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Quasiclassical approach to vortex-induced suppression of the superconducting electron density
in d-wave superconductors
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Quasiclassical Eilenberger equations are solved numerically for the case of an isolated two-dimensional
vortex in ad-wave superconductor. The asymptotical behavior of the amplitude and the phase of the pairing
potential, superconducting current, and superconducting electron density at long distances from the vortex core
are obtained. The local Doppler-shifbS) method is found to work reasonably well for description of the
superconducting electron density at distances longer than the coherence length at low temperatures. Nonlocal
effects are important inside the vortex core and for a description of the effects of the fourfold vortex symmetry
outside the core. It is also shown that at higher temperatures the DS method should be modified by including
a pairing potential calculated self-consistently.
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[. INTRODUCTION pressng far from the vortex core. Magnetic measurements on
YBaCuO nanoparticles with trapped vortices also show
Finding a strong linear term in the temperature depenmodification of theny(T) dependence at presence of the
dence of the magnetic penetration deptand the supercon- vortices'®'!Both in the mixed and Meissner states the main
ducting electron densitps was a key development in iden- contributions to the suppression f come from the nonlo-
tifying the d-wave symmetry of the order parameter of high- cal and nonlinear effects. The influence of the nonlocal term
T, superconductorsThe decrease aig(T) with increasing has been investigatéd?!® obtaining the effectiveny(B,T)
temperature, caused by thermal excitations near the nodes dépendence. But similar dependences were fdfifithvhere
the d-wave order parameter, is insensitive to the direction ofonly the nonlinear effect in the DS approximation was taken
the superflow. Yip and Sadiproposed that the field depen- into account.
dence ofA in the Meissner state provides a sensitive test of A modification of the nonlocal theory taking into account
the order parameter symmetry. They argued that a purthe nonlinear effects has been done by a perturbative
d-wave superconductor should, at a sufficiently low temperaealculation'? predicting that in small fields both effects are
ture, also exhibit a linear magnetic field dependencef of the same order but in fields2 T the nonlocal effects are
the magnitude of which depends on the relative orientatiomprevailing. It was also pointed out that such calculations are
of the applied field and the nodes of the order parameterather sensitive to théorm of the vortex corewhich can be
This effect arises from Doppler energy sHiftS) of the qua-  described in the London theory only phenomenologically.
siparticle states by the supercurrent. TlumlinearMeissner  Even for isotropics-wave superconductors some conjectures
effect has been observédut with a magnitude and a tem- have been made about the field dependence of the vortex
perature dependence of the field-dependent correction to core in the modified London equatidf®For d-wave super-
which differ considerably from the predictions of the Yip- conductors the vortex core is highly anisotropic due to core
Sauls theory. states extended in the gap node directitng®
The absence of the Yip-Sauls effeciould possibly be In this paper we solve the quasiclassical Eilenberger equa-
explained by thenonlocality of the supercurrent response in tions numerically for the case of an isolated two-dimensional
the vicinity of the gap nodes. In cleal, ,, superconduct- vortex in ad-wave superconductor. This theory includes the
ors the coherence lengty, which is inversely proportional nonlocal, nonlinear, and core effects simultaneously. The
to the gap size, diverges at the nodes. Thus, near the nodesEifenberger equations can be obtained from a full quantum
the Fermi surface we havg>\ and the supercurrent at any mechanical approadihe Bogoliubov—de Gennes equatipns
point is obtained by averaging the field over a region ofusing an expansion in terms af !, wherea=vg /v, is the
radius &,. For a nonuniform field the nonlocal effects Dirac cone anisotropy is the Fermi velocity, and, is the
weaken the supercurrent response. Indeed, a calculation qfiasiparticle velocity tangential to the Fermi surface at the
S\ (H), including both nonlocal and nonlinear effects, showsnode. This expansion is quite reasonable for the description
that the nonlocal effects drastically redus®(H) below the  of high-T, superconductors, where= 14 for YBaCuO and
first critical field H,4, rendering it practically unobservable 20 for BiSrCaCuCG® The Eilenberger equations have been
in the Meissner stat&.® solved previously/:?!in the vortex core region. Here we find
As found inu-SR investigations of the flux line lattice in the behavior of the amplitude and the phase of the pairing
the mixed state of YBaCuO single crystafSthe currents potential A(r) as well as the superconducting currgit)
induced by the vortices in d&wave superconductor can sup- andng(r) at long distances from the vortex core. We also
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compare the exact solution fo(r) with the local DS ap- . K(_oo)

proximation. It is found that the DS method works reason- a(—ow)= = T 4)
ably well at distances= &, at low temperatures. The nonlo- @t (o +[A(—)[)

cal effects are important inside the core and for the o

description of effects of the fourfold vortex symmetry out- — A* (+o0)

side the core. It is also shown that at higher temperatures the b(+o0)= © +(w2+|K(+oo)|2)l’2' ®)
DS method should be modified by including a pairing poten- " n

tial A(r) calculated self-consistently. The self-consistent condition for the pairing potential

A(6,r)=A(r)cos(d) is given by

1. QUASICLASSICAL APPROACH de
2m

We consider an isolated two-dimensional vortex in a A(r)=VNg27T X, —f(wn,ﬁ rycog26), (6)
d-wave superconductor. The center of the vortex is taken as wn=0 70

the origin The Fermi surface is assumed to be isotropic and/herev is the pa”‘mg interaction energy amd) is the den-
cylindrical. To obtain the quasiclassical Green functions Wesity of states at the Fermi surface. The produdd, can be
solve the quaS|CIaSS|caI Eilenberger equations for the pairingptained from the expression

potential A(6,r)=A(r)cos(D)expi),”** where ¢ is the

angle between th& vector and thea axis (or x axis) and Inl+2 TS 1 0
expi¢)=(x+iy)/r. It should be noted here that the spatial VN, T T 0<orcw, |@n|

variation of the supercurrent and tdevave order parameter ) . )

induce small subdominastandd,, components in the pair- The energy cutoff in this equation can be taken a@s
ing order parameteéf We are not considering these effects =20T.

because they can be included in a straightforward way in our  TO solve Egs(2) and (3) we take the initial distribution
calculations. Throughout this paper, the energies and Iengths,n(r) A(T)tanhr where A(T) is the temperature-
are measured in units of the uniform gap at T=0 and the  dependent uniform gap without the vortex, obtained from

coherence lengtiy=vg/Aq, respectively. Egs.(4)—(6). After that the right-hand side of E¢6) is cal-
For numerical calculation it is convenient to parametrizecylated and a new distribution fax(r) is obtained. Using
the quasiclassical Green function %ia this pair potential the Eilenberger equatioi® and (3) are
o o L solved again. At low temperatures we repeat this iteration
— 2a 4 2b 1-ab procedure 20 times and obtain a self-consistent solution for
" 1+ab’ f 1+ab’ 9= 1+ab’ @ A(r). At 0.9T, and 0.95 ;. we make 200 iterations.

As has been showhthe solution of Eqs(2) and (3) is

where the anomalous Green functidnandf' are related to  quite stable: after integration over a length of a féyvit
the usual notations ag= fexp(¢) and ff= fTeXp(_|¢) becomes almost independent of the initial values. This solu-

tion corresponds to a simple exponential relaxation of the
The functionsa andb satisfy the independent nonlinear Ri- P P P

catti equations functionsa andb to their local “steady-state” values defineq
@/ the local values of the order parameter. ThereforE, to find
‘9llg(‘”nv9 r)=K(¢9,r)—{2wn+i<9H¢ A at a given point, one does not need the values ot

distances larger than severg along the trajectory. This
+A*(0,n)a(w,,0,N)}a(w,,0,r), (2) Peculiarity is used for integration of Eqe) and(3) at long
distances. First, we find some approximative solution at the
— e . distance of severaj, from a given point and consider it as
Jjblwn,6,1)=—A(60,1)+12w,+id)¢ the boundary condition. Next, we make the integration up to
+A(0.1)b(w. . 0.1)'D(w. .0 3 a given point by the Runge-Kutta method with a variable
(6.1)b(wn,0,1)}b(@,0,1) @ step. To f|nd this approxmate boundary condition linear ex-
where w,=(2n+1)xT is the fermionic Matsubara fre- pansionsa= apt+ayr|, b= bo+bary, andA= Ag+Aqr) are
quency,d =d/dr; and ﬁHqS——rL/r Here we use the co- used near the given point. Substituting this expansion into
ordinate systemuU=coséx+sinéy, V= —sin6x+coséy. Egs.(2) and(3) and equating the coefficients under the same
Thus a pointr =xx+yy is denoted as—r“quer Equa- power ofr, we obtain the set of equations fag, a;, by,

andb,. Using the valued\, and A, determined in the pre-
tions (2) and (3) include both nonlocal effectsia and aHb vious iteration andz, and by from Egs. (4) and (5) as the

termg and nonlinear effectsa(andb are nonlinear functions  initial values, this set of equations can be solved with a few

of 9,¢). Since we consider an isolated vortex in extremeiterations.

type-Il superconductors the vector potential in E@3.and In order to avoid computational artifacts, the mesh points

(3) can be neglected. are located on the cylindrical coordinaféslo decrease the
We solve Egs(2) and(3) along a trajectory where, is  amount of the mesh points under fixed accuracy, interpola-

constant. The initial values fa andb in the bulk supercon- tion with fast Fourier transform coefficients and with polyn-

ductor have to be taken as oms between the points with= const andg = const is used.
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FIG. 1. Asymptotical behavior of the amplitude of the pairing 1

potential|A| at long distances fop=0 andT/T.=0.9,0.95 and at

! FIG. 2. Behavior of the amplitude of the pairing potential at
T/T.=0.1 (insed. P y gp

intermediate distances f@f=0 and six values of /T between 0.1
and 0.9. The inset depicts the asymptotical behavior of the differ-
ence of the amplitude along 0 and/4 directions,|A(¢$=0)|

The calculationt’ of K(r) have been done only far<r, |A(¢=m/4) at TIT,=0.1

=10. Far from the vortex core>r, the initial distribution
|A(r)|e=tanhr has been taken. To have the uniform distribu-
tion of the mesh points in the range o0 <« the reduced |A(T,r)[—[A(T)]

radius O=sqg=<1 2In2

1-[9¢(3)T3— 4 In 26, TMo2(r /AY(T)

T ¢
T I-q 8 eemui(r) T

AZT) A(T)’

r=4

(10

is used. With the same method we reproduce the results in _ . . . _
the core ared and obtain a new asymptotical behavior of where{(3) is the Riemann function. The dotted lines in the
A(r) atr—oo. main panel and the inset of Fig. 1 show the values
Figure 1 shows the asymptotical behavior of the ampli-|A(T'r)|_|A(T)| obtained from Eq(9) at T/T,=0.9 and
tude of the pairing potential at long distances 0, 0.95 and from Eq(10) at T/T.=0.1, respectively. As can be
T/T.=0.9 and 0.95 in the main panel, afdT,=0.1 in the  S€&€N from this figure the slopes of asymptotics in LHW
inset. As can be seen from this figyk| relaxes to its bulk ~ theory agrees well with those obtained numerically by us.
value (f —) as 1t2 with the power off being independent Figure 2 shoyvs the bghawqr of the amplitude of the pair-
of the temperature. The same law of the relaxation has bedR9 Potential at intermediate distances 0 and six val-
obtained in the numerical solution of the Bogoliubov-deU€S Of T/Tc between 0.1 and 0.9. The behavior |df(¢

Gennes equatiof$at T=0 K. This relaxation law is differ- :0)|__ |A(¢’_: ml4)| atT/T.=0.1 and the change of the sign
ent from the lawt’ |A(r)|=tanhg). of this quantity are clearly visible in the inset to Fig. 2. This

The analytical expansion of the BCS solution near theV@s also observed in Ref. 17. Far from the vortex core one
infinity point has been obtained perturbatively by Li, Hir- €@ use the results of the LHW thedfyAt T<muwe
schfeld, and Wisle (LHW theory).2? In the Ginsburg-Landau <A(T) they found
regime neaiT . they found

[ACT, 0= [A(T)]
1 ermu(r) S( 77) :
AT.O = AT = — cosg O+1—
A= g o2tz a2 B .
- 3 3
3 2 |0 0+I4 AT)

whereeg is the Fermi energy andy(r) is the superconduct- mu2(r)
ing electron velocity. At low temperatures and long distances €FTs mUSUF.
Mur<T<A(T) the solutioR” is A2(T)  A(T)

11

094508-3



LAIHO, LAHDERANTA, SAFONCHIK, AND TRAITO PHYSICAL REVIEW B69, 094508 (2004

2 T T 0.2 T

— Eilenberger
----- London

0
o0
E 0.1
< —
B ‘.?
'_
—
2
0.000 0.002 0.004 0.006 0.0 0.5 10

1 1r

FIG. 3. Asymptotical behavior of the fourfold phade=argA

; FIG. 4. Asymptotical behavior of the tangential component of
— ¢ at long distances fop= /8 andT/T.=0.1-0.9.

the supercurrentd(r) at long distances for¢=0 and T/T,.
=0.1-0.9 in units of—2eNgugA,.

This equation predicts the positive sign ¢A(¢=0)|
—|A(¢=m/4)|. Thus, our calculations correctly reproduce | Fig. 4 we show the asymptotical behavior of the tan-
the behavior of the pairing potential at short and long d's'gential component of the supercurrehtat =0 andT/T,
tanXes. howl the ph fth . alin th =0.1-0.9 obtained from the solution of Eqd)—(3) and

S was showr the phase of the pairing potential in the (12) and from the London approximation. The London ap-

d-vg%v_te fsup?r(l:(;)nductort W'tl? ha vortex _dlffers Trom :ﬂrg proximation can be obtained from the Eilenberger equations
exnibits tourtold symmetry. 1t has a maximum aiong neglecting the terms with the derivative and keeping the

dlrec_tlon zand decr(_aases_rapldly _OUtS'de_ the vortex. A%erms linear indj¢ in the solution. Then the supercurrent
predicted;” the ratio ImA(r)/ReA(r)—A(r—=)]<1.  acquires the well-known form

This is due to the fact that different terms in the free energy

of the superconductor are responsible for the real and imagi-

nary parts ofA(r), being the local DS term in the first case J(r)=ngT)evyr), (13)
and the nonlocal term dependent on derivatives of the super-
conducting electron velocity in the latter case.

Figure 3 shows the asymptotical behavior of the phasevherevy(r)=7/(2mr)@ is the superconducting electron ve-
W(r)=argA—¢ at long distances,¢p==/8 and T/T. locity. The temperature dependent functiog(T) can be
=0.1-0.9. As can be seen from this figuberelaxes to its  written in a compact forif
bulk value as ¥?, and changes the sign with the tempera-
ture. A change of the sign has also been obtaifethe
relaxation laws ¥? and 1f2 for the real and the imaginary ng(T) 1 (2~
parts of A(r), respectively, indicate that the rato ;J; do cos'
ImA(r)/RgA(r)—A(r—=)]—0 for r—o in agreement
with the LHW theory?? However, this limit is achieved only 1 (= 1
at very long distances. For example, even in the point with x) 1= ﬁjo d¢ JEFADP) ¢
r=10, which is very far from the vortex core, this ratio is 5.2 co ﬁ( —)
at T/T,=0.1. 2T

(14)

IIl. SUPERCONDUCTING ELECTRON DENSITY . .
wheren is the total density of the electrons.

The supercurrent around a vortex is given in terms of As can be seen from Fig. 4 the vortex currents supprgss
g(wy,0,r) by resulting in a nonlinear dependendg(1/r). The nonlocal
effect, the nonlinear effect, and the vortex core effect are not

do & taken into account in the London theory. Neglecting &hE
2rd @

— —g(w,,0,r). (12 and aHHterms in Egs(2) and(3) one can consider the non-
2m i T

J(r)=2eveNg27T 2, : ! can :
©on>0 linear effects exactly. In this approximation the solutions are

0
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1P FIG. 6. Superconducting electron density(r) normalized to

the London valueng(r—o) in the whole range of the radilse-

FIG. 5. Asymptotical behavior of the superconducting electronduced radiug is determined by Eq(8)] at =0 andT/T.=0.2.

density ng(r) normalized to the London valuey(r—) at long

distances ath)=0 andT/T.=0.3—-0.9.

A(r)

a(r)=

(0n+10$/2) +[(0n+id B2+ |A(r)|2)H2

A*(r)

b(r)=

the core effects into account.

In the exact solution and the DS approximation one can

(0n+i9)12) +[(n+id)pl2) %+ |A(r)[2]V2

(19

(16)
which differ from the solution for a homogeneous supercon-
ductor by the Doppler shift in the energyw,— w,
+i0,¢/2. We consider the following two approximatiors:
the Doppler-shift method, whera(r)=A(r—«) and the
core effects are neglected; afid) the self-consisten(SO)
Doppler-shift method, wherd(r) has the local value ob-
tained from the exact solution of Eq4)—(3) and(6) taking

The inset depictaig(r)/ng(r—«) at $=0 andT/T.=0.9.

line lattice in strong field$?3 In the first case there is no
screening length for the supercurrefdecreasing as the
power law 1f) while in the latter case the variation of the
current occurs in the intervortex distance, which is compa-
rable to the coherence length in strong fields, resulting in an
increase of the gradient of(r).

In the core regiomg(r), obtained from the exact solution,
is considerably higher than that from the DS or the SC DS
approximationgsee Fig. 6. The discrepancy is due to quan-
tum effects that average over the rapid variations/dfr)
near the vortex core.
The DS method fails at higher temperatutese Fig. 5
and the suppression of the pairing potential should be taken
into account. This can be done in the SC DS method. As
shown in Fig. 5 this method gives a good approximation of
the exact solution. AT/T.=0.9 the local SC DS method is
extremely good in the whole coordinate rar(gee the inset
to Fig. 6.

also determine the effective superconducting electron density
ng(r)=J¢(r)/[evg(r)] with J¢(r) obtained from Eq.12)
anda(r) andb(r) obtained from Eqs(2) and(3) and Egs.
(15) and(16), respectively. Opposite to the London approach
ng now depends on the coordinate. Then the London ap-
proximation[Eq. (14)] can be obtained at the limit afy(r
—). In Fig. 5 we show the asymptotical behavior of
ng(r,»=0)/ny(r—<) in the exact solution as well as in the
DS and the SC DS approximations atT.=0.3-0.9. It
should be noted that the normalization constant is also
strongly temperature dependent. Using the reduced ragius
[Eqg. (8)] one can presemig(r) in the whole range of,
including the vortex core area &lT.=0.2,0.9(Fig. 6). As

can be seen from Fig. 6 the DS method gives a reasonable
approximation of the exact solution for0.5 atT=0.2T.. It

is explained by the steep decrease of the vortex core on low- F|G. 7. Asymptotical behavior of the radial component of the
supercurrentJg(r) at w/8 and T/T.=0.1-0.9
also noted that the considered case of the vortex in an ex-2eNqygA,. The inset demonstrates the A telaxation law of the

ering the temperaturéPesch-Kramer effetd). It should be

25 T
10* J (0=w/8)
20
15
Pon
E 10
\./m 5
)
©
~— 0
Eilenberger
= = = Doppler-shift
SE 05N o SC Doppler-shift
0.00 0.05

e

treme type-Il superconductor is different from that of the flux Jg(r) asymptotic aff/T.=0.1 on a large scale.
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In the London theory the supercurrent has only a tangenresonances’ Moreover, due to the Aharonov-Bohm effect
tial component. As has been pointed ‘Buhe fourfold sym-  the resonances in the DOS appear to be nonzero even in the
metry of the vortex results in the appearance of a radial comdomain ofr >\ with a slow relaxation lawec 1/r .2
ponent of the currenlz. Similar toW, Jg has a maximum
in the 77/8 direction. Figure 7 shows the asymptotical behav-
ior of Jx(7/8) atT/T,=0.1-0.9 obtained from the solution
of Egs. (1)—(3) and (12). The DS and SC DS methods are  The quasiclassical Eilenberger equations are solved nu-
local approximations and fail to describe the fourfold anisot-merically for an isolated two-dimensional vortex im-avave
ropy. This can be seen from Fig. 7, where the dependencsuperconductor in the whole coordinate range. In the core
Jr(r) calculated in the DS approximation ®T,=0.2, 0.3, area our results reproduce those obtained previdtigin
and 0.7 is shown. There is no agreement with the Eilenbergeasymptotical behavior of the amplitude and the phase of the
theory in this case. The dependergdr) at long distances, pairing potential, superconducting current, and the supercon-
calculated in the SC DS approximation, coincides within theducting electron density at long distances from the vortex
line thickness with that obtained in the DS method. core are obtained. The Doppler-shift method fails to predict

As can be seen from the inset to FigJZ relaxes to its the dependence af; onr at high temperatures. Taking into
bulk value as ¥f. As well as the phas®(r), J; changes account the suppression of the pairing potential as in the
the sign and decreases strongly with the temperature. Thielf-consistent Doppler-shifSC DS method, a good agree-
behavior is consistent with that found previouSiythe rapid  ment with the exact calculation is observed over the whole
relaxation of the anisotropy af(r) andJ(r) is in contrast range of the radius.
with that of the local density of state0S. As was
shown!”1® there are four sharp peaks in the DOS ¢t
=1/4. These peaks are connected with the resonance scat-
tering of the quasiparticles at the phase gradient around the This work was supported by Academy of Finland, Project
vortex center, and can be interpreted as Andreev scatteringo. 52516, and by the Wihuri Foundation, Finland.

IV. CONCLUSION
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