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Quasiclassical approach to vortex-induced suppression of the superconducting electron density
in d-wave superconductors
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Quasiclassical Eilenberger equations are solved numerically for the case of an isolated two-dimensional
vortex in ad-wave superconductor. The asymptotical behavior of the amplitude and the phase of the pairing
potential, superconducting current, and superconducting electron density at long distances from the vortex core
are obtained. The local Doppler-shift~DS! method is found to work reasonably well for description of the
superconducting electron density at distances longer than the coherence length at low temperatures. Nonlocal
effects are important inside the vortex core and for a description of the effects of the fourfold vortex symmetry
outside the core. It is also shown that at higher temperatures the DS method should be modified by including
a pairing potential calculated self-consistently.
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I. INTRODUCTION

Finding a strong linear term in the temperature dep
dence of the magnetic penetration depthl and the supercon
ducting electron densityns was a key development in iden
tifying the d-wave symmetry of the order parameter of hig
Tc superconductors.1 The decrease ofns(T) with increasing
temperature, caused by thermal excitations near the nod
the d-wave order parameter, is insensitive to the direction
the superflow. Yip and Sauls2 proposed that the field depen
dence ofl in the Meissner state provides a sensitive tes
the order parameter symmetry. They argued that a p
d-wave superconductor should, at a sufficiently low tempe
ture, also exhibit a linear magnetic field dependence ofns ,
the magnitude of which depends on the relative orienta
of the applied field and the nodes of the order parame
This effect arises from Doppler energy shift~DS! of the qua-
siparticle states by the supercurrent. ThenonlinearMeissner
effect has been observed,3 but with a magnitude and a tem
perature dependence of the field-dependent correctionl
which differ considerably from the predictions of the Yip
Sauls theory.2

The absence of the Yip-Sauls effect2 could possibly be
explained by thenonlocalityof the supercurrent response
the vicinity of the gap nodes. In cleandx22y2 superconduct-
ors the coherence lengthj0, which is inversely proportiona
to the gap size, diverges at the nodes. Thus, near the nod
the Fermi surface we havej0.l and the supercurrent at an
point is obtained by averaging the field over a region
radius j0. For a nonuniform field the nonlocal effec
weaken the supercurrent response. Indeed, a calculatio
dl(H), including both nonlocal and nonlinear effects, sho
that the nonlocal effects drastically reducedl(H) below the
first critical field Hc1, rendering it practically unobservabl
in the Meissner state.4–6

As found inm-SR investigations of the flux line lattice i
the mixed state of YBaCuO single crystals7–9 the currents
induced by the vortices in ad-wave superconductor can su
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pressns far from the vortex core. Magnetic measurements
YBaCuO nanoparticles with trapped vortices also sh
modification of thens(T) dependence at presence of t
vortices.10,11Both in the mixed and Meissner states the ma
contributions to the suppression ofns come from the nonlo-
cal and nonlinear effects. The influence of the nonlocal te
has been investigated,12,13 obtaining the effectivens(B,T)
dependence. But similar dependences were found,14,15where
only the nonlinear effect in the DS approximation was tak
into account.

A modification of the nonlocal theory taking into accou
the nonlinear effects has been done by a perturba
calculation,12 predicting that in small fields both effects a
of the same order but in fields.2 T the nonlocal effects are
prevailing. It was also pointed out that such calculations
rather sensitive to theform of the vortex core, which can be
described in the London theory only phenomenologica
Even for isotropics-wave superconductors some conjectu
have been made about the field dependence of the vo
core in the modified London equation.12,16For d-wave super-
conductors the vortex core is highly anisotropic due to c
states extended in the gap node directions.17–19

In this paper we solve the quasiclassical Eilenberger eq
tions numerically for the case of an isolated two-dimensio
vortex in ad-wave superconductor. This theory includes t
nonlocal, nonlinear, and core effects simultaneously. T
Eilenberger equations can be obtained from a full quant
mechanical approach~the Bogoliubov–de Gennes equation!
using an expansion in terms ofa21, wherea5vF /vD is the
Dirac cone anisotropy,vF is the Fermi velocity, andvD is the
quasiparticle velocity tangential to the Fermi surface at
node. This expansion is quite reasonable for the descrip
of high-Tc superconductors, wherea514 for YBaCuO and
20 for BiSrCaCuO.20 The Eilenberger equations have be
solved previously17,21 in the vortex core region. Here we fin
the behavior of the amplitude and the phase of the pair
potentialD(r ) as well as the superconducting currentj (r )
andns(r ) at long distancesr from the vortex core. We also
©2004 The American Physical Society08-1
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compare the exact solution forns(r ) with the local DS ap-
proximation. It is found that the DS method works reaso
ably well at distancesr>j0 at low temperatures. The nonlo
cal effects are important inside the core and for
description of effects of the fourfold vortex symmetry ou
side the core. It is also shown that at higher temperatures
DS method should be modified by including a pairing pote
tial D(r ) calculated self-consistently.

II. QUASICLASSICAL APPROACH

We consider an isolated two-dimensional vortex in
d-wave superconductor. The center of the vortex is taken
the origin. The Fermi surface is assumed to be isotropic
cylindrical. To obtain the quasiclassical Green functions
solve the quasiclassical Eilenberger equations for the pai
potential D(u,r )5D̄(r )cos(2u)exp(if),17,21 where u is the
angle between thek vector and thea axis ~or x axis! and
exp(if)5(x1iy)/r. It should be noted here that the spat
variation of the supercurrent and thed-wave order paramete
induce small subdominants anddxy components in the pair
ing order parameter.22 We are not considering these effec
because they can be included in a straightforward way in
calculations. Throughout this paper, the energies and len
are measured in units of the uniform gapD0 at T50 and the
coherence lengthj05vF /D0, respectively.

For numerical calculation it is convenient to parametr
the quasiclassical Green function via21

f̄ 5
2ā

11āb̄
, f̄ †5

2b̄

11āb̄
, g5

12āb̄

11āb̄
, ~1!

where the anomalous Green functionsf̄ and f̄ † are related to
the usual notations asf 5 f̄ exp(if) and f †5 f̄ † exp(2if).
The functionsā and b̄ satisfy the independent nonlinear R
catti equations

] iā~vn ,u,r !5D̄~u,r !2$2vn1 i ] if

1D̄* ~u,r !ā~vn ,u,r !%ā~vn ,u,r !, ~2!

] ib̄~vn ,u,r !52D̄~u,r !1$2vn1 i ] if

1D̄~u,r !b̄~vn ,u,r !%b̄~vn ,u,r !, ~3!

where vn5(2n11)pT is the fermionic Matsubara fre
quency,] i5d/dr i and ] if52r' /r 2. Here we use the co
ordinate system û5cosux̂1sinuŷ, v̂52sinux̂1cosuŷ.
Thus a pointr5xx̂1yŷ is denoted asr5r iû1r'v̂. Equa-
tions ~2! and ~3! include both nonlocal effects (] iā and] ib̄

terms! and nonlinear effects (ā andb̄ are nonlinear functions
of ] if). Since we consider an isolated vortex in extrem
type-II superconductors the vector potential in Eqs.~2! and
~3! can be neglected.

We solve Eqs.~2! and ~3! along a trajectory wherer' is
constant. The initial values forā andb̄ in the bulk supercon-
ductor have to be taken as
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ā~2`!5
D̄~2`!

vn1„vn
21uD̄~2`!u2

…

1/2
, ~4!

b̄~1`!5
D̄* ~1`!

vn1„vn
21uD̄~1`!u2

…

1/2
. ~5!

The self-consistent condition for the pairing potent
D̄(u,r )5D̄(r )cos(2u) is given by

D̄~r !5VN02pT (
vn.0

E
0

2p du

2p
f̄ ~vn ,u,r !cos~2u!, ~6!

whereV is the pairing interaction energy andN0 is the den-
sity of states at the Fermi surface. The productVN0 can be
obtained from the expression

2

VN0
5 ln

T

Tc
12pT (

0,vn,vc

1

uvnu
. ~7!

The energy cutoff in this equation can be taken asvc
520Tc .17

To solve Eqs.~2! and ~3! we take the initial distribution
D̄ in(r )5D̄(T)tanhr, where D̄(T) is the temperature-
dependent uniform gap without the vortex, obtained fro
Eqs.~4!–~6!. After that the right-hand side of Eq.~6! is cal-
culated and a new distribution forD̄(r ) is obtained. Using
this pair potential the Eilenberger equations~2! and ~3! are
solved again. At low temperatures we repeat this iterat
procedure 20 times and obtain a self-consistent solution
D̄(r ). At 0.9Tc and 0.95Tc we make 200 iterations.

As has been shown23 the solution of Eqs.~2! and ~3! is
quite stable: after integration over a length of a fewj0 it
becomes almost independent of the initial values. This so
tion corresponds to a simple exponential relaxation of
functionsā andb̄ to their local ‘‘steady-state’’ values define
by the local values of the order parameter. Therefore, to
D̄ at a given point, one does not need the values ofD̄ at
distances larger than severalj0 along the trajectory. This
peculiarity is used for integration of Eqs.~2! and~3! at long
distances. First, we find some approximative solution at
distance of severalj0 from a given point and consider it a
the boundary condition. Next, we make the integration up
a given point by the Runge-Kutta method with a variab
step. To find this approximate boundary condition linear e
pansionsā5a01a1r i , b̄5b01b1r i , andD̄5D01D1r i are
used near the given point. Substituting this expansion i
Eqs.~2! and~3! and equating the coefficients under the sa
power of r i , we obtain the set of equations fora0 , a1 , b0,
andb1. Using the valuesD0 andD1 determined in the pre-
vious iteration anda0 and b0 from Eqs.~4! and ~5! as the
initial values, this set of equations can be solved with a f
iterations.

In order to avoid computational artifacts, the mesh poi
are located on the cylindrical coordinates.17 To decrease the
amount of the mesh points under fixed accuracy, interpo
tion with fast Fourier transform coefficients and with poly
oms between the points withr 5const andf5const is used.
8-2
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The calculations17 of D̄(r ) have been done only forr ,r c

510. Far from the vortex core,r .r c , the initial distribution
uD(r )u}tanhr has been taken. To have the uniform distrib
tion of the mesh points in the range of 0<r<` the reduced
radius 0<q<1

r 54
T

Tc

q

12q2 ~8!

is used. With the same method we reproduce the result
the core area17 and obtain a new asymptotical behavior
D̄(r ) at r→`.

Figure 1 shows the asymptotical behavior of the am
tude of the pairing potential at long distances forf50,
T/Tc50.9 and 0.95 in the main panel, andT/Tc50.1 in the
inset. As can be seen from this figureuDu relaxes to its bulk
value (r→`) as 1/r 2 with the power ofr being independen
of the temperature. The same law of the relaxation has b
obtained in the numerical solution of the Bogoliubov-
Gennes equations18 at T50 K. This relaxation law is differ-
ent from the law,17 uD(r )u}tanh(r).

The analytical expansion of the BCS solution near
infinity point has been obtained perturbatively by Li, H
schfeld, and Wo¨lfle ~LHW theory!.22 In the Ginsburg-Landau
regime nearTc they found

uD~T,r !u2uD~T!u52
1

3/41eFmvs
2~r !/D2~T!

eFmvs
2~r !

D2~T!
,

~9!

whereeF is the Fermi energy andvs(r ) is the superconduct
ing electron velocity. At low temperatures and long distan
mvsvF!T!D(T) the solution22 is

FIG. 1. Asymptotical behavior of the amplitude of the pairin
potentialuDu at long distances forf50 andT/Tc50.9,0.95 and at
T/Tc50.1 ~inset!.
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uD~T,r !u2uD~T!u

52
2 ln 2

12@9z~3!T324 ln 2eFTmvs
2~r #/D3~T!

3
eFmvs

2~r !

D2~T!

T

D~T!
, ~10!

wherez(3) is the Riemann function. The dotted lines in th
main panel and the inset of Fig. 1 show the valu
uD(T,r )u2uD(T)u obtained from Eq.~9! at T/Tc50.9 and
0.95 and from Eq.~10! at T/Tc50.1, respectively. As can be
seen from this figure the slopes of asymptotics in LH
theory agrees well with those obtained numerically by us

Figure 2 shows the behavior of the amplitude of the pa
ing potential at intermediate distances forf50 and six val-
ues of T/Tc between 0.1 and 0.9. The behavior ofuD(f
50)u2uD(f5p/4)u at T/Tc50.1 and the change of the sig
of this quantity are clearly visible in the inset to Fig. 2. Th
was also observed in Ref. 17. Far from the vortex core
can use the results of the LHW theory.22 At T!mvsvF
!D(T) they found

uD~T,r !u2uD~T!u

52

(
l 561

UcosS u1 l
p

4 D U3

32 (
l 561

UcosS u1 l
p

4 D U3S mvsvF

D~T! D 3

3
eFmvs

2~r !

D2~T!

mvsvF

D~T!
. ~11!

FIG. 2. Behavior of the amplitude of the pairing potential
intermediate distances forf50 and six values ofT/Tc between 0.1
and 0.9. The inset depicts the asymptotical behavior of the dif
ence of the amplitude along 0 andp/4 directions, uD(f50)u
2uD(f5p/4)u at T/Tc50.1.
8-3
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This equation predicts the positive sign ofuD(f50)u
2uD(f5p/4)u. Thus, our calculations correctly reprodu
the behavior of the pairing potential at short and long d
tances.

As was shown17 the phase of the pairing potential in th
d-wave superconductor with a vortex differs fromf and
exhibits fourfold symmetry. It has a maximum along thep/8
direction and decreases rapidly outside the vortex.
predicted,22 the ratio ImD̄(r )/Re@D̄(r )2D̄(r→`)#!1.
This is due to the fact that different terms in the free ene
of the superconductor are responsible for the real and im
nary parts ofD̄(r ), being the local DS term in the first cas
and the nonlocal term dependent on derivatives of the su
conducting electron velocity in the latter case.

Figure 3 shows the asymptotical behavior of the ph
C(r )5argD2f at long distances,f5p/8 and T/Tc
50.1–0.9. As can be seen from this figureC relaxes to its
bulk value as 1/r 3, and changes the sign with the tempe
ture. A change of the sign has also been obtained.17 The
relaxation laws 1/r 2 and 1/r 3 for the real and the imaginar
parts of D̄(r ), respectively, indicate that the rati
Im D̄(r )/Re@D̄(r )2D̄(r→`)#→0 for r→` in agreement
with the LHW theory.22 However, this limit is achieved only
at very long distances. For example, even in the point w
r 510, which is very far from the vortex core, this ratio is 5
at T/Tc50.1.

III. SUPERCONDUCTING ELECTRON DENSITY

The supercurrent around a vortex is given in terms
g(vn ,u,r ) by

J~r !52evFN02pT (
vn.0

E
0

2p du

2p

k̂

i
g~vn ,u,r !. ~12!

FIG. 3. Asymptotical behavior of the fourfold phaseC5argD
2f at long distances forf5p/8 andT/Tc50.1–0.9.
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In Fig. 4 we show the asymptotical behavior of the ta
gential component of the supercurrentJT at f50 andT/Tc

50.1–0.9 obtained from the solution of Eqs.~1!–~3! and
~12! and from the London approximation. The London a
proximation can be obtained from the Eilenberger equati
neglecting the terms with the derivative and keeping
terms linear in] if in the solution. Then the supercurre
acquires the well-known form

J~r !5ns~T!evs~r !, ~13!

wherevs(r )5\/(2mr)û is the superconducting electron ve
locity. The temperature dependent functionns(T) can be
written in a compact form24

ns~T!

n
5

1

pE0

2p

du cos2u

3H 12
1

2TE0

`

dj
1

cosh2SA„j21uD~u!u2
…

2T D J ,

~14!

wheren is the total density of the electrons.
As can be seen from Fig. 4 the vortex currents suppresns

resulting in a nonlinear dependenceJT(1/r ). The nonlocal
effect, the nonlinear effect, and the vortex core effect are
taken into account in the London theory. Neglecting the] iā

and] ib̄ terms in Eqs.~2! and ~3! one can consider the non
linear effects exactly. In this approximation the solutions a

FIG. 4. Asymptotical behavior of the tangential component
the supercurrentJT(r ) at long distances forf50 and T/Tc

50.1–0.9 in units of22eN0vFD0.
8-4
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ā~r !5
D̄~r !

~vn1 i ] if/2!1@~vn1 i ] if/2!21uD̄~r !u2#1/2
,

~15!

b̄~r !5
D̄* ~r !

~vn1 i ] if/2!1@~vn1 i ] if/2!21uD̄~r !u2#1/2
,

~16!

which differ from the solution for a homogeneous superc
ductor by the Doppler shift in the energy:vn→vn
1 i ] if/2. We consider the following two approximations:~i!
the Doppler-shift method, whereD(r )5D(r→`) and the
core effects are neglected; and~ii ! the self-consistent~SC!
Doppler-shift method, whereD(r ) has the local value ob
tained from the exact solution of Eqs.~1!–~3! and~6! taking
the core effects into account.

In the exact solution and the DS approximation one c
also determine the effective superconducting electron den
ns(r )5JT(r )/@evs(r )# with JT(r ) obtained from Eq.~12!

and ā(r ) and b̄(r ) obtained from Eqs.~2! and ~3! and Eqs.
~15! and~16!, respectively. Opposite to the London approa
ns now depends on the coordinate. Then the London
proximation@Eq. ~14!# can be obtained at the limit ofns(r
→`). In Fig. 5 we show the asymptotical behavior
ns(r ,f50)/ns(r→`) in the exact solution as well as in th
DS and the SC DS approximations atT/Tc50.3–0.9. It
should be noted that the normalization constant is a
strongly temperature dependent. Using the reduced radiq
@Eq. ~8!# one can presentns(r ) in the whole range ofr,
including the vortex core area atT/Tc50.2,0.9~Fig. 6!. As
can be seen from Fig. 6 the DS method gives a reason
approximation of the exact solution for.0.5 atT50.2Tc . It
is explained by the steep decrease of the vortex core on
ering the temperature~Pesch-Kramer effect25!. It should be
also noted that the considered case of the vortex in an
treme type-II superconductor is different from that of the fl

FIG. 5. Asymptotical behavior of the superconducting elect
density ns(r ) normalized to the London valuens(r→`) at long
distances atf50 andT/Tc50.320.9.
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line lattice in strong fields.12,13 In the first case there is no
screening length for the supercurrent~decreasing as the
power law 1/r ) while in the latter case the variation of th
current occurs in the intervortex distance, which is com
rable to the coherence length in strong fields, resulting in
increase of the gradient ofvs(r ).

In the core regionns(r ), obtained from the exact solution
is considerably higher than that from the DS or the SC
approximations~see Fig. 6!. The discrepancy is due to quan
tum effects that average over the rapid variations invs(r )
near the vortex core.

The DS method fails at higher temperatures~see Fig. 5!
and the suppression of the pairing potential should be ta
into account. This can be done in the SC DS method.
shown in Fig. 5 this method gives a good approximation
the exact solution. AtT/Tc50.9 the local SC DS method i
extremely good in the whole coordinate range~see the inset
to Fig. 6!.

FIG. 7. Asymptotical behavior of the radial component of t
supercurrent JR(r ) at p/8 and T/Tc50.1–0.9 in units of
22eN0vFD0. The inset demonstrates the 1/r 3 relaxation law of the
JR(r ) asymptotic atT/Tc50.1 on a large scale.

n

FIG. 6. Superconducting electron densityns(r ) normalized to
the London valuens(r→`) in the whole range of the radius@re-
duced radiusq is determined by Eq.~8!# at f50 andT/Tc50.2.
The inset depictsns(r )/ns(r→`) at f50 andT/Tc50.9.
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In the London theory the supercurrent has only a tang
tial component. As has been pointed out17 the fourfold sym-
metry of the vortex results in the appearance of a radial c
ponent of the currentJR . Similar to C, JR has a maximum
in thep/8 direction. Figure 7 shows the asymptotical beha
ior of JR(p/8) at T/Tc50.1–0.9 obtained from the solutio
of Eqs. ~1!–~3! and ~12!. The DS and SC DS methods a
local approximations and fail to describe the fourfold anis
ropy. This can be seen from Fig. 7, where the depende
JR(r ) calculated in the DS approximation atT/Tc50.2, 0.3,
and 0.7 is shown. There is no agreement with the Eilenbe
theory in this case. The dependenceJR(r ) at long distances
calculated in the SC DS approximation, coincides within
line thickness with that obtained in the DS method.

As can be seen from the inset to Fig. 7JR relaxes to its
bulk value as 1/r 3. As well as the phaseC(r ), JR changes
the sign and decreases strongly with the temperature.
behavior is consistent with that found previously.17 The rapid
relaxation of the anisotropy ofD(r ) andJ(r ) is in contrast
with that of the local density of states~DOS!. As was
shown,17,19 there are four sharp peaks in the DOS atf
5p/4. These peaks are connected with the resonance
tering of the quasiparticles at the phase gradient around
vortex center, and can be interpreted as Andreev scatte

*Electronic address: erlah@utu.fi
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18M. Franz and Z. Tesˇanović, Phys. Rev. Lett.80, 4763~1998!.
19T. Dahm, S. Graser, C. Iniotakis, and N. Schopohl, Phys. Rev

66, 144515~2002!.
20M. Chiao, R. Hill, C. Lupien, L. Taillefer, P. Lamber, R. Gagno

and P. Fournier, Phys. Rev. B62, 3554~2000!.
21N. Schopohl and K. Maki, Phys. Rev. B52, 490 ~1995!.
22M. Li, P.J. Hirschfeld, and P. Wo¨lfle, Phys. Rev. B63, 054504

~2001!.
23M.H.S. Amin, S.N. Rashkeev, M. Coury, A.N. Omelyanchou

and A.M. Zagoskin, Phys. Rev. B66, 174515~2002!.
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