PHYSICAL REVIEW B 69, 094431 (2004

Phase diagram of the Heisenberg spin ladder with ring exchange
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We investigate the phase diagram of a generalized spin-1/2 quantum antiferromagnet on a ladder with rung,
leg, diagonal, and ring-exchange interactions. We consider the exactly soluble models associated with the
problem, obtain the exact ground states which exist for certain parameter regimes, and apply a variety of
perturbative techniques in the regime of strong ring-exchange coupling. By combining these approaches with
considerations related to the discretge symmetry of the model, we present the complete phase diagram.
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[. INTRODUCTION The ring-exchange interaction may be considered to be
composed of different four-spin coupling terms between the

A number of experiments conducted in recent years sugspins of a plaquette, subject to the special condition that the
gest that multiple spin-exchange interactions have a signifieffective leg-leg coupling is equal to the rung-rung interac-
cant role in the quantitative description of the physics oftion, and equal in magnitude but opposite in sign to the
low-dimensional cuprate compounds, and a qualitative onéiagonal-diagonal coupling. Relaxing this constraint on the
in determining the properties ofHe adsorbed on graphite possible four-spin terms results in a more general parameter
surfaces. Inelastic neutron-scattering measurements of ti&ace with still richer phase behavior, but we are unaware of
spin-wave spectrum in the two-dimension@D) cuprate Studies of this model for arbitrary values of all coupling pa-
system LaCuQ, (Ref. 1) and in the quasi-1D spin-ladder rameters. In addition to the ring-exchange term, a further
compound LgCaCu,,0,;,2 as well as two-magnon Raman- Possible section of this general parameter space is given by
scattering measurements on doped systems related to tHee composite-spin representation of $=1 bilinear-
latte indicate the presence of contributions from a four-spinbiquadratic chairt? which corresponds to the choice of equal
cyclic exchange interaction on the order of 10-20 % of thdeg-leg and diagonal-diagonal couplings. For this specific
nearest-neighbor superexchange. Measurements of the magoice there is an explicit mapping between the spin-1/2 lad-
netization and heat capacity 8He films of various fillings ~der model and the spin-1 chain. In general, the different
adsorbed on graphite surfat@shave been interpret®dn phases of the spin model, and the transitions between these,
terms of Cyc”c three-, four- and higher-spin-exchange promay be distinguished by Considering the expectation values
cesses. of nonlocal quantities, such as the string order parameter first

The four-spin-exchange term upon which we will focus introduced® in studies of the spin-1 chain and the Lieb-
here arises at fourth order in a Strong-coup|(ﬁma||t/U) Schulz-Mattis twist Operat(?P. The diﬁering effects of the
perturbative expansion of the one-banand three-baritt  four-spin coupling terms on string order parameters defined
Hubbard model in 2D, and has been shown in this limit tofor the spin-1/2 ladder were analyzed in Ref. 21.
give the leading correction to the nearest-neighbor Heisen- We begin by considering the points within the parameter
berg model. Recent investigations of the influence of thisspace for which exactly soluble models exist, and then ana-
interaction on physical properties have employed perturbalyze those regimes in the vicinity of these points which are
tive approache%,lo Spin-wave ana|ysi§1;112 numerical exact accessible by perturbative teChniqueS based on the CFT cor-
diagonalization of small clustefsexact diagonalization in responding to each exact solution, i.e., to the regions where
combination with conformal field theoryCFT),*® and the the soluble models are critical. The ladder Hamiltonian
density-matrix renormalization-group (DMRG)  Wwhich we study and its associated soluble models are based
techniquet*~1" The majority of these studies is restricted to On a plaquette algebra, by which is meant an algebra of op-
the regime of weak ring-exchange coupling and to systems
with qnly a nea_r(_ast-neighbor Heisenberg superexchange in- Sia1 J|I S, Sin Sis
teraction in addition to this term. In—

Here we consider a generalized model to gain further in-
sight into the nature of the phases and phase transitions
within this class of system. We investigate a spin ladder “1
which includes antiferromagnetic Heisenberg leg, rung, and
diagonal, or cross-plaquette next-neighbor, interactions, as
well as a ring-exchange term. This system, depicted sche-
matically in Fig. 1, represents the minimal model possessing
both the possibility of a four-spin cyclic exchange interaction FIG. 1. Generalized spin-ladder system with rung, leg, and di-
and, by virtue of the diagonal coupling, points in parameteragonal superexchange interactiods, J, andJ, , and four-spin
space with nontrivial exact solutions. ring-exchange interactio. Each site contains a spB=1/2.
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FIG. 2. Phase diagram of the generalized ladder model of Bgrepresented as a function of the coupling ratigK, J;/K, and
Jx /K. The inclined plane indicated by dot-dashed lines is invariant with respecZtosgmmetry, and is given by the equatidp—Jx
=K. The dashed line passing through A and B represents an exactly soluble model with central cchardetween A and B, a
“rung-singlet” (RS) phase to the left of point A, and a ferromagnéd#dV) phase to the right of point B. The full line AAcorresponds to
a c=3/2 conformal field theory and belongs to the Babujian-Takht&&n universality class; it is the exact transition line between the
rung-singlet phase and a staggered dif®) phase. The full line BB separates the ferromagnetic phase from a spin-gapped region of the
type proposed by Affleck, Kennedy, Lieb, and Tasg#LT ). The shaded triangle lying below tlg-symmetric plane represents a critical
surface which is also of the=3/2 BT universality class.

erators defined on the four-spin plaquette units of the ladderenormalization-grougRG) procedure constructed on this
This algebra satisfies quasilocal commutation relationsbhasis of these perturbations may then be used to establish
meaning that operators defined on ndaid furthery neigh-  which fixed points are stable, and to determine the connec-
bor plaquettes commute. Using the commutation relations dfivity, the flow structure, and thus the physical properties of
this algebra we have found exact solutions to the Yangdifferent regimes of the phase diagram.

Baxter equatiod? These solutions provide soluble, &) An exact description of the gapped phases is possible by
invariant, isotropic spin-ladder Hamiltonians, whose excita-using the idea of “words” on the plaquette algebra to con-
tion spectrum may be either gapless or gapffed. struct variational ground states. The direct relation of this

Gapless, or critical, solutions arise at points or lines ofconcept to the matrix-product ans&tallows one to obtain
phase transitions, and may be further mapped in the corboth the exact ground state in suitable parameter regimes and
tinuum limit to CFTs with a central charge=1, or more the lowest excited states, from which the lines of phase tran-
specifically to Wess-Zumino-WitteWZW) models?® Per-  sitions may also be deduced. For parameter regimes in the
turbative approaches constructed around such WZW modelscinity of these exact, gapped solutions, the absence of
enable one to access regions of parameter space away frqgzhase transitions means that many qualitative properties of
these second-order phase-transition points. According to thile associated, gapped phases are known.

Zamolodchikov c theoren?® the addition of perturbative Throughout this study we emphasize the role of different
conformally noninvariant terms represented by relevant andymmetries, in particular, thé, symmetry of the model, in

marginal operators results in a flow either to another CFTobtaining a complete understanding of the phase diagram.
with smaller central charge or to a massive phase. A The relevance of this symmetry to the ring-exchange prob-
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lem was first recognized in Ref. 15 in the more restricted (. T T 1
context of a “duality” transformation about a self-dual point ST (S Tol* 3. @
in the parameter space of the nearest-neighbor ladder mod&\e introduce the orthonormal basis
Here we use the full transformation to relate different soluble
models and to develop a perturbative bosonization scheme 1
applicable in the regime of strong ring-exchange coupling. |0)= E(HU_HTW 11)=[11),
All of these considerations allow us to deduce the com-
plete phase diagram for the system in the 3D space of cou- 1
pling ratiosJ, /K, J;//K, andJ, /K, which for the orienta- _ = _
tion of the reader |Hs presented in Fig. 2. The symbols and 12)= \/§(|”>+|H>)’ 13)=111), @
lines summarized in the caption of Fig. 2, and the phases and )
transitions they represent, are explained in the course of thef singlet and triplet states on each rung, and construct a set
analyses to follow. Figure 2 contains as a suljgethe line ~ Of corresponding projection operators which generate the
(3, IK=J}/K, J,=0)] theK>0 part of the phase diagram su4) algebra
obtained in the DMRG studies of 'Lahli et al,'® and con-
firms the presence of all of the phases and phase transitions
proposed in that work. Placing this subset in the context of
the full phase diagram permits a significant expansion of our aa_ aB YO — [ SBYN@S_ sady By s .
understanding of the nature of these phases, and of the first- ; Xf=1, XT X=X =0%X [0 6, (4)
and second-order transitions separating them. Further, it pro- ) )
vides certain novel, additional phases and transitions inacvhere ,5=0,1,2,3. Spin operators on both chains of the
cessible from the restricted parameter space, yielding addladder may be expressed in terms of this operator Basis.
tional insight into the competition of superexchange andrhe ladder Hamiltoniarl) is thus equivalent to a general-
ring-exchange interactions. ized, four-stz_:lte chain with only nearest-neighbor interactions.
In Sec. Il we introduce the Hamiltonian of the model and !t can be written as
summarize briefly its associated exact solutions, all of which
are critical and belong to different universality classes. Fur- _ 1 Il e 1 X gt
ther exact and variational ground states obtained in different H Z 2I(PLisaBiird) # 29k (Pl = Eii)
regions of parameter space using adapted matrix-product
wave functions are presented in Sec. lll, accompanied by a +%K(P!I,i+1_EiJ,riJrl)_(%JL"_K)(X?O_'— XP21)
discussion of the nature of the associated gapped states and 00u00 . 1
their behavior at phase boundaries. Section IV contains a +2KXi Oxi+l+5K’ ®)
complete pe_rturbative ar_1a|ysis around the_four available CFRhereP!hH andP , , are, respectively, permutation opera-
solutlpns, with empha5|s on the propertles of t.he Stro_ngfors corfesponding to ladder legs and plaquette diagonals,
coupling(largeK) regime, which establishes the fixed-point and the operatorffiﬂ are unnormalized projectors on

structure Of. the phase diagram. Section V' presents a SurTE)_Iaquette—singlet states. These operators satisfy simple alge-
mary and discussion of the results.

braic relations® Their explicit expressions are

X{P=(la)(Bhi,  XEPXPT= 08X,

Il. LADDER MODELS ! 3 s
. Pliv1= 2 Xi X7
A. Ring exchange a,=0
The Hamiltonian of the two-leg laddé€Fig. 1) is 3

Pliea= 20 (1-20,0(1-28p0)X"Xffy,  (6)

H=3 2 (S-S 1+ Ti-Tis) +3x 2 (S T+ Ti-S4)
i i and

+JLZ s-m%q (P, +P Y, (1) Efivi=210 (¥4l (7)

) ) ) where the function$y;; , ;) are plaquette-singlet states, i.e.,
where in the las(“ring-exchange”) term the four-site per- giates with total spin per plaquets = (S, + S,+ S;+S,)2

mutation operato®, exchanges spins in a cyclic manner — o and may be expressed in terms of the rung statgs
around each elementary plaquefte of the ladder, and is and|g);,, as

given by the equation
. |54 1) = 3{10)i10) i+ 1 =12)i]2) 1 1% [1)i]3)i 41
PytP, =S5-§1tTi-Tis1+S-Ti+ S50 Tigg

FS Tt TSyt A[(S  §a )(TioTir ) F(3)il1)i+a}- 8
AR T There are precisely two possible plaquette-singlet states, cor-
(S T)(S+1:Tivg) responding, respectively, &, , andE; ;.
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B. Integrable models model is critical(no spin gap, with a conformal charge

The complete set of exactly soluble isotropic ladder mod-= 2+ Equation(10) constitutes a part of the plaquette term,
els with short-range interactions has been found in Ref. 250- (2), while we will demonstre{u’i explicitly below that the
using the algebraic Bethe-ansatz metf{fat a review see €maining contributions t&,+ P, induce a spin gap, and
Ref. 30. Not all of these models are in the same class as thadherefore that the origin of coordinates in the phase diagram
specified by Eq(1), and here we present those cases relevarff Fig. 2 represents a gapped system. However, as shown in
to a system with ring-exchange interactions. All of these are>€c- 1V, the competition between different interaction terms
critical, and may be distinguished according to their centraPf the Hamiltonian(1) drives the system to a second-order
charge ¢, which characterizes the different universality Phase transition described by a CFT witk-3/2. The ap-

classes close to integrable points. proximate form of this critical surface, represented in Fig. 2
by the shaded triangle, is obtained in Sec. IV.
1.¢c=2 Exact solutions in this class then provide two massless

models, one in the limit of weaK and one in the stroni-
qimit, both of which correspond in the continuum limit to
=2 WZW models. The four solutions of E€Q) are related
by two transformations, one of which is the intertwining
H=> (P,—E), (99  transformation shown above. The other is less transparent in
! nature, and is found by first noting that the two unnormalized

) i —
where P, and E; denote, respectively?![iﬂ, Pi>,<i+1 and  Projectorsk; andE; are related by thX-operator transfor-

The exactly soluble models of this type have the simpl
form

Eifiﬂ, E;i+1. We thus obtain four different soluble Hamil- mation

torrliani Whi(ﬁh fzorresriond+ to the Iouri combinations XEa_}_iXOa, Xeklo_ﬂxao’ (12)
{P{".E"}, {P!'",E{'}, {P{,E}, and {P;" ,E;}. Two of .

these are trivially soluble, becausﬁi(P!‘—Ef) is the fora=1,2,3 andk=1,... N, whereN is the total number

Hamiltonian of two decoupled chains aj(P;*—E") is of sites. This is a unitary transformation generated by the
the same pair of chains intertwined by the transformatiorPP€rator
aZiH_;I-Zi , SziJ]:leéiﬂ, -|-|2i(;1<—h>-|f2i+; [Eq. ®)]. ghe A - N

amiltonian of two decoupled chains is represented on the _ T 0
phase diagram of Fig. 2 by the poiit/K =, with all other U(l2) exp{ '2 kgl (Xko)}’ 13
couplings equal to zero. Nonzero values of these couplings
generally induce a spin gap, but because of the competinﬂ
nature of diffe_rent interaction tefms_there is a possibilit_y of Hp=UH,.U", (14)
critical behavior for some combinations of these couplings.
This will be demonstrated explicitly in Sec. IV. Of the re- where H,. is the Hamiltonian of two uncoupled spin-1/2
maining two solutions within the general ans&®, one is  Heisenberg chains. The nature of this transformation may be
given by the combinatiofP|l ,E;"}, which in terms of spin  understood from the observation that it maps one of the
operators is plaguette-singlet state defined in E§) into the other, and
thus that it transforms the projector§) according to
E;"«E; . This transformation has the additional property
that[U(7/2)]*=1, and therefordJ is one of the generators
of the Z, transformation associated with the center of(§U

hich has the property that

HD:Ei S S +Ti Tig1+S Tis1+Ti- S

TS S+ (T Tiv) = (S Tix D)(S+1-Ti) |- In the following section we will demonstrate that this sym-
(10) metry is essential for a complete understanding of the phase
diagram.
The last{P/,E;"} is obtained by the same intertwining
transformation from the previous Hamiltonian, and takes the 2.c=1
form A second exact solutiGA has the same eigenspectrum,
but not the same degeneracies, as the spin-1/2 Heisenberg
Hoi=> S Tit1+Ti°S:1+S-So+Ti-Tiss chain. The corresponding spin Hamiltonian
i
FAUS Tir (TS0 (S S+ )(Ti- Tiva) ] Hyp=— KZ (S Tiv1tTi- S0+ %KED: (P, +P; Y
(11)
For all four massless models one obtains two decoupled +‘]L/2§i: (S-To), (19

Bethe-ansatz equations which correspond toRhe su(2)

x su(2) algebra. The energy of the Hamiltonian is the sum oEommutes with the generato® X" for any a,b=1,2,3,
two expressions for each $2) component! and thus the which form an s(8) subalgebra within the $4) algebra gen-
Hamiltonian(10) is equivalent to two decoupled chains. This erated by theX operators. In view of completeness relation in
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Eq. (4), Hyj, commutes with the total number operaiix™ STAGGERED RUNG SCALAR

for singlets, and any multiple of this term may be added to <S,- T,;> <(SXT)(S,,,+ T, )>

the Hamiltonian without spoiling the integrability. The full

symmetry of the model is thus SU()J(1)=U(3). In the Z,

framework of the equivalent Heisenberg chain, inspired by

the Bethe-ansatz solution, the model may be considered as a

chain of effective S(R) “spins” L; with

=3 -XP=1-5.7,. (16) STAGGERED LEG RUNG VECTOR

DIMERIZATION CHIRALITY

The termJ, /2KX;S- T; in H,, therefore corresponds to a <8i8i- Ti- Ty > <8;xT;>

coupling W'.th a mag”?“‘? f'eld_Ji/ZK' . Itis well known . FIG. 3. Order parameters of the different phases related by the
that the spin-1/2 chain in a magnetic field develops an in- : o -
o . Z, transformation within the plang —J. =K.
commensurate critical phase f{t|<2 and has a massive
phase forth|>2 (see, for example, Ref. 33
One observes from Eq15) that this integrable model
corresponds to the line in parameter spage=0, Jx=

values ofK, three phases appear as a functiod of and are
separated by two quantum critical poing, and J® . For

—K, for arbitraryd, . When (J, /K|)<4 the model is in K=0 and ‘Jé>‘JC+:cz the model is in the rung-dimerized
the critical, incommensurate phase, whereas ¥ork>4  Phase, forJ” <J<J there is a gapless phase with-3,

the model has a gapped, rung-singlet phase, and in the regi@id forJ<J%~—1.79 there is a gapless phase witk 2.

J, IK<—4 it has a gapped, rung-triplet ground state. TheFor K= —1 the critical points occur # I =1/2 andd® ~
nature of the gapped phases and the physical properties of1.29. Quite generally, the extent of the=3 critical region

the incommensurate phase will be discussed in more detail ii$ expected to be strongly reduced by a negative rung-rung
Sec. llI. In the critical region the model is described by acoupling, while it will expand for positiveK. The critical
CFT with central charge=1.3* However, the presence of behavior ofH |'| is thus expected to persist for finite regions of
conserved charges generating th€3Usymmetry has the parameter space, and the position of the critical points to
consequencé that the model possesses additional zerodepend strongly on the rung-rung coupling. We emphasize
modes, and therefore while the conformal dimensions ar¢hat the model of Eq(18) does not appear in the phase
those of thec=1 theory for the Coulomb gas, the degenera-diagram of the ladder model under consideratibnbut we
cies are altered accordingly. The critical region is representedave introduced its properties here for use in Sec. IV as one
on the phase diagram of Fig. 2 by the thick, dashed line ABappropriate basis model for a perturbative expansion. Similar
while the rung-singlet and ferromagnetic rung-triplet regionsconsiderations apply tél, , which is obtained fronH, by

are denoted, respectively, by RS and FM. In SecA. 10

using the intertwining transformation of Sec. 1B 1.

we will demonstrate that there exists a finite critical region in

the vicinity of the critical line.

3.¢c=3

A further exact solution exists which corresponds simply

Ill. EXACT GROUND STATES
A. Z, plane
In this section we apply certain discrete symmetry consid-

to local Hamiltonians proportional to permutation operatorserations to obtain further insight into the structure of the

P!‘ andP;* . The Hamiltonian corresponding ld',

HH=Ei S ST T +4(S -S4 )(Ti-Tivy)
(17)

is invariant with respect to the full S¥) group and de-
scribes a soluble “spin-orbital” modéP. In the continuum
limit, Eq. (17) corresponds to an S¥) WZW model at level
k=1,%3" and therefore has central charge=3. This
Hamiltonian commutes with the operatar(S-T;), and
thus is integrable for arbitrary values df . One may also

add a rung-rung coupling interaction to obtain the Hamil-

tonian

Hi=H+3.2 S Ti+ 2K (S TS 1 Tis),
(19

which was considered in Ref. 38 for arbitraly and for two
values ofK (K=0 andK=—1). It was shown that for both

phase diagram. We employ the matrix-product ansatz to find
exact ground states, and also the boundaries between these,
even in the region of parameter space where the Hamiltonian
(1) is not exactly integrable.

We begin by noting that for arbitrary, , when

\]H—JX:K, (19)

the Hamiltonian(1) is invariant with respect to thg, trans-
formation (13) which generates the mappiig” —E;” . The
condition (19) defines a plane in the 3D space of the phase
diagram, marked in Fig. 2 by parallel dot-dashed lines. The
Hamiltonian of the system in th&,-symmetric plane com-
mutes with the singlet total number operaix°.

This Z, transformation is precisely the one noted in Refs.
15 and 39, in which it was referred to as a duality transfor-
mation. It is a canonical transformation for the lowest (
=1/2xs=1/2) representation of SU(X)SU(2), andcon-
serves the values of the Casimir operators in this representa-
tion. In terms of the original spin variables it takes the form
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FIG. 4. Representation of the rung-sing(&S) phase. The el- FIG. 6. Staggered leg-dimerizé8D) state.
lipses denote a singlet state of the spins on each rung.

Jx=—K, J;=0, which lies in theZ,-symmetric plane, this

S=5(S+T)-SxT,, statement is supported by the exact solution of the Hamil-
~ tonianH 4, (15) of the preceding section. From the results of
T,=3(S+T)+SXT;. (20 Ref. 40, the linel, /K=4 in theZ,-symmetric plane is a line

i o — o of second-order phase transitions into a spontaneously
When expressed using the variab®sT;, the Hamiltonian  gimerized phase of staggered leg dimerization.

Hp (10) is exactly that of two decoupled spin chains. It is Similarly, the condition], /K< —4 defines an exact fer-
clear from the definition(2) of the plaquette term thdi romagnetic(FM) rung ground state,

constitutes a part of the operatey + P;l, while the remain-
ing contributions to this term couple the two effective spin- | ) =X30X30. .. X2 X30|0), (22)
1/2 chains to produce a system with a finite spin gap.

In the Z, plane this transformation acts as a symmetryin which |0) denotes the global state of singlets on every
between different order parameters. It maps the order parameng. This state is represented in Fig. 5. The transition on the
eter (§—T;) for antiferromagnetic rung spin correlations line J, /K=—4 is of first order. Both transition lines are
into the vector-chirality order parameter(SXT;) determined exactly from the points where the dispersion re-
=(S—T,), while the leg dimer order parametés-S,, lations of the elementary excitations become massless. In the
—T;-Tix1) is mapped into the order parameter rung-si_ngl_et phase this excit_ation is a propagating rung trip-
(SHT) (S1XTiv ) T (SXT)-(S41+ T 1)) for sca- let, while in the ferromagnetic phase it is a rung singlet. The
lar chirality (Fig. 3. Phases characterized by order param-se€cond-order transition from the rung-singlet phase to the
eters related under tt#, transformation within each pair are Staggered dimer phagkig. 6) lies in the universality class of
therefore symmetric within the plane defined by Ef9).  the spin-1 bilinear-biquadratic cha2|n, which in the continuum
The pointJ, =J;=K considered in the DMRG studies of limit is described by &=3/2 CF_‘I’,3 and is a transition of
Refs. 15 and 16 lies in this plarithe star in Fig. 2, giving  the Babujian-Takhtajan type. This transition is characterized

the properties of duality observed in the results of bothby @ spontaneous breaking of discr&tesymmetry, which in
analyses. the ladder is related to translation by one lattice unit.

From this consideration we may deduce the nature of a From theZ, duality of the system we deduce that at large
candidate ground state as a product of linear superpositiorts (near the origin of Fig. Pthere is another second-order
of the two plaquette-singlet states. The complete set oPhase transition of the same universality class from a scalar-
plaquette states with fixed angular momentum contains onghirality phase(Fig. 7), which is dual to the staggered dimer
quintuplet (=2), three triplets (=1), and two singletsj( ~ Phase, to a vector-chirality phageig. 8), which is dual to
=0). The two plaquette-singlet states are those constructefle rung-singlet phase. In the following section we provide
above, the states with=1 are created by applying a linear further arguments in support of this statement. Figures 7 and
combination of operator@!‘iﬂ, PX .1, andXiOOXiofl, and 8 show, respectively, t_ypl_cal static configurations of spins in
the state withj =2 is created by the action of a combination S¢alar- and vector-chirality phases; these should be under-
of the operator:P!‘Hl, P* .., andE",,. The expressions stood only as indicating the preferred instantaneous spin con-
for these states allow their identification with matrix- fgurations, which in fact flucwate rapidly, such that the
product-ansatz states, while the explicit form of the Hamil-Phases exist only in the sense of finite average values of the
tonian (5) corresponds to the operator basis for matrix-corresponding spin-correlation functions. All four phases

product-ansatz Hamiltoniarf8. One observes that in the have only short-ranged correlations in the chain direction.
Z,-symmetric planeJj—J _k the condition §, /K)>4 These states illustrate the increasing dominance ofkthe
4~ X Ny 1

defines a region in the phase diagréfig. 2) with an exact telrm, Vtvth'Ch favotrs ﬁonﬂgurau(;)_nsl |ntwh|ch .al! Spt';:s. on I?:j
rung-singlet(RS) ground state, plaquette are mutually perpendicular to maximize their soli

angle™ in the competition with nearest-neighbor exchange
|yre)=10)1]0)2- - -|0)n_1]|O)n, (21)  terms which favor antiparallel spins.

which is represented schematically in Fig. 4. On the line +

I S
A A A A
DAV AVAN., \+\+

FIG. 5. Typical ferromagneti@=M) ground state for large, nega- FIG. 7. Representation of a spin configuration with finite scalar-
tive J, . chirality correlation function.
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AN AN tions classifiable by a ladder wave vectpwhich reflect the
> > competition between nearest-neighbor exchange and ring ex-
. - \ change, again in exact analogy with the spin-1/2 Heisenberg
e e chain in a magnetic fielf The nature of the incommensu-

rate correlations arising from the excitation spectrum is elu-
FIG. 8. Schematic representation of a static vector-chirality concidated by considering the effective spin variables The
figuration. analogous “spin” correlation function is given by

Finally, the first-order phase transition from the ferromag- (Li-L)= (X-OaX‘T"0+ X?°X°a> +2((L- X99) (1 _Xpo)>
netic phase takes the system to a type of Affleck-Kennedy- ' b b 2 Az ’(23)
Lieb-Tasaki(AKLT) staté! formed by effective spin-1 vari-
ables represented by the rung tripléEsy. 9). It differs from  where the first line corresponds to terms of the fdrﬁLj’
the ferromagnetic phase in that coherence between the indi- Li’Lj* and the second tafL;. In terms of the original
vidual rung triplets is not established until the transition atspin variables one obtains
J, IK=—4. This state is obtained directly from the vector-
chirality phase in a first-order transition at small, negative (Li-Lj)=3((S=T);-(S=T);)+2((SXT);-(SXT);)

J, . We stress that the letters indicating the locations of these o N
phases in Fig. 2 should be understood to refer only to the +2((2+25-T)(3+25-T))). (24)

plane of exac, symmetry, including the rung-singlet and ¢ the dynamical correlation function exhibiting a peak at
ferromagnetic phgses which lie outside the region marked b}he incommensurate wave vectis in fact the sum of the
the d_qt—dashed lines. However, because there are no phaé%ggered rung, vector chirality, and singlet density correla-
transitions other thar_1 those present on the d'agra’T" thf?on functions, although from the massless nature of the ex-
gapped phases obtained for model parameters outside tQﬁations atg one may expect peaks in each function indi-
plane are connected continuously to those of the exactlyjyaiy Again the terms in the first line correspond to
e e o et atnare e e ool =L L an aro symmetical nder @ vansor
awav from theZ, olane ation (Fig. 3) in the plane: their peaks appear at the same
y 4P ' wave vector for all values o, , but their intensities may
. differ. The effectiveLiZLjZ terms(second ling are not sym-
B. Incommensurate line metrical with the others for all couplingls # 0 (finite effec-
With these results, a heuristic understanding of the origirtive field), but as in the spin chain may be expected to show
of the incommensurate phase appearing on the critical linehe same continuous evolution of the incommensurate peak
AB in Fig. 2 (Sec. I) may be obtained by considering the position fromq=0 atJ, =—-4K to q== at J, =0, and
role of J, as an effective magnetic field. We stress first thatback toq=0 atJ, =4K. We stress again that this behavior
the incommensurate phase arises with no breaking @2SU is a specific property of the incommensurate line and cannot
symmetry in the space of the spin variab®®sandT;. The in general be expected to be clearly visible in other parts of
variable conjugate to the effective field;;S-T;, corre- the phase diagram not in its immediate vicinity, including the
spondg Eq. (16)] to an average singlet density which varies regions corresponding to DMRG analyses performed to date.
from 0 at the boundary to the ferromagnetic phade ( However, in Sec. IV we isolate a region in which the incom-
——4K) to 1 at the rung-singlet phase boundary, ( mensurate propertie@lbeit for a gapped excitation spec-
—4K), in exact analogy t&;S for the spin-chain problem. trum) may persist over a significant range of parameters.
For the ladderZ;S - T; also expresses the spin correlation on
each rung, which may be characterized by defining a variable IV. RENORMALIZATION-GROUP ANALYSIS

k,=cos Y(S-T;)/|S||Ti]). This effective wave vector _ _ _ _
across the ladder varies continuously from Ortaover the In this section we study the perturbations around different

range —4K<J, <4K, and takes the valuk, = /2 atJ,  CFT solutions, which either appear in the phase diagram of
=0, where the ring-exchange term, favoring locally perpen_the modgl(l) or are closely related to it. We adopt a variety
dicular spins, is dominant. of techniques to address the nature of the ground states in
The incommensurate state in the ladder direction is crul®9ions away from these soluble points, and to establish the
cially dependent on the parameters of the1l line, notably fixed-point structure of the phase diagram. Because all of the
the special role of the, term. Only forJ, = —I'< is the transition points and lines are known, the relevance of the
spectrum massless, with quasi-long-ranged correlation fun@P€rators within Eq(1) as perturbations of the exact solu-

tions determines the flow under renormalization and thus the

dominant physical properties of the intermediate regions. In
NG NG, SN each section and in the Appendix, known results are summa-

rized briefly while those which are new in the current context

- ” ” - are presented in detalil.

FIG. 9. AKLT-type ground state. The dashed ellipses represent We have found four models suitable for this type of analy-
effective spin-1 variables formed by triplet states on the laddesis. From the exact solutions of Sec. Il, there are two CFTs
rungs. with ¢=2 which correspond to two decoupled chains de-
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scribed by the soluble Hamiltonian of E(.0); one solution Fx) =343+ (- 120 T g(x) o],
is relevant for weak and the other for stron&. Here we
concentrate primarily on the strong-coupling regime, i.e., ~ R ,
large K, for which significantly less is known: the fermion- TOO=3"+3"+ (=10 Trlg' () o] (25

ized version of the limiting model of two effectively decou- \we note that in Eq(25) the uniform and staggered parts of
pled spin chains is analyzed in Sec. IV A by a conventionakhe spin-density operators have different conformal dimen-
RG procedure. We have argued from the presence oZthe sjons, and tha® is a nonuniversal normalization constant.
symmetry(Secs. Il and I} that in the strong-coupling limit  The expression in terms of Ising-model fermions for the
there is a second-order phase transition with3/2, repre-  general ladder Hamiltonian, which includes arbitrary leg-leg,
sented by the shaded triangle on the phase diagram of Fig. diagonal-diagonal, and rung-rung couplings, is derived in the
The Zamolodchikowe theoreni® then demands that weak- Appendix, and is valid around the limits of two decoupled
and strong-coupling limits are disjoint in RG sense, i.e., therghains. There are two such limits, the wetkegime which

is no continuous flow from weak to strong coupling. To de-corresponds to the two initial chains and the stréhgegime
scribe the intermediate regime between the two second-ordgfhich corresponds to twa,-rotated chaingl4), resulting in
phase transitions with=3/2 we therefore use in Sec. IVB the Hamiltonian(10). The expressions of the Appendix are
another CFT withc=3, which is described by the model \3jid for both cases.

(18). By perturbative analysis of a fermionized model we  The resulting continuum-limit Hamiltonian for the system
find that this intermediate region is gapped; an alternativgn weak- and strong-coupling regimes may be expressed in

perturbative treatment of the $4) model(17) has recently  terms of four Majorana fermions with different singlet and
provided similar result®’ Finally, the same approach may triplet masse4®

also be applied to the=1 CFT which corresponds to the
solution (15). In the vicinity of the line AB on the phase —i
diagram of Fig. 2, we employ rather general arguments in H= > dx
Sec. IV C to reveal the presence of a massless region in one
plane of the phase diagram. The CFTs with 3/2 thus rep- - _
resent unstable points in parameter space and must be ac- 24 VR0 = PR3 + My YR |+ Hiparg.

. ' X a=1,2,3
companied by a flow towards stable fixed points. Based on
the arguments of Ref. 23 the stable theory should be a (26)
SU(2)-1 CFT withc=1, the natural candidate for which is
the CFT corresponding to the model of Ed5).

0 (0= yYPa,y°) + meyyP

The Hamiltonian of the marginal interactions,

A.c=2 CFTs Hmarg:f dX[A 101+ 2,0,],
A weak-coupling bosonization analysis is appropriate for
the limit of two quasidecoupled chains whép>K andJ;, O, = Y PP+ Yty B B+ YRR R YR,

>J, . The ladder system with biquadratic exchange has been
shown to undergo a second-order phase transition at which 0. = OUP (W It + PP+ PR 2
the behavior of the massless modes is governed by a CFT =YY, @7
with central chargec=3/2.** The consideration of a ring- contains current-current contributions of the formd; (

exchange term is technically identioglee Ref. 10 and the 73y, (3,43,), arising from the interleg interactions, and

results are found to be in good agreement with those from_ (3,3, +J,3,) from the intraleg couplings, as well as a con-

Wh ; . . ribution from the normal-ordered marginal product
en performing a perturbative analysis around CFTs, al a0 Tr(o?a" ) Tr( o) Tr( o Pa” hich oridinates in th
contributions to the spin Hamiltonian should be classified (o g)_ (o)) Tr(o"g)Tr(07g"), W Ich originates in the
according to the scaling dimensions of the operator conterfPUr-SPin term & -Ti)(S+1-Ti+1). Explicit expressions for
of the corresponding CFT. In the case of perturbationdh€ marginal couplings, andx, are given in the Appendix.
around the limit of two decoupled chains, in both weak- and Weak Couplingln the weak-coupling regime the results
strongK limits, four-spin interaction terms and interleg cou- Of the Appendix provide the expressions
plings are expressed in terms of two fundamertad 1
WZW fields,g, andg; (a=0,1,2,3), with conformal dimen-
sion (3,3), and of Kac-Moody current3 andJ with dimen-
sions (1,0) and (0,1). This theory can be further expressed in
terms of four different Ising modef§;*® i.e., of order- for triplet and singlet masses, whexds another nonuniver-
disorder fields, energy operators, and Majorana fermionssal quantity. The marginal interactions renormalize these
The representation of these fields by four Ising models isnasses, and the phase transition occurs when the renormal-
summarized in the Appendix. The connection to the spinzed triplet mass vanishes, i.eny°"=0. On the other hand,
variables is given by the matrix-product ansat&ec. Il)) gives the phase-transition

5 _ line exactly. One may therefore attempt to specify the renor-

S—aS(x), malization by takingfor example, afl, =0) the value of\?

other approaches.

my=J, —2J, —20\K,

mg=—3J, +6J,+12\%K, (28)
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to be in agreement with the exact result, which suggests that=3/2 in the strong-coupling limit is accessible by perturba-
\2=1/5 for this second-order phase transition. tive analysis around the exact soluti@®). Thus for consis-
Strong Coupling.In the strong-coupling regime we ana- tency this term should be added to the Hamiltonian with a
lyze perturbations around the CFT which correspond to themall coupling constani/gg, in order to study the RG be-
exact solution of Eq(10). For this it is convenient to per- havior. We remark also that far, =J;=J, the leg-leg and

form the transformatiori20), which from Eq.(1) yields diagonal-diagonal biquadratic terms in Eg9) cancel ex-
plicitly and the effective theory is described by massive fer-
H:zi IK(E-S,  + T T+ (3, +KG-T) ;nr:tc)jr}s with a singlet-triplet mass splitting generated\ipg
R.
L= = o o o The lines of phase transitions correspond to the vanishing
+33AS T+ TS+ S-S+ T Tiga of the triplet massn, . The theory is then equivalent to three
-~ ~ -~ ~ ~ ~ ~ ~ massless fermions and is therefore described lp~=8/2
=4S-S+ (T Tiv) = (S T2 (S T} WZW model. Because of the $2) symmetry of the ladder

112 R = ~ = ~ = model (1), this is a SW2) WZW model at levelk=2. The
IS St T Tt S T+ Ti S bare singlet and triplet masses acquire a renormalization due
T 2 T = R & = to marginal interactions which can in principle be computed
+4[(S . T.-T. T T
(S-S )T Tie) = (S Tir ) (S TH I} from the RG analysis. By considering the operator product
2 EE T expansion(OPE) for operatorsO;, O,, gy, and i,
+2K§i: (S T)(S1 Tiva): (a=1,2,3) [see Appendix and Eq$25) and (27)], we de-

_— duce the one-loop RG equations
By substituting

dn dn
J =KI/2, oM 2,2 _Gha
L d(ln L) 27T()\1+)\2), d(InL) 4#)\1)\2,
JDZJX/2+J||/2,
dgs _ +3mg\
ViL=—23x+2), m_gs 7tk
VDD:2‘]><_2‘]H’ dgt
Ver=2K, (InL)
Jom] 4K (29 for the marginal couplings,; and\,, and for the singlet and
R=JLTK,

triplet couplingsgs andg;, which are, respectively, propor-
in Eq. (A9) the expressions for triplet and singlet massedional to —mg and m;. A similar analysis is performed in

become Refs. 43 and 44 The first and the second equations are
) decoupled from the others, and can be integrgtedvari-
my=J, +K—=Jx—J—A5(16J)+ 4K~ 16]), ablesh . =2(\;*\,)] to yield*
ms=—3Jl—3K+3JX+3J||+12)\2K. (30 N
The marginal current-current interactions act again to renor- )\izl—S'ﬂ)\(B)M(L/LO) ' (32

malize these masses. Settidg=0 and takingJ, =J=J

yields the value of the second-order phase-transition point asrom this it follows that for negative initiak . these cou-
K/J=16\%/(1—4\?). A comparison with the DMRG results plings are marginally irrelevantand renormalize to 0

of Ref. 16, which suggest that at strong coupling the transiwhereas for positive values they are marginally relevant
tion point isK/J~5-6 [in the units of Eq.(1)], yieldsA?>  develop exponential gapsThe initial (ultraviolep fixed
~1/7, a value rather close to that obtained in the weakpoint is given bygs=g,=0, which corresponds to the CFT
coupling regime. After this the equatiom;=0 gives the with c=2 (two uncoupled chainsand the RG equations for
form of the critical surface in the strong-coupling limit, g5 andg; yield the renormalization of masses under the RG
which is represented by the shaded triangle in the phase difiow. The new unstable fixed point is then defined from the
gram of Fig. 2 and by the bold, dashed line in Fig. 10; therenormalized value afn, asm{ =0. Because of these renor-
shaded triangle lies below th#&;-symmetric plane, but does malization effects the exact transition line is difficult to esti-
not include the origin of the coordinate systems. We notenate, but the presence of this transition is to be expected
here that the perturbative considerations applied above are from Z,-symmetry arguments.

a strict sense questionable, because in the problem under Self-dual modelFrom the analysis above one may con-
consideration the “perturbative” rung-rung coupling is of the clude that the linegor surfaces of the two second-order
same order as the coupling corresponding to the unperturbgshase transitions with=3/2 are notZ, symmetric, because
CFT, which isK/2. For a ladder system in whidWirg is not  the rung-rung coupling is proportional ko The Hamiltonian
fixed to be XK, and is small in comparison with’,; and  which would have perfect symmetry of the two second-order
Vpp, the second-order phase transition with central chargghase transitions is
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in Sec. IIB3[Eq. (18)]. We thus consider the effect of rel-

H=32 (S-Su1+Ti T+ (5T, evant and marginal perturbations on the corresponding CFT
' ' originating from the different interactions in the Hamiltonian
e o~ = o~ (2).
K2 B8+ T T +Veal (§-T)
B. SU(4)-symmetric basis
X(S+1Tiv), (33 It is clear that the most convenient way to obtain the

general continuum limit is by direct fermionization of thxe
which corresponds to the model wifly and Vrg indepen-  operators which are the generators of thédsalgebra. Be-
dent ofK. In the smallJ| limit we have obtained two S(2) fore this we perform a canonical transformation of bhi’é’
WZW models perturbed by relevant and marginal interac-and Xf‘o operators for all lattice siteis
tions which have their origin in th& term and in the small
couplings Jg and Vgg. In the strongK regime there are o0. L 10 ius 10
again two SU2) WZW models perturbed by the smal];, X :EI(X +iX3) - X2,
Jr, andVig terms. We note that this Hamiltonian may be
considered as a two-chain HamiltoniEﬁPﬁ— E; perturbed
by te_rms_ propprtional tcPl'—PiX, or as aZ4-tr_ansforme_d $<i3°=ii(x1°—ix3°)éxi3°, (34)
Hamiltonian with theZ,-transformed perturbation. Qualita- 2
tively, the resulting behavior is the same in both cases. In the ) )
continuum limit this perturbation is represented by two four-ffom which one obtaingcf. Egs.(6) and (7)]
fermion terms[see Eq.(41)], one of which gives the mar-
ginal contribution while the other gives the relevant contri- P!lzz Xbxpe
bution. ap

Intermediate coupling. From the Zamolodchikovc

theoren?* a CFT perturbed by relevant and marginally rel-
evant interactions will flow either to another CFT with
smaller central charge or to a massive phase. For streaiid

A= XOX0, BI= S XXX,

J, , perturbation around the limit of decoupled chains gen- Er=AfA  E-=B'B (35)
erates a flow to @=3/2 CFT which is in the universality oo e
class of the bilinear-biquadrati8=1 spin chain, a result wherea,8=0,...,3, anda=1,2,3.

established recently in Refs. 10 and 13. In the strong- The generators of the 89 algebra may be represented by
coupling limit (large K) one may consider th&, term as a  four Dirac fermions,
small perturbation and the same arguments are applicable

. = = . af_ T T
(but now for the variable$ andT), the corresponding RG XeP=3(C 5Ok o= Ch uCi,p) (36)
flow being from a criticalc=2 CFT to ac=3/2 CFT. The subject to the local constraimizocl’ack,azl. In terms of

universality class of this transition is the same as above: it Shese variables th transformation(13) is simply a par-
described by an S(2)-symmetric CFT with levek=2 Kac- . 4 ! >Imply a p
ticular case of the (1) canonical transformation fam q fer-

Moody algebra. .
From this one may conclude that the weak-coupling reNIONS,

gime is not related continuously to the strong-coupling re- - ot

gime, and that there is a crossover between the two. The Cko1Ckor - Cro™ " ICko- (37)

natural candidate for this crossover region would be therhe fermionized version of the Hamiltonigs) then takes

Z,-symmetric planeJ; —Jx =K, probably in the vicinity of  the form

the pointJ=J, =K on the lineJ,=0. However, it is im-

portant to address the question of whether this crossoverisa + + T +

phase transition or a continuous change. As shown in Ref. H_i;b 91(Cj aCi bCit 1pCi+1a~ ¥Ci,aCi bCit 1,4Ci+1b)

23, thek=2 SU(2) WZW model is unstable in the sense that o

it contains relevant operators which induce a flow to a stable + gz(craci,ociﬂl Ci+1aT C;roCi,aCiTHanl,o)
k=1 SU2) WzZW, and one would therefore expect another : N " .
second-order phase transition in the universality class of the +93(Cj 4Ci oCi + 1,aCi+1,0" Ci oCi,aCi + 1,Ci+1.a)

c=1 WZW model. The alternatives to this scenario are a 4 9a(CT ¢t Gy Ciar) +Os(1—c cia)
first-order phase transition or a continuous crossover; a de- 94(CiaCiaT Civ1aCi+12) T 05 haxia

finitive statement is not possible on the basis of the present X(1=¢f 1 4Civ1a), (38
considerations alone. ’ ’

Because this special point or line cannot be expected to behere g;= %(JH +Jx+K), g,= %(JH —-J+K), g3= %(JH
accessible by RG analysis from either weak- or strong—Jy—K), g,=(J, +2K), gs=2K, and y=1. Note that
coupling limits, it is natural to try to reach these points as awe have retained the variableas an additional perturbative
result of the flow away from the=3 critical region defined parameter.
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In the low-energy limit the lattice fermions are expressed ANy
in terms of left- and right-moving fermiongy andy at the K

Fermi points, /24

1
1

—=Cn a:d/L aexq_ikFx)—’_wR aexqikFX): (39)
\/a ) ) )

wherex=na, *kg=*7/ra, ais the lattice constant, arnd ,0-1'5"
the filling factor, which is related to the group dimensij@n -
for SU(2), 4 for SU4)]. In the continuum limit the different
operators may be classified according to their scaling dimen-
sions in the vicinity of the conformally invariant points.
Perturbation around CFT with €3. For the particular
set of values of the interaction parametéfgK=1, J. /K
=0, which corresponds to a point in th&,-symmetric

plane, the Hamiltonian may be written [d&gs.(35) and(5)]

~I=Y

FIG. 10. Cross section of the phase diagi@ig. 2) in the plane
J, =0. The solid line marks the projection of the planeZafsym-
metry, and the solid circle the line AB of massless, incommensurate
solutions. The dashed line represents the second Babujian-
Takhtajan transition in the strong-coupling regime, which separates
H=K>, [P!l— JET+E ) +2XP%%% ] the scalar- and vector-chirality phases. The half plane in which a

i massless region exists around the pdipt= —K is represented by

the dotted line.

—(J,+2K) > X (40)

SU(4).-, CFT allows a decomposition into the direct sum
of two SU(2).-, CFTs, a fact used in the analysis of the
SU(4)-symmetric spin-orbital model in Ref. 37. The addition
of different perturbations to the $4)-symmetric solutions
then leads to a lowering of the symmetry, and may induce a
low to one of the SU(2)-, components. These correspond
Jo the two second-order phase transitions with 3/2 at

From the fermionic representati@B6) one observes that Eq.
(40) corresponds to the Hamiltoniai38) with the specific
coupling valuesg;=9g,=0s/2=K, g3=0, y=1, andg,
=J, +2K.

In Sec. Il B3 we have discussed the soluble model whic
hasc=3 critical behavior in the region with finite rung and
rung-rung interactions. Because this model is equivalent t : . - .
the Hamiltonian(40) when the second term vanishes identi- weak and strong coyplmg. .The spin density is gxpre;ged n
cally (y=0), it would appear natural that the critical region terms of t_he SW) primary fields and therefore, in addition
be extended by an increase of the positive rung-rung intef© the uniform &=0) and staggeredk( ) parts, has an
action. We therefore consider the perturbation of this criticaPScillating part with momenturk= /2. This result appears
model caused by the tern&{ +E;"). In the continuum limit plausible for the problem at hand in that a semiclassical

it is clear that they term breaks the SW@) symmetry, analysis® reveals the presence of a ground state with or-
thogonal spin alignment on neighboring sites. We will not
CiT’aCi'bCiT_*_l’aCi+1’b:lﬂlyagbL’bl//L’awR'b"r‘ e (4D dwell further on this approach here.

producing a marginally relevant product of currents of the
SU(4)-symmetric WZW model fory>0. The RG analysf$ C.c=1 CFT
shows directly that this interaction opens an exponential gap
and drives the system into a dimerized state. A similar effect We conclude this section by considering perturbations
occurs in the spin-orbital model with symmetry-breakingaround thec=1 CFT solution given by Eq(15). Although
perturbations$®3" We note also that in the study of Ref. 48 the pointJ, =0 and line AB on the phase diagram of Fig. 2
this term appears as the continuum limit of the generators dpossess additional degeneracies, the conformal dimensions
the Temperley-Lieb algebfd. In the present analysis the Of the model are unaltered. The WZW model with 1 con-
combination (E;" + E; ) — XX, is the generator of the tains one primary matrix field of dimensior &), and the
Temperley-Lieb algebra in the projected three-state-per-sitperturbation caused by this field is related to dimerization or
subspacéfurther details are provided in Ref. 2 alternation, i.e., it breaks explicitly the symmetry of transla-
We have shown that the $8)-symmetric mode(38) has  tion by one lattice site. This type of interaction is absent in
an exponential gap, and this is expected to persist up to the initial Hamiltonian(1), and therefore the relevant pertur-
~1, at which point the model becomes that of Ef. with bations due to this matrix field are disallowed by symmetry.
parameters); /K=1, J, /K=0. Thus in the ring-exchange The only possible perturbation is then a marginal current-
model (1) not only this point is gapped but also the region current interaction which is present in tlgg term of Eq.
around it in theJ, direction. We note that the rung interac- (38). Perturbation around the exact solution given by Eq.
tion [g4 in Eq. (38)] induces both relevar(scaling dimen- (15) requires that all other couplings be set to zero. This
sion 3/2 and marginal perturbations away from criticality. ~corresponds to the ray+J+K=0 andJ, =0 in the pa-
One may develop a perturbative analysis for the entireameter space of the model, i.e., to the fermionized Hamil-
problem by starting from this S4)-symmetric solution. The tonian
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3D form with coordinate axed /K, J« /K, andJ, /K. We

_ T T T t X ) SN
H—%% [(Ci aCi oCit1,6Ci+1at CioCi,aCi+1aCi+1,0 have chosen this convention to highlight the phases and
’ phase transitions obtained at stroldgas relatively little is
+(1—2cf}aciva)(1—2ci*+ 1aCi+1a)] known about this regime. The parallel dot-dashed lines de-

t + + + marcate theZ,-symmetric plane, which intersects the hori-

906 aCi,oCi+1aCi+ 1,01 Ci oCiaCi+1,Ci+12): (42 zontal plane on the lind, /K= —1. This line lies parallel to
where g=J—J,—K, and with the conditionJ;+J,+K  the coordinate axig, /K, and the part-4<J, /K<4, rep-
=0, which follows from Eq.(38). The general analysis of resented bx the.th|ck dashed line bgtween points A and B,
Ref. 47 is now applicable: wheg=g;<0 the symmetry- forms a critical incommensurate region emerging from the
lowering term is marginally relevant and generates a gapeXact solutlo_n obtained in Sec. 11 B and discussed in Sec. IIl.
while if g3>0 the term is marginally irrelevant and one ex-  1he matrix-product ansat&ec. Il reveals two lines of
pects a massless region to extend along this ray, as reprghase transitions, marked by the stra|ght, solid lines in the
sented in Fig. 10. The poings=0 represents a type of Zs-Symmetric plane af, /K==*4. The line AA" atJ, /K
Berezinsky-Kosterlitz-Thouless transition, as shown already4 represents a continuum of second-order phase transitions
from the exact solution in Sec. Il. From the ray equation’om & rung-singlet phaséig. 4) to a staggered dimer phase
Jj+35+K=0, the couplingg is proportional toJ;, and (Fig. ©), the ex'|st§r1150?60f which has been confirmed by a
thus for J;>0 one expects massless behavior, whileJor ~number of studies®'**°In Fig. 2 we have shown only this
<0 the dynamical generation of a Haldane gap occurs. On#€, which is known exactly, although in fact it constitutes a
may further expect that the massless behavior persists forRart of a surface. The line BBat J, /K=—4 denotes a
small region of values ofl, around this ray in the plane Ccontinuum of first-order phase transitions from a ferromag-
Jj+Jx+K=0. For values of the parameters such that the€lIC phasefFig. 5 to a form of AKLT state(Fig. 9). Both
phases develop a gap, incommensurate behavior is expecté’@,es intersect the incommensurate line at their ends, which
in the form of a maximum in the structure functi®q) at  thus represent two multicritical point& and B). We have
values q= gy, Where 0<q.<, over a broad region in deducedSec. 1) the presence of another lineurface of

the vicinity of the line AB in Fig. 2. second-order phase transitions, the presence of which is con-
sistent with thez, symmetry of the plane in which it is in
D. Universality classes principle known exactly, and the conjectured form of the

The preceding sections have revealed the rich critical be§urface Is represented both by the shaded triangle in the re-

havior of the system under investigation. There exist twogion close to the origin of Fig. 2 and by the dashed line in
critical surfaces described by CFTs wigh3/2, the weak- ig. 10. This phase transition separates the strong-coupling

: ; g S vector-chirality phaséFig. 8), dual to the rung-singlet phase,
anpl stropg-coupllng regimes, and one gr|t|ca| region in thefrom the scalar-chirality phaggig. 7), which is dual to the
unlvercsjallté/ clais of a:=1. .CFT' ThebeX|steIn§edof furghetr) staggered dimer phase. While the letters indicating the loca-
s?con -orl er phase tragsn;]onhs may ke eXCIL.J N odn the 3%{8ns of the phases in Fig. 2 refer in a strict sense only to the
of general arguments. Both the weak-coupling and the Corg) e of exactZ, symmetry, the absence of phase transitions
responding s.trong-couplmg regions of the. phase diagral ther than those present on the diagram means that the
;na;(/j be obta|fned %y consllddermg pﬁrturbaul(q)ns around tg apped phases obtained for model parameters outside the
ixed points of two decoupled spin chains. This correspon | - | h v Kk
o the flow fromc=2 CETs toc=3/2 CETs: thec—3/2 ane are connected continuously to the exactly known

theori : able fixed point 4 I ch states, and their physical properties evolve continuously as
eories represent unstable 1xed points, and a smal changfe \a1yes of the interactions are further changed away from
of the couplings in the Hamiltonian leads to further flow to

he Z, plane.
the stablec=1 CFT. For the general modél) with SU(2) the Z, plane

v the latter CET has the | ¢ ol ; Renormalization-group techniques and perturbative ap-
symmetry, the fatter & 1as the lowest possible centrgy o,ches applied around the exactly known solutions may be
charge. These considerations are consistent with th

. . ; sed to determine the fixed-point structure of the entire phase
Zamolodchikov theorem. As discussed in Sec. IV B, pertur-y b P

. ) X iagram. Thez,-symmetric plane is found also to constitute
bations around the 96)-symmetric point reduce the Sym- e yransition region between weak- and strong-coupling re-
metry and open a gap, thus excluding the possibilityc of

imes, which is centered on the star in the phase diagram of
=3 criticality. A candidate for this symmetry breaking is g D d

g Fig. 2. Analysis of the relevance of the additional terms in
SU(4)— SU(3); however, the exactly soluble critical model the model perturbing the=3 CFT (Sec. IV) suggest that all
with c=2, which has SU(3) symmetfy,is “too far” from

. points on this plane, other than the transition lines of the
the parameter space of the current model, in the sense thatgteceding paragraph and the incommensurate line AB, have
has a positive diagonal-diagonal couplivigp , and addition gapped excitations. These spin gaps are generated only by

of interaction terms to this model induces gflow toa maSSiV‘?narginaI symmetry-breaking perturbations and are therefore
phase. We _therefore concluqle that the_ Ilst_ of second-ordegma”, a result which was confused with gapless behavior in
phase transitions presented in this section is complete.

the numerical studies of Ref. 14. Within the plane, the RG
fixed points corresponding to the=3/2 transitions are un-
stable(Sec. V), and therefore we expect a flow to a stable
We now collect all of the information presented in the c=1 theory, for which the obvious candidate is the incom-
preceding sections. The phase diagram is shown in Fig. 2 imensurate line bounded by the multicritical points A and B.

V. SUMMARY AND DISCUSSION
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There is a certain mathematical and physical similaritythe more exotiq i.e., chira) phases of the model, and thus
between the behavior of th8=1/2 ladder with a ring- that these would most likely be detectable, if at all, as exci-
exchange interaction and th&=1 bilinear-biquadratic tations. Films of®He have been found to offer larger values
model described by the Hamiltonian of K, but these appear both in combination with other

multiple-spin-exchange processes and on a more complex
) lattice geometry which may lead to further topological pos-
Hee= Z (S-S0t a(S S0 (43 sibilities for spin configurations. Our results suggest that this
restricted-geometry system may provide a very rich spectrum
For different values of the parameterthis model contains a  Of possible phases, but a considerably more specific analysis
variety of phases and different forms of critical behavior. Forwould be required.
a=—1, the Babujian-Takhtajan mod®l,t is in the same In conclusion, we have analyzed a general model for a
universa”ty class as the two=23/2 second-order phase- S=1/2 ladder with ring-exchange interactions. By investigat-
transition lines of the ring-exchange model. The Hamiltonianng the exactly soluble points within the parameter space we
(43) also shows incommensurate behavior for the parametegbtain a complete classification of the phases and phase tran-
region 1/3<a<1. However, in the bilinear-biquadratic sitions in this type of system. Although we have considered
model this is restricted to a gapped phase, in contrast to tH&€e minimal model possessing both cyclic four-spin interac-
current model where the critical incommensurate regime igions and nontrivial exact solutions, we find a rich variety of
related to the degeneracy of the-1 CFT. We comment that 9apped and gapless phases, of first- and second-order transi-
an explicit mapping from th&=1 model of Eq.(43) to a  tions, and of commensurate and incommgnsurate excitations,
S=1/2 ladder system may be obtained by using a compositeall connected by a complex renormalization-group flow pat-
spin representatioff, but that the resulting model does not tern. The full phase diagram provides significant additional
lie in the phase spad€ig. 2) of a ladder with ring-exchange insight into the types of phases and transitions arising in
interactions(see Sec.)l low-dimensional spin systems as a consequence of the coop-

The most accurate and extensive numerical studies pegration and Competition between nearest'neighbor antiferro-
formed to date for a ladder system with ring exchange arénagnetic exchange interactions and multiple-spin interac-
contained in Ref. 16. The first quadrant of the circular phaséions of the ring-exchange type.
diagram presented in this work corresponds to the life (
=J >0, JX=_O) in Fig. 2. We note the cpmp_lete agreement ACKNOWLEDGMENTS
of our analysis with the numerical investigation for this line:
the four phases of Ref. 16 are those represented schemati- We would like to thank F. C. Alcaraz for explanations
cally in Figs. 4, 6, 7, and 8, and related under Hetrans-  concerning the model of E¢15). We are grateful to A. Fer-
formation as shown in Fig. 3. The complete phase diagramaz, P. Horsch, G. I. Japaridze, A wehli, and C. Lhuillier
allows us not only to verify the Babujian-Takhtajan nature offor helpful communications and discussions. This work was
the rung singlet to staggered dimer phase transition but tsupported by the Swiss National Science Foundation through
confirm that the scalar-chirality to vector-chirality phase Grant No. 20-68047.02.
transition lies in the same universality class, and in addition
to specify the locationJ;=K) and natureg(Sec. 1V) of the
crossover between staggered dimer and scalar-chirality
phases, which remained unclear from the numerical analysis. we summarize here the important formulas used in Sec.
The second quadrant of Fig. 1 of Ref. 16 is represented by, and describe the fermionization procedure for the general
the line J;=J,<0, J,=0) in Fig. 2. Although we have pjlinear-biquadratic spin-1/2 ladder in the limits of two de-
not obtained specific information concerning this region ofcoupled chains.
the phase diagram, the properties of the regions to which itis The continuum limit of the S(2) Heisenberg model is
connected continuously allow us to deduce that the vectordescribed by an S@) WZW model at levelk=1. This
chirality phase should be separated from the ferromagnetigyodel has one matrix primary operawy («=0,1,2,3,4) of
phase by first-order transitions to a form of AKLT state, scaling dimension (1/4,1/4). The right and left Kac-Moody
which indeed exhibits the collinear-spin property found bycyrrents are fields of dimension (1,0) and (0,1). The rela-
DMRG. Because our considerations do not include negativgonship between these operators and the spin-operator den-
values ofK, we refrain from comment on the third and fourth sty is given in the continuum limit by Eq25).
quadrants of the circular phase diagram. A pair of level-1 SU2) WZW models may be represented

Finally, we summarize briefly the relevance of our resultsin terms of four Ising fields. The operator content of these
for the materials and higher-dimensional systems mentioneging models provides a set of elementary variables for con-
in Sec. I. Experimentally determined valuestofor cuprate  strycting the continuum limit of the general ladder model.
systems, including the ladder compoundsC€aCl,4O41,  The critical Ising model is described bycas 1/2 CFT in the
suggest that the ring-exchange interaction may in fact b@ontinuum limit. It contains holomorphic and antiholomor-

close to the value required to drive the rung-singlet phase tQ. . . . - . .
a staggered dimer state, and thus that staggered dimer cor er]IC fields, respectively)(z) and y(z), with conformal di

lations may be detectable. In two dimensions one expectd'€nsions §,0) and (0z). The energy operatok(z,z)
that a larger value ok would be required to find analogs of =i(z)#(z) has dimension ¥,3), while the order field

APPENDIX
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o(z,2) and disorder fielge(z,z), related to the order field by and
Kramers-Wannier duality, have the same dimensign).

The holomorphic and antiholomorphic components of W(Z) (W) ~ 1 +2(z—w) T(w)
energy-momentum tensor afB(z)=—3¢dy and T(z)— -

L
—3Yy.

The representation of the fundamental level-1 SU(2) — — 1 — — = —
X SU(2) WZW fields is given in terms of four Ising models ¥2) ‘p(W)M;_V_V+2(Z_W)T(W)’
by (see, e.g., Ref. 44

00=01020300F wipom3io, — yp(w,w)
W@)o(ww) =~ T

01~ M1020340~ 01214300,

Q2= 01420307+ 10214300, — Y o(w,w)

P ulwW) =

03= 01030~ M1 M20300,

00= 01020300~ H1fofiaiho, ¥* m(w, W)
W2)o(w,w)~ N
01= — R1020300— T1 424300,
U2= — O1M203H0 T H102/4300, —= = _yo(ww)
I,D(Z)IU«(W,W) \/_( )1/2
03= — 0100300~ H1H20300, (A1)
and the expressions for the SURPU(2) Kac-Moody cur- - -
rents are €(2,2) e(W,W)~——— (A4)

|z—w|?’

J1=31(Y1ho— i),
where y=exp(m/4).
Jo=31(2tho— h3h1), These relations allow one to compute the OPEs between

L marginal operators defined in EQ7),
J3= 31 (¢3tho— 12),

. 2
=—3i(rhot daihs), 0,(2)04(W)~ — :
lz=w[*  [z-w|?
J3=—31(othot P3¢,
. 3 2
= =31 (Yathot Prba). (A2) 0,(2) O,(W)~ - ~O+- -,
The fieldsg; (i=1,2,3) represent the staggered part of the z=w® 2w
spin-density operator, while the Kac-Moody currents corre-
spond to its uniform part. —20,
The operator-product expansions between Ising-model 01(2)Oz(w)~ |z— w2 o
fields aré®
— 1 - — — (Yath2) (W) — (Pr3ih3) (W)
a(z,z)a(w,w)~—lm+%|z—w|3/4e(W,W), (141)(2)Og(W)~ 22 5 T3 ,
|z—w| |z—w]
— — 1 _ — () (W) — (3 ifa) (W
w(2,2) (W, w)~ W‘ L|z—w|¥e(w,w), (,7) (2)On (W) ~ (P1p1) (W) = (aips)( ),

|z—wl?

Y(z—w) ¥2(w) + ¥* (z—w) Y2(w) — —
\/E|Z—W|1/4 , (llfaas)(z)ol(w)~ _(lprZ)(W)_('ﬂlwl)(W)’

2= w|?

o(2,2) w(W,w)~

y* (z—wW) Y2g(w) + y(z—w) Y2p(w)

V2|z—w| ’ — B — (Yotho) (W)
(A3) (atha)(2)Ox(W) Tl—w?

w(z,2) o (W, w)~

(a=1,2,3,
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(Yotho) (2) Op(W) and
(r12) (W) = (ra1hr2) (W) = (ihr3ifr3) (W)

:(S'Si+1)::(Ti'Ti+1)::)\2
|z—wl?

3
—4(0;+0,)+6, ek]
k=0

(A5)

(S Ti1)(S11T) =A% 0;—50,+ 3¢

Because the scaling dimensions of all operators are
known around CFT points, one may proceed to the con- 5
tinuum limit for the spin Hamiltonian around the limit of two
decoupled chains described by the WZW model vaith2. —S(ert et E3)+3k20 fk}
There exist two variants of this limit, at weak and strdfg

and it is convenient to study the continuum limit of the gen-
eral Hamiltonian :<s.Ti>::(sM-TiH)::xz[ol—Soz—seo
H=2 JU(S-Sat T Tiv) +3p(S-Tia t Ti- Sivn) 3
! +5(€1+62+63)_32 €l
k=0

+IRS Ti+ V(S-S (T Tit) +Vrr(S-Ti)
(A8)

X(S+1Tiv1) +Vop(S - Tiv)(S+1-Th), (A6)

) N ) where the cutoff-dependent constanemerges from the op-
where in addition to the legJ{), rung (Jg), and diagonal erator product expansion between different contributions.
(Jo) Heisenberg interactions we include leg-ley, (), These expressions give in terms of Majorana fermions the
rung-rung ¥rg), and diagonal-diagonaMpp) four-spinin- continuum limit of the Hamiltonian, which is separated into
teractions. The most relevant contribution from the biquasinglet, triplet, and marginal parts as in E86), with
dratic terms arises from the product of the staggered parts of

the corresponding composite quadratic expressions, and from m,=Jg—2Jp—A?(6V, | —2Vpp+2VgR),
the operator product expansion between quadratic product of
currents with the quadratic products of the staggered parts, mg=—3Jg+6Jp—N%(6V, | +6Vpp—6VgR),
~ _1\xla
S S5+1= (017 02) + (= 1)7"A o, 1= — 43+ If2+ Jp+ (— 4V + Voo + Van),

T = —1)¥a !
Ti- Tir2=(01102) + (=)™ o, Np=—4J, —Jpl2—Jp—(— 4V, —5Vpp— 5Vrr),

S Ti=1(0;-0,)— (e1+ €2+ €3 3¢p) (A9)

and operator®; andO, as defined in Eq(27). This repre-

+(=D)YE[gA(I* +37) + (32 4+ g7, sentation allows one to study simultaneously the limits of
N weak and strongK (Sec. IV). We note that the signs of the
S Ti11=2(01=02) +(e1F €2+ €3 3€) four-spin interaction terms in the expression for the masses

L aXla.raagqal Al Ta A are different from those in Ref. 10 but the same as those
FEDTRLGHIT +IT) = (I ID resulting from the analysis in Ref. 21 of the string order
(A7) parameter.
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