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Phenomenological description of counterflow superfluid turbulence in rotating containers
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In this paper a simple equation for the vortex line density describing some of the most relevant observed
effects in counterflow superfluid turbulencede in the presence of rotation is proposed. This model is based
on a generalization of Vinen’s equation which incorporates as additional quantity the angular v@locity
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I. INTRODUCTION that both effects are not merely additive, but show an inter-
play between the ordered vortices of rotation and the disor-
In recent years the study of turbulence in quantum syseered ones of counterflow. On the other side, the number of
tems has received new attentibhHere, we consider the papers related to this topic is still very low, in such a way
turbulence in superfluidHe, which is the most studied sys- that the subject deserves more attention. Here, we propose a
tem in this field. Superfluid turbulence ftHe (Refs. 2-5  model able to describe some of the main observed features of

has been investigated in two physical situations: rotatinghese phenomena, by a suitable phenomenological generali-
containers and counterflow experiments. In the first one, thgation of Vinen's equatiof.

vortex lines are parallel to the rotation axis, whereas in the
second one they form a quasi-isotropic tangle. In both situa-

tions an extra dissipation beside the one due to viscosit)(I BRIEE ACCOUNT OF ESSENTIAL PHENOMENOLOGY
alone is present, which can be represented, macroscopically, IN COMBINED ROTATION AND COUNTERELOW
by adding a “mutual friction” term in the two-fluid equations

of motion. From a microscopical point of view, the mutual The combined rotation and axial counterflow in steady
friction results from the collision of the quasiparticles with state exhibits a rich set of features in superfluid turbulence.
the vortex line$° The collision cross section is a function In Ref. 6, Swansort al. experimentally found that in com-

of the direction of the roton drift velocity relative to the bined situations the effects of rotation and counterflow are
vortex line: it is a maximum when the roton is travelling not additive. In that work, the experimental observation con-
perpendicular to this line and a minimuin fact zerg when  sisted in measuring the amount of vortex lines present owing
the roton moves parallel to the line. The microscopic mechato counterflow or rotation alone, and comparing the observed
nism is the same in rotating helium Il as in counterflow line density with what would be expected if the two sources
superfluid turbulence. In both casg@station only and coun- of vorticity simply added. Their measurements showed that
terflow only) the vortex array is described by introducing a the ordered array of vortex lines produced by steady rotation
scalar quantityL, the average vortex line length per unit and the disordered tangle produced by the counterflow do not
volume[briefly calledline densityand whose dimensions are preserve their identities in a combined experiment. This ex-
(length~2]. In the first case the structure of the vortex linesperimental work has recently been complemented by numeri-
is an ordered array of lines aligned along the rotation axis, otal simulations based on the vortex filament mddehich
areal density g proportional to the angular velocify of the  are clarifying as they explicitly illustrate the evolution from
sample; in this case the line dendlityquals the areal density an initial set of parallel vortex lines to a final vortex tangle.

Lg: In the present study on this intricate behavior, we will
consider only the experiments in the range 0.24¥/27
L1 _20 (1) =LlOHzand 8<V2<0.2 cnf/s”. The essential experimental
Rk ' observations may be summarized as follows. Assume that the

container is rotating at a given angular spée@nd that an
4 ) increasing heat floucorresponding to a counterflow velocity
Planck constant, andn, the mass of "He atom: x  \/y parallel to the rotation axis, is imposed. Then one finds

_ 4 - \ :
=9.97 10" cn/s). In the second case, the vortex line y,q complete absence of the laminar regime, and the presence
structure is a disordered tangle of lines; in this case the vor.

line densitvl. i ional o th th of two critical velocitiesV; andV.,, which scale a£)'?,
tex line densityl. is proportional to the square of the coun- ¢ precisely:(a) for V=V, ;, with V.; a counterflow-
terflow velocityV (V=v,—vs, Vv,,, andvg being the veloci-

) f th | and fuid rotation critical velocity, the length per unit volume of the
ties of the normal and superfluid compongnts vortex lines is independent &f and proportional to the an-

- 2 gular speed(), in particular, L=2Q/k, (b) for V<V

<V,,, with V., a second counterflow-rotation critical veloc-
Combined rotation and heat flux is a relatively new area ofity, one observes a situation similar ta), but with L inde-
investigatior’’~’ The interest of combining both situations is pendent ofv and proportional td, with a slightly different
great because it turns out, experimentafind numerically, proportionality constant than in the previous situati@for

where « is the quantum of vorticity £=h/m,, with h the
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V=V,,, L increases with/ and becomes proportional ¥ Vinen supposes that the growth rate lofdepends orL

at high values o¥. and on the mutual friction forcé (i.e., onV). Dimensional
The two critical counterflow-rotation velocitied,, and ~ a@nalysis leads to the equatibn’

ch, Scale aSQlIZZ Vc1=C1\/§, V02:C2\/§, W|th Cl dL \Vi

=0.053 cmsec*?, C,=0.118 cmsec*? The first transi- —| = kL2¢; _14 (3.2

tion appears to correspond to the Donnelly-Glaberson dtj; wl

: i 911 ot ; ;
instability-= “excitation of hellqal wgveéKerm wave:? by where ¢; is a dimensionless function, which depends on the
the counterflow on the vortex lines induced by rotation. Thed

- : imensionless combinatiovix ~ 'L~ %2, By analogy with the

second appears to be a transition t'o a turbu!ent disorder owth of a vortex ring, he assumes that is linearly de-

tangle, when t_he ordered array b_eglns behav_lng as a turb endent on its argument, obtainfiig

lent tangle of interconnected vortices. According to the nu-

merical simulations in Ref. 7, this second transition takes dL

place through the reconnection of the deformed helical lines at =aVL%¥, (3.9

when the amplitude of the Kelvin waves becomes of the f

order of the average vortex separation. In the rang® ehd  with « a dimensionless constant.

V considered, the measured valued.aire always less than The form of thg dL/dt], term, responsible for the vortex

Ly+Lg[Ly andLg as defined in Eqel1.2) and(1.1)], and  decay, was determined in analogy with classical turbulence.

the deviation increases witff and (). In the limit of large  Assuming that the vortex breakup is analogous to a Kolmog-

heat flux and slow rotation, the tangle appears to be “polarorov cascade, Vinen obtairfetf

ized” to accomplish the rotation. The effective polarization

increases with rotation. dL
The dynamics of polarization has been the object of re- dt

cent studies. In Ref. 12, in the case of purely counterflow

experiments, Lipniacki proposed a system of coupled evolubeingy, a dimensionless constant of the order of unity. Sub-

tion equations forL and for a vecton, characterizing the stituting Eqs(3.3) and(3.4) in Eq. (3.1) one obtains the well

=—BkL? with ,8:;(—;, (3.9
d

anisotropy of the tangle, defined as known Vinen’s equati
' ' dL 3/2 2
:<S xs") 2.1 a=aVL - BklL“. (3.5
sy '
The steady state solution of E(.5) is
wheres=g(¢,t), & being the arclength of the vortex line. In o2
the present study of the superfluid turbulence in rotating con- Ly=—5—>V?, (3.6)
tainers, we will suppose that the anisotropy vet¢tassumes Bk

its steady-state valug™®=1(V,Q), collinear to the rota- in accord with Eq(1.2).

tion axis and to the counterflow velociyy. To derive an evolution equation fdrin the presence of
counterflow and rotation, we must take into account that the
Ill. EVOLUTION OF L. DERIVATION OF A GENERALIZED formation of vortex lines is due not only # but also to().
VINEN'S EQUATION IN THE PRESENCE OF We model the destru.ctlon cor_1tr|put|on: as Vinen, with I_Eq.
ROTATION (3.5, and the production contribution with a term depending

onV and(} (as well as onc andL). When the heat flux and
To describel as a function ofv and (), we resort to a the rotation are simultaneously present, there appears a com-
modification of Vinen's equation. In Vinen's modglthe  plex interaction between both processes in the formation and
counterflow velocityV appears as an external fixed param-destruction of vortices. Here, we include these effects sup-
eter that remains constant in the evolution of the vortexposing that the functiorp; depends simultaneously on the
tangle. Vinen assumes that the time derivativdeaé com-  two only (independentdimensionless combinations f (),
posed of two opposite contributions K, andL:
Q 1/2
) } (3.7

dL |dL dL -
dt [dt] [dt],’ @1 L
Note that we use as arguments of the funcifgra term inV

where subscriptsandd denote formation and destruction of and a term inQY2 this is motivated by the dependence of
vortices per unit of time, respectively. The growth of the linethe steady-state values bf in counterflow only and in rota-
density is due to the mutual friction forde the decay is tion only, onV and on{} [see Eqs(1.2) and(1.1), respec-
originated by a cascadelike process of vortex breakup, due tively], and by the observation that the microscopic mecha-
the vortex reconnection, with formation of smaller andnism responsible of the growth of vorticgthe mutual
smaller loops, which in the final stage of the cascade contradtiction force) is the same in rotating helium Il and in super-
and are lost. fluid turbulence.

dL

f

V
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For the functiong; we will choose a quadratic depen- 4 vVVQ
dence on its variables v askL?+[aV+ Bk QL32— ,81(2+B4T L,
Vv 0\ 12 Q v [ Q\12 (3.10
¢f=a1-KL7-12+a2 L +Q3E+Q4KL172(E) ) whereB= a3, a,=8, andaz=— B, a,=—B,. We have

(3.8)  thus new terms not present in Vinen's equation. These terms
are absent in the absence of rotation, thus recovering Vinen's
where «; are dimensionless constants. The termiVihhas  original equation(3.5).
been omitted because the valuesvotonsidered in this pa-

per are not too high. IV. ANALYSIS OF THE GENERALIZED VINEN’S
Observe that, if we had limited Ed3.8) to the linear EQUATION IN SOME SITUATIONS

terms, the effects o and{) would have been merely addi- ) ) )

tive. The choice(3.9) is motivated by the factoutlined in In this section we will show that E¢3.10 allows us to

Sec. 1) that experiments on combined rotation and counterdescribe most of the phenomenology mentioned in Sec. |I.
flow show that, in the considered regimes\6fand Q, the To dq that We'con5|der both situations: rotation only and
total vortex line density is much less that+Lg. This combined rotation and_ cou_nterflow. Counterflow only_need
feature increases withl and with ). Therefore, the rotation 1Ot be considered, as in this case 10 reduces to Vin-
facilitates the vortex formation, in the absence or for small€"'S One, as already said. _
counterflow velocities, but it hinders their lengthening for _ €asé 1: Rotation onlyFor V=0 and Q#0 equation
high values ol and(. To take into account the experimen- (3-10 becomes

tal results, the coefficienta; and a, are positive coeffi-

cients, while the coefficienta; and o, may become nega- d_L: — azkL?+ Bk QL2 B, QL. 4.2
tive for relatively high values of). In the following we will dt
vrcgli)ebigilz assumption, since we are in this rang8.oThus, This equation admits the only stable stationary solution

dL \/ﬁ L 12— B2 n ,35_401331 \/5 4.2

R=|5. 1tV 2z |V :
[E = aVL¥2+ 0, [k QL2+ ol aV =L 2ay 4aj «
f (3.9 where we must put
2

We will show that Eq.(3.9) is a good approximation of the B2t NBa—4ash; s 3
unknown functiongs , in the range oV and() considered in 2a, ' '
this paper.

tp agree with Eq(1.1). Then, one has proportional to the

Observe that, from the experimental observations reporte ; g , 4
angular velocity(), according to theoretical prediction and

in Ref. 5, which we have briefly recalled in Sec(see also c
Sec. V), one deduces that the evolution bfseems to de- ©€XPerimental results.

pend on the anisotropy of the tangle; obviously, in a com- Cas€ 2: Combined rotation and counterflolw the pres-
plete dynamical model, also the anisotropy vedtavill sat-  €1C€ of rotation and counterflow, the stationary solutions of

isfy an evolution equation, depending dhand on(). The Eqg. (3.10 are solutions of the following second-order alge-

H H H 1/2.
experimental observations imply that the evolution equation&"@C €quation in the unknown™=
of L andl are not independent of each other. In this work we via
will limit to study the evolution for_; to take into account of _ A 12 _ _
the polarization of the tangle, we will suppose that the di- agkl+LarV BV kQ LT B = By Jx 0.
mensionless coefficienta; can depend on the anisotropy (4.4)

factorl. Further, they can depend on the temperaiyree.,
a;=a;(T,1HD)  wherel M) is the steady-state value of ~ Looking at Fig. 3 of Ref. which shows. as function of
the anisotropy vectol in combined counterflow and rota- V?), we note thatL is almost independent oW for V
tion. <V,,, with a step change around,,; (in other words, for
Of course, it would be convenient to have a microscopicV<V.;, L as a function ofV? is a horizontal line with a
interpretation for each of the new terms appearing in Egsmall step invV.;). However, there is a variation of the slope
(3.9), but, to our knowledge, this is not yet available in cur- nearV.,. We will concentrate in this section on the change
rent models, though the very recent numerical investigationsearV,,, and will differ the analysis around,,; to Sec. VI.
in Ref. 7 may be useful to get a detailed microscopic underin the concluding Sec. VII, we will comment the micro-
standing of each term in the near future. We hope that thecopic differences between both transitions, which justify
present macroscopic phenomenological modelization mathis different analysis, on the basis on the information pro-
stimulate the microscopic interpretation, by underlying thevided by the recent numerical simulation of Ref. 7.
influence of different several contributions. Equation(4.4) (which describes '? as function ofV) has
Substituting Eqgs(3.4) and (3.9) in Eq. (3.1), we obtain this behavior in the limiting case in which
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Bi Ba[Bs B2
—=—|———. (4.5
a3 a\a; ag Lem?)
Under hypothesig4.5), the solutions of Eq(3.10 can be 14000 A Vee -
written | — ; * 1Hz
L1’2=& \ﬁ (4.6) ; e m
aq K 10000 4
LY2="V+ Pa_ &) \ﬁ 4.7) —
B “ 04H
6000 . Z
where we have put "
_ o i 02Hz
Y= @ (48)
Further, observing that the experimental data show that the
quantity (,32/a3)_(ﬂ4/a1) appearing in EQ(47) must be u.‘os 0.‘1 nAI15
positive, one deduces from E@.5 that both the coeffi- V? (o fsec?)

cients B,=— a3 and 8,= — @, must be positive, and con-
tribute to hinder the lengthening of the vortices.

Equation(4.6) represents a family of straight lines parallel
to theV axis, which scale with/Q. Making use of Eq(1.1),
Eq. (4.6) can be written, for further convenience, as

FIG. 1. Vortex line densityL, shown as function o¥/? [Egs.
(4.13 and(4.14), with m expressed by Ed6.1), andN=100]. The
equations of the straight lines are, respectively LHV2/V§l and
L=LyV#VZ,. Experimental data are from Ref. 6.

characterizes the transition to a turbulent disordered tangle.
L1’2=mL§’2, where m= Pa : 4.9 As we see, this critical velocity scales 6, in agreement
2a, with experimental observations. The critical veloci,
will be commented in Sec. VI.
Finally, we observe that Fig. 3 of Ref.(@nd our Fig. 1
shows the values df as function ofvV?. Equationg4.6) and
(4.7 in the variables I(,V?), become

some details abouh will be commented in Sec. VI. Equa-
tion (4.7) represents a family of straight lines with the same
slope, independent df). In order to study the stability of
solutions(4.6) and(4.7), we write the evolution equation for

the perturbatiorsL, which is 84120 ,20
[ e (4.13
deL 3 a) koK
e —2a3kL+ §(a1V+Bz\/KQ)L1’2+Blﬂ . )
B* B2|7Q Bs B2 Q
@ SR P e o A s
V/O 1 a3 1 a3
— Bi——|SL. (4.10 (4.14
N

which are respectively stable f?<V2, and forV?>V2,.
Substituting Eq(4.6) in Eq. (4.10 and using Eq(4.5), we  Observe that the value of the coefficientdiffers from the
obtain coefficienty,,, introduced in Eq(1.2), which characterizes
the stationary solution in the presence of counterflow only,
déL B4

= - \/;V— _3(2@_ @)Q}&_. 4.19) because the coefficients depend on the anisotropy vector

ar\ ag I, which is different in the two situations.

Thus we see that the prefactor in E4.10 is negative for

. V. EXPERIMENTAL RESULTS. DISCUSSION
counterflow velocitied/ lower than

In this section, we will show that the experimental data on

v :E 2&_ @ \ﬁ 4.12 the steady states df may allow us to determine the four
Y1 %a; as| ¥k ' dimensionless quantities
[corresponding to the point of interception of the straight @, B1 Br PBa

lines (4.6) and (4.7)]. Consequently Eq4.6) is stable for 0 — (5.9

<V<V,,. A similar calculation[i.e., introducing Eq(4.7) BE T
in Eq. (4.10 and studying the sign of the prefack@hows Indeed Eq.(4.12 indicates the value of the counterflow-
that, for values oV higher thanV,, the solution(4.7) is  rotation critical velocityV,; Egs.(4.13 and(4.14) provide
stable. ThereforeV., represents the critical counterflow- the value ofL for V ;<V<V., and V>V,, respectively,

rotation velocity, mentioned in poinfc) of Sec. Il, which  and allow us to obtainB,/«,, B,/a3 and a4/ as, respec-
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tively. Equation(4.5) furnishes the value of the coefficient model. However, it does not describe the small stelp mear
B1/as as function ofaq /a3, Bo/az, andB,/a,. The co- V.1, mentioned in pointb) of Sec. Il. We comment on this
efficient a3, which controls the rate of evolution &f can-  in the next section.

not be determined by the knowledge of the stationary solu-

tions. We .Wi|| choose for this coefficient, the theoretical VI. THE FIRST CRITICAL VELOCITY AND THE
value pbtalned by Vinen. . ANISOTROPY FACTOR
At first, we recall that experimental results show that the
second counterflow-rotation critical veloci¥., is propor- The model developed in the previous sectifigg. (3.10]
tional to \/Q; therefore, from Eq(4.12, we can write does not describe, however, the existence of the first critical
velocity V;; mentioned in pointga) and (b) of Sec. Il in
1128, B \F which the value relatind. to ) has a relatively small, but
02:7 o as P V0. (5.2 steep change. To do this, we assume that the coeffiaient

. . defined in Eq(4.9) (i.e., B,) is not properly a constant, but
The value ofC, being known from experimental data, we that it depends off) andV. In particular, we propose that

obtain
. JkQ }
1112 m=A—-—Btanh————C|, 6.1
= 2Ps_P2 =C,=0.118 cmsec'? (5.3 ’{ \ (6.1
Y Vkl @1 Qagz]

with A, B, and C constants, in such a way that for<V
=(1/C)ykQ, m=A—-B and for V>V_ , m=A+B. The
\f constanC is related tov,,, whereas B gives the size of the

From Eq.(4.7), making use of Eq(5.3), one obtains

(5.9 step ofmnearV,, . In fact, if V¢, is small, the domain oY/
in which the transition frorm=A—-B to m=A+B is pro-
duced is very narrow, as observed in experiments.

This assumption fom could seem, at first sight, a merely
ad hoc assumption. However, it is reasonably founded in the
microscopic ideas about the nature of the transition, already

LY2=V+ %‘—7(:2&

The value of8,/«; (and ofm) can be obtained, using Eq.
(4.13, from the experimental values df in the region
[V¢1,Veo]. Figure 3 of Ref. §and our Fig. 1 shows that in

this region proposed by Donnellf!!Indeed, it is assumed that for small
L(Vep) , V, the vortex lines are straight lines parallel to the rotation
o m= 1.018; (5.5  axis. Increasing values &f produce helical perturbations of
R the vortex lines around their loW-configuration. The situa-
consequently, we will choose tion has been compared by Donnéfl§to magnetic systems,
where the external fiel¢H contributes to the orientation of
Ba Ba magnetic dipoles, while the temperaturéias a disordering
m= =1.009— —=1.427. (56) effect.
2041 ay

This interplay between orientation and disorder is ex-
pressed, in the simplest model of magnetism of 1/2 spin sys-

It remains only to choose the quantify which charac- tems, by

terizes the slope of the straight lines7). Experimental data

reported in Fig. 3 of Ref. 6, show that a good choice is Y
_ Lkl
M=Ng tan)’{ KoT

wu being the magnetic moment of one partidiethe number

, (6.2

o o
7=——=47 cmsec¥2~—=0.0469. (5.7
a3K a'3

Finally, from Egs.(5.3) and(4.5), we obtain of particles kg the Boltzmann constant, amd the total mag-
netization of the sample. This representation of the competi-
@=2.68, &=1.78. 5.9 ]'E|on between order and disorder we have ascribed by the
a3 a3 actor
In Fig. 1 we show the results for the vortex line denditio ko
different values oV and(}, with this four parameters. tanr{——c ) (6.3
We emphasize that the four numerical valigs), (5.7), \

and (5.8), furnish a good approximation to more than 60
experimental data, depending éhandV. The coefficient
a3, which controls the rate of the evolution &f can be
identified with the coefficieng introduced by Vinen to take
into account the decay of the superfluid turbulence. We ma§’
affirm that the model proposed in Eg8.7)—(3.8) for the
formation term, in the considered range of valued)oénd Vo= 1 Q

. o i : c1== VkQ, (6.4
V, is a good approximation of a yet unknown microscopic

in the proposal6.1) for m, becaus& contributes to order
andV to disorder.

In this model, the critical valué/.; of the velocity is
iven by
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which gives the physical way to measure the coefficientVinen’s equation(3.5 is modified, by taking into consider-
C. Using the experimental values ofV, (Ve  ation the relative directions of the anisotropy vedtand the

=0.053/Q cmsec?), it is seen that counterflow velocityV. Lipniacki*? shows that, in stationary
counterflow situations, the vectobiis parallel to the counter-
C=0.596. (6.5  flow velocity V and obtains foiL the following stationary
value
Of course, instead of tanh one could consider the Lange-
vin function in classical paramagnetism, or other functions 12 cyl ™
arising in paramagnetism of particles with other values of the L™= c§ﬁ ' 6.7

spin. The essential fact, common to all of them, is that they H) ; )
go from —1 for high negative values dfl to +1 for high ~ Wherel™™ is the steady-state Va|U92bﬂf:||| in the presence
positive values of, in a relatively narrow range of tempera- of counterflow only, ana; =(|s"|), c5=(|s’|*). Comparing

ture. with Eq. (1.2 we obtain
The coefficientsA andB can be determined from the fol- ()
lowing considerations: for a given value 9f for small val- y _01| 6.9
H - .

ues ofV, the tangle will be completely oriented along the c%ﬁ '
rotation axis, andn=A—B=1. On the other side, wheyi . . .
>V, (i.e. nearV,) m assumes its higher valuen, Observe now that Eq4.7), which furnishes the stationary

=1.009 furnished by Eq(5.6) or, in other terms,A+B value ofL for V>V, can be written
=my. This indicates that 50
|_1’2:7(V—VC2)+m\/T (6.9

—1+my| 1 NI 6.6
m=1+mo| 1-tan vV ' 6.6 and reduces to Ed6.7) in the absence of rotation, because
. i . . when Q=0 alsoV,=0. Recalling that the coefficients;
Here,N is a phenomenological coefficient characterizing theappearing in Eq(3.9) depend on the anisotropy vectgrwe

rate of growth ofL _nea.rvc_l. The experimental data do not -5, say thaly is the value assumed by(1) whenQ andV
allow us to determine it with a good approximation but they 5. simultaneously present:

show simply thaiN>20.
In the microscopic model we have commented on, the Y=9[1(H,Q)]. (6.10
second critical velocityV, is interpreted as the velocity
where the helical vortex lines produced\fy; have reached
an amplitude of the order of the average vortex separatio

If we suppose that the coefficiemt= y(1) depend linearly on
}, we deduce that

and have broken and reconnected, and form a disordered (HQ)
tangle. = — (6.1
We must observe that the data reported in Ref. 6 are ob- ' YH

tained from experiments in which the second-sound wave iﬁnd we can interpreéfl v, as an approximate value of the

propagated orthogonal to the rotation axis, and the authorgnisaropy of the disordered tangle induced by the rotation
do not describe how they have taken into account the an'SOETor V>V

ropy of the tangle. This aspect is becoming increasingly stud-
ied in recent research’121419n Ref. 7, the stationary value

of another anisotropy coefficierfs' - 2) has been numeri-
cally determined, at the valueQ/27=0.0079 Hz andV We have proposed a simple phenomenological model de-
=0.08 cm/s, which are relative to much smaller value§lof scribing some of the most relevant observed effects in coun-
andV than those considered in this work. Therefore, in Secsterflow superfluid turbulence in the presence of rotation
V and VI, in the lack of availability of sufficient data on the This model is based on a straightforward generalizdtieom
dependence of the anisotropy coefficient frélrandV, we  (3.10] of Vinen’s equation for the evolution df. The gen-
have supposed that the values reported in Fig. 3 of Ref. 6 aralized Vinen'’s equation is derived on dimensional grounds,
the effective values df. The results obtained will be close to but adding the effect of the rotation raf¥ in absence of
the real situation as much as the data reporte@Ref. 6 rotation it reduces to Vinen's equation. This generalized
correspond to the effective values lof Further work on the equation describes in a straightforward way some of the
microscopic bases should be carried out to understand thgharacteristic features which the presence of rotation im-
physical processes underlying the orientation of vortex linegoses on the counterflow experiments.
in superfluid turbulence in the presence of rotation. It turns out that the combined effects of rotation and coun-
From this point of view, the recent proposal by terflow are rather subtle: on the one side, they are not merely
Lipniacki,*? where both the line length density and the additive; on the other side, for small and () the combined
anisotropy vector=(s' xs")/{|s|) are assumed as basic dy- effect is an extra production of vortices, whereas, for high
namical variables, instead of only seems very promising. values ofV and(} it inhibits the formation of vortices.
Indeed, not only an evolution equation fbr(related to the Such a model describes the critical velocity, from a
geometrical features of the vortigeis proposed, but also horizontal to a tilted straight line ih as a function o¥/2. To

c2)-

VII. CONCLUDING REMARKS
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include the critical velocityV,;, whereL exhibits a small  of view of the topology of the vortex lines, there is a sudden
step, we suggest to complement this model with a mathincrease of complexity a¥=V,,, in comparison with the
ematical hypothesis for one of the coefficients, inspired bye€latively ordered framework of lines for<V,. The nu-
an analogy between magnetic moments and vortex lines urinerical simulation of Ref. Tsee especially Fig.)2are very
der rotation proposed by Donneffy! in vortex lines, the illuminating in this respect, in the description of the evolu-
rotation provides orientation and the velociheat fluy pro-  tion of a set of parallel vortex linesV(<V,;), to parallel
vides randomization; in magnetic moments, the magnetibelices ¥, <V<V,,), to a reconnected tangle/&V,,).
field provides orientation and temperature provides random¥he topological difference in the transitions\ay andV,, is
ization. A quantitative detailed description would require areflected in the present phenomenological work on the dif-
deeper knowledge of the physical processes underlying thirent kind of analysis for both transitions in Secs. VI and 1V,
orientation of vortex lines, in combined counterflow and ro-respectively.
tation, for which very recent numerical simulatiérzould
provide a basis.

The meaning of both critical velocitieg;; andV,, de-
serves some discussions. ROV, L is almost indepen-
dent ofV, showing only a small step change n&gy . At This work was supported by MIUR under grant “Nonlin-
V>V,,, L becomes an affine function . The transition ear mathematical problems of wave propagation and stability
at V., has been studied in Secs. IV and V. RorV,, the  in models of continuous media” and by founds 60%. D.J.
turbulence is characterized by a tangle of interconnected vomwas supported by the Spanish Ministry of Science and Tech-
tices, whereas fov¥ <V, the vortices form a somewhat or- nology under Grant No. BFM 2000-0351-003-0, and the Di-
dered array of straight vortex line&/€V,,) or of helical  reccio General de Recerca of the Generalitat of Catalonia
lines with increasing amplitudev(;<V<V,,). In all three  under Grant No. 2001 SGR 000186. He also acknowledges
regions may be said that the superfluid is turbulent, becaugbe support of G.N.F.M. of C.N.R. of Italy during his stay in
vortices are present in all of them. However, from the pointPalermo University.
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