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CePtSi: An unconventional superconductor without inversion center
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Most superconducting materials have an inversion center in their crystal lattices. One of few exceptions is
the recently discovered heavy-fermion superconductor {S¢PE. Baueret al, Phys. Rev. Lett92, 027003
(2004]. In this paper, we analyze the implications of the lack of inversion symmetry for the superconducting
pairing. We show that the order parameter is an odd function of momentum, and that there always are lines of
zeros in the excitation energy gap for one-component order parameters, which seems to agree with the experi-
mental data. The superconducting phase can be nonuniform, even without external magnetic field, due to the
presence of unusual gradient terms in the Ginzburg-Landau free energy. Also, we per&drrimetio elec-
tronic structure calculations for CefSi, which showed that the spin-orbit coupling in this material is strong,
and the degeneracy of the bands is lifted everywhere except along some high symmetry lines in the Brillouin
zone.
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[. INTRODUCTION electron bands and makes it possible to classify the Cooper
pair states according to their spior pseudospin if the spin-
In the past two decades, a number of novel superconducbrbit coupling is taken into accountThe even(singled and
ing materials have been discovered where order parametedd (triplet) components of the superconducting order pa-
symmetries are different from amwave spin singlet, pre- rameter can then be studied separdtéijthough this is the
dicted by the Bardeen-Cooper-Schrieffl@CS) theory of case in most superconductors, there are some exceptions.
electron-phonon mediated pairing. From the initial discoverEarly discussion of the possible loss of inversion symmetry
ies of unconventional superconductivity in heavy-fermionassociated with a structural phase transition #3 which is
compounds, the list of examples has now grown to includean A15-type superconductor, can be found in Ref. 7. Later, a
the highT . cuprate superconductors, ruthenates, ferromage€15 superconductor Hfywas found to undergo a transition
netic superconductors, and possibly organic materials. lfrom a cubic to a noncentrosymmetric body-centered ortho-
most of these materials, there are strong indications that thdombic structuré. The possible existence of superconduc-
pairing is caused by the electron correlations, in contrast tdivity was reported in ferroelectric perovskite compounds
conventional superconductors such as Pb, Nb, etc. Nor8rTiO; (Ref. 9 and BaPb@BaBiO;.1° More recently, there
phononic mechanisms of pairing are believed to favor a nonhas been a renewed theoretical interest in this problem,
trivial spin structure and orbital symmetry of the Coopermainly in the context of superconductivity in two-
pairs. For example, the order parameter in the Higisuper-  dimensional(2D) systems, such as Cu-O layers in YBED,
conductors, where the pairing is thought to be caused by ther surface superconductivity on Tamm levEl$3According
antiferromagnetic correlations, has tllewave symmetry to Refs. 11,12, in the absence of inversion symmetry the
with lines of zeroes at the Fermi surface. order parameter becomes a mixture of spin-singlet and spin-
A powerful tool of studying unconventional supercon- triplet components, which leads, for instance, to the Knight
ducting states is symmetry analysis, which works even if theshift attaining a nonzero value @t=0. Other peculiar prop-
pairing mechanism is not known. Mathematically, superconerties of noncentrosymmetric superconductors include a
ductivity is a consequence of the breaking of the gauge symjump of magnetic induction at the surfateand the possi-
metry U1) in the full symmetry group of the normal state: bility of nonuniform helical superconducting phases due to
G=SyXU(1), whereSy is a magnetic space group, which the presence of first-order gradient terms in the Ginzburg-
includes usual space group operatigns., translations, ro- Landau(GL) functional®®
tations, inversion, ett.and time reversal operatiok. In a This work is motivated by a recent experimental discov-
nonmagnetic crystay, = SX K, whereSis the space group, ery of superconductivity withT,=0.75 K in CeP4Si,!®
and K={E,K}. In a magnetic crystaK entersSy only in  which is the first known heavy-fermion material without in-
combination with other symmetry elements. The superconversion center(lt should be mentioned that incommensurate
ducting state is said to be “unconventional” if, in addition to density modulations might break inversion symmetry in a
the gauge symmetry, some other symmetries fébare bro-  heavy-fermion compound URtas pointed out in Ref. 1y.
ken. The group-theoretical analysis of unconventional supe©ur goal is twofold. First, we study the symmetry of electron
conducting states in nonmagnetic crystals was developed ipands, calculate the electronic structure, and estimate the
Refs. 1,2. Recently, it was extended to include the ferromagmagnitude of the spin-orbit coupling in the normal state of
netic casé® CePtSi. Second, we use general symmetry arguments to
In almost all previous studies, it was assumed that theanalyze the gap symmetry and spatial dependence of the or-
crystal has an inversion center, which leads to degenerater parameter in a three-dimensional noncentrosymmetric te-
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tragonal superconductor, assuming a strong spin-orbit coung to the star ok. The single-electron states constructed in
pling and the clean limit. The paper is organized as followsthis way are referred to as the pseudospin statess the

In Section Il, we study symmetry of the single electron presence of the inversion center that makes the bands double
states. In Sec. lll, the results of the electronic band structurgegenerate in a nonmagnetic crystal; . (k)=e, . (—k)

calculations are reported. Sec. IV focuses on the symmetry. . (k) at all k
: . _ e .
of the superconducting order parameter, possible locations of In contrast, if the crystal lacks the inversion symmetry,

Fhe gap nodes, and also spatial structure (?f b supercondu%—en the degeneracy of the single-electron baag%) is
ing phase, using the phenomenological Ginzburg-Landau Affted everywhere, except from some points or lines of high

proach. Section V concludes with a discussion of our reSUItSSymmetry. In particular, the bands always touckao (the

I' point), because of the Kramers theorem: time-reversal
Il. SYMMETRY OF ELECTRON BANDS symmetry means thak,n) and K|k,n)~|—k,n) have the
The symmetry group of the normal paramagnetic sgate S2Me €nergy. In the case of Cglf one can show that the
=Sx KX U(1), whereSis the space group of the crystal and s_pm—spht bands touch along th& line (i.e., alqng thg001]
U(1) is the gauge group. In the case of Gt the space dlreqtlor?, and there are no _other symme.try—lmposed degen-
group isP4mm (No. 99, which is generated byi) lattice ~ €racies in the_bgnds crossing the _Ferm|_ Ie@@e Sec. I_II
translations by the primitive vectore=a(1,0,0), b below). In the I|m|t of zero SQ coupllngwhlch_ is not appli-
~a(0,1,0), c=c(0,0,1) of a tetragonal lattice ard) the cable to CeRSi), but still W|th01_Jt an inversion cgnter, Fhe
generators of the point grou@=C,,: the rotationsC,, Sym_me”y of the system conta_lns & spin rotations, in
about thez axis by an angler/2 and the reflections, in the addition to the space group, time reversal, and the gauge

vertical plane (100). Spatial inversidris not an element of group. Then, the bands at exklare doub.le degenergte.
the symmetry group. Let us now show that the transformation properties of the

In the absence of inversion symmetry, spin-ort80O) single-electron wave functions in the absence of inversion

coupling plays a crucial role due to its band-splitting effect.CENter are different from those .Of the spin or pseuqlospin
pling pay PIing eigenstates, see E). Mathematically, the wave functions

At nonzero SO coupling, the single-particle wave functions; h band : di ! reducibl
are linear combinations of the eigenstates of the spin operér-] each band transform according to irreducible corepresen-

tor s,: (rlgy=u(r)x;+v(r)x,. Since the normal state 'tlaéions of thhe t){ge-ll magnetic spa;:et_groﬁpk;):SXIC ([?th' i
HamiltonianH is invariant with respect to the crystal lattice ) (one s ou'd use corepresentations because the time-
translations, the eigenfunctions are the Bloch spingrs(r) reversal operatioi is antiunitary. In addition, the corepre-

belonging to the wave vectoksin the Brillouin zone, which se_ntatlons r_nust be double valued _because the sjtebtefre_
can be written in the form spin-1/2 spinors, so that any rotation byrZhanges their

sign: C4,|k)=—|k), o2|k)=—|k), and alsoK?k)=—|k)
(rlk,ny=up n(Nx1+vKna(NX) - (1)  (the band index is omitted. The double valuedness can be
_ o ’ . ~dealt with in the standard fashion by using the “double-
The corresponding eigenvaluex(k) describe the band dis- group” trick:*® one introduces a fictitious new symmetry el-
perlilOtrr:eOfpfrreeseeﬁ!:eeCt(r)?an(.)th the time-reversal and in ers'or?memE' which commutes with all other elements and sat-
| = V Inv | B . oy 4 2__ _2_ 2__
symmetries the bands are twofold degenerate at kath- 'Sf'_?_rS] the cond|t|on£§i_z— UXC%E’ E _E ’ ?jnd. alzol? - E.th
deed, the statg&,n) andKl|k,n) correspond to the sanke € corepresentalions &y can be derived from the
have the same energy, and are orthogdimaaddition, these usual representations of the unitary component, which in our

two states are degenerate with another pair of orthogon ase c;omudes with the space gronFor eachk in .the
statesk|k,n) and!|k,n), which correspond to-k). In this rillouin zone, the basis of an irreducible representatios of

_ : ; is formed by the Bloch states corresponding to the sté: of
case,n=(v,*), where = labels the linearly independent IS :
Bloch states at a given band index There is a freedom in The_ stateK |k) belon_gs to the wave vector K, but the irre-
choosing the basis functiofis, v, +) and|k, v, —). The most QUC|bI_e representations @‘correspondmg ik a_nd —kare
frequently used convention is that they should transform unl_nequwalent(because of the absence of inversion symmetry

der rotationsR similar to the spin eigenstatek,»,T) and ?nd must thgrefore. be" regarded as_belongmg .to a single
k1), ie physically irreducible” representation of twice the

dimensiont® In terms of corepresentations this means that

Rk, v,@)=U , 4(R)|Rk, ,8) ()  the Bloch stategk) and K|k) belong to the same two-

Y oh Cen dimensional irreducible corepresentation $k /C.*® Thus,
wherea,8==* andU(R) is the spin-rotation matrix: for a the appropriate basis of the Bloch states is formed by the
rotation by an angled around some axisi: U(R)=exp  wave functiongGk) corresponding to the star &f and also
[—i(612)(o-n)] (o are Pauli matricés The practical recipe by their time-reversed counterpaigGk), which can be
for constructing the basis of the Bloch states is as followscombined in a set of bispinordgl, )= (|k),K|k)) . All the
first choose a statgk, v,+) at eachk in the irreducible part states from this set have the same energfk) = e(GKk)
of the first Brillouin zone, then act on it bigl to obtain an  =e€(—Kk).
orthogonal statek,»,—) at the samek, and finally act on Since the functiorG|k) belongs to the wave vectd@sk,
[k, v, =) by the elements of the point group and use the preone can writeG|k)=e'*{®)|Gk). The undetermined phase
scription(2) to obtain the pairs of the basis functions belong-factors come from the freedom in choosing the phases of the
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Bloch states and realize a representation of the point group in To conclude this section, it should be mentioned that the
this basis(it is assumed that the Bloch states are singlessuperconductivity in CeR8i seems to occur in the presence
valued and continuous functions throughout the Brillouinof antiferromagnetid AFM) order'® although no data have
zone. Using the commutation o andK we haveGK|k) been reported on the structure of the magnetic phase or the
=KG|k)=K exdi¢(G)]|Gk)=exd —ie(G)]K|Gk). The  magnitude of the staggered moment. Although the symmetry
corepresentation matrices in the basis of bispinor wave funcanalysis above was done assuming a paramagnetic normal
tions can be obtained from the relations state, our results can be easily generalized for an AFM case.
For a staggered magnetization directed alongzthais, the

el #K(©) 0 only change one has to make in the symmetry group is to
Gl¥Yy=| o e ik | [Py, (3)  replaceK with KT,, which combines the time reversal op-
eration with a lattice translation. Then, H§) is replaced by
q 0 0 eik-a
EWp=| o —1/l%y, @ KTdWo=| —e-ka o |IWW, ®
so that KTp)?|k)=—e 2k k).
0 1 From the expression8)—(8), one obtains the transforma-
KW= -1 oll¥ (5)  tion rules for the creation operators of electrons in the Bloch
states|k). Although there is some freedom in choosing the

: . phase factors, we will see in Sec. IV that the physically rel-
[we have taken into account tha(K|k)) = |k? - Note that evant properties are insensitive to the choicepfG).
the multiplication rules for the corepresentation matrices are

different from usual unitary group representations. For ex-

ample, D(G,G,)=D(G,)D(G,) and D(GK) IIl. ELECTRONIC STRUCTURE
=D(G)D£K), 15Ut D(KG)=D(K)D*(G) and D(K?) CeP§Si crystallizes in the same tetragonal structure as
=D(K)D*(K). CePtB, with space grouP4mm (No. 99. The lattice pa-

The general symmetry arguments given above can be ikameters are=4.072 A andc=5.442 A. Ce is at the X
lustrated using an exactly solvable three-dimensional genekite (1/2, 1/2, 0.1468), Pt at the @(site (1/2, 0, 0.6504)
alization of the Rashba model, which was originally pro-anq at the 14) site (0, 0, 0). The coordinate of the latter
posed to describe the effects of symmetry lowering near thgjte was chosen to be zero. Si is at thea)L&ite (0, O,
surface of a semiconduct8rand recently applied in Refs. g 4118). These structural parameters all derive from single-
11,12 to quasi-2D noncentrosymmetric superconductorg,ystal x-ray datd® and can be assumed to be sufficiently
Consider a single baney(k) in a crystal described by the accyrate for our purposes.
point groupC,, . At zero SO coupling, the band is twofold e calculated the electronic structure of G&Pwith the
degenerate due to spin. The absence of reflection symmetgy|-potential (FP) linear augmented-plane wav&APW)
in the xy plane implies the existence of an internal electric yethod?~23 which is based on density functional thedfy.
field in the crystal, whose average over a unit cell is nonzerogor the exchange and correlation potential we used the local
In the Rashba approximation, this nonuniform field is re-gensjty approximaticii?® (LDA). We performed a non-
placed by its average, introducing a constant vecﬂtff. magnetic calculation, neglecting the AFM order observed ex-
When a nonzero SO coupling is switched on, it can describegerimentally below 2.2 K° The muffin-tin radii of the atoms
by an additional term in the Hamiltonian were chosen as 2.44. A typical number of plane waves in
our basis set was 580. The electronic ground state was cal-
culated self-consistently on a grid of 42k2points in the
entire Brillouin zone.

For the electronic structure of alloys containing heavy el-
whereo,o’=1,] is thez-axis spin projection, and the states ements, such as Ce and Pt, the SO coupling can in general
|k,o) are the Bloch spinors at zero SO coupling. Diagonal-not be neglected. In particular, as shown in Sec. 1V, for the
ization of the full single-electron HamiltonianH=H,  analysis of the symmetry properties of the superconducting
+Hgo, gives two bands order parameter it is important to obtain an estimate of the

SO splitting of the bands near the Fermi energy. The SO

erl(K)=eo(K)+alk, |, e k)=€(k)—alk,| (7)  coupling has been included in our calculations using the
) ) . “second variational treatment,” as discussed by MacDonald

(Ik.|=VKi+ky), which satisfy the conditiore; (k)=€1, et al?’. In this approach, first the eigenstates are calculated
(—k) and additional symmetries from the point group. AlSo, in the absence of the SO interaction. Then, the SO interaction
the bands touch along the liéz. It is easy to see that one is included in a perturbative way, where the eigenstates up to
cannot use pseudospin to label these bands, because the timeertain cutoff energy, calculated without the SO interaction,
reversal K transforms the bands into themselvegk;n)  are used as the basis states. In our calculations this cutoff
—|—=k,n) (n=1,2), while the pseudospin states would beenergy was approximately 22 eV above the Fermi energy.
transformed into one another. Although the CeRSi structure does not have inversion

HSO: az n- (O-(Tl)'/ X k)al (rak ol (6)
n , ,
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Figure 3 shows the cross sections of the Fermi surface of
CePtSi in the presence of SO coupling. The splitting of the
bands at the Fermi energy due to the SO coupling is promi-
nent in this figure. The sheets of the Fermi surface labeled
and B are holelike. They sheets are electronlike. The
sheet consists of a feature around #@oint. The 8 band
gives rise to a larger feature around thgoint and, in ad-
dition, to a feature around th¥ point [and the symmetry
related pointy=(0,0.5,0)]. They bands give rise to a fea-
ture around the lineM-A, which is almost dispersionless in
k,, as well as to a small feature around thepoint. We
further noted that thex bands contribute 1.9 and 3.5 %, re-
spectively, to the density of states at the Fermi energy. Simi-

FIG. 1. (Color onling Band structure calculated without SO |ar contributions coming from the SO spBtandy bands are
coupling. Three bandfabelede, B8, and y) cross the Fermi en- 25 and 45% and 15 and 9.0 %, respectively.
ergy.

energy — E¢ (eV)

k vector

. . . . IV. SUPERCONDUCTING ORDER PARAMETER
symmetry, the band energies still satisfy the relat&(k)

=e,(—k), due to the time reversal symmetry of the single-
electron Hamiltoniar{see Sec. )l Figure 1 shows the band  The single-electron staték,n) can be used as a basis for
structure of CeR6i without SO coupling calculated along constructing the Hamiltonian which takes into account the

some high symmetry lines. The bands were plotted accordingooper pairing between electrons. We have Ho+H
to increasing energy. A complete analysis of band crossinggnhere

based on the character of eigenfunctions was not carried out.
However, the bands labelel and y do cross between the
symmetry pointsX and M, and so do thes and y bands
betweerR andA. The y band and the first dotted band above
the Fermi energy have the same symmetry betwdeand

I', and hence are unlikely to cross there. The labels of th

A. Symmetry analysis

ScC»

Ho=§ Ek €n(K)CL nCins 9)

is the free-electron part, with the chemical potential absorbed
fhto the band energies. As follows from the results of Secs. Il

Ahd 111, the electronic bands,(k) are nondegenerate, except
character, simply to relate various parts of the Fermi surfa ’ dn(k) g ’ P

ce . - _ . .
to the bands crossing the Fermi level. In the electronic denf-ilong the linek|z, and invariant under aII. opergtlons from
sity of stategnot shown there is a peak at 0.4 eV above the t_he point. group C4v_ and also und_er |n\_/erS|onen(k)

Fermi energy, which is due to the unfilled Cé-édlectrons. €n(—k). The Fermi surface of CefSi consists of several

We found that the electrons at the Fermi energy are predomfzﬁheew{see Sec. Il all of which can in principle participate
nantly of Ce-4 character. in the formation of the superconducting order.

Figure 2 shows the band structure of G&rtwith SO i AESltjming ;}Bgs-gp? n;echa_nist? cgpairing,hthe inlteracg)
coupling®’ As in Fig. 1 we connected bands with the same lon between the band electrons in the Looper channel can be

band index, ignoring band crossings. In Fig. 2, the bandg"ritten in the following form:
near the Fermi energy: are split by an amount of at most

. L . . —H® (2) (3)
50—200 meV. This splitting vanishes along the linEsZ Hse=Hso' +Hs+Hge' (10)
andM-A.
where
1
=5 2 2 Vi (kK)einel inC e nCicns (1)
g k.k
Ay 1
; Hg:)zz an kzk’ VS12n)1(k1k,)CE,nCik,ncfk’,ka’,mv (12)
) 1
H(S%)ZE nzm ka, Vﬁr)](kak’)Ci,nCtk,mcfk’,ka’,n . (13)

The potentiald/ are nonzero only inside the energy shells of
width w. (the cutoff energynear the Fermi surface.

k vector

FIG. 2. (Color online Band structure of CeE%i with SO cou-
pling. Bands are split due to the SO interacti@ee Fig. 1L The
bands that cross the Fermi energy, are plotted as solid lines.

Treating the Cooper interaction between the electrons
with opposite momenta in the mean-field approximation, we
obtain
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0.5
0.4 sc__ 2 2 [Anm Ck nC km+H C] (14)
. 03
~ o2 Here the diagonal matrix elements, (k) represent the Coo-
0.1 per pairs composed of quasiparticles from the same sheet of
0 the Fermi surface, and the off-diagonal matrix elements
A (k) with n#m represent the pairs of quasiparticles from
different sheets. From the anticommutation of the fermionic
0.4 operators, it follows that\ ,,(k) are odd functions ok, but
T Apm(K)=— A (= k) with n#m do not have a definite par-
0.2 ity.
0.1 A considerable simplification occurs if to assume that the
0 superconducting gaps are much smaller than the interband
energies. The band structure calculations of Sec. Il show
0.4 that typically the SO band splittingso is of the order of
03 50— 200 meV(between the bands derived from the degener-
e - ate spin-up and spin-down bands at zero SO coupling
’ which exceeds the superconducting gap by orders of magni-
0:1 tude. In this situation, the formation of interband pairs is
0 energetically unfavorable, and the amplitudeg, with n
#m vanish. The origin of the suppression of these types of
0.4 pairing is similar to the well-known paramagnetic limit of
0.3 singlet superconductivit$® the interband splittindEso cuts
Na 0 off the logarithmic singularity in the Cooper channel, thus
’ reducing the critical temperature. Although the condition
0.1 Eso>T, is violated very close to the poles of the Fermi
a surface where the spin-split bands touch, the off-diagonal
Cooper pairing in the vicinity of these points is still sup-
0.4 pressed due to the phase space limitations. We also neglect
0.3 the possibility of the Cooper pairs having a nonzero momen-
& oy tum, i.e., (ClignCl km);eo [Larkin-Ovchinnikov-Fulde-
0 Ferrell (LOFF) phasé2 Although the critical temperature of
B the resulting nonuniform superconducting state can be higher
than that of the uniform state, this would not be sufficient to
overcome a large depairing effect of the SO band splitting.
0.4 Thus, the interband pairingl3) can be neglected, and
. 03 An(K)=A,(K) 8.2 This is reminiscent of the situation in
* 02 ferromagnetic superconductors, where only the same-spin
0.1 components ofA survive the large exchange band splittihg.
0 It follows from Egs.(3)—(5) and antilinearity oK that
G(Cl,nctk,n)e_l:Cgk,nciek,n
0.4
s 0.3 E(Cl,nctk,n)E_lzCl,ncik,n
0.2
0.1 K()\Clﬁnc‘ik’n)Kil: —)\*Cik’nclan)\*CE’nCtk’n,

where \ is an arbitrary constant. We have the following
K transformation rules for the order parameter under the ele-
ments ofG:

FIG. 3. (Color onling Fermi surface of CeRSi. (a)—(g) show
cross sections for different values lof (k, is measured in units of
2m/c, andk, , are measured in units ofiZa). Only one quarter of
the Brillouin zone is shown. By applying the reflection symmetries K: An(k)—>A (k). (19

in thek,=0 andk,=0 planes, the Fermi surface in the entire Bril- s the order parameter components transform like scalar
louin zone can be recovered. The labels of the sheets correspond TA’U ’ P P 1K

the labels in Fig. 1. Dots indicate thepoints for which we calcu- functions. There is no need for double groups, sificés
lated the band energies. The Fermi surface was obtained by inteequivalent toE when acting onA. In the case of an AFM
polating between these points. normal stateK should be replaced witKT,.

G:A(K)—A (G 1K),
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TABLE I. The character table and the examples of the odd basig\lthough the basis functiong are different in general, they
functions for the irreducible representations@y, . all have the same symmetry.
Our phenomenological theory cannot determine which

r E Caz Ix ér(K) pairing channel corresponds to the highest critical tempera-
A, 1 1 1 K, ture. In a recent work, Frigegt al* proposed a microscopic

A, 1 1 -1 (k2= K2)kk,k, model fqr superconductn_nty in & noncentrosymmetric crys-
B, 1 -1 1 (K2—K2)k, tal, treating th(_e SO coupll_ng as a pertl_eratlon W|th_e_1 Ra_shba-
B, 1 -1 -1 KekyK, type Ham_lltonlan. Assuming a strong interband pairing inter-
E 2 0 0 Ke, Ky action which induces order parameters of the same amplitude

on both sheets of the Fermi surfajgee Eq.(7)], they pre-

dicted a certain gap symmetry for Cg®i, which seems to
The superconducting order parameter onritie sheet of  correspond to the two-dimensiongl representation in our

the Fermi surface transforms according to one of the irreducelassification.

ible representationB of the normal state point groupy,, . It

can be represented in the form

B. Gap zeros
dp

A, F(k)zz Mnidrni(K), (16) The symmetry considerations can help find the zeros in
’ i=1 the energy spectrum of Bogoliubov quasiparticles, which are
responsible for peculiarities in the low-temperature behavior

tions (which are different on different sheets of the FermiOf unconventional superponductc?@he 9ap S”‘%Ct“re of the
order parameter belonging to the two-dimensional represen-

surface in genergland », ; are the order parameter compo-  ° Eof C. d d h duct h )
nents that enter, e.g., the GL free energy and can depend dation E of Cy, depends on the supercon uctmg pnhase, 1.e.,
on the values of the componentg and #,, which in turn

coordinate$. Despite the absence of inversion center in the determined by minimizing the f £ th
crystal, the order parameter§, have a definite parity, are aetermined by minimizing the iree energy or (né super-

namely, they are all odd with respect ko~ —k. The odd conductor. In contrast, the gap nodes for the one-dimensional
irreducible representations @f,, are listed in Table I. Since order parameters are required by symmetry. Although the

dr=1 or 2, the order parameter in each band can have on omentum dependence of the order parameter is different on
o? two com’ponents ifferent sheets of the Fermi surface, see @@®), the loca-

If we neglect the interband pairing describedHb C), see tions of symmetry-imposed gap zeros are the same.

One can easily show that the order parameter correspond-
Eqg.(12), then the order parameteks, are completely decou- . : _
pled, in particular, they all have different critical tempera-Ing 10 A vanishes on the plarig=0, so that the energy gap

. - has lines of nodes at the equators of all sheets of the Fermi
turesT. ,. However, there is no reason to expect these iN<urface. Indeed
terband terms to be small. If they are taken into account, then ' '
all A,(k) are nonzero, so the superconductivity will be in-
duced simultaneously on all sheets of the Fermi surface. The _ _ _
simplest way to see how this works is to use the GL free Caz¢n, (K= da,(—ka, =Ky ko) = b, (K) == da (1K),
energy functional, which contains all possible uniform and (19
gradient terms invariant with respect @ For a one-
dimensional representatioil (the generalization for two-
dimensional representations is straightforwande obtain
the following expression for the uniform terms in the free

energy density:

wheredr is the dimension of’, ¢r (k) are the basis func-

therefore,d)Al(kx,ky,O):O. In a similar fashion, one can

prove the existence of lines of zeroslgt=0 for all other
one-dimensional representations. Also, the basis functions of
A, andB; have lines of zeros &,=0 or k,=0, while the
basis functions ofA, and B; have lines of zeros da,=

Funitorm= 2 Anm(T) 7% 7+ Fa, (17 =k,. The examples of the basis functions that have only
nm zeros imposed by symmetry are given in Table I.
whereF, stands for the terms of fourth ordéand highey From the results of Sec. Il it follows that some of the

and A;; is a real symmetric matrix. The off-diagonal ele- sheets of the Fermi surface cross the boundaries of the Bril-
ments ofA correspond to the interband pairing. The critical louin zone. As seen from E@19), the order parameters cor-
temperatureT, is defined as the maximum temperature atrésponding to all one-dimensional representations vanish at
which A ceases to be positive definite. Beld all 5, are  K,=*/c, i.e., at the top and bottom surfaces of the Bril-
nonzero and proportional to a single complex numiper louin zone, becausek{,k,,m/c) and (ky.k,,—m/c) are
such thaty,=¢,,7, wheres, are constants that can be found €quivalent points. In addition, for the same reason the basis
by minimizing F yniom. Therefore, the components of a one- functions ofA; andB, have lines of zeros a,= * m/a or

dimensional order parameter corresponding to the represelly= * 7/a. The gap nodes for one-dimensional order param-
tationI" are given by eters are present at the same locations on all sheets of the
Fermi surface and can disappear only if the interband pairing
AL(K) = nendr n(k). (18)  interactionsH®), see Eq(13), are taken into account.

sc

094514-6



CePtSi: AN UNCONVENTIONAL SUPERCONDUCT® . . . PHYSICAL REVIEW B 69, 094514 (2004

C. Helical superconducting states energy. Because of a large number of the phenomenological

parameters in the GL functional with the higher-order terms,

Lhe phase diagram of this system is quite fich particular,

there exist various types of helical phases wjth0, sepa-

rated from one another and from the uniform phase by addi-

N . , . tional phase transitions beloWy.

Forad. = 2 [Km(D1 70)* (D 7) + K D2 720) * (D, 7)1, It should be emphasized that the origin of the helical su-
i (20) perconducting states is different from that of the LOFF non-

uniform stateg® In terms of the GL functional, the LOFF

whereD=V +i(27/®()A, o=wfic/eis the flux quantum, state corresponds to the sign change of the second-order gra-

A'is the vector potential, and, =(Dy,Dy). The coefficients  dient term at some values of the paramet@s., of the

Kym and Ky, are real symmetric matrices. The ter®),  external magnetic field while our helical instability occurs

which are of the second order by, are present in any multi- because of the presence of the first-order gradient terms.

band tetragonal superconductor with the order parameter cor-

responding to a one-dimensional representation of the sym-

metry group. However, in the absence of an inversion center, V. CONCLUSION

one can have additional terms in the GL functional, which

satisfy all the necessary symmetry requirements but are of We have shown that the order parameter in a non-

the first order in gradientS.In our case, they can be written centrosymmetric superconductor with strong spin-orbit cou-

In addition to the uniform termgl7), the GL functional
for the order parameter corresponding to a one-dimension
representation o€,, also contains gradient terms

in the form pling has only intraband components and is always odd with
respect tk— — K, which is a consequence of Pauli principle.

= _3 L Dy — %D ' 21 This should be contrasted to the case of zero spin-orbit cou-

grad’z_;m 7 Dz = 7nD2770) @) pling, in which the bands are twofold degenerate. In that

limit, one cannot separate the odd and even componeuits of
because of the lack of inversion symmetry, so the order pa-
ameter does not have a definite parity.

The Fermi surface of Cef8i consists of three pairs of
sheetsa, B, and vy, each split by the spin-orbit coupling.
Our band structure calculations reveal that the states at the
Fermi level are predominantly of Cd-&haracter. These
states are affected strongly by spin-orbit coupling, which
leads to the band splitting energy as high as-200 meV.

The splitting vanishes along thE-Z and A-M symmetry

_ iqz _ iqz lines. By far the biggest contribution to the density of states
D= Mm@ 0o =720 22 at the Fermi level comes from the sheets.
is determined by the stability condition of the quadratic  Although the large value of the spin-orbit band splitting
terms (both uniform and gradientn the GL functional to- excludes the superconducting states that correspond to the
wards formation of a state with nonzerg, . From Egs. pairing of electrons from different sheets of the Fermi sur-

wherelL ., is a real antisymmetric matrix, which is nonzero
only if the interband pairind12) is present. The term&1) r
lead to the possibility that the superconducting state which
appears immediately below. can be nonuniform, even
without external magnetic field.

Consider for simplicity only two bands participating in
superconductivity, i.e.n=1,2. In this case, the matrik in
Eqg. (21) has only one nonzero elemehf,= —L,=\/2.
The critical temperature for the superconducting state

(17),(20), (21), one has the following equation fdi.(q): face, one can expect that the interband pair scattering will
) - induce gaps of the same symmetry on all sheets of the Fermi
A1t KyQ A1t K0 +ig surface. The possible gap structure of G&Pdepends on

=0, (23 the dimensionality of the order parameter. If the order pa-

B _ _ rameter corresponds to a one-dimensional representation of
where Ay(T)=a,(T—Ty) and Axp(T)=2a,(T—Tz), With 6 groupc,, , then the gap has line nodes where the Fermi

Ty andT; having the meaning of the critical temperatures forg,rtace crosses the high-symmetry planes or the boundaries
the bands 1 and 2, respectively, in the absence of any integs the Brillouin zone: ak,=0,* «/c for all 1D representa-

band coupl_ing_. The phase transition temperatu_re is obtain ns; atk,=0,+ m/a and k,=0,% /a for A, and B,; at
by the maximization off.(q) with respect tag. Itis easy to | _ 4 for A, andB;
. - x= T Ky .
show that the maximum critical temperature corresponds to a" 1o presence of the gap nodes would manifest itself, e.g.,

state withq#0 (a *helical” state”) if the following condi-  j, 5 power-law behavior of thermodynamic and transport
tion is satisfied: characteristics af — 0. Although the gap symmetries on all
sheets of the Fermi surface should be the same, their magni-
tudes may be different. The experimental data, e.g., a re-
where T, ,=T,(q=0). However, even if this condition is duced value of the specific heat jumpTat,'® indicate that
violated and the phase transition occurs from the normabnly some parts of the Fermi surface have non-zero super-
state to a uniform superconducting state, there remains a posenducting gaps, while others remain normal. If this is in-
sibility that this uniform state becomes unstable towards theleed the case, then the specific heat would dro@@9/T
formation of a helical state at a lower temperature. To findxconst-aT at low temperature&vith the constant contribu-
this instability, one has to include nonlinear terms in the fregtion coming from the normal sheets of the Fermi surface

de .
At K02 —iNg Aot K0

N4 2A1 K 15— Agy(Te o) Koo Aga T 0 K11>0,  (24)
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which seems to agree with the experimental data of Ref. 18ponding to the one-dimensional representatior8,gf this

in zero field. More detailed information about the pairing possibility exists only if the interband pairing is taken into
symmetry can be obtained only if the precise location of theyccount.

line nodes is known.

The absence of inversion symmetry can also have inter-

esting consequences for the spatial structure of the supercon-
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