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CePt3Si: An unconventional superconductor without inversion center

K. V. Samokhin, E. S. Zijlstra, and S. K. Bose
Department of Physics, Brock University, St. Catharines, Ontario, Canada L2S 3A1
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Most superconducting materials have an inversion center in their crystal lattices. One of few exceptions is
the recently discovered heavy-fermion superconductor CePt3Si @E. Baueret al., Phys. Rev. Lett.92, 027003
~2004!#. In this paper, we analyze the implications of the lack of inversion symmetry for the superconducting
pairing. We show that the order parameter is an odd function of momentum, and that there always are lines of
zeros in the excitation energy gap for one-component order parameters, which seems to agree with the experi-
mental data. The superconducting phase can be nonuniform, even without external magnetic field, due to the
presence of unusual gradient terms in the Ginzburg-Landau free energy. Also, we performedab initio elec-
tronic structure calculations for CePt3Si, which showed that the spin-orbit coupling in this material is strong,
and the degeneracy of the bands is lifted everywhere except along some high symmetry lines in the Brillouin
zone.

DOI: 10.1103/PhysRevB.69.094514 PACS number~s!: 74.20.Rp, 74.70.Tx, 71.20.Be
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I. INTRODUCTION

In the past two decades, a number of novel supercond
ing materials have been discovered where order param
symmetries are different from ans-wave spin singlet, pre-
dicted by the Bardeen-Cooper-Schrieffer~BCS! theory of
electron-phonon mediated pairing. From the initial discov
ies of unconventional superconductivity in heavy-fermi
compounds, the list of examples has now grown to inclu
the high-Tc cuprate superconductors, ruthenates, ferrom
netic superconductors, and possibly organic materials
most of these materials, there are strong indications that
pairing is caused by the electron correlations, in contras
conventional superconductors such as Pb, Nb, etc. N
phononic mechanisms of pairing are believed to favor a n
trivial spin structure and orbital symmetry of the Coop
pairs. For example, the order parameter in the high-Tc super-
conductors, where the pairing is thought to be caused by
antiferromagnetic correlations, has thed-wave symmetry
with lines of zeroes at the Fermi surface.

A powerful tool of studying unconventional superco
ducting states is symmetry analysis, which works even if
pairing mechanism is not known. Mathematically, superc
ductivity is a consequence of the breaking of the gauge s
metry U~1! in the full symmetry group of the normal stat
G5SM3U(1), whereSM is a magnetic space group, whic
includes usual space group operations~i.e., translations, ro-
tations, inversion, etc.! and time reversal operationK. In a
nonmagnetic crystal,SM5S3K, whereS is the space group
and K5$E,K%. In a magnetic crystal,K entersSM only in
combination with other symmetry elements. The superc
ducting state is said to be ‘‘unconventional’’ if, in addition
the gauge symmetry, some other symmetries fromG are bro-
ken. The group-theoretical analysis of unconventional su
conducting states in nonmagnetic crystals was develope
Refs. 1,2. Recently, it was extended to include the ferrom
netic case.3–5

In almost all previous studies, it was assumed that
crystal has an inversion center, which leads to degene
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electron bands and makes it possible to classify the Coo
pair states according to their spin~or pseudospin if the spin
orbit coupling is taken into account!. The even~singlet! and
odd ~triplet! components of the superconducting order p
rameter can then be studied separately.6 Although this is the
case in most superconductors, there are some except
Early discussion of the possible loss of inversion symme
associated with a structural phase transition in V3Si, which is
an A15-type superconductor, can be found in Ref. 7. Late
C15 superconductor HfV2 was found to undergo a transitio
from a cubic to a noncentrosymmetric body-centered ort
rhombic structure.8 The possible existence of supercondu
tivity was reported in ferroelectric perovskite compoun
SrTiO3 ~Ref. 9! and BaPbO3-BaBiO3.10 More recently, there
has been a renewed theoretical interest in this probl
mainly in the context of superconductivity in two
dimensional~2D! systems, such as Cu-O layers in YBCO11

or surface superconductivity on Tamm levels.12,13According
to Refs. 11,12, in the absence of inversion symmetry
order parameter becomes a mixture of spin-singlet and s
triplet components, which leads, for instance, to the Knig
shift attaining a nonzero value atT50. Other peculiar prop-
erties of noncentrosymmetric superconductors include
jump of magnetic induction at the surface,14 and the possi-
bility of nonuniform helical superconducting phases due
the presence of first-order gradient terms in the Ginzbu
Landau~GL! functional.15

This work is motivated by a recent experimental disco
ery of superconductivity withTc.0.75 K in CePt3Si,16

which is the first known heavy-fermion material without in
version center.~It should be mentioned that incommensura
density modulations might break inversion symmetry in
heavy-fermion compound UPt3, as pointed out in Ref. 17.!
Our goal is twofold. First, we study the symmetry of electr
bands, calculate the electronic structure, and estimate
magnitude of the spin-orbit coupling in the normal state
CePt3Si. Second, we use general symmetry arguments
analyze the gap symmetry and spatial dependence of the
der parameter in a three-dimensional noncentrosymmetric
©2004 The American Physical Society14-1
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tragonal superconductor, assuming a strong spin-orbit c
pling and the clean limit. The paper is organized as follow
In Section II, we study symmetry of the single electr
states. In Sec. III, the results of the electronic band struc
calculations are reported. Sec. IV focuses on the symm
of the superconducting order parameter, possible location
the gap nodes, and also spatial structure of the supercon
ing phase, using the phenomenological Ginzburg-Landau
proach. Section V concludes with a discussion of our resu

II. SYMMETRY OF ELECTRON BANDS

The symmetry group of the normal paramagnetic statG
5S3K3U(1), whereS is the space group of the crystal an
U~1! is the gauge group. In the case of CePt3Si, the space
group isP4mm ~No. 99!, which is generated by~i! lattice
translations by the primitive vectorsa5a(1,0,0), b
5a(0,1,0), c5c(0,0,1) of a tetragonal lattice and~ii ! the
generators of the point groupG5C4v : the rotationsC4z
about thez axis by an anglep/2 and the reflectionssx in the
vertical plane (100). Spatial inversionI is not an element of
the symmetry group.

In the absence of inversion symmetry, spin-orbit~SO!
coupling plays a crucial role due to its band-splitting effe
At nonzero SO coupling, the single-particle wave functio
are linear combinations of the eigenstates of the spin op
tor sz : ^ruc&5u(r)x↑1v(r)x↓ . Since the normal state
HamiltonianH0 is invariant with respect to the crystal lattic
translations, the eigenfunctions are the Bloch spinorsck,n(r)
belonging to the wave vectorsk in the Brillouin zone, which
can be written in the form

^ruk,n&5uk,n~r!x↑1vk,n~r!x↓ . ~1!

The corresponding eigenvaluesen(k) describe the band dis
persion of free electrons.

In the presence of both the time-reversal and invers
symmetries the bands are twofold degenerate at eachk. In-
deed, the statesuk,n& andKI uk,n& correspond to the samek,
have the same energy, and are orthogonal~in addition, these
two states are degenerate with another pair of orthogo
statesKuk,n& and I uk,n&, which correspond to2k). In this
case,n5(n,6), where 6 labels the linearly independen
Bloch states at a given band indexn. There is a freedom in
choosing the basis functionsuk,n,1& anduk,n,2&. The most
frequently used convention is that they should transform
der rotationsR similar to the spin eigenstatesuk,n,↑& and
uk,n,↓&, i.e.,

Ruk,n,a&5Uab~R!uRk,n,b&, ~2!

wherea,b56 and U(R) is the spin-rotation matrix: for a
rotation by an angleu around some axisn: U(R)5exp
@2i(u/2)(s•n)# (s are Pauli matrices!. The practical recipe
for constructing the basis of the Bloch states is as follo
first choose a stateuk,n,1& at eachk in the irreducible part
of the first Brillouin zone, then act on it byKI to obtain an
orthogonal stateuk,n,2& at the samek, and finally act on
uk,n,6& by the elements of the point group and use the p
scription~2! to obtain the pairs of the basis functions belon
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ing to the star ofk. The single-electron states constructed
this way are referred to as the pseudospin states.2 It is the
presence of the inversion center that makes the bands do
degenerate in a nonmagnetic crystal:en,1(k)5en,1(2k)
5en,2(k) at all k.

In contrast, if the crystal lacks the inversion symmet
then the degeneracy of the single-electron bandsen(k) is
lifted everywhere, except from some points or lines of hi
symmetry. In particular, the bands always touch atk50 ~the
G point!, because of the Kramers theorem: time-rever
symmetry means thatuk,n& and Kuk,n&;u2k,n& have the
same energy. In the case of CePt3Si, one can show that the
spin-split bands touch along theGZ line ~i.e., along the@001#
direction!, and there are no other symmetry-imposed deg
eracies in the bands crossing the Fermi level~see Sec. III
below!. In the limit of zero SO coupling~which is not appli-
cable to CePt3Si), but still without an inversion center, th
symmetry of the system contains SU~2! spin rotations, in
addition to the space group, time reversal, and the ga
group. Then, the bands at eachk are double degenerate.

Let us now show that the transformation properties of
single-electron wave functions in the absence of invers
center are different from those of the spin or pseudos
eigenstates, see Eq.~2!. Mathematically, the wave function
in each band transform according to irreducible corepres
tations of the type-II magnetic space groupSM5S3K ~Ref.
18! ~one should use corepresentations because the t
reversal operationK is antiunitary!. In addition, the corepre-
sentations must be double valued because the statesuk& are
spin-1/2 spinors, so that any rotation by 2p changes their
sign: C4z

4 uk&52uk&, sx
2uk&52uk&, and alsoK2uk&52uk&

~the band indexn is omitted!. The double valuedness can b
dealt with in the standard fashion by using the ‘‘doub
group’’ trick:19 one introduces a fictitious new symmetry e
ementĒ, which commutes with all other elements and s
isfies the conditionsC4z

4 5sx
25Ē, Ē25E, and alsoK25Ē.

The corepresentations ofSM can be derived from the
usual representations of the unitary component, which in
case coincides with the space groupS. For eachk in the
Brillouin zone, the basis of an irreducible representation oS
is formed by the Bloch states corresponding to the star ok.
The stateKuk& belongs to the wave vector2k, but the irre-
ducible representations ofS corresponding tok and2k are
inequivalent~because of the absence of inversion symme!
and must therefore be regarded as belonging to a si
‘‘physically irreducible’’ representation of twice the
dimension.19 In terms of corepresentations this means t
the Bloch statesuk& and Kuk& belong to the same two
dimensional irreducible corepresentation ofS3K.18 Thus,
the appropriate basis of the Bloch states is formed by
wave functionsuGk& corresponding to the star ofk, and also
by their time-reversed counterpartsKuGk&, which can be
combined in a set of bispinorsuCk&5(uk&,Kuk&)T. All the
states from this set have the same energy:e(k)5e(Gk)
5e(2k).

Since the functionGuk& belongs to the wave vectorGk,
one can writeGuk&5eiwk(G)uGk&. The undetermined phas
factors come from the freedom in choosing the phases of
4-2
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CePt3Si: AN UNCONVENTIONAL SUPERCONDUCTOR . . . PHYSICAL REVIEW B 69, 094514 ~2004!
Bloch states and realize a representation of the point grou
this basis~it is assumed that the Bloch states are sing
valued and continuous functions throughout the Brillou
zone!. Using the commutation ofG and K we haveGKuk&
5KGuk&5K exp@iwk(G)#uGk&5exp@2iwk(G)#KuGk&. The
corepresentation matrices in the basis of bispinor wave fu
tions can be obtained from the relations

GuCk&5S eiwk(G) 0

0 e2 iwk(G)D uCGk&, ~3!

ĒuCk&5S 21 0

0 21D uCk&, ~4!

KuCk&5S 0 1

21 0D uCk& ~5!

@we have taken into account thatK(Kuk&)52uk&]. Note that
the multiplication rules for the corepresentation matrices
different from usual unitary group representations. For
ample, D(G1G2)5D(G1)D(G2) and D(GK)
5D(G)D(K), but D(KG)5D(K)D* (G) and D(K2)
5D(K)D* (K).18

The general symmetry arguments given above can b
lustrated using an exactly solvable three-dimensional ge
alization of the Rashba model, which was originally pr
posed to describe the effects of symmetry lowering near
surface of a semiconductor20 and recently applied in Refs
11,12 to quasi-2D noncentrosymmetric superconduct
Consider a single bande0(k) in a crystal described by th
point groupC4v . At zero SO coupling, the band is twofol
degenerate due to spin. The absence of reflection symm
in the xy plane implies the existence of an internal elect
field in the crystal, whose average over a unit cell is nonze
In the Rashba approximation, this nonuniform field is
placed by its average, introducing a constant vectorni ẑ.
When a nonzero SO coupling is switched on, it can descri
by an additional term in the Hamiltonian

HSO5a(
k

n•~sss83k!ak,s
† ak,s8 , ~6!

wheres,s85↑,↓ is thez-axis spin projection, and the state
uk,s& are the Bloch spinors at zero SO coupling. Diagon
ization of the full single-electron Hamiltonian,H5H0
1HSO, gives two bands

e1~k!5e0~k!1auk'u, e2~k!5e0~k!2auk'u ~7!

(uk'u5Akx
21ky

2), which satisfy the conditione1,2(k)5e1,2

(2k) and additional symmetries from the point group. Als
the bands touch along the lineki ẑ. It is easy to see that on
cannot use pseudospin to label these bands, because the
reversal K transforms the bands into themselves:uk,n&
→u2k,n& (n51,2), while the pseudospin states would
transformed into one another.
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To conclude this section, it should be mentioned that
superconductivity in CePt3Si seems to occur in the presen
of antiferromagnetic~AFM! order,16 although no data have
been reported on the structure of the magnetic phase or
magnitude of the staggered moment. Although the symm
analysis above was done assuming a paramagnetic no
state, our results can be easily generalized for an AFM c
For a staggered magnetization directed along thez axis, the
only change one has to make in the symmetry group is
replaceK with KTa , which combines the time reversal op
eration with a lattice translation. Then, Eq.~5! is replaced by

KTauCk&5S 0 eik•a

2e2 ik•a 0 D uCk&, ~8!

so that (KTa)
2uk&52e22ik•auk&.

From the expressions~3!–~8!, one obtains the transforma
tion rules for the creation operators of electrons in the Blo
statesuk&. Although there is some freedom in choosing t
phase factors, we will see in Sec. IV that the physically r
evant properties are insensitive to the choice ofwk(G).

III. ELECTRONIC STRUCTURE

CePt3Si crystallizes in the same tetragonal structure
CePt3B, with space groupP4mm ~No. 99!. The lattice pa-
rameters area54.072 Å andc55.442 Å. Ce is at the 1(b)
site (1/2, 1/2, 0.1468), Pt at the 2(c) site (1/2, 0, 0.6504)
and at the 1(a) site (0, 0, 0). Thez coordinate of the latter
site was chosen to be zero. Si is at the 1(a) site (0, 0,
0.4118). These structural parameters all derive from sin
crystal x-ray data,16 and can be assumed to be sufficien
accurate for our purposes.

We calculated the electronic structure of CePt3Si with the
full-potential ~FP! linear augmented-plane wave~LAPW!
method,21–23 which is based on density functional theory.24

For the exchange and correlation potential we used the l
density approximation25,26 ~LDA !. We performed a non-
magnetic calculation, neglecting the AFM order observed
perimentally below 2.2 K.16 The muffin-tin radii of the atoms
were chosen as 2.11a0. A typical number of plane waves in
our basis set was 580. The electronic ground state was
culated self-consistently on a grid of 4212k points in the
entire Brillouin zone.

For the electronic structure of alloys containing heavy
ements, such as Ce and Pt, the SO coupling can in gen
not be neglected. In particular, as shown in Sec. IV, for
analysis of the symmetry properties of the superconduc
order parameter it is important to obtain an estimate of
SO splitting of the bands near the Fermi energy. The
coupling has been included in our calculations using
‘‘second variational treatment,’’ as discussed by MacDon
et al.27. In this approach, first the eigenstates are calcula
in the absence of the SO interaction. Then, the SO interac
is included in a perturbative way, where the eigenstates u
a certain cutoff energy, calculated without the SO interacti
are used as the basis states. In our calculations this c
energy was approximately 22 eV above the Fermi energ

Although the CePt3Si structure does not have inversio
4-3
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K. V. SAMOKHIN, E. S. ZIJLSTRA, AND S. K. BOSE PHYSICAL REVIEW B69, 094514 ~2004!
symmetry, the band energies still satisfy the relationen(k)
5en(2k), due to the time reversal symmetry of the sing
electron Hamiltonian~see Sec. II!. Figure 1 shows the ban
structure of CePt3Si without SO coupling calculated alon
some high symmetry lines. The bands were plotted accord
to increasing energy. A complete analysis of band cross
based on the character of eigenfunctions was not carried
However, the bands labeledb and g do cross between th
symmetry pointsX and M, and so do theb and g bands
betweenR andA. Theg band and the first dotted band abo
the Fermi energy have the same symmetry betweenM and
G, and hence are unlikely to cross there. The labels of
bands were chosen according to the band index, not the b
character, simply to relate various parts of the Fermi surf
to the bands crossing the Fermi level. In the electronic d
sity of states~not shown! there is a peak at 0.4 eV above th
Fermi energy, which is due to the unfilled Ce-4f electrons.
We found that the electrons at the Fermi energy are predo
nantly of Ce-4f character.

Figure 2 shows the band structure of CePt3Si with SO
coupling.27 As in Fig. 1 we connected bands with the sam
band index, ignoring band crossings. In Fig. 2, the ba
near the Fermi energyeF are split by an amount of at mos
502200 meV. This splitting vanishes along the linesG-Z
andM -A.

FIG. 1. ~Color online! Band structure calculated without S
coupling. Three bands~labeleda, b, andg) cross the Fermi en-
ergy.

FIG. 2. ~Color online! Band structure of CePt3Si with SO cou-
pling. Bands are split due to the SO interaction~see Fig. 1!. The
bands that cross the Fermi energy, are plotted as solid lines.
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Figure 3 shows the cross sections of the Fermi surfac
CePt3Si in the presence of SO coupling. The splitting of t
bands at the Fermi energy due to the SO coupling is pro
nent in this figure. The sheets of the Fermi surface labelea
and b are holelike. Theg sheets are electronlike. Thea
sheet consists of a feature around theZ point. Theb band
gives rise to a larger feature around theZ point and, in ad-
dition, to a feature around theX point @and the symmetry
related pointY5(0,0.5,0)]. Theg bands give rise to a fea
ture around the lineM -A, which is almost dispersionless i
kz , as well as to a small feature around theG point. We
further noted that thea bands contribute 1.9 and 3.5 %, re
spectively, to the density of states at the Fermi energy. S
lar contributions coming from the SO splitb andg bands are
25 and 45 % and 15 and 9.0 %, respectively.

IV. SUPERCONDUCTING ORDER PARAMETER

A. Symmetry analysis

The single-electron statesuk,n& can be used as a basis fo
constructing the Hamiltonian which takes into account
Cooper pairing between electrons. We haveH5H01Hsc ,
where

H05(
n

(
k

en~k!ck,n
† ck,n , ~9!

is the free-electron part, with the chemical potential absor
into the band energies. As follows from the results of Secs
and III, the electronic bandsen(k) are nondegenerate, exce
along the lineki ẑ, and invariant under all operations from
the point group C4v and also under inversion:en(k)
5en(2k). The Fermi surface of CePt3Si consists of severa
sheets~see Sec. III!, all of which can in principle participate
in the formation of the superconducting order.

Assuming a BCS-type mechanism of pairing, the inter
tion between the band electrons in the Cooper channel ca
written in the following form:

Hsc5Hsc
(1)1Hsc

(2)1Hsc
(3) , ~10!

where

Hsc
(1)5

1

2 (
n

(
k,k8

Vn
(1)~k,k8!ck,n

† c2k,n
† c2k8,nck8,n , ~11!

Hsc
(2)5

1

2 (
nÞm

(
k,k8

Vnm
(2)~k,k8!ck,n

† c2k,n
† c2k8,mck8,m , ~12!

Hsc
(3)5

1

2 (
nÞm

(
k,k8

Vnm
(3)~k,k8!ck,n

† c2k,m
† c2k8,mck8,n . ~13!

The potentialsV are nonzero only inside the energy shells
width vc ~the cutoff energy! near the Fermi surface.

Treating the Cooper interaction between the electr
with opposite momenta in the mean-field approximation,
obtain
4-4
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CePt3Si: AN UNCONVENTIONAL SUPERCONDUCTOR . . . PHYSICAL REVIEW B 69, 094514 ~2004!
FIG. 3. ~Color online! Fermi surface of CePt3Si. ~a!–~g! show
cross sections for different values ofkz (kz is measured in units o
2p/c, andkx,y are measured in units of 2p/a). Only one quarter of
the Brillouin zone is shown. By applying the reflection symmetr
in theky50 andkz50 planes, the Fermi surface in the entire Br
louin zone can be recovered. The labels of the sheets correspo
the labels in Fig. 1. Dots indicate thek points for which we calcu-
lated the band energies. The Fermi surface was obtained by i
polating between these points.
09451
Hsc5
1

2 (
k

(
nm

@Dnm~k!ck,n
† c2k,m

† 1H.c.#. ~14!

Here the diagonal matrix elementsDnn(k) represent the Coo
per pairs composed of quasiparticles from the same she
the Fermi surface, and the off-diagonal matrix eleme
Dnm(k) with nÞm represent the pairs of quasiparticles fro
different sheets. From the anticommutation of the fermio
operators, it follows thatDnn(k) are odd functions ofk, but
Dnm(k)52Dmn(2k) with nÞm do not have a definite par
ity.

A considerable simplification occurs if to assume that
superconducting gaps are much smaller than the interb
energies. The band structure calculations of Sec. III sh
that typically the SO band splittingESO is of the order of
502200 meV~between the bands derived from the degen
ate spin-up and spin-down bands at zero SO couplin!,
which exceeds the superconducting gap by orders of ma
tude. In this situation, the formation of interband pairs
energetically unfavorable, and the amplitudesDnm with n
Þm vanish. The origin of the suppression of these types
pairing is similar to the well-known paramagnetic limit o
singlet superconductivity:28 the interband splittingESO cuts
off the logarithmic singularity in the Cooper channel, th
reducing the critical temperature. Although the conditi
ESO@Tc is violated very close to the poles of the Ferm
surface where the spin-split bands touch, the off-diago
Cooper pairing in the vicinity of these points is still su
pressed due to the phase space limitations. We also ne
the possibility of the Cooper pairs having a nonzero mom
tum, i.e., ^ck1q,n

† c2k,m
† &Þ0 @Larkin-Ovchinnikov-Fulde-

Ferrell ~LOFF! phase#.29 Although the critical temperature o
the resulting nonuniform superconducting state can be hig
than that of the uniform state, this would not be sufficient
overcome a large depairing effect of the SO band splittin

Thus, the interband pairing~13! can be neglected, an
Dnm(k)5Dn(k)dnm .30 This is reminiscent of the situation in
ferromagnetic superconductors, where only the same-
components ofD survive the large exchange band splitting3

It follows from Eqs.~3!–~5! and antilinearity ofK that

G~ck,n
† c2k,n

† !G215cGk,n
† c2Gk,n

†

Ē~ck,n
† c2k,n

† !Ē215ck,n
† c2k,n

†

K~lck,n
† c2k,n

† !K2152l* c2k,n
† ck,n

† 5l* ck,n
† c2k,n

† ,

where l is an arbitrary constant. We have the followin
transformation rules for the order parameter under the
ments ofG:

G:Dn~k!→Dn~G21k!,

K:Dn~k!→Dn* ~k!. ~15!

Thus, the order parameter components transform like sc
functions. There is no need for double groups, sinceĒ is
equivalent toE when acting onD. In the case of an AFM
normal state,K should be replaced withKTa .
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The superconducting order parameter on thenth sheet of
the Fermi surface transforms according to one of the irred
ible representationsG of the normal state point groupC4v . It
can be represented in the form

Dn,G~k!5(
i 51

dG

hn,ifG,n,i~k!, ~16!

wheredG is the dimension ofG, fG,n,i(k) are the basis func
tions ~which are different on different sheets of the Fer
surface in general!, andhn,i are the order parameter comp
nents that enter, e.g., the GL free energy and can depen
coordinates.6 Despite the absence of inversion center in
crystal, the order parametersDn have a definite parity,
namely, they are all odd with respect tok→2k. The odd
irreducible representations ofC4v are listed in Table I. Since
dG51 or 2, the order parameter in each band can have
or two components.

If we neglect the interband pairing described byHsc
(2) , see

Eq. ~12!, then the order parametersDn are completely decou
pled, in particular, they all have different critical temper
turesTc,n . However, there is no reason to expect these
terband terms to be small. If they are taken into account, t
all Dn(k) are nonzero, so the superconductivity will be i
duced simultaneously on all sheets of the Fermi surface.
simplest way to see how this works is to use the GL f
energy functional, which contains all possible uniform a
gradient terms invariant with respect toG. For a one-
dimensional representationG ~the generalization for two-
dimensional representations is straightforward!, we obtain
the following expression for the uniform terms in the fr
energy density:

Funiform5(
n,m

Anm~T!hn* hm1F4 , ~17!

whereF4 stands for the terms of fourth order~and higher!
and Ai j is a real symmetric matrix. The off-diagonal el
ments ofA correspond to the interband pairing. The critic
temperatureTc is defined as the maximum temperature
which A ceases to be positive definite. BelowTc all hn are
nonzero and proportional to a single complex numberh,
such thathn5«nh, where«n are constants that can be foun
by minimizingFuniform. Therefore, the components of a on
dimensional order parameter corresponding to the repre
tation G are given by

Dn~k!5h«nfG,n~k!. ~18!

TABLE I. The character table and the examples of the odd b
functions for the irreducible representations ofC4v .

G E C4z sx fG(k)

A1 1 1 1 kz

A2 1 1 21 (kx
22ky

2)kxkykz

B1 1 21 1 (kx
22ky

2)kz

B2 1 21 21 kxkykz

E 2 0 0 kx , ky
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Although the basis functionsf are different in general, they
all have the same symmetry.

Our phenomenological theory cannot determine wh
pairing channel corresponds to the highest critical tempe
ture. In a recent work, Frigeriet al.31 proposed a microscopic
model for superconductivity in a noncentrosymmetric cry
tal, treating the SO coupling as a perturbation with a Rash
type Hamiltonian. Assuming a strong interband pairing int
action which induces order parameters of the same ampli
on both sheets of the Fermi surface@see Eq.~7!#, they pre-
dicted a certain gap symmetry for CePt3Si, which seems to
correspond to the two-dimensionalE representation in our
classification.

B. Gap zeros

The symmetry considerations can help find the zeros
the energy spectrum of Bogoliubov quasiparticles, which
responsible for peculiarities in the low-temperature behav
of unconventional superconductors.6 The gap structure of the
order parameter belonging to the two-dimensional repres
tation E of C4v depends on the superconducting phase,
on the values of the componentsh1 and h2, which in turn
are determined by minimizing the free energy of the sup
conductor. In contrast, the gap nodes for the one-dimensi
order parameters are required by symmetry. Although
momentum dependence of the order parameter is differen
different sheets of the Fermi surface, see Eq.~18!, the loca-
tions of symmetry-imposed gap zeros are the same.

One can easily show that the order parameter corresp
ing to A1 vanishes on the planekz50, so that the energy ga
has lines of nodes at the equators of all sheets of the Fe
surface. Indeed,

C2zfA1
~k!5fA1

~2kx ,2ky ,kz!5fA1
~k!52fA1

~2k!,
~19!

therefore,fA1
(kx ,ky,0)50. In a similar fashion, one can

prove the existence of lines of zeros atkz50 for all other
one-dimensional representations. Also, the basis function
A2 andB2 have lines of zeros atkx50 or ky50, while the
basis functions ofA2 and B1 have lines of zeros atkx5
6ky . The examples of the basis functions that have o
zeros imposed by symmetry are given in Table I.

From the results of Sec. III it follows that some of th
sheets of the Fermi surface cross the boundaries of the
louin zone. As seen from Eq.~19!, the order parameters cor
responding to all one-dimensional representations vanis
kz56p/c, i.e., at the top and bottom surfaces of the Br
louin zone, because (kx ,ky ,p/c) and (kx ,ky ,2p/c) are
equivalent points. In addition, for the same reason the b
functions ofA2 andB2 have lines of zeros atkx56p/a or
ky56p/a. The gap nodes for one-dimensional order para
eters are present at the same locations on all sheets o
Fermi surface and can disappear only if the interband pai
interactionsHsc

(3) , see Eq.~13!, are taken into account.

is
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C. Helical superconducting states

In addition to the uniform terms~17!, the GL functional
for the order parameter corresponding to a one-dimensi
representation ofC4v also contains gradient terms

Fgrad,15(
n,m

@Knm
' ~D'hn!* ~D'hm!1Knm

z ~Dzhn!* ~Dzhm!#,

~20!

whereD5¹1 i (2p/F0)A, F05p\c/e is the flux quantum,
A is the vector potential, andD'5(Dx ,Dy). The coefficients
Knm

' and Knm
z are real symmetric matrices. The terms~20!,

which are of the second order inD, are present in any multi
band tetragonal superconductor with the order parameter
responding to a one-dimensional representation of the s
metry group. However, in the absence of an inversion cen
one can have additional terms in the GL functional, wh
satisfy all the necessary symmetry requirements but ar
the first order in gradients.15 In our case, they can be writte
in the form

Fgrad,25(
n,m

Lnm~hn* Dzhm2hm* Dzhn!, ~21!

whereLnm is a real antisymmetric matrix, which is nonze
only if the interband pairing~12! is present. The terms~21!
lead to the possibility that the superconducting state wh
appears immediately belowTc can be nonuniform, even
without external magnetic field.

Consider for simplicity only two bands participating
superconductivity, i.e.,n51,2. In this case, the matrixL in
Eq. ~21! has only one nonzero elementL1252L215l/2.
The critical temperature for the superconducting state

h1~r!5h1,0e
iqz, h2~r!5h2,0e

iqz ~22!

is determined by the stability condition of the quadra
terms ~both uniform and gradient! in the GL functional to-
wards formation of a state with nonzerohn,0 . From Eqs.
~17!,~20!, ~21!, one has the following equation forTc(q):

detU A111K11q
2 A121K12q

21 ilq

A121K12q
22 ilq A221K22q

2 U50, ~23!

where A11(T)5a1(T2T1) and A22(T)5a2(T2T2), with
T1 andT2 having the meaning of the critical temperatures
the bands 1 and 2, respectively, in the absence of any in
band coupling. The phase transition temperature is obta
by the maximization ofTc(q) with respect toq. It is easy to
show that the maximum critical temperature corresponds
state withqÞ0 ~a ‘‘helical’’ state15! if the following condi-
tion is satisfied:

l212A12K122A11~Tc,0!K222A22~Tc,0!K11.0, ~24!

where Tc,05Tc(q50). However, even if this condition is
violated and the phase transition occurs from the nor
state to a uniform superconducting state, there remains a
sibility that this uniform state becomes unstable towards
formation of a helical state at a lower temperature. To fi
this instability, one has to include nonlinear terms in the f
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energy. Because of a large number of the phenomenolog
parameters in the GL functional with the higher-order term
the phase diagram of this system is quite rich.15 In particular,
there exist various types of helical phases withqÞ0, sepa-
rated from one another and from the uniform phase by ad
tional phase transitions belowTc .

It should be emphasized that the origin of the helical
perconducting states is different from that of the LOFF no
uniform states.29 In terms of the GL functional, the LOFF
state corresponds to the sign change of the second-order
dient term at some values of the parameters~e.g., of the
external magnetic field!, while our helical instability occurs
because of the presence of the first-order gradient terms

V. CONCLUSION

We have shown that the order parameter in a n
centrosymmetric superconductor with strong spin-orbit c
pling has only intraband components and is always odd w
respect tok→2k, which is a consequence of Pauli principl
This should be contrasted to the case of zero spin-orbit c
pling, in which the bands are twofold degenerate. In t
limit, one cannot separate the odd and even componentsD
because of the lack of inversion symmetry, so the order
rameter does not have a definite parity.

The Fermi surface of CePt3Si consists of three pairs o
sheetsa, b, and g, each split by the spin-orbit coupling
Our band structure calculations reveal that the states at
Fermi level are predominantly of Ce-4f character. These
states are affected strongly by spin-orbit coupling, wh
leads to the band splitting energy as high as 502200 meV.
The splitting vanishes along theG-Z and A-M symmetry
lines. By far the biggest contribution to the density of sta
at the Fermi level comes from theb sheets.

Although the large value of the spin-orbit band splittin
excludes the superconducting states that correspond to
pairing of electrons from different sheets of the Fermi s
face, one can expect that the interband pair scattering
induce gaps of the same symmetry on all sheets of the Fe
surface. The possible gap structure of CePt3Si depends on
the dimensionality of the order parameter. If the order p
rameter corresponds to a one-dimensional representatio
the groupC4v , then the gap has line nodes where the Fe
surface crosses the high-symmetry planes or the bound
of the Brillouin zone: atkz50,6p/c for all 1D representa-
tions; at kx50,6p/a and ky50,6p/a for A2 and B2; at
kx56ky for A2 andB1.

The presence of the gap nodes would manifest itself, e
in a power-law behavior of thermodynamic and transp
characteristics atT→0. Although the gap symmetries on a
sheets of the Fermi surface should be the same, their ma
tudes may be different. The experimental data, e.g., a
duced value of the specific heat jump atTc ,16 indicate that
only some parts of the Fermi surface have non-zero su
conducting gaps, while others remain normal. If this is
deed the case, then the specific heat would drop asC(T)/T
}const1aT at low temperatures~with the constant contribu-
tion coming from the normal sheets of the Fermi surfac!,
4-7
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which seems to agree with the experimental data of Ref
in zero field. More detailed information about the pairin
symmetry can be obtained only if the precise location of
line nodes is known.

The absence of inversion symmetry can also have in
esting consequences for the spatial structure of the super
ducting phase. We showed that, in contrast to the centros
metric case, the Ginzburg-Landau free energy can n
contain additional terms which are of the first order in g
dients. Such terms can make the superconducting phase
stable towards the formation of a nonuniform~helical! state
even at zero magnetic field. For the order parameters co
l

h.

A.
.
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sponding to the one-dimensional representations ofC4v , this
possibility exists only if the interband pairing is taken in
account.
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