.(10), one sees that
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FIG. 2. (Color online An intensity plot of the spectral weight
A(k,w) for the case of arswave superconductor coupled to a
phonon with frequency),. As indicated on the color scale, the
figure is “overexposed,” i.e., features exceeding 5% of the maxi-
mum intensity appear white, in order to show the weaker features.

FIG. 1. Results for the real and imaginary phonon-induced con-

tribution to Z(w) and ¢(w) for a d-wave (solid) and ans-wave

(dashedl superconductor. Here we have taken a cylindrical Ferm

surface and a separable interactid(w) and ¢(w) are normalized
with respect to the appropriate coupling constants. Forstivave
case\,=\,. For all of the circular Fermi surface plots, energy is
measured in units oAy and Qy=1.5A,. With this normalization
wZ,y(w)/\ Qg goes towr/2 asw— .

there will be structure iZ(w) and ¢ (0) whenw=* (Q,
+A(0)). In this casew’ will be of order the gapA(6) at
the gap edge

¢l 0,0=A(0)]

AO=Zr w=A (o))"

(11)

Therefore, if the low-energy response in the superconductin

state is well described in terms of BGBwave quasiparti-
cles, one can replac&w') and ¢(6,0')/Z(w") inside the
integrals byZ(0) and A(#)=Aycos . Then, taking the
imaginary parts of Eq(10), we have foro>0

2 or—2n [ ™ (w—Qg)do

w w)— ’

2 27000, [(w—Qg)2—A2co£26]Y2
(129

bol) =20 40 fvr/4 Aocos26d6

RO [(0— Q)P — A2co220] 2
(12b

Here 6. is such thatA(6.) = w—Q( and ¢,(w) andZ,(w)
are even functions ob for a time-ordered zero temperature
Green'’s function.

Results forwZ,(w) and ¢,(w) are shown in the top
panel of Fig. 1 for both a,>_2-wave and &wave gap with
Q,=1.5\. For aswave gap, cos@is setto 1 and).=0 in

iEQs. (128 and (12b. For theswave case, the imaginary

parts of Z(w) and ¢(w) onset whenw exceeds= (),
+A,) and exhibit a square-root singularity. For
dy2_2-gap, these functions onset linearly at=+ (), be-
cause of the gap nodes and there is a log singularity at
+(Qp+Ap). The real parts oZ(w) and ¢ (w) are obtained
from the usual dispersion relations, and results Zg(w)
and ¢4(w) are shown in the lower panel of Fig. 1. For the
swave caseg, andZ, exhibit square-root singularities as
approaches: (Q+Ag). This is just the expected Kramers-
Kronig transform of the square-root singularitydn andZ,.
Similarly, the results foip, andZ, for the d,>_,2 case ex-
hibit step discontinuities ab= = ({2o+ A) arising from the

g singularities ing, and Z,. Naturally in real materials,

honon dispersion, impurity scattering, and finite-
temperature effects broaden these features. Nevertheless,
they provide a simple framework for analyzing the ARPES
data.

An intensity plot ofA(k,w) for the case of as-wave gap

is shown in Fig. 2. HereA(k, ) is obtained from the imagi-
nary part ofG(k,w), using thes-wave results foZ () and
¢(w) shown in Fig. 1 withh ,=\ ,=0.5. The real part of the
gap function is supplemented by an additional contribution
from an underlying pairing interaction so that the magnitude
of the gap at the gap edge is equaldp Results for both the
ARPES accessible region=<0 and the inverse photoemis-
sion regionw>0 are shown. The shift of spectral weight due
to the quasiparticle coherence factg(d + ¢, /E,) is clearly
seen as is the Engelsberg-Schrieffer signature showing the
asymptotic approach of a peak in the spectral function to
+(Qg+Ap). Because of the square-root singularityZimand
¢, the asymptotic approach of this peaktdQ,+ Ag) var-
ies as £Qg/€,)?. In addition?’ the Fermi velocity is renor-
malized byZ,(Ay)~1.4 so that the dispersion of the peak

a
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FIG. 3. Energy distribution curves showingy(k,w) vs w for
various values of, for an swave superconductor with,=0.5.
Here one sees that agexceed®),+ Ay=2.5, a peak is left behind
whose intensity weakens &g increases. A Lorentzian broadening
8,=0.025 was used here and throughout the paper.

for w nearA, varies asy[e/Z,(Ag)]>+ A3 while for
large compared td),, a broadened quasiparticle peak dis-
perses ase,. Energy distribution curvesEDC) showing
A(k,w) versusw for various values ok, are shown in Fig.

3 for w=<0. This is the type of EDC that one would expect to -5.0 0.0 € 5.0

see for a traditionas-wave electron-phonon superconductor

with a single dominant Einstein mod&More generally, one 0 Alk,®], % of maximum 5.0

would have multiple phonon modes and their dispersion S

along with possible finite temperature effects would lead to a g 4. (Color onling An intensity plot ofA(k, w) for a d-wave
richer response. gap. Results for #=0 cut are shown irfa) and for 6= /4 in (b),

Intensity plots ofA(k,w) for the case of @2 2 gap are 3 nodal cut.
shown in Fig. 4. Just as for thewave case@,(6,w) is
supplemented so that the gap at the gap edgk,os 2. As we will discuss, termination of this peak is a reflection
Figure 4a) showsA(k,w) for a cut along the antinodal di- of the fact that for ad,>_,2 gap,Z; and ¢; have step dis-
rection ink space ¢=0), while Fig. 4b) shows the results continuities at=(Q,+A,) rather than the square-root sin-
for a cut along the nodal directiod& 7/4). The antinodal gularities associated with a@wave gap.
cut resembles the-wave case in the transfer of spectral The nodal cut, shown in Fig.(B), appears on first glance
weight ase, passes through the Fermi energy and the renorto be similar to what one would expect for the normal state.
malization of the quasiparticle dispersion. However, theThat is, a renormalized,/Z,(k,0) dispersion foro<(
Engelsberg-Schrieffer signature no longer asymptotically apwith the dispersion returning to its band valeég for
proaches+ (Qy+A,), but rather appears to be broadened>(),. However, the cutoff Engelsberg-Schrieffer signature
and cut off. In thesswave case, the broadening due to thestill occurs for|w|=Qy+Ay. Thus, the full antinodal gap
electron-phonon interaction did not set in until] exceeded A, enters as the characteristic kink energy for all momentum
Qo+ A, leading to the long sweep of the peak which occursslices. This simply reflects thes| = Qq+ A, singularities in
for || just below Q,+A). However, the nodal regions Z and ¢ shown in Fig. 1. Again, the broadening of the
associated with d,2_,2 gap lead to a finite broadening when Engelsberg-Schrieffer peak whem| exceeds(), is clearly
|w| exceedd,. The onset of this broadening is seen clearlyseen in Fig. 4). In Fig. 5a), various EDC slices oA(k, w)
in Fig. 4. are shown for thed,>_,2 case. Comparing these with the
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FIG. 5. Energy distribution curve@EDC) showingA(k,w) vs w for different values ofe, (—1,—2,—3,—4 from top with (&) A,
=A\4=0.5, (b) A,=0.5\4,=0.0, and(c) \,=0.0\,=0.5. Results for th&#=0 cut are shown as the solid curves and fer 7/4 as the
dashed curves.

swave case, one sees the broadening and truncation of theQ) is seen to be quite similar to the isotropia,(

Engelsberg-Schrieffer lower peak. =0.5\,=0) case. Part of this arises from the fact that in
The difference in the structure of the Engelsberg-both cases the gap has been setAtpat §=0. Fig. 5c)

Schrieffer signature between tiseand thed,2 2 cases can showsA(k,w) for the alternate limiting case in which the

be understood from the plots of mode is coupled only to thel. .2 channel §,=0\,
=0.5). In this case, one sees a clear difference with respect
= —V[Zi(0)0]*— d3(w) (13)  to the isotropic case shown in Fig(a. In particular, since

Z=1, along #=m/4 where the gap vanisheg(k,w) is
shown in Fig. 6. One can see that as one prohestates equal to its noninteracting form. That is, tlk, mode does
which are further below the Fermi energy, two solutions ofnot effectA(k,w) for 8= /4 if A,=0. These results show
Eq. (13) develop. For theswave case shown in the upper that, in principle, one can obtain information on the cou-
panel of Fig. 6, an undamped lower-energy branch asympplings of the mode to the norma part of the self-energy
totically approacheso=—(Qy+A4,), and a second quasi- and thed,2_,2 channels by examining(k,®) in the nodal
particle branch atv= — €, evolves which is damped by the and antinodal directions. However, in general, the effects are
imaginary parts oZ and¢. As we have seen, these branchessubtle.
are reflected in the structure Ak, w) and the lower-energy
branch represents the characteristic Engelsberg-Schrieffer 1. BAND STRUCTURE AND THE EFFECT OF A
signature for ars-wave superconductor. Similar plots for the MOMENTUM-DEPENDENT COUPLING

dy2_2-case with6=0 and §=m/4 are shown in the lower
panel of Fig. 6. Here, unlike thewave case, the low-energy We turn next to the effects of the band structure and to the

branch is terminated, reflecting the fact that the singularitie§?0mentum dependence of the electron-phonon coupling. For
in Z, and ¢, for the d-wave case are simply step disconti- the band structure, consider a square lattice with a nearest-
nuities at+ (Qo+Ag). The onset of damping processes for N€ighbor hopping and a next-nearest-neighbor hoppirig

the d,z_,2 case wheno< — (), give rise to the discontinuity In this case
in slope seen ab=—,.

Finally, for thed-wave case, the interaction may also have
different N, and A, coupling strengths. For example, the For t'/t=—0.3 andu/t=—1, one has the typical Fermi
Holstein coupling haa ,=0. Fig. §b) shows EDC slices of surface shown in Fig. 7 and the single spin electron density
A(k,) for \,=0.5 and\ ,=0. For §=/4, the gap van- of states shown in the inset. We take the gap to be
ishes and the results are identical to Figa)Sfor A=\,
=0.5. Even forg=0, the spectral weight forA;=0.5)\ 4 A= Ao(cosk,—cosk,)/2. (15

€= — 2t(cosk,+ cosk,) — 4t’ cosk,cosk, — u. (14)
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peratured,2_,2 superconducting state. At low energies this
state is characterized by a renormalized band structure, Eq.

FIG. 6. Plots ofe,= — \[Z3(w)w]?— ¢2(w, ) vs w along the  (14), and chemical potential, a renormalized coupling con-
negativew axis for \,= 0.5 show the structure of the Engelsberg- Stantg(d), and a gap given by Ed15). These parameters
Schrieffer signature. The upper panel is forsswave gap and the have been used in the Eliashberg equations to describe the
lower panel is for al-wave gap withd=0 shown as the solid curve State which enters when an excitation at eneigy(}, de-
and 0= /4 as the dashed curve. cays to a lower energlg,, state(or whenw<—, decays

to —Ey/). The real parts oZ(k,w), ¢(k,w), and X(k,w)

In this case, the one-electron Green’s function can be writteare again found from the Kramers-Kronig dispersion rela-

®

in the form tion. The spectral weighA(k,w) is then obtained from Eg.
(1) with the chemical potential shift removed frody (k, w)
Z(K,w)w~+[ e+ X(K,w)] and a contribution added to the real part of the gap so that the
G(k,w) real part of the gap at the gap edge remains equal toEq.

- 2_ 2_ 2 :
[2(k o))"= [ect X(k,w)]"= &7 (k,0) (16) (15). Note that the contributions of the underlying pairing

interaction toZ andX, as well as the higher-energy partgf
Adopting the same approximation as before, the phononhave not been included. Thus, there are additional renormal-
induced contributions to the imaginary parts of the renormalization and damping effects which do not appear. We basi-
ization, energy shift, and gap parameters are given by cally are seeking to understand the leading contribution of
the electron-phonon interaction which is superimposed on
top of the other many-body interactions. This approach rests
on the idea that in the superconducting state the low-lying
electronic states are well described by BCS
d,2_ 2-excitation$® with renormalized band parameteys’,
and u, ad,2 2-wave gapA,, and renormalized electron-
phonon coupling constants. Note, that here we are not taking
into account the possible change gndependence of the
k! electron-phonon couplings produced for example by the
X[ 8(Er+ Qo= @)+ 8B+ Qo+ )], Hubbardu.*~20
We begin by looking at the self-energy terms for the case
(A7D  of the buckling mode withlg(q)|? given by Eq.(3) and
|g|?=0.5 in units oft™2. From Eq.(4), this value of|g|?
corresponds to d wave coupling strength coming from the
buckling mode 4~ %2|g|2N(0)/Q, which is of order 0.1—
0.2. Andersenet al**°! have estimated that the totaly
X[S(Ew+Qp—w)+ S(E + Qg+ w)]. electron-phonon coupling is of order 0.3 and they find that
(170 the buckling mode gives the dominant part of this coupling.
Results forg(w,k), Z(w,k), andX(w,k) are shown in Fig.
Here, as before, we assume that an underlying pairing inteB for k at pointA shown in Fig. 7. The imaginary parts @f
action, most likely spin fluctuations, gives rise to a zero tem-and ¢ exhibit the expected log singularity At + (), that we

0Zo(k )= — 3 |g(k—K')|2[ 8(Ex + Qo— o)
2N
k/
— (B + Qo+ w)], (17a

(Y

aa
Xolk,w) == 2 lg(k=k)I* 2
k!

Ay

T
k)=~ k—k")|?
Palko )= 2 latk—kOI* -
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associated with the buckling phonon 8f,+A, and (),
() +E(0,m).

As noted in the Introduction, one would like to determine
whether the structure observed in the ARPES data is due to
phonons or ther-resonance spin-fluctuation mode. Eschrig

0.0 and Normafi**®have analyzed the effect of theresonance
08 Z (@1 7 using.a detailed tight binding fit of the band ene@yand a
06 ! : coupling to thew-resonant mode of frequendy, given by
0.4
0.2 2 2 XQ
0.0 E— lo(@) gSF1+4§2[cos°-(qx/2)4—(:052(qy/2)] - (18
o1 X, (®) X, (@) Here, we will use thé—t’ band structure of Eq14) with
t'/t=—0.3 and u=—1, setmxo=1, £€=2, and g3xxo
/ﬂ =5. This corresponds to having/t~4.6 in an effective
00 - Hubbard random-phase approximations interaction. In addi-
! . tion, with this choice forggF we will find thatZ;(kg,0) at
0 O;’k 1o Ojlt ! the nodal pointC is comparable withZ,(kg,0) for the

phonons. This makes it convenient for addressing the ques-

FIG. 8. The self-energy parametefs Z, and X vs o for the  tion of whether there are significant spectral differences due
case of the buckling phonon coupling, B8), with k=k, corre-  simply to the structure of the momentum-dependent cou-
sponding to the poinA of Fig. 7. Here|g|?=0.5. plings that would allow one to determine the nature of the
mode from the ARPES data. Note that for the spin-

previously saw for the case of a circular Fermi surface. Iffluctuation interaction witjg(q)|* given by Eq.(18), there
addition, there is a second log singularity B¢0,7)+(, IS @ minus sign on the right-hand side of E@7c for the
with E(0,7) = \/mg which comes from the Van 92pP parameter. So to suzmmarlge, fqr the Er;ree .type's of pho-
Hove singularity* atk= (0,r). These log singularities id, ~ N°N couplings we takfg|®=0.5 in units oft™* which gives
and ¢, manifest themselves via the Kramers-Kronig disper—zzl(kF ,0)=1.3. For thew-resonance mode coupling, setting
sion relation as step-down discontinuitiesZp and ¢,, as ~ 9sFXQ=9 givesZ(kg,0)=1.3. _
seen in Fig. 8. The energy shift parametdnas only the Van Intensity plots_ ofA(k,w) for th_e constant Holstein cou-
Hove singularity. Naturally, the dispersion of the phononPling, the buckling mode coupling Ed3), the breathing
mode as well as finite temperature and lifetime effects willmode coupling Eq(5), and thewr-resonance mode coupling
broaden these features in the actual system. The energy digd- (18), are shown in Fig. 10 for the momentum céit
tribution of the spectral weighf(k,») for the buckling ~Similar intensity plots for the momentum cuisand C are
mode at momenturk, is plotted in Fig. 9. It shows the Shown in Figs. 11 and 12. In Fig. 10, one sees a high-
quasiparticle peak at the gap edde as well as structure INtensity quasiparticle peak and weaker structures onsetting
A atw=—(Qo+A,) and—(Qy+E(0,7) due to the coupling
to the phonon or magnetic resonance modes. FoBtheo-
mentum cut shown in Fig. 11, one can now move deep
enough inside the Fermi sea that the Engelsberg-Schrieffer
lower-energy peakthe upper bright curve in the figures
0.4} 1 broadened whew becomes less than (), and terminated
at a finite value ok, asw approaches-(Qy+A4,). At still
03l ] higher energiesd more negativg a damped quasiparticle
branch is seen. The nod@l cut is shown in Fig. 12. Here,
- one clearly sees the Engelsberg-Schrieffer signature with a
021 ] quasiparticle peak which varies ag/Z,(kg,0) near the
Fermi surface, then disperses and bendswaapproaches
0.1t ] —(Qot+Ap). This peak is then terminated as a broadened
high-energy quasiparticle branch appears at more negative
0.0 , , , values ofw.
-038 -0.6 -0.4 -0.2 0.0 The difference ofA(k, ) for the various modes is in fact
oft subtle since all four have an Einstein spectrum wilg

FIG. 9. A(k,0) vs w atk=k, for the case of a buckling mode =_0.3t, a dyz—y2 gap with Ag=0.2, and a band _structure
with |g|2=0.5. With energy measured in units bithe gap ampli- with t'/t=—0.3 andu=—1. Thus, the characteristic ener-
tudeA,=0.2, and the phonon energy,=0.3. The vertical lines, ~ Ji€SAg, Qo+ Ag, and(ly+E(0,7) are the same. In addition
b, andc mark the characteristic energies)y, —(Qy+4A,), and  as discussed, we have chosen the coupling constants so that
—[Qo+E(0,m)], respectively. |g(q)|? averaged over the Brillouin zone is the same for all

05|

Ak,m)
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FIG. 10. (Color onling Intensity plots ofA(k, ) for the mo- FIG. 11. (Color onling Intensity plots ofA(k,w) for the mo-
mentum cutA for four different couplings corresponding to the mentum cutB for the four different couplings.
Holstein mode with/g(q)|? constant, the buckling mode E¢p),
breathing mode Eq5), and w-resonance magnetic mode coupling
Eq. (18). Here,|g|?=0.5 andg%-xo=5. The cutoff indicated on .
the color scale| r|efers to thesgcgjal spectral weight inten(gity It has been suggegté‘t‘f,?’e that the structure in the
opposed to the relative scale used in the previous intensity)glots ARPES data of BISCO is consistent with the existence of an

that one can directly compare the effects of the different couplings.

IV. CONCLUSIONS

Holstein phonon Buckling phonon

four cases. Thus, the basic difference is the momentum struc 90
ture of the different couplings shown in Fig. 13 faog,

=qy. Here, we see that the spin-fluctuation resonant mode i
clearly most strongly peaked at large momentum, followed
by the breathing mode phonon, the uniform Holstein cou-
pling, and lastly the buckling mode phonon which has 't
|g(7r,)|2=0. One consequence of the strong peak inithe
mode coupling in the magnetic resonance mode coupling is
seen in Fig. 10 for thé cut. Here, the increase of the inten-
sity of the spectral weighA(k,) which occurs whenw B

decreases below[Qg+E(,0)] is greatest for the spin- Breathing phonon
fluctuation 7 resonance. 0.0
In Fig. 14 we show the energy distribution curves for the
four modes for momenturk=(0,7). A(k,w) for all of the
modes shows a strong peak&§. For thes mode, this is
followed by a dip and then a secondary peak which develops
as w decreases below the Van Hove threshold—t(}, o/t
+E(0,7)]. Itis this peak-dip-hump structure, for the case in
which the effects of the bilayer splitting can be eliminated,
that has been identified as a “fingerprint” of ther
resonancé? >33 Here, we see that indeed this structure is
most pronounced for the mode and smallest for the buck- 025 ke/T0
ling mode. However, this is a quantitative effect rather than a
qualitative one and if the phonon coupling increases at large
momentum transfers, such as in the case of the breathing
mode, this feature returns although not as strongly as for the FIG. 12. (Color onling Intensity plots ofA(k,w) for the nodal
7 mode. momentum cuC for the four different couplings.

n-mode

0.410.25 Ko/t 0.41

Ak, 0] 4.0
‘ |
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will be difficult to determine the origin of the mode based

50 I _—_ Holstein phonon solely upon the momentum dependence of its coupling. This
----- Buckling phonon is because the forms of the couplings that we have studied
sl Eiﬁg‘;:g phonon ] have comparable coupling strengths and the spectral features
at Qy+Ay and Qy+E(0,7) arise generically from an Ein-
stein mode coupled to quasiparticles witll-avave gap and
&30 a band structure Van Hove singularity kat (0,7).
g It would appear that the best place to look for a feature
® o0l that could distinguish between, for example, the buckling
phonon mode and ther-resonant mode is near thie
=(0,7) point. Here, the strong coupling of the mode to
L 1 the electrons forg near (r,7) leads to a secondary peak
P m e o e onsetting at an energy=—[E(0,7)+(]. For the buck-
o = | e ling phonon mode, the coupling at=(,7) vanishes and

002 04 06 08 10 the response is weaker in the same frequency range. How-
a/m=q,/ ever, this is a quantitative rather than a qualitative effect.
Furthermore, the observed peak-dip-hump structure could
also be consistent with a coupling to the oxygen-breathing
mode. Recently, it has been suggested thatildependence
for a bilayer system may identify the mode as havi
=1, which would provide support for ther resonancé:
However, further work on the odd and even bilayer phonon
coupling is needed for comparison.
Einstein-like mode with();~40 meV coupled to the elec- While the coupling to ther-resonance mode along with a
trons. Possible candidates for this mode are the magnetitigher-energy continuum spin-fluctuation spectrum provides
resonancer-mode and various O phonon modes. As seen irin attractive unified framework, our results leave open the
Eqg. (10), the coupling strength, that determines the renor- possibility that an oxygen-phonon mode could also play a
malization parameteZ comes from thes wave part of the role. As we have seen, even with a relatively modest
effective interaction while the coupling,, that determines €léctron-phonon coupling, one would expect to see evidence
the gap comes from thel wave part. Measurements of of. some oxygen-phonon modes. If they are not seen, then
A(k, ) with k along the nodal direction provide information thiS suggests that the strong Coulomb many-body effects act
on Z(k, ) sinceA(k,w)=0, while A(k,») measured near to suppress the electron-phonon coupling. Alternatively, if it
e aminoda reqon rflect Sructre i o tafh,o) and G20 08 HOW St e ot < no vable oncerphonen
A(k,w). Thus in principle, ARPES measurements offer the '

inility f lorina both th dd d d The continuum spin fluctuations would, of course, also con-
possibiiity Tor expioring both th&- andd-wave dependence iy ia in this mixed scenario. Here we should note that even

of the interaction. However, from our results, it seems that it 1o mode were identified as the buckling mode, we find
that its contribution to the magnitude of tlug_,2 gap is
EX( X)) negligible because the increasedpn more than offsets the
increase ing,. Similar results forT. were found by Nunner
et al®® However, if the momentum dependence of the
electron-phonon coupling were such that the effeckiyevas
small compared withk 4, this would not be trué?

To conclude, we note tha(k,w) for k along the nodal
direction depends only oBA(k,») andX(k,w), while if k is
away from the nodal directiow(k,w) enters. Thus, in prin-
ciple, interactions which have significantly differexy and
\ 4 coupling strengths should give rise to different interaction
induced structures iA(k, o) in the nodal and antinodal re-
gions. However, for the couplings we have studied, it seems
likely that the identification of the excitation responsible for
the structure in the ARPES data will be decided on grounds
other than the momentum dependence of the effective cou-
pling. Naturally in some cases, the value(df will provide
00 a clear identification of the mode. In other cases, as noted,

-0 05 00 -0 -05 0.0 one may be able to use a symmetry-based argument.
One important aspect that remains under discussion is the

FIG. 14. Energy distribution curve&DC) showingA(k,w) vs  strength of the various couplings. As we noted, LDA
w atk=(0,7) for the four different modes. A Lorentzian broaden- calculationd®3! find intermediate values for the electron-
ing 6,=0.025 wasused. With a smalles, a dip atw=Q, also  phonon coupling. However, others have suggested that the
appears as in Fig. 9. electron-phonon coupling is strongé#°Likewise, there has

FIG. 13. The momentum dependence of ipég)|2 coupling vs
q=0ay=0y for the four different modes withg|>=0.5 for the pho-
non modes anggFXQ=5 for the m-mode. Note that this is a slice
of a two-dimensionald ,q,) surface and that the volume enclosed
by these surfaces is ¢82|g|? for each of these couplings.

1.5 | Holstein I Buckling

1.0

0.5

0.0

1.5 | Breathing

1.0

0.5
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been a range of coupling strengths proposed for the resulting size of the self-energy structures to be in reasonable
mode'*1%40-42Here, there is general agreement regardingagreement with Eschrig and Norrman®and Ref. 42.

the relative sizé ,=0.035 of the ratio of the spectral weight
of the resonance per Cu to the total integrated spectral
weight g2S(S+1)/3=1 per Cu in BjSr,CaCyOg, 5.4
However, there is disagreem@ht? regarding whether the We would like to thank Z.-X. Shen for discussing his data
electron self-energy is effected by the smallnesk,&nd on  with us, for his physical insights, and his enthusiasm for this
the size of the couplinggsg/t)2. Here, by varyingt in Eq.  project. D.J.S. would also like to also acknowledge very use-
(18), we have found that the size of directly effects the ful discussions with S. V. Borisenko, W. Hanke, B. Keimer,
magnitude of the self-energy contribution arising from theand S. A. Kivelson. AW.S. would like to acknowledge sup-
interaction of the quasiparticle and the spin fluctuations. Thigort from the Academy of Finland under Project No. 26175.
is in agreement with the comments made in Ref. 41. HowD.J.S. acknowledges support from the National Science
ever, we find our estimate of the coupling constant and théoundation under Grant No. DMR02-11166.
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