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Spectral behavior of the electronic states of bilayer cuprate systems using a slave fermion approach
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The spectral function for electrons in the normal state of a bilayer cuprate is calculated by employing a slave
fermion approach. The electron correlations in the glaQers in these cuprates are described i) anodel,
and the electronic coupling between the two Gu&ers within the same unit cell is introduced via a hopping
matrix element{,) and an exchange interactiod, (). The spectral function is calculated for different values
of the hole concentration, temperature, and anisotropy at various values of the momkpflagh. (It is found
that the bilayer couplingt() significantly affects the behavior of the spectral function. The spectral function
around the momentum valuer, 0) for a coupled bilayer cuprate shows a peak much sharper than that for a
system of uncoupled layers. Our calculation also suggests a splitting of electronic states of the bilayer cuprates
along the(mr, 0) direction for the heavily overdoped regime. Calculations of the imaginary part of the self-
energy2’(k,w) for a bilayer system have also been presented. It is foundth@, ») depends strongly on
the momentum and showsa#* dependence on energy with ¥2<1.5 for values of the parameterandJ
considered in the present calculations.
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[. INTRODUCTION are utilized in these studies are exact the diagonalization
method?*~2% the quantum Monte Carlo methé; the
The cuprates such as 4aSrCuQ,, YBa,CuO,_ 5,  density-matrix renormalization group methtif®and the fi-
and Bi,Sr,CaCuyOg. 5 continue to pose a challenge to our nite temperature Lanczos meth@@rLM).*29:30
understanding of the dynamics of electrons despite an enor- In the present paper we investigate the electronic behavior
mous research effort devoted to them. It has not yet beeaf the normal state spectral function of cuprates for single
possible to have a reasonably consistent picture of the eletayer cuprategsuch as La_,Sr,CuQy,) as well as for bilayer
tronic excitations in these systefi€. The main interactions cuprates(such as YBaCu;Og, 5, Bi,Sr,CaCyOg, ) for
which should be considered for a description of the cuprategarious doping concentrations. Compared to the large num-
are (1) the Coulomb interaction among the doped holes ander of theoretical studies for the single layer cuprafe&,—!
(2) the interaction of doped holes with the antiferromagneticthere are only a few theoretical studies for bilayer
(AFM) background created by holes of the ‘Cu ions. cuprates?~% To study the normal state of cuprates system
Treating both of these interactions simultaneously is a formiwe have used the slave-fermion approdtH. For highT,
dably difficult task. cuprates the slave fermion approach was applied by Arovas
On the experimental side, angle-resolved photoemissioand Auerbach® These authors restricted their study to the
spectroscopyARPES has been extensively used by a num-half-filled Hubbard band only. Later, Kane, Lee, and Réad
ber of workers’~?°to obtain information about the electronic employed the slave fermion approach for the study of a
structure in normal as well as superconducting states of varisingle hole present in the AFM state of cuprates. We have
ous cuprates. ARPES measurements have been made fesed here the slave fermion approach for finite doping and
single layer cuprate¥;*® bilayer cuprates®''°and for applied the saddle-point approximation through which infi-
trilayer cuprate$® ARPES measurement carried out by Ino nitely large correlations are replaced by local constraints. We
etall® for the single layer La ,Sr,CuQ, system have have presented results for the hole spectral functiin o),
yielded information about the doping dependence of thdghe imaginary part of the self-energy of holes, density of
spectral function at thk= (7,0) and(#/2, 7/2) points. They states, and the hole density. The details of the theoretical
have observed that the spectral functiok at(,0) shows a formulations are described in Sec. Il. We discuss numerical
relatively sharp peak just below the Fermi energy at the opealculations for spectral function and self-energy in Sec. Ill.
timum doping &=0.15) while for the underdoped system In Sec. IV we present our conclusions.
(x=0.07) the peak is broadened and shifted towards lower
energy values. Earlier, Shen and Schriéfttave studied the
underdoped bilayer B&r,CaCyOg,, System. They have
found a sharp quasiparticle peak néaf2, 7/2) and a broad The highT. cuprates are strongly correlated systems. In
peak near thém, 0) direction at low doping. Moreover, they the strong correlation case the on-site Coulomb interaction is
found that upon increasing the hole doping from the undermuch larger than the hopping integral so that the double
doped to the overdoped side, the quasiparticle peak about tleecupancy of a site is prohibited. In this strong correlation
(, 0) point becomes sharp and moves towards the Fermsase we can use theJ model®® We consider bilayer cu-
energy. prates, such as YB&wO,;_ s and BLSrL,CaCyOg, g,
There have been numerous attempts to calculate the spewhere there are two CyQOlayers per unit cell. It is well
tral function A(k,w) in cuprates. The main methods which known that in a bilayer system two Cy@yers(of the same

II. THEORETICAL FORMULATION

0163-1829/2004/69)/0945229)/$22.50 69 094522-1 ©2004 The American Physical Society



GOVIND, LAL, AND JOSHI PHYSICAL REVIEW B 69, 094522 (2004

unit cell) are relatively closef~0.4 nm) to each other than ]
the CuQ layers of a single layer systefr-1.1 nn). Hence

the coupling between the two layers within the same unit cell
of a bilayer system is expected to be much more important
compared to coupling between layers of two neighboring a2 b2
unit cells. We therefore have taken into consideration the
coupling between two layers in the same cell. We have de-
scribed each of the individuals layers by-dmodel and the
two layers within a cell are coupled via hopping of holes
from one layer to another as well as via an exchange cou-
pling between the Cu sites of these two layers. A bilayer
cuprate with these couplings between the two copper-oxygen
layers can be represented by the following Hamiltonian.:

H=— X Ly> [tu/bitﬂbj(rl/JFJn'Silsn' 0, bi
i#00 o
L . . FIG. 1. Four sublattices of a bilayer system with spins up and
- ZE Jil 'biolbio'lbjﬂfbjﬂr ) 1) down at labela,; (layer 1), b, (layer 2 anda, (layer 2, b, (layer
ar 1), respectively. Here the suffix shows the layer indices.
wherel,,=(1+ §,)/2, and
note the creatiofiannihilatior) operator corresponding to the

t =40+t (1—61) (2)  spinless fermion ang;’, (si,;) denote the spin operator at
is the hopping matrix element between the layeend |’ thg sitei of thelth layer. Then the electron operator may be
{whenl=1" (intralaye) and whenl #1’ (intrabilayej}, and ~ Wrtten as

Jr =38+ (1= &) ) Cin=FiSiy and ¢ =fisiy (6)

is the exchange coupling strength between the nearesing the constraint on each site is given by
neighbor spins. Here interactions are between the electrons

of layersl andl’ (I=1' in the same Cu@plang and #1' for fHf+st Sp=1. )
different CuQ planes in the same cgllNotice thatl, |’

=1 and 2. For clarity, we shall also ugfor t;;=t5,, t, for To describe a bilayer cuprate system, we consider the

tz= ta1, Jy fOr J11=Jpp @NJ, fOF J1p=Jas four-sublattice model. These four sublattices are labeled by
The correlated operatots,; andb;, are related to the 5 'y \wherel=1,2 (Fig. 1). In fact, the ground state of the

+
uncorrelated operatoks,,, andc;, by bilayer cuprate is antiferromagnetic, which may be com-

+ 4 B posed of four sublattices having spin up, sayaatlayer 1
i01=Ciot(1=Ni—01), i =(1=Ni-g1)Cigi,  (4) andb, (layer 2 sublattices and spin dowy, (layer 1) and

wheren;_,, corresponds to the number operator. The spirfz (layer 2 sublattices as shown in Fig. 1. Using E6) the

Operators in Eq(l) are defined as Hamiltonian(l) can be written in the form
Si =biyibin, (53
1 H:—l %J t”IL”,fin“,Sil(ralst"rbl
- O FE]
Si :bitlbiﬂ ) (5b)
+ 2 [‘]II"Lll’oo’fi-rfilf;[ffjl’
Si=2 Nip(1=nig). (50 Waa!,
+ +
According to the slave-fermion approach a single fermion X{Siwa|si|<ra|si|f<f'b|'Sj.rv/b.r
operator can be written as a product of operators representing L N N
a spinless charge and a chargeless spin. The constraint con- +2Si,0a,8i - 02, i, ~0'b, ), 07y
dition for these operators on each site is that the number of
splinless charges plus the number of spins should.be equal to 30D frfust  Sioa—1 ®)
unity. In order to preserve the fermion commutations rules, T ST

one of these two operator must obey Bose statistics and the

other must obey Fermi statistics. In this paper we represerterel, ; is the Lagrange multiplier, which takes care of the
the spins by boson operators and charge by fermion opergonstraints imposed by Eq7). We may generalize the
tors. We therefore express the electron operators in the slax&chwinger boson spin representation to lafethe con-
fermion (Schwinger bosonrepresentation. Let; (f;) de-  straint(7) is replaced by
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SﬁISiTl_i_Si-:ISiLI:ZS' (9) and

There are now 8 spin Schwinger bosons on each site. In Ji(q)=—2, J{cosq,+cosqy}. (17)
the largeSlimit we may consider mean field theory approxi- ap
mation that is equivalent to the saddle-point expansion of thélerez,, (=4) is the number of the nearest neighbors of Cu
functional integraf” A stable mean field solution occurs within the CuQ plane.e, is the energy dispersion for the
when the saddle points are given by Cu-0, plane. With the help of Eq$12)—(15), Eq. (11) can

be written as

X=0, Y==x+2S, \=0, (10a
X=%42S, Y=0, \=0, (10b) H=— X LII’{flt+qflk(sll’ksaa|+sll’k+qstqbl)
kK g
orb _
Y +flT<qulk(8ll’qusg]ral—i_sll’ksfqb')}
X==*S, Y==\S A=0. (100

+ 2 [durLi fisofif - ofirc(Sea Saa
Here Xzsﬁglzs};)blzs”) =s};)b2 and o d a damaa

i isla
1 zl 2 KK’
—o(t) ) () () + - + o+ -
Y=Si 12, =S, b, = Siy1a,= S, b, - +s—qb|rs—qb|r)+(Sqa|s—qb|,+sqais—qb|,)}]- (18

The first two state$Egs. 1@a) and 1@b)] correspond to an
antiferromagnetic stateX(#Y) while the third state corre- ., e derived from the Green’s function. We use the follow-

sponds to the ferromagnetic stak<Y). In the present cal- jn4 Green's functions corresponding to the spinless fermions:
culation we have taken the antiferromagnetic ground state of

the system because it is well known that the insulating un- G (@) ={fulfi) (1=1,2 (199
doped state of cuprate system is antiferromagnetic. The ef-

fective Hamiltonian corresponding to the antiferromagneticand

ground statd Eqs. 1Qa) and 1@b)] may be written in the

form G (@) ={(faud f1)- (199

The spectral function, density of states, and hole density

Here, o denotes the energy.G, ./ (w) corresponds to the

H=- E t|| L|| f+f (S' +S'+ ) 7 H i H H
e by T (Sira, TS by motion of spinless fermions in the same layer while
G« (w) corresponds to the motion from one layer to the
other layer of the unit cell. In solving the equation of motion,

+
+ 2 [‘]II’LII’Lnr’fiJIrfilfil’fi|’{(si|Ta|SiJ|rTa| we obtain 16 equations for different Green’s functions. We
il';i,-;, have solved all the equations simultaneously and obtain final
. L equation of motion for Green’s function& () and
+Sj|,lb|,sj|,ib|,)+(SiITalsjl,lbl,+Si|Talsj|,lb|,)}]- G, v (), which read
@ [0—31(K,®)]Gy(K,) = 81+ 31:(K, @) Gy (K, )
We express the above Hamiltonian in the momentum rep- +é (1,1'=1,2 (20)

resentation using the following Fourier transformations:

t(Ri_Rj)):E ( &

k
t, k \€lk

whereX,(k, o) is the self-energy. The expression of the self-
energy2,(k,w) and ¢, is given in the Appendix.

The electronic spectral functiof(k,w) of the system is
defined as the imaginary part of the Green’s function

eX[X—ik~(Ri—Rj)), (12)

Ji(Ri—R; J
( I(R; J)):E( (@) exp(—iq- (Ri—R;)), Ak,w)=—21ImG(K, o). (21
J. 7 \Jui(a)
(13 The density of state$DOS) of the system is obtained by

integrating the spectral function for all the possiklgalues,

fi=> fexplik-Ry}, (14) o
X N(a))=J f Ak, ) dk,dK, . (22)
Si= ; Sqexp{id- Ry} (15 Here, we have integrated the spectral function dyeandk,

values because we have not considered the interbilayer
In Egs.(12) and(13) &, andJ,(q) are, respectively, given by interactions:* Finally, the hole densitys) is obtained by

integrating the density of states over the occupied energy
g = —2t,{cosk,+cosk,} (160  states,
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o= J'iON(w)dw. (24
(0,0) AN

Ill. RESULTS AND DISCUSSION

We have calculated the spectral function, the imaginary {w/2,m/2)

part of self-energy, the density of states, and the hole density

of bilayer cuprates. In the present calculations we have taken -
w,n

L

the in-plane hopping integraé|=0.4 eV and the in-plane ex- 3

change couplingd;=0.3t,. The cuprates have values of =

these parameters in this rangeThe values of the hopping <

integralt, for the coupling of two layers within the same (mr/2)

cell, the intrabilayer exchange coupliny expressed in

terms oft, andJ,, and the anisotropy parameteare given (m,0)

by using the standard relatiotis T  ————
r=J,/13, =t3/t>. (24) /20

It may be noted that the anisotropy parametapproaching -0.5 -025 0 0.25

infinity represents two isolateduncoupled CuQ, layers w

since forr—«, J, andt, —0. This case effectively corre- Energy relative to Fermi energy {(eV)

sponds to a behavior of the single layer cuprates. On the
other handyr =1 represents an isotropic three-dimensional : _ )
(3D) system where the intrabilayer interactions are as stron§YStem for differenk points withT=0.0%,
as the in-plane interactions. ThRelependence of |, and the

g dependence af, (q) are taken such that these agree withunderdoped single layer system. Feature&\@,») for the

the experimental measurements of angle-resolved photdilayer cuprates are presented in Fig. 3 o+ 0.0, and 6
emission which shows that there is no hopping of holes be=0.1. These results are obtained by taking the form of intra-
tween the two layers along thie,=k, direction® This  bilayer hopping given by Eq25). Comparing the spectral
means that,,=0 for ky=Kk,. A reasonable form ok,,  weight for a single layer and bilayer cuprates at different
which satisfies this requirement has been suggested byalues, itis evident from Figs. 2 and 3 that maximum change

FIG. 2. Spectral functiomA(k,w) for a single layer {— )
and §=0.1.

Chakravartyet al,*? in the electronic part of the spectral weight occurs for(the
0) point of the Brillioun zone. The spectral weight shows
e, k= — 2t, {cosk,—cosk,}?, (25  sharp features above the Fermi energy at(the0) point,
which was absent for uncoupled layers. The reason for this
J (q)=— ZZC‘JL €0y, (26)
wherez,. is the number of nearest-neighbor Cu spins between
two layers along the direction. (0,0) AN
We have calculated the spectral function and the density
of states for different values of the anisotropy parameters
=, r=10, andr =6.7. We found that for =6.7 the spec- (n/2,m/2) ’ \

tral properties show only about 5% variation from the case of

r=10.0. So we have not presented and discussed the calcu-
lations for anisotropy ratio =6.7. {w,m

3z

We present results of our calculations for spectral function i’
A(k,w) at (ky,ky) points(0, 0), (72, 7/2), (m, m), (m, 72),
(mr, 0), and(7r/2, 0) for r = in Fig. 2 and forr =10 in Figs. 2\
3 and 4. For the doping parameté+ 0.1 and temperature
T=0.05t;, we observe from Fig. 2 tha&(k,w) consists of (m,0)
coherent quasiparticle peaks with a broad incoherent back- —
ground for all the values ok chosen by us. It is also ob-
served from Fig. 2 that for a single layer going from (i0e (m/2,0). /L

0) direction to the(sr, 0) direction or from(0, 0) to (m, m)
there is an appearance of the electronlike quasiparticle char-
acter above the Fermi energy. We do not notice any coherent
peak in the spectral function at tife,, 0) point. Inoet al®

and Satoet al® have also observed that spectral function FIG. 3. Spectral functionA(k,») for a bilayer system r(
shows a featureless variation of A(k,w) near(sr, 0) foran  =10.0) for differentk points withT=0.0%, and §=0.1.

~-05 =025 o 0.25
w
Energy relative to Fermi energy(eV)
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0,00 M\~

(L/EJQ/\J\N-’\
(m,m) / (c)
(w,n/2) /\} \
(m,0) /
(n/2,0), /\/KJ ,

-05 025 O 0.25
w

A(k,w)

Alk,w)

(b)

Energy relative to Fermi energy (eV) (o

. . 0.5 0.25 .
FIG. 4. Spectral functionA(k,w) for a bilayer system r( W ° 025

=10.0) for differentk points withT=0.1t;, and §=0.2.

Energy relative to Fermi energy (eV)

change should be que to the bilayer cc_)upling. Becau_se ofthe g 5. Spectral functionA(k,w) for a bilayer system r(
form chosen for, in Eq.(25), the maximum change in the — 10 0) along the(, 0) direction with T=0.1%; for different val-
spectral function will occur atm, 0) point. We observe that yes of hole concentrationa §=0.24, (b) §=0.28, and(c) &
changes in the spectral function for a coupled bilayer system-q 32.
compared to uncoupled layers are small at poiats7/2)
and (7/2, 0). From Fig. 3 it is also clear that for the under- (7, 0) direction for a higher doping concentratigheavily
doped bilayer system the peak at the point&2, #/2), (w,  overdopedl We observed that for the hole concentrati®n
m), and(m, 7/2) is sharp while the peak étr, 0) is broad and =0.24, the quasiparticle peak of the spectral function along
suppressed. Kim and co-work&dave observed a similar the (7, 0) direction shows a sign of the splitting of electronic
feature by using ARPES measurements. We also observestates Fig. 5@)]. On increasing the hole concentrationdo
sharper peak curve for the spectral function at(#, 7/2) =0.28, the quasiparticle electronic states clearly splits into
point near the Fermi energy for underdoped coupled bilayerdwo peaks[Fig. 5b)]. These results are qualitatively in ac-
but for r = (uncoupled layepsthis peak is relatively sup- cord with the recent ARPES observation by Feetgal,'®
pressed(Fig. 2. The ARPES studies carried out by Ino where they have observed that the electronic states of heavily
et alX® have also shown this behavior. They suggest that theverdoped bilayer cupratéBi2212) splits into bonding and
difference between the spectral function of uncoupled layerantibonding states along ttier, 0) direction. On further in-
and coupled layers a&tr/2, 7/2) is related to the formation of creasing the doping concentration de- 0.32 (heavily over-
dynamical strips in the single layer system. doped regimg we observe that the splitting of the electronic
We now turn to the presentation of our results of the specstates is more pronounced than that &+ 0.28[Fig. 5(c)].
tral function for a higher temperature and relatively largerHere we also observed that the spacing between two peaks of
doping concentrationT(=0.1t, and 5=0.2). The results are electronic states is increased by a factor of 2 while increasing
plotted in Fig. 4. By comparing Figs. 3 and 4, we see that orthe doping concentration fro#= 0.28 to 5= 0.32. However,
increasing the doping from=0.10 (underdopefito =0.2  the quantitative strength of the bilayer splitting observed
(slightly over dopegithe quasiparticle peak &tr, 0) moves here (16 meV, §=0.32) is lesser than the experimentally
closer to the Fermi energy and becomes sharper and moobserved valu¢80 me\) for heavily overdoped bilayer cu-
intense. These results are in accord with the observations @frates. The other theoretical calculation carried out by using
Shen and Schriffé? for bilayer cuprates. Comparing Figs. 3 the bilayer Hubbard model also suffers with a similar
and 4, we find that the spectral function shows a little broaddiscrepancy? i.e., a lower value of bilayer splitting40
ening asd increases. This is in qualitative agreement with themeV). Their calculation suggests that for a heavily over-
predictions of Baskaran, Zou, and Ander§oand Wang and  doped systentstrong bilayer hoppingone should consider a
Kotliar*> where they have suggested that the broadening imeak correlation(low U) rather than a strong correlation
the spectral function is directly related to the doping concen¢higherU). Moreover, the discrepancy in our calculation may
tration. be due to the inadequacy of the slave-fermion approach con-
From Figs. 2, 3, and 4, one can see that the bilayer cowsidered here, as it deals with strong correlatiohs—)
pling significantly affects the electronic states of bilayer cu-even for the higher doping regime. We see that this splitting
prates. However, we do not find the splitting of electronicof states occurs only at a higher doping concentration. The
states along thém, 0) direction up to the hole concentration reason for this peak splitting for a higher doping concentra-
5=0.2. In view of the recent ARPES experiméftye study tion is that on increasing the doping concentration, the cou-
the behavior of the spectral function specifically along thepling between the two CuQayers is effectively enhanced.
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70
60 3
z
50
E trw/2) (m,0) { 1 I
."_':' 40 (n/2,n/2) -04 0.2 o o oo
3
< 30
n
E
20
(m,m) (n/2,0) ;
10|
[e) 1 { { ) 1
-015 -0l -0.05 0 005 -04 -0.2 o} 0.2
w w
Energy relative to Fermi energy (eV)
FIG. 6. Imaginary part of the self-energy for differdnpoints
corresponding ta=0.05;, r=10.0, and§=0.1.
. , e
From the knowledge of the spectral function at vari&us P
points in the Brilliouin zone, one can construct the Fermi
surface and analyze the effect of bilayer coupling on it. This 1
will also give an idea about the nature of the Fermi surface. _
Co e e o : 0.4 0.2 0 0.2
Our objective in this paper is limited to studying the effects w
of intrabilayer couplings on the speciral function of CoUPIed ¢y, 7. pengiy of statesi(w) for a bilayer systemi(-10.0)
P yer cuprates. for (&) T=0.08, and 5=0.075,(b) T=0.08, and 5=0.1, and(c)

Next, we plot the imaginary part of the self-energy —_ _
Si(kw) for 6=0.1, r=10.0, andT=0.05t, and (k) o240~
=(0,0), (72, 0), (m, 0), (m, 7/2), (w2, w/2), and (7, m)  [Fig. 7(a)]. At such low dopingN(w) is negligible for »
points of the Brillioun zone are given in Fig. 6. The imagi- > 0. On increasing hole concentration &= 0.10 the inco-
nary part of the self-energy as a function of eneigghows  herent background due to holes reduces in intensity while the
a complicated behavior. In Fig. 6 we see thg(k,w) shows  coherent part near the Fermi energy gets widdiagl 7(b)].
a strongk dependence. Many other theoretical calculationson further increasing the doping concentratiorte0.2 and
also show strong dependence at(k,w)**%**~*‘although  the temperature t&=0.1t,, we see thaN(w) remain ap-
theories like the marginal Fermi-liquid thedfyignore thek preciable foro>0 [Fig. 7(c)].
dependence at’|. We note that the behavior & (k,w) is Finally, we present the results for the hole denéélyas a
very different foro<<0 compared tav>0 for all k. For o function of temperature for different values of the chemical
<0 (near w~0) X7 shows anw®-like dependence with potential(«) in Fig. 8. We present the results of hole density
1.2<a<1.5. Several experiments have shown such a powecorresponding to the anisotropic parameter10.0 and the
law behavior for3j(k,w) at low w.**~*8 Theoretical analy- chemical potentialu=—1.55, —2.0, and—2.1. From this
ses also support a power-law behavior2df(k,w). For ex-
ample Stojkovicet al** argue that spin fluctuations are
responsible for the dependenceXsf(k,») on w. Anderson
suggests that this power law dependence is arising from the 0I5 |
fact that in cuprates the electrons behave like a two-
dimensional Luttinger liquid. L4P“® obtained a power-law
behavior of2(k,») using a model that includes Coulomb
interaction and electron-phonon interaction. Very recently (b)
Pratap and collaboratdrs have also obtained a®-like 003 -
variation of 37(k,w) by using a perturbative approach
within the t-t’-J model. Several experiments have shown 0
such power-law behavior fat(k,w) at low w.*¢~>° 0-04 0.08 0.12

In Fig. 7 we show how the single-particle density of states T
(DOS), N(w) changes on doping. For the underdoped system FIG. 8. Variation of the hole density) with temperaturéT) for
6=0.075, we observed a peak aroumd<0 and a back- r=10.0anda) u=—1.55,(b) u=—2.0, and(c) u=—2.1. HereT
ground due to incoherent hole motion dominates de€0 is given in the term of;.

02 r

w 01 (o)

(e) I J
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figure, one can infer that on increasing the temperature, thin the above equation the various energy paramediesase
number of holes increases. It is clear that for the lower valuegiven by
of u, the rate of the increase of the hole concentration with

temperature is higher. From the figure it can also be seen that Eil= e+ q{Saja,) (A3a)
these hole concentration curves for different valuesuof
come close to each other at higher valuesToflaklic and Eéizsk,q(sgg ), (A3b)
collaborator®®32also arrived with a qualitatively similar re- o
sult in their calculations. Ei:skm(S;lgl% (A3c)
IV. CONCLUSIONS Eb" =1 q(So,b,): (A3d)
In this paper we have calculated the spectral function of a __ 4
bilayer cSprpate with and without couplﬁng between two E;Z—=8¢k+q(sa1bz>+8ik<salal> ' (A3e)
Cu-0, layers in the same unit cell for various values of 1 iy i
momentum, hole concentration, temperature, and the anisot- EpS =& 1k(Sp,a,) T €1 k+alSo,b,) (A3f)
ropy factor. It is found that in moving from the origin &f
space(0,0) to the(r, 0) direction or(0,0) to the (,7) direc- Ei? =glk,q<sglgl>+slk+q<sg1;2>, (A3g)
tion the spectral function shows that the electronic quasipar-
ticle character increases above the Fermi energy. The cou- Egﬁ:slqu<5;; ), (A3h)
292

pling between the two neighboring planes in the same unit

cell is seen to influence the form and the shape of the spectral E2L — (sip.) (A3i)

function. In particular, we found that the maximum effect of a- " FLkiPab,/

coupling between the layers on the spectral function is 21 s _

around the(0,0) to (, 0) direction. The spectral function Eb+ =& 1k-alSp,a,) (A3j)

around the(sr, 0) direction becomes sharp and moves to- o1 .

wards the Fermi energy. Eat =&1k—q(Sap,) (A3K)
The maximum effect of bilayer coupling on the spectral

function is found to be at ther, 0) point. The spectral func- Bt =¢.11(Sp,a1) T &1k q(Soya,)» (A3I)

tion around (s, 0) becomes sharp and moves towards the

Fermi energy. In our calculation, we do not find the splitting EZ2 =g (sip ) (A3m)

of a quasiparticle peak up to the hole concentraiden0.2. 172

Our calculation shows a splitting of electronic states at a 2 . 4

higher doping concentrations&0.24) as observed in recent Eb = ei{So,n,) + 21 alSpya,): (A3N)

ARPES experiments. However, the quantitative strength of 2 . o

the splitting seen in our calculation is less than that observed Eb” = &k+a{So,0,) T €K{Sp,a,)- (A30)

in the ARPES experiment§.In the present paper we have

also studied the contribution of the imaginary part of self- and E§i=3k<5;2;2>- (A3p)

energy, which is found to be strongkydependent, and we

show aw® dependence on energy. In Eq. (A3) the (s;) are the correlation functions corre-

sponding to the spin operators. To obtain an expression for
these spin correlation functions we have calculated the rel-
ACKNOWLEDGMENT evant spin Green’s function. From these spin Green functions

The Department of Science and Technology Governmen{e obtained expressions for spin correlation functions which
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work financially. «5;1;1»: S'[B(—n,—m)+B(—nm)], (A4a)

APPENDIX (Sp,a,)=S'[B(—=n,—m)—=B(—n,m)],  (Adb)

In Eq. (20), the expression for self-ener®y is given by o ,
(Sp,a =S [L(=n,—m)+L(-nm)],  (Ado)

§|(k,(1))

El(k,w)=§ P (A1) (Sa,a,h=S'[L(=n,—m)—L(=n,m)],  (A4d)
where {(so,p,)=S'[B(n,m)+B(n,—m)], (Ade)
: : . (sa,5,)="S'[B(n,m)—B(n,—m)], (A4f)

§|(k,w)=2 {8k7qu—+3k+qu—+8k(E!++ E|b|+)}-
" (A2) (Sap)=STL(NM+L(—m)],  (Adg)
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{sp,0,0=S'[L(n,m)—L(n,—m)], (Adh) n(s,)
P2b1 F22 <<f2k qf2k q|f2kf1k>> 22 (E —& )(2 w—& )
whereS' =5/27, WAL k=a
B(n,m)=(w+n+m/[(w+n+m?2-p?], (A5) + nlew
(ex—21) (e~ w_Squ)
L(n,m)=p/[(o+n+m)>—p?], (A6) N(ex_q)
, Al6
5 (w+8k7q_21)(w+8k—q_8k) ( )
n=85"2 {J()F 1+ (AF (A7)
F10=F21= (fais of ol FacF 1 o))
m=2822 {J(a)F 1), (A8) 2 nZy)
: o) (St w—gy_q)
_ n(ey)
p=25"> {J,(q)F 2} (A9) +
€ (ex— 2D (et 0= g) (et 0—2)
We can obtain the expressions for various spin correlation nx,)
functions by integrating and taking an imaginary part of the T w(wt+e—21) (31— er_q)
corresponding Green’s functidgiven in Eq.(A4)]. For ex- a
ample, N(ek+q)
(ekrq—Z)(exto—g_g)(w+Z1—grig)]
(sppy=—1m j (sppnde. (A10) (A17)
In Eq. (20) ¢, and ¢, are given by In the course of discussion we found that the spin correlation
operators have the following symmetry:
= Fiit 7oF 1), Alla) _ _ _ _
417 g (MFut mFd ( (St =(Sia) =(Sop)=(So).  (A183
¢2=k2 (71F 20+ 72F20), (Al1b) (Sp,a,) = (Soja,) =(Sa,b,) = (Sh,a,): (A18b)
q
where (S, =(Soya) = (Sap) =(sap ), (A180)
=—-5%2]/(k)+4S Saa,+s - - _ _
() + 453 (@2 (a0, * o) (Si)=(Sta) =(Sop)=(Shs)  (A18Y
B (@) 2 (53,5, Sap O (ALD (S8 = (50,0, =(Sap)=(saf),  (AL89)
Dyjrin=811.6111n+ S12(1= &y1yn), (A13) (Sa;b,) =(Sab,) =(S,a,) = (Sh,a,): (A18f)
J|,:J|/|uD||r|H . (A14)

- )=(S, )= Al8
Equations(A7)—(A9) and (A11) involve the Green’s func- (Say0,)=(Sap,) <Sb2""1> { bla?> (A180

tions F4;, Fq,, andF,;. These Green’s functions are the
products of four fermion operators. We obtain the foIIowmg
expressions for these Green’s functions using a suitable de-
coupling approximatiori®: (Sn,0,) = (Sn,b,) = (Saya,) =(Sa,a,)- (A18h)

and

N(ek—q) —N(&k) The values of the spin correlation function can be obtain
oteq—e+i0] with the help of Egs(A4)—(A10) by using the symmetry
(A15) shown in Eq.(A18).

Fu=(f 1k—qf1+k—q| fuf )=
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