
PHYSICAL REVIEW B 69, 094513 ~2004!
Phenomenological description of counterflow superfluid turbulence in rotating containers
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In this paper a simple equation for the vortex line density describing some of the most relevant observed
effects in counterflow superfluid turbulence in4He in the presence of rotation is proposed. This model is based
on a generalization of Vinen’s equation which incorporates as additional quantity the angular velocityV.
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I. INTRODUCTION

In recent years the study of turbulence in quantum s
tems has received new attention.1,2 Here, we consider the
turbulence in superfluid4He, which is the most studied sys
tem in this field. Superfluid turbulence in4He ~Refs. 2–5!
has been investigated in two physical situations: rotat
containers and counterflow experiments. In the first one,
vortex lines are parallel to the rotation axis, whereas in
second one they form a quasi-isotropic tangle. In both sit
tions an extra dissipation beside the one due to visco
alone is present, which can be represented, macroscopic
by adding a ‘‘mutual friction’’ term in the two-fluid equation
of motion. From a microscopical point of view, the mutu
friction results from the collision of the quasiparticles wi
the vortex lines.2–5 The collision cross section is a functio
of the direction of the roton drift velocity relative to th
vortex line: it is a maximum when the roton is travellin
perpendicular to this line and a minimum~in fact zero! when
the roton moves parallel to the line. The microscopic mec
nism is the same in rotating helium II as in counterflo
superfluid turbulence. In both cases~rotation only and coun-
terflow only! the vortex array is described by introducing
scalar quantityL, the average vortex line length per un
volume@briefly calledline densityand whose dimensions ar
~length!22#. In the first case the structure of the vortex lin
is an ordered array of lines aligned along the rotation axis
areal densityLR proportional to the angular velocityV of the
sample; in this case the line densityL equals the areal densit
LR :

L5LR5
2V

k
, ~1.1!

wherek is the quantum of vorticity (k5h/m4 , with h the
Planck constant, andm4 the mass of 4He atom: k
.9.97 1024 cm2/s). In the second case, the vortex lin
structure is a disordered tangle of lines; in this case the
tex line densityL is proportional to the square of the cou
terflow velocityV (V5vn2vs , vn , andvs being the veloci-
ties of the normal and superfluid components!:

L5LH5gHV2. ~1.2!

Combined rotation and heat flux is a relatively new area
investigation.4–7 The interest of combining both situations
great because it turns out, experimentally6 and numerically,7
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that both effects are not merely additive, but show an in
play between the ordered vortices of rotation and the dis
dered ones of counterflow. On the other side, the numbe
papers related to this topic is still very low, in such a w
that the subject deserves more attention. Here, we propo
model able to describe some of the main observed feature
these phenomena, by a suitable phenomenological gene
zation of Vinen’s equation.8

II. BRIEF ACCOUNT OF ESSENTIAL PHENOMENOLOGY
IN COMBINED ROTATION AND COUNTERFLOW

The combined rotation and axial counterflow in stea
state exhibits a rich set of features in superfluid turbulen
In Ref. 6, Swansonet al. experimentally found that in com
bined situations the effects of rotation and counterflow
not additive. In that work, the experimental observation co
sisted in measuring the amount of vortex lines present ow
to counterflow or rotation alone, and comparing the obser
line density with what would be expected if the two sourc
of vorticity simply added. Their measurements showed t
the ordered array of vortex lines produced by steady rota
and the disordered tangle produced by the counterflow do
preserve their identities in a combined experiment. This
perimental work has recently been complemented by num
cal simulations based on the vortex filament model,7 which
are clarifying as they explicitly illustrate the evolution from
an initial set of parallel vortex lines to a final vortex tangl

In the present study on this intricate behavior, we w
consider only the experiments in the range 0.2 Hz<V/2p
<1.0 Hz and 0<V2<0.2 cm2/s2. The essential experimenta
observations may be summarized as follows. Assume tha
container is rotating at a given angular speedV and that an
increasing heat flow~corresponding to a counterflow velocit
V) parallel to the rotation axis, is imposed. Then one fin
the complete absence of the laminar regime, and the pres
of two critical velocitiesVc1 andVc2 , which scale asV1/2;
more precisely:~a! for V<Vc1 , with Vc1 a counterflow-
rotation critical velocity, the lengthL per unit volume of the
vortex lines is independent ofV and proportional to the an
gular speedV, in particular, L52V/k, ~b! for Vc1<V
<Vc2 , with Vc2 a second counterflow-rotation critical veloc
ity, one observes a situation similar to~a!, but with L inde-
pendent ofV and proportional toV, with a slightly different
proportionality constant than in the previous situation,~c! for
©2004 The American Physical Society13-1
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V>Vc2 , L increases withV and becomes proportional toV2

at high values ofV.
The two critical counterflow-rotation velocitiesVc1 and

Vc2 , scale asV1/2: Vc15C1AV, Vc25C2AV, with C1
50.053 cm sec21/2, C250.118 cm sec21/2. The first transi-
tion appears to correspond to the Donnelly-Glaber
instability:9–11 excitation of helical waves~Kelvin waves! by
the counterflow on the vortex lines induced by rotation. T
second appears to be a transition to a turbulent disord
tangle, when the ordered array begins behaving as a tu
lent tangle of interconnected vortices. According to the n
merical simulations in Ref. 7, this second transition tak
place through the reconnection of the deformed helical li
when the amplitude of the Kelvin waves becomes of
order of the average vortex separation. In the range ofV and
V considered, the measured values ofL are always less than
LH1LR @LH andLR as defined in Eqs.~1.2! and ~1.1!#, and
the deviation increases withV and V. In the limit of large
heat flux and slow rotation, the tangle appears to be ‘‘po
ized’’ to accomplish the rotation. The effective polarizatio
increases with rotation.

The dynamics of polarization has been the object of
cent studies. In Ref. 12, in the case of purely counterfl
experiments, Lipniacki proposed a system of coupled evo
tion equations forL and for a vectorI , characterizing the
anisotropy of the tangle, defined as

I5
^s83s9&

^us9u&
, ~2.1!

wheres5s(j,t), j being the arclength of the vortex line. I
the present study of the superfluid turbulence in rotating c
tainers, we will suppose that the anisotropy vectorI assumes
its steady-state valueI (H,V)5I (V,V), collinear to the rota-
tion axis and to the counterflow velocityV.

III. EVOLUTION OF L. DERIVATION OF A GENERALIZED
VINEN’S EQUATION IN THE PRESENCE OF

ROTATION

To describeL as a function ofV and V, we resort to a
modification of Vinen’s equation. In Vinen’s model,8 the
counterflow velocityV appears as an external fixed para
eter that remains constant in the evolution of the vor
tangle. Vinen assumes that the time derivative ofL is com-
posed of two opposite contributions

dL

dt
5FdL

dt G
f

2FdL

dt G
d

, ~3.1!

where subscriptsf andd denote formation and destruction o
vortices per unit of time, respectively. The growth of the li
density is due to the mutual friction forcef, the decay is
originated by a cascadelike process of vortex breakup, du
the vortex reconnection, with formation of smaller a
smaller loops, which in the final stage of the cascade cont
and are lost.
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Vinen supposes that the growth rate ofL depends onL
and on the mutual friction forcef ~i.e., onV). Dimensional
analysis leads to the equation:8,13

FdL

dt G
f

5kL2f fF V

kL1/2G , ~3.2!

wheref f is a dimensionless function, which depends on
dimensionless combinationVk21L21/2. By analogy with the
growth of a vortex ring, he assumes thatf f is linearly de-
pendent on its argument, obtaining8,13

FdL

dt G
f

5aVL3/2, ~3.3!

with a a dimensionless constant.
The form of the@dL/dt#d term, responsible for the vorte

decay, was determined in analogy with classical turbulen
Assuming that the vortex breakup is analogous to a Kolm
orov cascade, Vinen obtained8,13

FdL

dt G
d

52bkL2 with b5
x2

2p
, ~3.4!

beingx2 a dimensionless constant of the order of unity. Su
stituting Eqs.~3.3! and~3.4! in Eq. ~3.1! one obtains the well
known Vinen’s equation8

dL

dt
5aVL3/22bkL2. ~3.5!

The steady state solution of Eq.~3.5! is

LH5
a2

b2k2 V2, ~3.6!

in accord with Eq.~1.2!.
To derive an evolution equation forL in the presence of

counterflow and rotation, we must take into account that
formation of vortex lines is due not only toV but also toV.
We model the destruction contribution, as Vinen, with E
~3.5!, and the production contribution with a term dependi
on V andV ~as well as onk andL!. When the heat flux and
the rotation are simultaneously present, there appears a c
plex interaction between both processes in the formation
destruction of vortices. Here, we include these effects s
posing that the functionf f depends simultaneously on th
two only ~independent! dimensionless combinations ofV, V,
k, andL:

FdL

dt G
f

5kL2f fF S V

kL1/2D ,S V

kL D 1/2G . ~3.7!

Note that we use as arguments of the functionf f a term inV
and a term inV1/2; this is motivated by the dependence
the steady-state values ofL, in counterflow only and in rota-
tion only, onV and onV @see Eqs.~1.2! and ~1.1!, respec-
tively#, and by the observation that the microscopic mec
nism responsible of the growth of vortices~the mutual
friction force! is the same in rotating helium II and in supe
fluid turbulence.
3-2
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For the functionf f we will choose a quadratic depen
dence on its variables

f f5a1

V

kL1/21a2S V

kL D 1/2

1a3

V

kL
1a4

V

kL1/2 S V

kL D 1/2

,

~3.8!

wherea i are dimensionless constants. The term inV2 has
been omitted because the values ofV considered in this pa
per are not too high.

Observe that, if we had limited Eq.~3.8! to the linear
terms, the effects ofV andV would have been merely add
tive. The choice~3.9! is motivated by the fact~outlined in
Sec. II! that experiments on combined rotation and coun
flow show that, in the considered regimes ofV and V, the
total vortex line densityL is much less thanLH1LR . This
feature increases withV and withV. Therefore, the rotation
facilitates the vortex formation, in the absence or for sm
counterflow velocities, but it hinders their lengthening f
high values ofV andV. To take into account the experimen
tal results, the coefficientsa1 and a2 are positive coeffi-
cients, while the coefficientsa3 anda4 may become nega
tive for relatively high values ofV. In the following we will
make this assumption, since we are in this range ofV. Thus,
we obtain

FdL

dt G
f

5a1VL3/21a2AkVL3/21a3VL1a4V
AV

Ak
L.

~3.9!

We will show that Eq.~3.9! is a good approximation of the
unknown functionf f , in the range ofV andV considered in
this paper.

Observe that, from the experimental observations repo
in Ref. 5, which we have briefly recalled in Sec. II~see also
Sec. VI!, one deduces that the evolution ofL seems to de-
pend on the anisotropy of the tangle; obviously, in a co
plete dynamical model, also the anisotropy vectorI will sat-
isfy an evolution equation, depending onV and onV. The
experimental observations imply that the evolution equati
of L andI are not independent of each other. In this work
will limit to study the evolution forL; to take into account of
the polarization of the tangle, we will suppose that the
mensionless coefficientsa i can depend on the anisotrop
factor I . Further, they can depend on the temperatureT; i.e.,
a i5a i(T,I (H,V)), where I (H,V) is the steady-state value o
the anisotropy vectorI in combined counterflow and rota
tion.

Of course, it would be convenient to have a microsco
interpretation for each of the new terms appearing in
~3.9!, but, to our knowledge, this is not yet available in cu
rent models, though the very recent numerical investigati
in Ref. 7 may be useful to get a detailed microscopic und
standing of each term in the near future. We hope that
present macroscopic phenomenological modelization m
stimulate the microscopic interpretation, by underlying t
influence of different several contributions.

Substituting Eqs.~3.4! and ~3.9! in Eq. ~3.1!, we obtain
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dL

dt
52a3kL21@a1V1b2AkV#L3/22Fb1V1b4

VAV

Ak
GL,

~3.10!

whereb5a3 , a25b2 anda352b1 , a452b4 . We have
thus new terms not present in Vinen’s equation. These te
are absent in the absence of rotation, thus recovering Vin
original equation~3.5!.

IV. ANALYSIS OF THE GENERALIZED VINEN’S
EQUATION IN SOME SITUATIONS

In this section we will show that Eq.~3.10! allows us to
describe most of the phenomenology mentioned in Sec
To do that we consider both situations: rotation only a
combined rotation and counterflow. Counterflow only ne
not be considered, as in this case Eq.~3.10! reduces to Vin-
en’s one, as already said.

Case 1: Rotation only. For V50 and VÞ0 equation
~3.10! becomes

dL

dt
52a3kL21b2AkVL3/22b1VL. ~4.1!

This equation admits the only stable stationary solution

LR
1/25F b2

2a3
1Ab2

224a3b1

4a3
2 GAV

k
, ~4.2!

where we must put

b21Ab2
224a3b1

2a3
5&, ~4.3!

to agree with Eq.~1.1!. Then, one hasL proportional to the
angular velocityV, according to theoretical prediction an
experimental results.

Case 2: Combined rotation and counterflow. In the pres-
ence of rotation and counterflow, the stationary solutions
Eq. ~3.10! are solutions of the following second-order alg
braic equation in the unknownL1/2:

2a3kL1@a1V1b2AkV#L1/22b1V2b4

VAV

Ak
50.

~4.4!

Looking at Fig. 3 of Ref. 6~which showsL as function of
V2), we note thatL is almost independent onV for V
,Vc2 , with a step change aroundVc1 ~in other words, for
V,Vc1 , L as a function ofV2 is a horizontal line with a
small step inVc1). However, there is a variation of the slop
nearVc2 . We will concentrate in this section on the chan
nearVc2 , and will differ the analysis aroundVc1 to Sec. VI.
In the concluding Sec. VII, we will comment the micro
scopic differences between both transitions, which jus
this different analysis, on the basis on the information p
vided by the recent numerical simulation of Ref. 7.

Equation~4.4! ~which describesL1/2 as function ofV) has
this behavior in the limiting case in which
3-3
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b1

a3
5

b4

a1
S b4

a1
2

b2

a3
D . ~4.5!

Under hypothesis~4.5!, the solutions of Eq.~3.10! can be
written

L1/25
b4

a1
AV

k
, ~4.6!

L1/25ḡV1S b2

a3
2

b4

a1
DAV

k
, ~4.7!

where we have put

ḡ5
a1

a3k
. ~4.8!

Further, observing that the experimental data show that
quantity (b2 /a3)2(b4 /a1) appearing in Eq.~4.7! must be
positive, one deduces from Eq.~4.5! that both the coeffi-
cientsb152a3 and b452a4 must be positive, and con
tribute to hinder the lengthening of the vortices.

Equation~4.6! represents a family of straight lines parall
to theV axis, which scale withAV. Making use of Eq.~1.1!,
Eq. ~4.6! can be written, for further convenience, as

L1/25mLR
1/2, where m5

b4

&a1

; ~4.9!

some details aboutm will be commented in Sec. VI. Equa
tion ~4.7! represents a family of straight lines with the sam
slope, independent ofV. In order to study the stability o
solutions~4.6! and~4.7!, we write the evolution equation fo
the perturbationdL, which is

ddL

dt
5F22a3kL1

3

2
~a1V1b2AkV!L1/21b1V

2b4

VAV

Ak
GdL. ~4.10!

Substituting Eq.~4.6! in Eq. ~4.10! and using Eq.~4.5!, we
obtain

ddL

dt
5

b4

2 FAV

k
V2

a3

a1
S 2

b4

a1
2

b2

a3
DVGdL. ~4.11!

Thus we see that the prefactor in Eq.~4.10! is negative for
counterflow velocitiesV lower than

Vc25
1

ḡ F2
b4

a1
2

b2

a3
GAV

k
~4.12!

@corresponding to the point of interception of the straig
lines ~4.6! and ~4.7!#. Consequently Eq.~4.6! is stable for 0
,V,Vc2 . A similar calculation@i.e., introducing Eq.~4.7!
in Eq. ~4.10! and studying the sign of the prefactor# shows
that, for values ofV higher thanVc2 , the solution~4.7! is
stable. ThereforeVc2 represents the critical counterflow
rotation velocity, mentioned in point~c! of Sec. II, which
09451
e
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characterizes the transition to a turbulent disordered tan
As we see, this critical velocity scales asAV, in agreement
with experimental observations. The critical velocityVc1
will be commented in Sec. VI.

Finally, we observe that Fig. 3 of Ref. 6~and our Fig. 1!
shows the values ofL as function ofV2. Equations~4.6! and
~4.7! in the variables (L,V2), become

L5Fb4

a1
G2 V

k
5m2

2V

k
, ~4.13!

L5ḡ2V21Fb4

a1
2

b2

a3
G2 V

k
12ḡS b4

a1
2

b2

a3
DVAV

k
,

~4.14!

which are respectively stable forV2,Vc2
2 and forV2.Vc2

2 .
Observe that the value of the coefficientḡ differs from the
coefficientgH , introduced in Eq.~1.2!, which characterizes
the stationary solution in the presence of counterflow on
because the coefficientsa i depend on the anisotropy vecto
I , which is different in the two situations.

V. EXPERIMENTAL RESULTS. DISCUSSION

In this section, we will show that the experimental data
the steady states ofL may allow us to determine the fou
dimensionless quantities

a1

a3
,

b1

a3
,

b2

a3
,

b4

a1
. ~5.1!

Indeed Eq.~4.12! indicates the value of the counterflow
rotation critical velocityVc2 ; Eqs.~4.13! and~4.14! provide
the value ofL for Vc1,V,Vc2 and V.Vc2 , respectively,
and allow us to obtainb4 /a1 , b2 /a3 and a1/a3 , respec-

FIG. 1. Vortex line densityL, shown as function ofV2 @Eqs.
~4.13! and~4.14!, with m expressed by Eq.~6.1!, andN5100]. The
equations of the straight lines are, respectively,L5LHV2/Vc1

2 and
L5LHV2/Vc2

2 . Experimental data are from Ref. 6.
3-4
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tively. Equation~4.5! furnishes the value of the coefficien
b1 /a3 as function ofa1 /a3 , b2 /a3 , andb4 /a1 . The co-
efficient a3 , which controls the rate of evolution ofL, can-
not be determined by the knowledge of the stationary so
tions. We will choose for this coefficient, the theoretic
value obtained by Vinen.

At first, we recall that experimental results show that t
second counterflow-rotation critical velocityVc2 is propor-
tional to AV; therefore, from Eq.~4.12!, we can write

Vc25
1

ḡ F2b4

a1
2

b2

a3
GAV

k
5C2AV. ~5.2!

The value ofC2 being known from experimental data, w
obtain

1

ḡ

1

Ak
F2b4

a1
2

b2

a3
G5C250.118 cm sec21/2. ~5.3!

From Eq.~4.7!, making use of Eq.~5.3!, one obtains

L1/25ḡV1Fb4

a1
2ḡC2AkGAV

k
. ~5.4!

The value ofb4 /a1 ~and ofm! can be obtained, using Eq
~4.13!, from the experimental values ofL in the region
@Vc1 ,Vc2#. Figure 3 of Ref. 6~and our Fig. 1! shows that in
this region

L~Vc2!

LR
5m251.018; ~5.5!

consequently, we will choose

m5
b4

&a1

51.009→ b4

a1
51.427. ~5.6!

It remains only to choose the quantityḡ, which charac-
terizes the slope of the straight lines~4.7!. Experimental data
reported in Fig. 3 of Ref. 6, show that a good choice is

ḡ5
a1

a3k
547 cm sec21/2→ a1

a3
50.0469. ~5.7!

Finally, from Eqs.~5.3! and ~4.5!, we obtain

b2

a3
52.68,

b1

a3
51.78. ~5.8!

In Fig. 1 we show the results for the vortex line densityL to
different values ofV andV, with this four parameters.

We emphasize that the four numerical values~5.6!, ~5.7!,
and ~5.8!, furnish a good approximation to more than 6
experimental data, depending onV and V. The coefficient
a3 , which controls the rate of the evolution ofL, can be
identified with the coefficientb introduced by Vinen to take
into account the decay of the superfluid turbulence. We m
affirm that the model proposed in Eqs.~3.7!–~3.8! for the
formation term, in the considered range of values ofV and
V, is a good approximation of a yet unknown microscop
09451
-
l

e

y

model. However, it does not describe the small step inL near
Vc1 , mentioned in point~b! of Sec. II. We comment on this
in the next section.

VI. THE FIRST CRITICAL VELOCITY AND THE
ANISOTROPY FACTOR

The model developed in the previous sections@Eq. ~3.10!#
does not describe, however, the existence of the first crit
velocity Vc1 mentioned in points~a! and ~b! of Sec. II in
which the value relatingL to V has a relatively small, bu
steep change. To do this, we assume that the coefficienm
defined in Eq.~4.9! ~i.e., b4) is not properly a constant, bu
that it depends onV andV. In particular, we propose that

m5A2B tanhFAkV

V
2CG , ~6.1!

with A, B, andC constants, in such a way that forV!Vc1

5(1/C)AkV, m.A2B and for V@Vc1 , m5A1B. The
constantC is related toVc1 , whereas 2B gives the size of the
step ofm nearVc1 . In fact, if Vc1 is small, the domain ofV
in which the transition fromm5A2B to m5A1B is pro-
duced is very narrow, as observed in experiments.

This assumption form could seem, at first sight, a mere
ad hoc assumption. However, it is reasonably founded in
microscopic ideas about the nature of the transition, alre
proposed by Donnelly.4,11 Indeed, it is assumed that for sma
V, the vortex lines are straight lines parallel to the rotati
axis. Increasing values ofV produce helical perturbations o
the vortex lines around their low-V configuration. The situa-
tion has been compared by Donnelly2,10 to magnetic systems
where the external fieldH contributes to the orientation o
magnetic dipoles, while the temperatureT has a disordering
effect.

This interplay between orientation and disorder is e
pressed, in the simplest model of magnetism of 1/2 spin s
tems, by

M5Nm tanhF mH

kBTG , ~6.2!

m being the magnetic moment of one particle,N the number
of particles,kB the Boltzmann constant, andM the total mag-
netization of the sample. This representation of the comp
tion between order and disorder we have ascribed by
factor

tanhFAkV

V
2CG . ~6.3!

in the proposal~6.1! for m, becauseV contributes to order
andV to disorder.

In this model, the critical valueVc1 of the velocity is
given by

Vc15
1

C
AkV, ~6.4!
3-5
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which gives the physical way to measure the coeffici
C. Using the experimental values ofVc1 (Vc1

50.053AV cm sec21/2), it is seen that

C50.596. ~6.5!

Of course, instead of tanh one could consider the Lan
vin function in classical paramagnetism, or other functio
arising in paramagnetism of particles with other values of
spin. The essential fact, common to all of them, is that th
go from 21 for high negative values ofH to 11 for high
positive values ofH, in a relatively narrow range of tempera
ture.

The coefficientsA andB can be determined from the fo
lowing considerations: for a given value ofV, for small val-
ues ofV, the tangle will be completely oriented along th
rotation axis, andm5A2B51. On the other side, whenV
@Vc1 ~i.e. near Vc2) m assumes its higher valuem0
51.009 furnished by Eq.~5.6! or, in other terms,A1B
5m0 . This indicates that

m511m0H 12tanhFNSAkV

V
2CD G J . ~6.6!

Here,N is a phenomenological coefficient characterizing
rate of growth ofL nearVc1 . The experimental data do no
allow us to determine it with a good approximation but th
show simply thatN.20.

In the microscopic model we have commented on,
second critical velocityVc2 is interpreted as the velocit
where the helical vortex lines produced inVc1 have reached
an amplitude of the order of the average vortex separa
and have broken and reconnected, and form a disord
tangle.

We must observe that the data reported in Ref. 6 are
tained from experiments in which the second-sound wav
propagated orthogonal to the rotation axis, and the auth
do not describe how they have taken into account the an
ropy of the tangle. This aspect is becoming increasingly st
ied in recent research.1,7,12,14,15In Ref. 7, the stationary value
of another anisotropy coefficient^s8•V̂& has been numeri
cally determined, at the valuesV/2p50.0079 Hz andV
50.08 cm/s, which are relative to much smaller values oV
andV than those considered in this work. Therefore, in Se
V and VI, in the lack of availability of sufficient data on th
dependence of the anisotropy coefficient fromV andV, we
have supposed that the values reported in Fig. 3 of Ref. 6
the effective values ofL. The results obtained will be close t
the real situation as much as the data reported in~Ref. 6!
correspond to the effective values ofL. Further work on the
microscopic bases should be carried out to understand
physical processes underlying the orientation of vortex li
in superfluid turbulence in the presence of rotation.

From this point of view, the recent proposal b
Lipniacki,12 where both the line length densityL and the
anisotropy vectorI5^s83s9&/^us9u& are assumed as basic d
namical variables, instead of onlyL, seems very promising
Indeed, not only an evolution equation forI ~related to the
geometrical features of the vortices! is proposed, but also
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Vinen’s equation~3.5! is modified, by taking into consider
ation the relative directions of the anisotropy vectorI and the
counterflow velocityV. Lipniacki12 shows that, in stationary
counterflow situations, the vectorI is parallel to the counter-
flow velocity V and obtains forL the following stationary
value

L1/25
c1I ~H !

c2
2b

, ~6.7!

whereI (H) is the steady-state value ofI 5uI u in the presence
of counterflow only, andc15^us9u&, c2

25^us9u2&. Comparing
with Eq. ~1.2! we obtain

gH5
c1I ~H !

c2
2b

. ~6.8!

Observe now that Eq.~4.7!, which furnishes the stationar
value ofL for V.Vc2 , can be written

L1/25ḡ~V2Vc2!1mA2V

k
~6.9!

and reduces to Eq.~6.7! in the absence of rotation, becau
when V50 alsoVc250. Recalling that the coefficientsa i
appearing in Eq.~3.9! depend on the anisotropy vectorI , we
can say thatḡ is the value assumed byg(I ) whenV andV
are simultaneously present:

ḡ5ḡ@ I ~H,V!#. ~6.10!

If we suppose that the coefficientg5g(I ) depend linearly on
I , we deduce that

I ~H,V!

I ~H ! 5
ḡ

gH
~6.11!

and we can interpretḡ/gH as an approximate value of th
anisotropy of the disordered tangle induced by the rotat
~for V.Vc2).

VII. CONCLUDING REMARKS

We have proposed a simple phenomenological model
scribing some of the most relevant observed effects in co
terflow superfluid turbulence in the presence of rotationV.
This model is based on a straightforward generalization@Eq.
~3.10!# of Vinen’s equation for the evolution ofL. The gen-
eralized Vinen’s equation is derived on dimensional groun
but adding the effect of the rotation rateV; in absence of
rotation it reduces to Vinen’s equation. This generaliz
equation describes in a straightforward way some of
characteristic features which the presence of rotation
poses on the counterflow experiments.

It turns out that the combined effects of rotation and cou
terflow are rather subtle: on the one side, they are not me
additive; on the other side, for smallV andV the combined
effect is an extra production of vortices, whereas, for h
values ofV andV it inhibits the formation of vortices.

Such a model describes the critical velocityVc2 from a
horizontal to a tilted straight line inL as a function ofV2. To
3-6
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include the critical velocityVc1 , whereL exhibits a small
step, we suggest to complement this model with a ma
ematical hypothesis for one of the coefficients, inspired
an analogy between magnetic moments and vortex lines
der rotation proposed by Donnelly:4,11 in vortex lines, the
rotation provides orientation and the velocity~heat flux! pro-
vides randomization; in magnetic moments, the magn
field provides orientation and temperature provides rand
ization. A quantitative detailed description would require
deeper knowledge of the physical processes underlying
orientation of vortex lines, in combined counterflow and r
tation, for which very recent numerical simulations7 could
provide a basis.

The meaning of both critical velocitiesVc1 and Vc2 de-
serves some discussions. ForV,Vc1 , L is almost indepen-
dent of V, showing only a small step change nearVc1 . At
V.Vc2 , L becomes an affine function ofV2. The transition
at Vc2 has been studied in Secs. IV and V. ForV.Vc2 , the
turbulence is characterized by a tangle of interconnected
tices, whereas forV,Vc2 the vortices form a somewhat o
dered array of straight vortex lines (V,Vc1) or of helical
lines with increasing amplitude (Vc1,V,Vc2). In all three
regions may be said that the superfluid is turbulent, beca
vortices are present in all of them. However, from the po
e
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of view of the topology of the vortex lines, there is a sudd
increase of complexity atV5Vc2 , in comparison with the
relatively ordered framework of lines forV,Vc2 . The nu-
merical simulation of Ref. 7~see especially Fig. 2! are very
illuminating in this respect, in the description of the evol
tion of a set of parallel vortex lines (V,Vc1), to parallel
helices (Vc1,V,Vc2), to a reconnected tangle (V.Vc2).
The topological difference in the transitions atVc1 andVc2 is
reflected in the present phenomenological work on the
ferent kind of analysis for both transitions in Secs. VI and
respectively.
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