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Current-induced magnetization switching in small domains of different anisotropies
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Several recent experimental studies have confirmed the possibility of switching the magnetization direction
in small magnetic domains by pumping large spin-polarized currents through them. On the basis of equations
proposed by Slonczewski for domains with uniform magnetization, we analyze the stability and switching in
two cases which differ by the anisotropy type. One of anisotropy types corresponds to that of the existing
experimental device. Qualitatively different behavior is found in shapes of bistable regions and regions with
stable precession. Stabilization of unusual “canted” equilibria is found in one of the cases. The sensitivity of
the switching pattern to a change in anisotropy pattern underscores the necessity of theoretical guidance for the
interpretation of experimental results. We propose experiments to search for stabilized canted equilibria and
precession cycles. Our study is analytic as opposed to recent numeric work and the method can be applied to
other anisotropy patterns as the experimental interest develops.
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[. INTRODUCTION “windmill,” because the way in which longitudinal motion
of the current is transformed into the rotational motion of the

Currently considerable experimental intefest is de- magnetization is quite similar to the way in which the longi-
voted to the torques created by spin-polarized currents in tudinal motion of wind is transformed into the rotational mo-
magnet. This interest is in part fueled by the proposals ofion of the sails in the mechanical windmill.
developing a convenient writing process for the magnetic The windmill effect was predicted in the framework of an
nonvolatile random access memory where the reading pr@Ssumption that there is no magnetic anisotropy in the
cess will be based on the magnetoresistance éffecgen-  Pieces. However for the real material one must also take into
eral theoretical framework for the description of such “spin- 2ccount magnetic crystalline anisotropies and the interaction
transfer” torques is set in Refs. 25-27. The spin-transfeith the induced magnetic fielshape anisotropy Clearly,
effect is the nonequilibrium interaction induced by the elec-anisotropy will work against a windmill effect by creating
tric current| flowing between two metallic ferromagnets barriers to reversal. The magnetization motion thus becomes
separated by a normal metal spacer. This interaction is qualfore complicated. The spin-transfer torque now leads to
tatively different from the Ruderman-Kittel-Kasuya-Yosida SWitching between the equilibrium directions defined by the
exchange observed bt 0, and should also be distinguished Strong anisotropy. Such switching results from the competi-
from the interaction with the Oersted field of the current.tion between the energy dissipation described by Gilbert
Spin transfer is a subject of recent interest in the field ofdamping coefficient and energy influx from the electron cur-
spintronics. rent described by spin-transfer torque. Switching happens

One of the particular experimental setups in which thiswhen the current exceeds a critical valaetermined by the

effect can be studied is a thir<(100 nm) normal metal wire @nisotropies and applied external magnetic fietdhich
(called a “pillar” in the papers of the Cornell grotfh) with ~ 9ives potential for memory applications.

two magnetic pieces embedded insee Fig. L If the dis- N this paper we summarize our work on the exact solu-
tance between the magnetic pieces does not exceed the Slymns of the dynamic equation with the spin-transfer term for

diffusion lengthlsq in the normal spacer between them, and

their magnetizations are noncollinear, a current passin

through t?we wire will induce spin-transfer torques, grisingg /y N

from the interaction of electron spins polarized by one mag- L —_—

net with the magnetization of another magnet. Such a setup ]

was originally considered by SlonczewéRiThere it was L. L. M
assumed that both magnetic pieces are isotropic and that ini- Llarge |- S

tially their magnetizations are not collinear. A counterintui-

tive prediction of Slonczews® was that in the presence of FIG. 1. Experimental setup. Currenis passed through a nano-
the current both magnetizations will rotate in a fixed planewire with two magnetic piece¢shaded areasExternal magnetic
keeping the angle between them constant. This was calledf&ld B can be applied in an arbitrary direction.

0163-1829/2004/69)/09442119)/$22.50 69094421-1 ©2004 The American Physical Society



YA. B. BAZALIY, B. A. JONES, AND SHOU-CHENG ZHANG PHYSICAL REVIEW B69, 094421 (2004

several types of anisotropy. Our results were briefly reportedietic piece switches from orientation to the other; thus we
in a series of short publicatio8*° There were other at- will call it a “switching diagram.” In this paper we calculate
tempts to incorporate anisotropies including approximated section of the full four-dimensional switching diagram for
treatments in earlier experimental repdft$? An extensive certain directions oB and certain anisotropies. Our method
numeric treatment of a particular experimental situation wa§an be applied to similar calculation for other directions®of
given by Surf® Later, a numerical calculation was used by @hd other anisotropy tensors as the experimental need in
Grollier et al® to find critical currents for a certain anisot- them will arise.

ropy. In contrast, our approach gives exact results and there- NOte that for technical applications in the memory writing
fore can be very important for the comparison of experimenPrOC€ss one is interested in finding anisotropy tensors which
tal results and the spin-transfer theory satisfy the following conditions(a) there is a section of the

Currently, experiments are performed with structures inghase diagram at a fixed external fidy where Ms is

which one of the magnetic pieces is much larger than th istable atj=0; (b) the two metastable states differ in a
other. This brings a considerable simplification into the prob%roperty that is easy to measure, usually in their resistivity

. " . ‘which depends on the angle betwelly and M ; (c) by
lem as follows. At a given current densitthe spin-transfer passing a current one can switch back and forth between

torqueTs; is proportional to the cross section of the wire. At these two metastable states. However for the purposes of
the same time the torquég created by the anisotropy terms testing the theory of spin-transfer torques it is reasonable to
are proportional to the volume of the magnetic piece. Therestart with the cases where the phase diagram is simplest, can
fore the ratioTs/T,~1/L, wherelL is the length of the pe calculated exactly, and then compare theoretical and ex-
piece, and the small piece will be affected by the spin-perimental results. We will discuss the structures considered
transfer torque starting from a much smaller valug.@ne in this paper in terms of their potential for application in
can therefore neglect the effect @f; on the large piece, memory devices in conclusion, Sec. V.
called a polarizer, and assume its magnetization to be con- A current can also act on the magnetic pieces in a more
stant. Torques on the small piece then occur from spinconventional way through the magnetic field induced by the
polarized itinerant electrons coming into it either directly current (Oersted fielsl Such induced fields are always
from the large piece or after multiple reflections between théresent, and their effect, used in existing technical
pieces. Magnetizations of the large and small pieces will b@pplications’® can be much larger than that of electron spin
denoted asd, andMg, respectively. transfer. However induced magnetic fields decrease as the
Our method of finding the switching diagram is as fol- size of the structure goes down and at sufficiently small size
lows. We assume that the analyzer is in a single domain stafgeir effect will become negligible compared to the spin-
and therefore its magnetization is described by the modifie¢fansfer effec{see Appendix A
Landau-Lifshitz equation with spin-transfer term includéd. If the size of the pieces is larger than the domain wall
For each |,B) point we find the equilibrium positions & g vv_ldth, the magnetization may not be u_nlform throughout the
and then analyze their stability exactly. Knowing the naturePiece. In this case continuous equatigné must be used
of each and all equilibria we can construct the topology ofinside each piece to determine the magnetic configuration.
the time-evolution flow ofMg (phase portrajtand predict Our previous rgsuﬁ showed that for Iarge current densities
qualitatively the overall behavior of the system. As the pa_substa.ntlal dewatpns from tlhe easy-axis d|rect|qn can result
rameters change, the nature of some equilibria changes fro@f the interface, which heal in an oscillatory fashion into the
stable to unstable, at which point the whole phase portraipulk with a length scale comparable to the domain wall
changes. This is when the switching occurs. Sometimes nefidth. In the present paper we assume that the small mag-
ther of the equilibria is stable which implies the existence offetic piece is sufficiently smaller than the domain wall width
stable cycles, becauséds moves along the compact mani- N a!l dlregtlons, and treat it as magneycally uniform. Nu-
fold (spher@. Such stable cycles were first considered for americ studies of some nonuniform configurations were done
particular setuff and observed numericafy.Due to energy in Refs. 35-37. _ _
dissipation they would be impossible without the current. The paper is organized as follows. In Sec. Il we discuss
However forj #0 there is a constant supply of energy which the modified Lgndau—Llfshlt; equation with spm—transfer_
feeds the periodic motion dfl s. term.,_and describe hovy we find eqwhbna a}nd analyze their
To test the theory, one would like to be able to control thestabmty. In Sec. lll we @scuss thg “axial” anlsotrqpy pattern
direction of the magnetization of the polarizer with respect tofor Which the calculations are simpler, but which is more
the anisotropy directions of the small piece. The easiest Waglfﬂcult to reallge experlmental_ly. The_aX|aI case is used as
to changeM, is an application of the external magnetic field @1 €xample to introduce and discuss important concepts and
B. Of courseB will also act on the small piece and must be apprOX|mat|ons_wh|ch we then_ use in Sec. IV to analyze the
taken into account in the equations of motion. The propertieStructure used in actual experiments of the Cornell grdup.
of a system with a given anisotrop¢;, can ultimately be I_n Sec. V we make con_clusmns and describe several sub_tle-
presented as a phase diagram in the four-dimensional spafiS that were ignored in the present paper but may be im-
of parametersj(B) with spin-transfer effects determined by portant in a real experiments and call for further work.
the magnitude of the current and by the direction of the spin
polarizerM, =M/ (B). Different regions of such a diagram
would correspond to different stable directionsh. The To write down the conventional Landau-Lifshitz equation
boundaries between them will show where the small magwe need to know the magnetic energy of the small piece. It is

II. DYNAMIC EQUATION FOR THE SMALL PIECE
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given by a sum of intrinsic anisotropy term, shape anisotropy  _ Jex Y it

term, interaction with external magnetic field, and exchange @n= 7( B+ VS)' (wk)jj :M(Ki(jm D —47MN;))
interaction with the large piece. We approximate the shape of
the small piece by an ellipsoid, so that the shape anisotropy

e = hoj1 a
is given by a demagnetization tenddy : %8 PN -
YiTv2iem T wm ©
E: E(_Ki(lintr)nink+47TMiNikMk)_BiMi_JexSini , Coefficientswy, wx, and o; have the dimension of fre-
Vo2 quency. The first two quantities are given by the regular ex-

oY) pressions for frequencies associated with magnetic field and
where M,=Mg; is the magnetization of the small piece, anisotropy energy. The Fhird one is the new expression for a
Kt js the intrinsic anisotropy tensor, add, is the ex- ~ requency associated with a current.
change coupling between the pieces across the spacer. Vec- The behavior of the small piece will be cgmpletely deter-
tors n ands are unit vectors along the magnetization of themined by these parameters. The orientatiomgfands vec-
small and large pieces, respectively. According totors with respect to the principal axis of the anisotropy tensor
Slonczewsk?® the modified Landau-Lifshitz equation fM o, is the only connection between the spin space and real
has the form space that exists in the problem. For example, the direction
of the currentj with respect to the anisotropy axis is irrel-
evant. The only thing that matters is which of the magnetic
pieces is upstream and which is downstream with respect to
) the flow of electrons, so the current is a scalar variable. As
+ ZﬁAJ—g(P,sn)(nX[sx n)+a[nxn], (2) explained above, the dependerses(w,) is given by the

V2 e properties of the polarizer.

The vector equatiod) has the form

Me— iy = m
i

wherey=gug/# is the gyromagnetic ratio/ andA are the
volume and crp;s—segtion area of the pie?zés the_GiIbert n—a[nxn]=F(n), (6)
damping coefficientP is the degree of spin polarization of

the electrons coming out of the large piece, and the spinvhere we have moved all terms with a derivative to the right.

polarization factorg(P,sn) is given by First we transform this vector equation o(t) into a system
of equations on the polar anglegt), 6(t) which are de-
(1+P)3 fined in the standard wafsee Appendix B for derivation

g(P,sn)= f(P)=

f(P)(3+sn)—4; 4p32 @ This gives

The second term in Eq(2) represents the spin-transfer sing -«
torque. Details of the derivation can be found in Ref. 26. We
would like to emphasize that calculation of the spin-
polarization factor is a subject of many papers and the issugy
is not completely resolved at the present time. Its magnitude
was investigated in different regimes as a function of the ‘qg] 1

¢ :{vmm]

.0 U0(¢,6)

1/sing —alsing| (v,
: (7)

Uy

-« -1
To find equilibrium positions one must solve

—asing -1

degree of spin polarization in the ferromagnets, properties of
the boundaries, mean free path, and spin-relaxation
lengths3®~%° Here we use the expression derived by
Slonczewsk?® It is generally true for all expressions of the
spin-polarization factor that it is a growing function of the vs=0, v,=0 (8)
angle betweers andn with maximum value reached for the
antiparallel configuration. The physical meaning of such d&om which all equilibrium points §;,¢;) would be ob-
behavior is rather simple: since it is harder to pump the curtained. Near each equilibrium E() can be linearized,
rent through the antiparallel configuration, the process gen- .
¢
i

0 _l+a2

(9U0/(9¢ ) 609/6’0

erates more torque. For example, for a complete spin polar-
ization the resistance of the antiparallel configuration is
infinite and correspondinglg(1,—1)=0o. Comparison with

experiment can show how accurate were the assumptions 1 |lUsing —alsing| . (8¢
made in Ref. 26 to derivg. = A 1 V[ s }
Equation(2) can be rewritten in terms of 1ta @ 4
) .. . [6
n=[(wy+wxn)Xn]+w;g(P,sn[nX[sXn]]+a[nXn] =D 5(2] 9
=F(n)+a[nXn] (4)

We will call D a “dynamic matrix.” It's eigenvaluesu; »
with rescaled coefficients determine the nature of the equilibrium. When the eigenval-

094421-3



YA. B. BAZALIY, B. A. JONES, AND SHOU-CHENG ZHANG PHYSICAL REVIEW B69, 094421 (2004

ues are complex conjugate, ,= Reu*ilmu, one has a fo- In the axial case we have a special propegtis independent
cus, which is stable for Re<0 and unstable in the opposite Of ¢. Also, Egs.(10) were derived with the assumption that
case. For two regk’s one has a stable center fag ,<0, an the direction ofs does not depend oB. In reality the polar-
unstable center for € u; ,, and a saddle fop ;<0< u,. izer will be switched by sufficiently large negative magnetic
Below we are going to calculate the switching diagramsfield andv 4, v, will change. We will discuss this issue at the
for two experimental situations. The first one is simpler andend of this section.
easier to interpret, but requires a modification of structures When w;#0, the system can be only satisfied if §in
used in experiment. The second one corresponds to the actuab, i.e., the only stable positions ofon the unit sphere are
experiment of the Cornell grouf,and shows a much more the North and South Poles, independent of the current value.
complicated behavior, including the stabilization of newFor ;=0 there is an additional set of equilibrium points: a
“canted” configurations which would never be stable with- parallel determined by ca=—w,/w .
out the current. Our next step is to determine the stability of equilibria.
Equation (9) cannot be used directly when 40 [at ¢
Il. AXIAL CASE =(0,m) the mapping of the spherical surface on th )
plane is singuldr To study dynamics in the neighborhood of
these points one has to either change the directian afis
Assume that the polarizer is characterized by an easy-axisr use the local nonsingular coordinates, exgs,6 cosd¢,y
anisotropy. The small piece has a uniaxial anisotropy with=#sin¢g, near the North Pole. The latter proves to be easier.
respect to the same axis, with the total anisotropy energWe get
F—
0

given by
) X
K -
where v is the direction of the axis anil can have either . . ) .

sign. One will have an easy axis fr>0 and an easy plane Substitute ¢,6) from Eqgs.(9) and (10), and linearize Eq.
for K<0. Next, assume that the external magnetic field ig1D in (x.y):

also directed anng}. Such situation witiK >0 was consid- .
ered befor& using a different method. X _ 1 5 [X] (12

y 1+ a? ' y)’

The total anisotropy of each magnetic piece is given by a
ropy. The shape anisotropy will be an easy axis for a long _ {_[wjgn+a(wH+wK)] —(ou+ wk— aw;gy)

A. Axial case switching diagram

—6@sing cos¢
#cos¢p sing

sum of the magnetocrystalline anisotropy and shape anisot-

cylinder (L>2R, whereR is the wire radius and an easy D;=

plane for the disk Il <2R) with v along the wire. To obtain

the total anisotropy with the same axis, one has to choose a _

. . . i ; g,=9(P,1).

material with a uniaxial anisotropy along a certain crystal

axis and grow it with this axis being parallel to the wire.  The Gilbert damping coefficient is small and we expand it
For example, it was fourf§*’ that cobalt nanowires grow up to the first order. Then the eigenvalues of the approximate

with intrinsic easy axis perpendicular to the wire for large dynamic matrix are

wire diametersR=25 nm (“thick wire” ) and with easy axis

along the wire for smalleR (“thin wire” ). With a thin wire un=—0;9(1) — a(wy+ wk) *iloy+ ok — awv;g(1)].

one can realize botK >0 andK <0 cases. Fot s> 2R the 13

shape and magnetocrystalline anisotropies add to an easy ,

axis along the wire. Foks<<2R they subtract and the total _ S€veral general remarks should be made. We deal with

constant is given by =KD —47M2. If M is sufficiently 2X2 dynamic matrices the eigenvalues of which always

Iarg(c)ae, one r:1?513 an easy pI%?ne anisotropy. For cdbais ~ have the form

X 10° erg/snt andM =1.4X 10° emu, so a$ g is decreased,

there will be a transition from an easy axis to an easy plane. p12=Aloy, 0) = VB(oy,0)).

We find (v 4,v4) according to Appendix B, where for the
axial case

oyt wg— awig, —[wjght a(oy+ wy)]

(14)

Two important lines in the ¢ ,w;) parameter space are
defined by equationd=0 andB=0. In theB<0 domain
the eigenvalues are complex conjugate. Here crossing the
=0 line means changing the nature of the focus between
and we are free to chooge= ». The calculation is straight- Stable and unstable. In tf&>0 both eigenvalues are real.
forward and we find that the equilibrium positions are givenThe A=0 line is irrelevant, but two additional lines emerge:

F=[(oy—K(n-v)v)Xn]+w;g(P,sn[nx[sxn]]

by w1=A+B=0 and u,=A—B=0. They divide theB
>0 domain of the parameter space into three regions where
U 4= wySinf+ wycoso sin =0, (10 the equilibrium is a stable focus, an unstable focus, and a
saddle. The general situation of such a division is shown in
v y= w;g(cosh)sin6=0. Fig. 2.
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B=0 (I) easy-axis in small piece

A=0

FIG. 2. Generic shape of the switching diagram near the cross-
ing of the A=0 andB=0 lines(see text (I) stable focusA<O,
B<0; (ll) unstable focusA>0, B<O0; (Ill) unstable centeB
>0, u1>0; (IV) saddleB>0, u;<0<u,; and(V) stable center
B>0, u;,<0.

In the axial case the situation is degener&e:0 every- FIG. 3. (Color online Switching phase diagram for the axial
where. The North Pole is a focliexcept for the line given case.(l) Easy axis in the small piecétl) easy plane in the small
by wy+ wx—awj g(1)=0, where it is a centgrwhich is  piece. Regions are marked either by listing possible stable configu-

stable for rations(thick arrow representsand thin arrow represents or by
PS which is the precession region. The small hatched regions are
a(wy+ wg) discussed in Sec. Il B. Time-evolution flow on the projected sphere
WjN= T W (15 (N is mapped to infinity and S to the origirs shown for the case

of easy axis:(A) For stable North Pole(B) for bistable region,

We see that the “critical current” needed to get to the stabil-(C) for stable South Pole, an@) for stable precession cycle. The
ity boundary is proportional to the smail. This will be the  easy-plane flow is slightly more complicated, as explained in
case for all equilibria we consider in this paper. In that senseppendix C.
the switching current will be sometimes obtained by expand-
ing the formulas in smally;~ a(wg ,wy). Experimentally, gs=9g(P,—1). (16)
however, the “small” currents are of the order "18/cm?.
We will comment on the other instabilities happening for
large currentsw;~ wy ,wy, but these instabilities are not I _ b N
probed in the p#esent-day experiments. #s=0i9(—1)F alon— o) iloy — o= aog( 12|17)

Switching happens when the equilibrium changes its na- - o
ture from a stable to an unstable focus. Without the curren@nd the stability condition is
the focus is stable due to the positiveness of the Gilbert
damping coefficienty, which, in turn, is the consequence of wis 2 7
the energy dissipation in the magnetic piece. The equilibrium . g(P,—1)
becomes unstable not because the potential energy changfige regions of stability of the North and South Poles are
from a local minimum to a local maximum or a saddle, butghown in Fig. 3. In this figure we also show the flow pattern
because the total damping gets negative. The physical reasgg the unit sphere. To do that we project the sphere on the
is the possibility to extract energy from the flow of current pane 5o that the South Pole is represented by the origin and
through the piece. Here it is useful to note that the spinyne North Pole is projected to infinity. First of all, we see that
transfer term in Eq(4) cannot be absorbed by a change ofihere is a region where neither equilibrium is stable. This
the energyF, i.e., it is not a gradient of any function. To || pe discussed in the following section. Out of the other
prove this statement one can check that the curl of the spifyree regions two have just one stable state and the third one
transfer term is nonzero. . hastwo stable states. In the former cases any initial position

For the South Pole we perform the same linearizationgt n on the sphere evolves into the corresponding stable
The nonsingular coordinates now ase=—3560C0Sé, Y equilibrium. In the latter case, the sphere is divided into two
= — d@singwith 5= ¢— m and the dynamic matrix has the parts: the basins of attraction to both equilibria. This situa-
form tion closely resembles the one with one absolute minimum
and one metastable minimum of energy. However one has to
remember that energy is not conserved in the presence of the
W~ WK~ awiJs wjgst+ a(wy—wy) |’ current and we obtained the information about the flow and

The eigenvalues are

. a(wy— k) (18)

B —[wjgsta(oy—wk)] oy~ ok—awds

094421-5



YA. B. BAZALIY, B. A. JONES, AND SHOU-CHENG ZHANG PHYSICAL REVIEW B69, 094421 (2004

stability of equilibria not from the energy minimization, but 1 1

from the dynamic equations analysis. The phase flow dia- g(x)= P 3+x—4 TP\ x+ &)’ (22
grams for cases with one and two stable points are shown in

Fig. 3(A,B,C). In Fig. 31,II) we show regions of stability,

indicating bistable regimes which will produce hysteresis ¢=3— —,
upon switching in current with fixed magnetic field, for ex- f(P)
ample. where, according to Eq(3), Pe[0,1] correspondsf(P)

When a current is changed at fixeg); the system will ~ c[2 + ) and&e[1,3], and cast Eq(20) in the form
follow a vertical line on the phase diagrams shown in Fig.

3(L,I1). If this line crosses the bistable region, a hysteretic wjwg
behavior will be observed. For example if one starts from the af(P) w(w= oyt éwy). (23
domain where only parallel configuration is stable and de-
creases the current, the configuration will be stable all the Solutions of this quadratic equation on the inter¢2d)
way down tow;y line, where a switch to the antiparallel are analyzed in Appendix C. First, it always has one solution
configuration occurs. If one goes back by increasing the curin the PS region of the switching diagram. For this case the
rent, the antiparallel configuration will remain stable up toflow on the sphere is shown in Fig(D3. It is somewhat
the wjs line. At both switching points a jump in the resis- similar to the flow in Fig. 88): in both cases the upper and
tance of the wire will be observed due to the giant magnetower parts of the sphere are separated by a cycle, but it is a
toresistance effect. The case whendhe=const line crosses stable cycle in the former case and an unstable one in the
the precession region will be discussed in the following sectatter case.
tion. Second, Eq(23) can also have solutions outside of the PS
region. To understand what happens, recall that our stability
B. Precession states in the axial case analysis of the equilibrium points cannot predict the number
of cycles between equilibria. It turns out, that when E28)
%has solutions outside the PS region, there are two cycles
Between South and North Poles: one stable and another un-
&able. An unstable cycle separates the stable cycle and the
s}able equilibrium. This situation will be called a “cycle-and-
ole” state. Its domain of existence is shown in Figl,IB)
y the hatched regions and is labeled as-RSor PS+S on
balance between the energy influx and it's dissipation the switching diagram, where the second letter dpnotes the
' stable pole. The cycle-and-pole state transforms into a state

an'”#ﬁ?ﬁga;g@g% ?Q:Zﬁ': gfoiq;fg”i (cj:?eesBTJ?tir?I}[/r?eWith a single stable pole when stable and unstable cycles

'yl it i miw.” be ci I'y ' d merge and annihilate. This event happens far away from the
axial case Itis gasy 0 guess il be circling around a equilibrium points and therefore cannot be detected by
parallel determined by an angh, such thaté=0. From  sdying their stability.

It is important that there is a region on the diagram wher
both equilibrium points are unstable. Since the sphere is
compact manifold, this necessarily means that there exists
stable cycle, around which performs a periodic motion. Of
course, the energy is still dissipated due to the presence
the Gilbert damping term in the equations. But it also can b
drawn from the current. In the precession state there is

Eq. (7) this means It is instructive to follow the transformation of the flow
0 pattern asw; changes from large positive to large negative
=, 9(cosbo) +(wy+ wkCOSHy) =0, (190  valuesatafixea,, . For example, let us consider the case of

0k <0 and choosevy so that during the; sweep we will
_ cross both the PS region and PS region(see Fig. 4 At
¢= wy+ wCoSH,. w;=wjy the North Pole becomes unstable. A stable cycle
. . . nucleates around it and starts to grow. Wheneachesy; s,
These eq“?""”s give the position of the cycle and the freé\n unstable cycle nucleates around the Shguth Pole. +Sk1is pole
quency w= ¢ of the precession. The sign of gives the  pecomes stable and is now separated by the unstable cycle
direction of precession. We see thatdoes not enter EQ. from the stable cycle. The stable and unstable cycles move
(19). From the second equation o@s=(w—wy)/wk, SO We  towards each other, until they collide at somg and anni-

reduce the system to one equation hilate. After that, only the South Pole is stable.
If we would increasew; from a negative value, we would
ﬂg( “” “’H) +w=0, (200  Observe how aij; two cycles are created on the sphere and
o Wk then travel to the opposite poles. First the unstable cycle

would reach the South Pole a=w;s and disappear, then

the stable cycle would reach the North Polawgt= wjy and

disappear as well.

(22) When thewy =const line crosses the PS region but does
not cross the cycle-and-pole region, the behavior of the
stable cycle is simpler. As one enters the precession region,
the stable equilibrium becomes unstable by developing an

We rewriteg(x) as infinitesimal stable cycle around itself. Upon going further

which, due to the requirement 1<cosf,<1, should be
solved on the interval

W_SOSw,y,

w_=wy—|wk], o;=oy+|ogl|
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; current excites ferromagnetic resonance modes in the small
magnetic piece.

In the easy-plane case{<0) the PS region includes the
points withw;=0. At zero current the precession frequency
is always zerdthis is just a statement that any direction in
the easy plane is an equilibrigmFor the small current;

—0, we havew—0 and its sign determines the direction of
the precession. In this regime the teiw—0 on the

PS

stable cycle

t right-hand side of Eq(20) can be neglected. This gives
. stable cycle current » wj
unstable cycle @ af(oy/og+§)’ 9

To estimatew; we can approximate the magnetizatighof
the ferromagnet bM = ug/a® wherea is the lattice con-
stant. Then

- cycles merge

OLLLO OO

11
Is

a3
M el

('DI\_.

Takinga=0.5 nm,l ;=10 nm we estimate

P ;(1/9~780 (Alcm?).

FIG._ 4. (Color onling Evolution pf the stable equ!llbrl_a and Let us further assume=0.05 andP=0.5, so thatf =2.4.
cycles in a current sweep. The regions are marked like in Fig. 3.~
The value ofw,, is chosen so that both pure precession and “cycle-g_ 1.3. Then
and-pole” (hatched regions are crossed. Appendix C discusses the 6.5x 10°
phase flow in greater detail. :

= wH/wK+ 13J

1

w
S

A
cn?
S N
Zn the small current approximationd;|<|wg|) used to ob-

H@i” this formula it is appropriate to consider thaf,/wg
[—1,1] in the precession region.

into the PS region, the size of the precession cycle becom
larger and eventually the magnetization of the small piec
precesses along the equator of the unit sphere. After that, t
precession cycle begins to shrink around the other equilib<
rium. It finally converges on the other equilibrium and makes

it stable. Thus as one crosses the PS region the angle of D. Polarizer switch by external magnetic field
stable precession continuously changes betwge® and Everywhere above we implicitly assumed that the polar-
6=. The resistance of the wire will change continuouslyjzer does not change its direction regardless of the magnitude
between the parallel and antiparallel values. of the external magnetic field. In real life this is of course not
true. Even if the polarizer is made from a very hard magnetic
C. Evaluation of the frequency material, large enough negative magnetic field will switch it

The precession state is an interesting candidate for obsef1t0 the opposite direction. How will that change the switch-

vation with a magnetic force microscope, which can detect"d (j|agrams conS|d_ered above?

the oscillations of the magnetic moment by the mechanical F"‘?‘t Of_ all, the diagrams _must be now qut off at some
response of its cantilever and measure their frequency. It i8€92tive fieldwyp corresponding to the coercive force of the
shown in Appendix C that as one performs a current sweep &tlarizer. As drawn, they are valid only fary>wpp . Sec-

a fixed wy, through the precession region two situations are2nd: from the symmetry of the E@4) it is intuitively clear

possible. If at a giveno, the cycle-and-pole state does not (and can be derived mathematicajlyhat with the polarizer

exist, the frequency of oscillations changes in the imervapwitched to the opposite direction we can use the results for

wnt|w|. If the cycle-and-pole state exists, the frequencyt® POINt (wj,— ) on the already available switching dia-

changes in the intervélwy — |wy|, ] (see Appendix C for gram. The corresponding equilibrium directions of the ana-
details. The possible value ab, ’hccjwever depends on the lyzer will be the same relative to the new directionsofThe

location of the precession domain on the parameter plane. new syv!tching diagram will b? a mirror reflected ima}ge of
For the easy-axis case one has the original one. Note that this symmetry argument is only

valid when vectors andB lie in one of three planes formed
g(—1)+g(1) by principal axes of the anisotropy tensog , which is true
wy< TOKG— 1) —a(l) < in all cases discussed in the present paper.
g(-1)—9g(1) . ; . .
If during the experiment some polarizer switching events
in the PS domain. Therefore by the order of magnitude preeccur, both switching diagrams, for the original direction of
cession has a frequency @f and higher. In other words, the the polarizer and for the reversed direction, have to be used.

094421-7



YA. B. BAZALLIY, B. A. JONES, AND SHOU-CHENG ZHANG PHYSICAL REVIEW B69, 094421 (2004
o o sume that a specific direction of the external magnetic field,
namely,B, is collinear with the easy axis of the pieces. In the
paper of Suft this arrangement is called an “on-axis” ge-
ometry. We will denote the strength of the easy-plane anisot-
ropy by ,=0 and the easy-axis anisotropy y=0.

We note that in the actual experim&hthe polarizer was
designed to switch in a very low magnetic fiéftiTherefore
only thew;>0 part of the switching diagram is probéske
Sec. Il D). However we present results for arbitrany
which can be useful for the future setups.

The “axis and plane” anisotropy has both cases consid-
ered in Sec. lll as its limiting cases. If we sef=0, equa-

FIG. 5. (Color onling Switching diagrams for the easy-axis case tions will reduce to those of the “axial easy axis” case for
with the polarizer switching at the coercive fiefdw,p. It is as- @,>0 and to those of the “axial easy plane” fay,<0.
sumed thatwyp| is less than the field of precession state onset. TheHere we want to remind that spin transfer is independent of
left panel shows the diagram ferprepared pointing along the z the relative orientation of the curreptand spin polarization
direction. At o= —wyp a polarizer switch to the-z direction s (see Sec. )l What matters is the relative orientation ®f

occurs after vvhich the r@gh.t panel is applicable. The polarizer, i1, respect to the principal axis &. If one could prepare
switches back if the_ field is increased up-tawyp. Then the left a sample with pure easy axis perpendicular to the wire and
panel becomes again applicable. put it in the external field along this axis, the system would
behave in the same way as the axial easy axis of Sec. IIl.
To study the axis and plane case we will use two coordi-
nate systems, characterized by differemtxis of the spheri-
cal coordinates in the spin space. In thesystem, thez axis
IV. AXIS AND PLANE CASE is perpendicular to the easy-plane, and inzhesystem it is
aligned along the easy axignd s). We do that to avoid
Here we expand the treatment for the case when all thregorking with equilibria near the North and South Poles,
principal components ok are different. In particular we which are the singular points of the polar coordinate system.
will assume that the small piece has two contributions toAs we saw in Sec. lll, one has to modify coordinates to study
anisotropy: an easy plane and an easy axis that is directed the stability of an equilibrium point if it happens to coincide
this plane. This is the actual anisotropy pattern of the Cornellvith N or S. We will see that in the axis and plane case there
group experimen? (see Fig. 6. Magnetic pieces there are are four equilibrium directions af: two collinear directions
thin disks—that give an easy-plane contributionatp (the ~ N17Ts, nT]s and two canted directionsc andnp . If only
plane is the plane of the disk, i.e., in this experiment it isone spin coordinate system is used, some of these directions
perpendicular to the wile The easy-axis contribution comes under certain conditions approach N and S. By using two
from either magnetocrystalline anisotropy that has an axi§oordinate systems one can avoid the difficulties in studying
perpendicular to the wire, or from the additional shape conthe stability of those equilibria.
tribution in the case of the noncylindrical nanopillar studied
in Ref. 11. In accord with the experimental setting we as-

Oy (&

An example of this is shown in Fig. 5 for the axial case with
analyzer having easy-axis anisotropy.

A. Calculation in the z, system: Collinear equilibria

The magnetic field is given by?szHe)(, the polarizer
direction bys=¢,, and the anisotropy tensor by

w,; O 0
(:)K: 0 O 0
0 0 —w,

We now substitute that into E¢4) and following Appendix
B we derive

v 4= —hcosf cosp—(K,+K,cos¢)sind cosd—Ig sing,

B vy=hsing+K,sinfdsing cos¢—1g cosh cosa,
< (25)
FIG. 6. (Color online Schematic view of the Cornell group
“nanopillar” and its anisotropies. g=g(sinfcose,P).
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1. Equilibrium directions ofn Therefore small current can switch between stable and un-
First we observe, that Eqé25) can be rewritten in the Stable foci. In the present casi{(wy,w)) is positive for

form — (0t wp)swys=—w, and negative otherwise. We may
conclude that everywhere inside the interfal (w,+ wp),
vg=cosf[ —hcos¢—(Ky+ K,coS¢)sind]— g sing, —w,], except very close to its ends where the square root
term and the first term are comparable, the eigenvalues
vg=sind(h+K,sinf cos¢)—I1g cosh cose, are real numbers with opposite signs and so the equilibrium

is a saddle. In terms of Fig. 2 regions lll and V become very
. . e S narrow wedges and we ignore them in our discussion. Out-
=0. This defines two eqU|I_|br|um directions of parallel side of the interval — (w,+ w,), —w,] the equilibrium is a
(na:0=m/2, $=0) and antiparallel fg: 6= m/2,p=m) 10 50,5 stability of whichagain everywhere except very close
s. Positions of these_ equmbrla do not de_pend on the_ CUITen, the ends of the interval where higher-order terms indhe
and applied magnetic field. In tte coordinates we will be expansion will play a roleis determined by Re,<0. We

studying only those two equilibria. Other equilibria will be et two conditions for the stability region of the. equilib-
studied in thez) coordinates. get tw . ity regi g, equili

which clearly shows that there is a solution @s€0, sing

rium:
2. Stability analysis of the collinear equilibria Dt 20, o
For an arbitrary point ¢, ) one has the expansion w;=— aW’ 27)
vy |V Vi 5¢)
= ) 26 <_ = .

. . . For the antiparallel equilibriummg we have
V1= wyC0SH Sin ¢+ 2w ,Sin O COSH Sin ¢ COS P g B

;g9(—1,P) —opt (0t )
—wytw, —wjg(—1,P)

— w;g cos¢— w;fg?sin o si ¢, Fom

V1= wySin @ cose + (Sinf §—cos ) (w,coS ¢+ w),)

+wjfgzcosa sin ¢ cos¢, and the dynamic matrix

V,1= w3 C0S¢+ w,SiN §(coS p—Sirf ¢) b _‘ 1 —a
B=|_, —1/'B
+ ;g cosfsing(1l—fgsingcose),
: . wng_a(_wH+wa) —wH+wa+wp
V2= w,€0S6 Sin ¢ COSp+ w;g COSe(sind = oo, 0 Gat(— on-+ g @)

+fgcogbcose).
with gg=g(—1,P). The eigenvalues are
Now for the equilibrium directiom, we obtain

mg=wj0g— a(— oyt w,t+ wy/2)

- —0;9(1,P) ot (wat op)
B Wyt wy wjg(l,P) i\/—(wa—wH)(wa-i-wp—wH).
The dynamic matrix for si#=1 is given by Now B(wy , ;) is positive forw,< wy<w,+ , and nega-
tive otherwise, and the conclusion, valid again everywhere
D.— 1 —a v except very close to the ends of this interval, is that inside
All—a -1 the interval the point is a saddle and outside it is a focus. The
stability of the focus is given by Re;<<0. Together with the
_ ‘ ~0jga~ a(oyt wy) wpt wat wp domain of existence of the focus it gives two conditions
—(wyt+wy) —lga—a(wy+ o+ o)’
. . —2wy+2w,+
whereg,=9(1,P), and has the following eigenvalues: wj=<a f;’g( 1(»;) wp,

ua=—[o;gat a(oyt o+ wy/2)]

= = (an T @a) (on + @at @p). OHZ@aTp OF OH=®a.
Here we calculated up to the lowest orderdnWe see that
in terms of the discussion of Eq14) the expression for ] o ]
B(wy ,w;) contains zero order terms, i.e., small current can-  First we repeat the derivation af,,v,. The magnetic
not change its sign and we may neglect the higher termdield is equal towy= wye,, the polarizer direction is given
HoweverA(wy ,w;j) starts with terms linear inv and ;. by s=e, and the anisotropy tensor is equal to

B. Calculation in the z; system: Noncollinear equilibria

094421-9



YA. B. BAZALLY, B. A. JONES, AND SHOU-CHENG ZHANG

—w, 0O O
Q)Kz 0 0 O
0 0 w,

Again with Eq.(4) and Appendix B we derive
vg=hsing—(K,+K,cos$)sin g cosd,
vo=—Kpsingsing cose+1g sing, (28

g=g(cosa,P).

We see that the) coordinate system gives simpler expres-
sions for the force projections,,v,, and recall that the
only reason for doing the calculation in tlzg coordinates

PHYSICAL REVIEW B69, 094421 (2004
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FIG. 7. Left panel: graphical solution of EG30) for the wy
>0 case. The left-hand side of E®O) is represented by a dashed-
dotted line and the right-hand side is represented by a dashed line.

was to avoid the singularities associated with the equilibriunhight panel: The trajectories of the poirsandD on the sphere as

directionsny,g in the z; system.

1. Equilibrium directions

First of all we see that sif=0 solves Eqs(28). This
corresponds to point8=0 and#= = i.e., directionan, and
ng that were already considered before. Forést® we have
the following system:

wy— (wa+ pCoS ) coSH=0,

wpsing cos¢+ w;g=0,
from where we get
Wy

cosf=—————,
Wyt prOSZ(Z)

wpSin ¢ COS¢= w;g(cosb,P).

From the first equation we can get expressions fofg@sd
sirf¢ through co9 as

—w,— wy /CcosH

@p

+ w,+ wy /coso
sip= 2P Pl O . (29)

@p

their position changes with increasing current.

Dependence of the solutions of E@0) on the parameters
oy andw; means that by changing these parameters one can
change the equilibrium directionac,p, or equivalently
move pointsC andD along the surface of the unit sphere as
sketched in Fig. 7. From the graphic solution we can con-
clude qualitatively that when current is increased at fixed
magnetic fieldC andD move towards each other, eventually
merge, and annihilate. When magnetic field is changed at
fixed currentC andD move towards North or South Poles of
thez, coordinate system, and merge witR,g equilibria.

We start by looking for the domains of existence of the
solutionsC andD. Since Eq(30) is a fourth-order algebraic
equation, it has to be solved numerically. A representative
picture is shown in Fig. 8. The characteristic height of the
domes in this picture can be estimatedvgt=0,

wj max~f§V(wa+wp)wa-

2. Stability analysis ofhg and nc equilibria

(32)

First of all one can check that at zero curréhtand D
equilibria correspond to the maxima of the magnetic energy.
They are therefore unstable and play no role in the usual
magnetic studies. However we will see below that in the
presence of the current they can be stabilized. In a sense this
is a phenomenon opposite to the one discussed in Sec. Il A.

We substitute these expressions into the second equatiorhere a stable equilibrium was destabilized by the current.

squared, use the form of Eg. (22), and get

wj200520

f2(cosf+ &)2
(30

The plots of both sides as a functionzf cosé are shown in

—[(wpt+ wa)COS0+ wy](w,C0S0+ wy) =

Fig. 7. There are two solutions: poin&andD. These are
states whose magnetization lies at an angle, canted, to the

easy axigands andB). For zero current we get
CoSfc=—wy/(wat+ w,), singc=0, (31

cosbp=—wylw,, C€O0Spp=0.

Expansion ob ,,v 4 gives theV matrix defined in Eq(9),

wp .
~ 5 sin 2¢ cos 20 u
\A/: ’
. w
— w,SiN 6 coS 2 —?p cosé sin 2¢+ w; gW
W= (cosf+ fgsirt6),

U= oS0+ cos 20( w,+ w,C0S ),

where we usedsg=fg?sin656 in the z; system. The dy-
namic matrix
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FIG. 8. Domains of existence of solutiord and D for w,
= wp,. For zero currenD exists for— w,< wy < w, andC exists for
—w,— wpS o S, t+ o, However for finite currenD can exist
for a larger interval.

—alsing
-1

DlZ
D22

1/sin@

—

,\_’Dll
Dy

has components
D 1= wp(—C0osfsin 2¢+ a c0S2p),

aw,C0SH sin 2¢ _aoigW

D1o=U/sin 6+ 2 sing sing

D21= wp(Sin 6 cos 2p+ 3sin 2 ¢ sin 26),
@p
2
and the eigenvalues are given by

_DutDa \/(Dll_D22)2

= =+
2 2

At the equilibrium directions using Eq$28) and (29) we
have

Dyy=—aU+ —-cosf sin2¢+ w;gW,

+D 15D 2. (33

2w;
sin 2¢= w’g,
p

2wat wpt 20y /cOSO

COS 2p=— ,

@p

—w,— wy/cosh

w
P
which makes it possible to express a@ldependent terms in

D through co®. This gives U= w(1—cog6)/cosh and
then

2(1)H
D11=—2a)jg cosfua 2wa+wp+F50 ,

1 1-co<e
D1 Wy

“sing cosf +awjg(COS¢9—W)),

PHYSICAL REVIEW B69, 094421 (2004

Wy

cosfh)’ (34)

Dy1=siné| 2aw;g cosf—2w,— wp—

1-cog6

Da2=~ cosé

awy + w;g(cosf—W).

Now we can substitute Eq34) into Eqg. (33), and get an
expressionu(coss,w; ,wy). To study stability, Eq(30) has to

be solved for co® and its solution substituted into
w(cosb,wj,wy). Knowing u(w;,»y) we can divide the pa-
rameter plane ¢;,wy) into regions wherenc,p exist and
subregions where they are stable. For arbitrasy, () this
procedure requires a numeric solution of the fourth-order al-
gebraic equatior30).

3. Stability analysis oing,p equilibrium direction for small
currents

Several simplifications happen when the current magni-
tude is small, i.e.; < wjmax. Using Eq.(33) we see that the
first term inu, Eq.(33), is of the first order in currend; and
damping coefficientr, while the expression under the square
root starts with a zero-order term. Such situation was already
discussed in Secs. lll A and IV A 2: the switching between
stable and unstable focuses is controlled by the first-order
terms and therefore can happen @~ aw; max-

For nonzero current point€ and D move from their
original positions. But from E¢(30) we see that corrections
to cosf are starting with the terms quadraticdn, so in the
linear approximation we can use H®1).

To begin with, we determine whether equilibria are foci or
saddles/centers. We calcula@=(D1;— D,y)2/4+D,D5
leaving only zero-order terms. For poiGt

2
Wy

ﬁ%)"

Qlc=- ( 1-
where the last inequality is true for all valueswf, at which
C exists. ThereforeC is a focus. For poinD

o
Qlp=|1- — | @awp>0,

wa
where again the inequality is always fulfilled as long as equi-
librium D exists for w;—0 . SinceDy;+ Dy~ a, 0 is a
small value, the eigenvalues of the dynamic matrix at point
D almost always(see corresponding discussion in Sec.
IV A 2) have opposite signs and hence pdints a saddle.
Accordingly it is never a stable equilibrium and we can dis-
regard it in the further analysis.

PointC is a focus, stability of which is determined by the

sign of Reuc=(1/2)(D 11+ Dy)|c . Expansion of this quan-
tity up to the linear terms im; and « reads

2
R 1 —2w fal 1 o
e,Mc—2 ;g w0t o, g (wat @)
2 wa
ta| 2opt w, wat oy
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and changes sign at from A

a[20,+ wa— wa/(wa—i- wp)]
a)J'C: gV

: (39

The numerator of the formula is positive, is always
positive as well, butV changes sign on the interval,
e[—wa—wp, 0+ wp] since V(oy=—w,—wp)=2 and
V(op=w,+ w,)=—2. We find that the point, whereV
=0 is given by fom A

0, =(wa+ w,)[£- JE2-1] FIG. 9. Time-evolution flow whei® andC are stable equilibria
andA is an unstable equilibrium.
so that
in this regime switching with hysteresis happens not between
parallel and antiparallel states, but between parallel and
canted states.

For w,+ wp,<wy we return back to hysteretic switching

betweenrA andB similar to the axial case. The canted state is

(3=22)(wat 0p) <o, <(wa+ wp).

Finally, examining the sign of Re- one can check that for
oy<o, pointCis stable forw;> wjc, and foroy<w, itis - e :
stable forw;<wjc. Thus we identify a novel equilibrium "€Ver stabilized in this regime.

. 12 . .
phase, the canted phase. Its angle with regard to the easy axjs | N€ experimental resufts*are consistent with those pre-
is given to first order by Eq(31). An example of the time- dictions for < < w,, Where hysteretic switching was ob-

evolution flow for the case whe@ is stabilized by the cur- s_erved. They also observe.several different precession re-
rent is shown in Fig. 9. gimes forfua+ wp<wy. The intervalw, + w,<wy was not

The stability regions of equilibrigd, B, and C on the Y€t investigated systematically.
parameter plane are shown in Fig. 10. Their boundaries are
given by Eqs(27), (28), and(35). As in the axial case, there 40,
are regions where neither equilibria is stable and thus a pre t
cession state occurs. Here we cannot make a stronger stat ATl
ment about the absence of the precession states in other pai
of the switching diagram. In fact our experience from the
axial case, where precession states were analyzed in deta
shows that such situation may well occur. This figure pre- -
sents the low current limit of the switching diagram of the B
Cornell nanopillar device. Below we make several remarks
about it.

Different types of behavior are now predicted for the ex-
periments in which a current is swept at fixeq, . As men- B ﬂ
tioned at the beginning of Sec. IV, the actual experiment ‘
measures only thev;>0 part of the switching diagram. \ ‘ Bﬂ
There are three regimes for positive magnetic field. .

For O<wpy<w, the switching pattern will be similar to
the axial case, but in addition, here the canted equilibi@m |
will become stable for large enough positivg. Since this q

will happen on top of already stable equilibriuy a .SWItCh FIG. 10. (Color online Switching diagram of the “axis and
toCis unllkely_. Howe_ver one can put the system into e lane” case for small currents. The domains of stability are marked
state by following a different path on the parameter plane. T(gy letters(see text and arrows, showing the relative orientation of
obtain the canted state at zero magnetic field, for exampley ihick arrow andn (thin arrow. The parallel configuration,, is
one could start at negative field, increase the current past thg,pe inside two wedges opening up, the antiparallel configuration
critical value forC equilibrium, and then decrease the field to ng is stable inside two wedges opening down, and the canted con-
Zero. figuration n¢ is stable in two domains above and below the hori-
For wa<wy<w,+w, the switching will happen either zontal axis, but both lying inside the (w,+ ) interval. Within
betweenA and precession stafgvithout hysteresjsor be-  the shaded regions neither equilibrium is stable, thus a stable pre-
tweenA and C (with hysteresis It is important to note that cession is happening.

W - Precession state

094421-12



CURRENT-INDUCED MAGNETIZATION SWITCHING IN . .. PHYSICAL REVIEW B69, 094421 (2004

C. Comments on the “axis and plane” case 30(G)
It is easy to check that fok,=0 we recover the axial - gg
case, Sec. lll, Fig. 3. The only subtlety here will be that since g
for w,=0 positions of the point€ andD are given by the 3 o
same expression c@s wy/w,, those points formally coin- Y Ly 56()
cide. In reality those points just do not exist as we saw in %" o e
Sec. lll. The gap betweem, and w,+ w, in the lines of 5 e

stability of equilibrianyg closes forw,=0 and thus the
axial case is exactly reproduced.

Now consider the ratio of the critical currenégc and FIG. 11. Deflection of poinC by a large current.
wjg at wy=0. One has

1 2 3 4 5 6 7 e

indicator of the current-induced displacements of equilib-

+ . . .
wjc(wy=0)= 20pt ©a = a(2w,+ w,)f&2,  (36)  rium C. For the particular set of parameters used to plot Fig.
fg*(0 11 the polar angle changes are smalljfetj .. They become
et 1 significant for currentg~10j . These current values corre-
- Sl spond to the upper boundary of the stable canted state in Fig.
i =0)=a————= + = —1).
wg(oy=0)=a 29(—1) a( wat 5 wp) f(é-1) 12,
Thus For the particular set of parameters chosen to calculate the
switching diagram in Fig. 12 poir€ was still a focus for all
wic 2wyt o, &2 the values of current, even though the argument of Sec.
w—jB= mg_—124 IV B 3 does not apply any more when the current is not

small. PointD was a saddle for all currents as well. These
and the stability line o€ in Fig. 10 is always higher than the statements were only violated very close to the merging
stability line of B at w;=0. This is important for the com- point whereQ— 0 and the higher-order terms instarted to
parison with the results of the Cornell group experiméfits, play a role(cf. Sec. IV A 2. Representative results for the
because there only the;=0 region of the switching dia- switching diagram are shown in Fig. 12. We show this figure
gram is probed as explained in the beginning of Sec. IV. to give a general idea of the topology of the diagram for
When wy is in the vicinity of w, , the critical current, large w;. The actual calculations should be made as ex-
given by Eq.(35), diverges, violating the underlying assump- plained at the end of Sec. IV B 2, but they will be only
tion of small current. This poses a question of the real be-
havior of the stability boundary of in this region. Using PS
exact formulas from the preceding section we have per- - o
formed a numeric calculation for a representative set of pa- e
rameters and found that the switching boundary indeed ex:
tends upward, where it joins the line 6£D convergence as
shown in Fig. 12. Recall here that the positions of poibts N
andD are given by Eq(31) only for small current. For larger ﬂ A C !
currents Eqs(29) and (30) must be solved. As a result the v N ]
positions ofC and D move along the sphere as current is "
increased and eventually these two points coalesce and dis '
|
|

appear. PSA /
The canting angle depends on the current and magneti %r\*\/

field, and these can be used to engineer a desired “switching 0] Oy /,\‘
angle” between point&€ and A. This angle can be changed ~_] /

between 0° and 180° by sweeping the magnetic filé&q. B ﬂ i‘\

(31). But according to Eq929) and (30) it also can be ad- e \
justed by increasing the current. To give an example, we I \ 1
calculated the current dependent changégj) and 5¢(j) ‘ Bl
of the polar angles of point. The magnetic field was set to | ¥

wy=(wat wp)/2, which gives a&dc=120° angle betweeA -

andC at zero current. The spin-polarization degree was taker .‘

to be P=35%, and Gilbert damping was set&o=0.01. In PS

Fig. 11 56(j) and 5¢(j) are shown as functions dfjc, FIG. 12. (Color onling A representative switching diagram for

wherejc is the minimal current stabilizing the canted stateine “axis and plane” case for all values of current. Labeling is the
(36). Note thats6(j) is much smaller thade(j). FOr oy same as in Fig. 10. The upper boundary of the canted state stability
=0 the angle¢ does not change at all and poiGtmoves  region is the line where equilibri@ andD merge. More precession
along the parallebc=90°. Since the resistance of the struc- regions, marked PS, show up for large currents. Figure 10 is the
ture is a function off, it would not be a very sensitive blowup of this figure at small currents.
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needed if experimental currents could be increased by a fadag of the current-induced magnetic switching.
tor of 1/a~100 compared to the values of Ref. 10. For example, since up to date magnetization direction is
There is a restriction oR which should hold in order for not experimentally measured but rather inferred from the re-
us to be able to calculate in the small current approximationsistive state of the wire, it is important and greatly simplifies
Critical currents for equilibrium directions, g ¢ are given comparison between theory and experiment that the number
by formulas(27), (28), and(35), each of which has inthe  or resistive states can be different for axial and axis and
numerator andy, evaluated at the appropriate equilibrium plane cases due to the possibility of stabilizing the canted
point, in the denominator. In order for the small current ap-configuration. Also in these two cases the switching currents
proximation to hold the critical current must be much smallerhave qualitatively different dependence on the magnetic
than the current at whiclk andD merge, i.e.w;j<w,+w, field. In experiments capable of direct measuremenwigf
must be true. From here it follows thafg<1 should hold, one will see that it rotates by 180° degrees in the axial case

and sinceg(x)=1[f(x+ &)], this gives a requirement and by a magnetic-field-dependent anglgB) in the axis
and plane case. The precession state can be a good candidate
af(P)<1. (370  for observation with the magnetic force microscope, espe-

cially since its frequency can be tuned by current.
To get an estimate of the switching current density we
calculate criticalw; for the axial easy plane case at;=0

Here a is a small parameter, bt P)=(1+ P)3/(4P(/?)
can become large @—0. At smallP we can approximate

(37) by using Eq.(15) and converting to normal units using E&).
Wi
P> (2a)@), (3g Veoet
For @=0.01 it givesP>0.07 which can be satisfied for ma- o —a | T [KUND —47rMm?]
terials with large spin polarization. However already tor ! g(P,1) J h g(P,1) s

=0.05 one would requir®>0.22 so the small current ap-
proximation would not be too good and one should numerifor a small piece with.s=1 nm, dampinga=0.05, and
cally solve Eq.(30) and find the eigenvalues of the dynamic 40% polarization degree one gqts-6.7xX 10" Alcm? using
matrix given by Eq(34). the values oK (") andM for cobalt.
Below we make several remarks on the issues that were
postponed so far and will be left for the future work.
According to SlonczewskK? the spin-transfer effect can
We have obtained exact results about the stable equilibribe described by an additional term in the Landau-Lifshitz
of the magnetic piece with a spin-polarized current flowingequation representing the torque induced by the current.
through it. It is seen that the switching pattern depends cruTherefore Ref. 26 and other papers, which follow this school
cially on the magnetic anisotropy and the direction of polar-of thought(including the present ongmplicitly assume that
ization of incoming current. For more complicated anisot-the magnets are completely described by the possibly space-
ropy new hysteresis patterns are possible and newnd time-dependent mean-field magnetizathfr,t), and
equilibrium configurations can be stabilized. Therefore ondhe spin-transfer torque leads to a rotationhéf Another
should be careful in applying the intuition gained from a thepoint of view, expressed in particular in Refs.
study of one anisotropy pattern to “similar” patterns. Predic-1-3,9,10,49,50, is that the current creates spin-wave excita-
tions made for the axial and axis and plane cases can be us#dns in the magnetic piecesee Appendix D In a previous
to experimentally test the spin-transfer thetjn particular  calculatiort” we found that spin waves can be even induced
the accuracy of the factag(P,sn). This is especially inter- in a bulk magnet by a large current density 108 Alcm?).
esting because alternative descriptions of current driven exfFhe analysis of the spin-wave picture and its comparison
citations are put forth in the literature. Obtained switchingwith the coherent rotation picture is beyond the scope of the
diagrams show that axial easy axis configuratieig. 3) and  present paper, but is a necessary direction of future investi-
axis and plane configuration for the magnetic field such thagations.
wy lies outside of th¢ w, ,w,+ w, ] interval (Fig. 10 satisfy As derived in Ref. 26, the torques acting bty andM
the criteria for application in memory cells discussed in theare equal in absolute value, because of an implicit assump-
Introduction. For other configurations and values of magtion Is4— made in the derivation. For a finite ratil g,
netic field the modified Landau-Lifshitz equation predictswhered is the thickness of the normal spacer between the
new phenomena: stabilization of canted state and precessiomagnetic pieces, the torque acting on the piece which elec-
states. If observed experimentally these could become @ions cross first as they flow with the current will be smaller.
strong argument in favor of the spin-transfer theory in theTo establish the interaction electrons have to spend time in
present form. both pieces. Those hitting the piece downstream are already
Our method is fairly general and can be used to calculat@olarized by the upstream piece. But the magnetization of
exact switching diagrams for devices with new anisotropythe upstream piece itself can only be influenced by the elec-
patterns as they will be fabricated for future experimentstrons reflected back to it from the downstream piece, and
Although it does not give a complete pictureo information  those electrons have to travel twice more distance in the
about the stable cycles far away from equilibrium points camormal spacer. Since the polarization decays in the spacer,
be obtained it is still very useful to develop an understand- those electrons will induce a smaller torque. The small mag-

V. CONCLUSIONS
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netic piece will be upstream or downstream depending on thees for hospitality. Ya. B. B. acknowledges the support of the
current direction, thus the torque formula will change whenU.S. Department of Energy, Office of Science, under Con-
the current direction changes. We neglect this effect which igsract No. W-31-109-ENG-38, B.A.J. acknowledges the sup-
reasonable in the limidl/l;4— 0. port of DARPA-ARO, Contract No. DAAD19-01-C0060,
Everywhere in the derivation we assumed the Gilbertand S.C.Z. was supported by NSF under Grant Nos. DMR-
damping coefficientz to be a constant. However even for 9814289 and the U.S. Department of Energy, Office of Basic
bulk materialse: can depend on the direction of (see dis-  Energy Sciences, under Contract No. DE-AC03-76SF00515.
cussion in Ref. 10 This is even more true in the layered
materials_ Wlth ferromagnet—norm_al metal bour_ldaries, where APPENDIX A: CONSTRAINT ON THE WIRE RADIUS
the possibility of electrons entering and leaving the ferro-
magnet leads to additional dampifitp=>*For our analysis To calculate the wire radius at which switching due to the
this complication would mean that each equilibrium will be induced circular(*Oersted”) magnetic field is replaced by
characterized by a separate valuexahat will be a function  the spin-transfer effect switching one would need a good
of the relative angle between the polarizer and analyzer fotheory of the former. To appreciate the difference between
this particular equilibrium. For example, the dependence othe mechanisms, recall that induced field switching always
the nc equilibrium direction for the axis and plane case, Sechappens through an instability towards a nonuniform mag-
IV, on the magnitude of external magnetic field will translate netic configuration because a circular magnetic field would
into the ac(B) dependence. The displacement of this equi-nave no effect on the monodomain magnetic section of a
librium due to the current was negligible and can be ignoredircular wire.
for a as well. For the precession state one expects to be FOr a very rough estimate we argue as follows. The mag-
sensitive toa averaged over the Cyc|e_ We want to note tha‘[netiC field created by the current on the surface of a wire of
the calculation of enhanced damping and angular radiusR is B~ jR/c, wherej is the current density. It creates
dependenc® was done in the zero-current state, while the@ M X B torque per unit volume. We estimal~ ug/a’,
calculation of spin-transfer torque did not take into accountvherea is the lattice constant and take the maximum pos-
the motion of magnetization. A systematic investigation ofsible value of the torqué, associated with induced field:
the interplay between these two processes may reveal more )
subtleties. Th_Hms iR
In summary, we have calculated the dynamics of magne- V g3 ¢’
tization reversal in a nanowire, as functions of applied cur- . ] .
rent and magnetic field. Magnetic switching, as per experi-1he maximum value of the spin-transfer torque can be esti-
ment, is the dominant behavior. Switching can also occur, wéhated asTsy=#l/e wherel is the total current. Sincé
find, to a new canted phase. Precession regions are presentirmR°Lj, whereL is the length of the magnetic piece,
the parameter space. The case of easy plane perpendicular to T .
current has a particularly rich phase diagram. Comparison _ST:h]_
with experimental results for anisotropies considered in this \ eL
Wo_rk _shovx{s considerable areas of agreement with OUEnd the conditioim s> Ty leads to
switching diagrams. Overall, we find that switching diagrams

depend critically on the anisotropy type and on orientation of as

spin polarizer and magnetic field. In experiments with a dif- R< rL’
ferent combination of these external controls the switching 0
diagram can and should be recalculated using the method ro=mc2/e?~10"15 m

developed here. It will generally contain the same types of ) _ _
regions: stable parallel and antiparallel configurations, stabl€' o is sometimes called a “classical radius of an electrpn.
canted configurations, various regions of bistability, and preNow fora~3 A andL~5 nm we geR<1 um, as the wire
cession regions. radius below which spin-transfer torques should dominate.
Our analysis allows us to make some qualitative conclu-
sions about the dynamics of magnetization switching. Mag- APPENDIX B: DEFINITION OF VECTORS AND
netization reversal dynamics can be strongly affected by theDERIVATION OF THE EQUATION OF MOTION IN THE
presence of canted phases in the phase diagram, even if cant- (¢,6) COORDINATES.
ing is not stable for a given current and magnetic field. Re- . .
vegrsal processes can gbe complex, and thegpresence of un- To'transform the yector equatiof) into a system of
stable magnetic states has the potential to both speed up afiguations on ¢, 6) we infroduce two vectors o_rthogonal o
slow down reversal times. This has the intriguing potentialand parallel to the surface of the sphésee Fig. 12
fpr canted states to be used to engineer optimal reversal [e,Xn]
times. ey=—
siné
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We obtain

[nxn]=de,+ ¢ sinde,

sing —a} é
—asing —1 P

SO

h—a[nxh]={e¢,89}

and Eq.(6) transforms to

siné —a] | ¢ v
. Tyl (B1)
—asing -1 0 Uy
FIG. 13. Polar anglesd, #) and vectorse,, e4, andn on the APPENDIX C: DETAILS OF PRECESSION
unit sphere. CALCULATIONS IN THE AXIAL CASE
1 To consider the properties of this quadratic equation
={-sin =——{—ny,n
&y ={—sing,cos¢,0}= S{—ny.ny, 0}, o o

P =—o(o— oyt wk)
ey=1{—C0sf coS¢, — cosh sin ¢,sin G} at(P)
let us look at a graptFig. 14). With (w;wg)/(af)=i plotted

Forn itself one has along the horizontal axis an@ plotted along the vertical

n={n,,n, N} ={sind cos¢,sind sin¢,coss}. axis., the. grqph is a parabpla rotated by 90°. It crosses the
vertical linei=0 at the pointsw;=0 andw,=héwy . The
From there vertex of the parabola is located at,=(wy— éwk)/2, i,

=~ wo(we— oyt Ewy) = (wpfwy) /4.

We see that in general E@23) has two solutions for
i<i. and zero solutions otherwise. However if EQ1) has
to be satisfied, there may be values &fi ., for which there

[egXes]=n,

[nxe,]=—e,

[e,xn]=—¢,, is only one acceptable solution. The number of acceptable
solutions depends on the position of the parabola vertex. If
and w, lies betweenw__ andw . , there are at least some values
) : . of i with two solutions. Otherwise, there is only one accept-
€)= — &+ ¢ coste,, able solution for ali<i,. The intervals of where solutions
: : exist can be described as follows. There is one acceptable
€,= — ¢(sin 0g +cosbey), solution for
n=0e,+ $ sinde,. i(w_ )<i<i(w,),

More useful relationships follow i(0)=—w(0—oy+ Eoy),

[nXn]=6e,d sinbey, and there are two solutions in the interval
[NXZ]=—sinoey. oA
Next, we derive the equation of motion in the,®) co-
ordinates. The end of vector moves along the unit sphere. 0, = O+ o]
So we havenln andFLn, and bothn and F can be ex- _
panded as a linear combination &f ande,. First i(my) i(w)
F:U¢e¢+l}geg 0)-=0)[-I_ |(0K| - 1

with {0)0 s 1 }
and second, from EdB1),

n= ¢ sin He(/,beg. FIG. 14. Graphical solution of Edq23).
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maxXi(w-),i(wy))sisic.

In the latter case there are two cycles, and it is possible to
check that one is stable and the other is unstable. Using the
formulas for w. andi, we can now in principle plot the
domains with one and two cycles on the;(wy) plane.

To see how those domains will fit in with the stability
domains of the North and South Poles, we now establish a
relationship between the values idfw.) and the stability
boundaries of those equilibrium points. We have

wH-l-a)K

woin=—a————=—a(wy+ o) f(1+§),
in oD (ot o) f(1+6)
] (=148
Wig— — = —a\lwy— w - y
5T Tg(-1) noe
therefore FIG. 15. Precession direction is reversed on the parallel with

¢=0. This is an additional element of the time-evolution flow
in= —(oyt o) og(1+§), which must be taken into account when parallels with 0 and
_ 6=0 do not coincide.
is= —(oy—ox)og(—1+§).
On the other hand of stable North Pole fot,>0 and next to the region of the
; __ stable South Pole fobx<<0 as shown in Fig. 3.
H(w)==(ontlod) (o] + Ew), As current is swept through the precession region at con-
stantwy, the frequency of the precession changes continu-
. ously and one can pose a question about the boundaries of
which means that fowx>0 the interval the frequency sweeps. Here we will discuss this
question rather briefly. For those values ®f, where the

i(w_)=—(wy—|ok)(—|ok|+ k),

Ho)=in, Ho-)=ls cycle-and-pole does not exist, the precession cycle is created
and forwg<0 near one of the poles and then moves towards the other,

. ) ) ) where it becomes the stable point. In this case the frequency

Ho)=is, Ho-)=iy. changes in the intervdlw_ ,w. ]. If the cycle-and-pole ex-

First, these relationships mean that there is one precessid$ts, the stable cycle does not reach the other pole, but dis-
solution fori betweeniy andig (depending orw, andw,  appears due to mutual annihilation with an unstable cycle,
one can havey>ig or iy<ig). Existence of a solution in which was created at the other pole and moved towards the
this interval either means that a stable cycle exists betweestable cycle. The next step is to convince oneself that preces-
the poles when they are both unstable or an unstable cyckion exists fori (w_)<i(w,) and using Fig. 14 see that for

separates two stable poles. Second, for increasing current the stable cycle is created=ai(w_),
o o then the unstable cycle is creatediati(w,), and finally
max(iy,is)<i=ic (C)  cycles merge and annihilate &ti.. The frequency of the

there are two cycles: one stable and one unstable. Since f§fable cycle changes in the intenfab_,w.]. This picture
those values of only one of the poles is stable, the overall Shows that the boundary between PS region and the cycle-
configuration is a stable cycle and a stable pole, separated d-Pole region happens when an unstable cycle is created.
an unstable cycle. We will call this state a cycle-and-poleConsequently nothing happens there with the stable cycle
state, and denote it as PS8! or PS+S depending on which and there is no singularity in(w;) dependence when this
pole is stable. line is crossed. _ _
Conditionw_<w.<w. gives the interval ofvy There is one final note about the properties of the time-
evolution flow. In the discussion above we concentrated on

OIS OPS 0o = — Eok — 2| wk], finding the values of for which #=0 and obtained stable
and unstable cycles. However those valueydbr which
wp2= ~ §ox 2] oy =0 also play an important role in the shape of the phase

for which the cycle-and-pole state exists. Note that the staflow; namely, at those lines the flow can change direction
bility lines for the North and South Poles cross at the pointfrom clockwise to counterclockwise as shown in Fig. 15. In
wy=wy given by the equatiom;y=w;s from which we  the absence of the currest=0 and#=0 lines coincide, but
getwy.= — ok = (wp1t+ wyo)/2. So the region of existence for nonzero current this is not true any more. One should
of the cycle-and-pole state is symmetric with respeeb @ . always bear this peculiarity in mind while thinking about
In the (w,0y) switching diagram it lies next to the region particular cases of phase flow.
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APPENDIX D: SPIN-WAVE PICTURE W,

The idea about the possibility of spin-wave excitation first Hy
comes from considering current propagation through the
normal-metal—ferromagnet boundary in the diffusive regime LA 4
where the mean free pattof the electrons is much smaller ~ x +1
than the spin-diffusion length,4. In this case the equilibra-
tion of electrons with the same spin happens much faster +1/2
than equilibration between two different spin directions and a w4 B I N Sl
non-equilibrium state near the boundary can be described \\/ N | FM -1/2
well by two chemical potential$ u(r) andu(r) of elec- Q)
trons with spins being parallel and antiparallel to the magne-
tization of the ferromagnet. When the current is passed, those k
two chemical potentials become different near the boundary ) o ) )
(see Fig. 18 For example, when electrons flow from the FIG. 16. (Color online Left up: splitting chemical potentials

normal metal into the ferromagnet, the energy of the spin_near the normal metal—-ferromagnet boundary with electric current

down electrons is larger than that of spin up. This is a nonf°o"ind perpendicular o it. Left down: spectrum of spin waves in a

equilibrium effect andu | — is proportional to the current ferromagnet with the unlaX|aI_an_|sotropy. Right: spin conservation
quriit LT in the process of magnon emission.

magnitude.

One can notice that this energy difference could be rewave. The precession states described in this paper are a
leased if an additional mechanism of spin flipping would beparticular case of coherent spin waves with no spatial depen-
provided. Spin-wave generation at the boundary is exactlylence(or zero wave vector
such mechanism. An electron flips the spin froal/2 to The incoherent spin waves are described notvifr,t)
+1/2 and excites a magnon wi¥ 1, thus spin conserva- but by a distribution function of magnons. The difference
tion is satisfied. Normally due to the anisotropies in the fer-between them and coherent spin waves is analogous to the
romagnet, the spin-wave spectrum has a Gap so to sat- difference between the sound waves and the thermal
isfy the energy conservation one should increase current unfghonons. Although both are associated with the same elastic
) — =g is true. This condition sets the current thresh-properties of the solid, they represent different states of the
old for spin-wave generation. It was sugge$t@ahat the  solid body. For example, the incoherent thermal phonons do
resistivity jump observed in the experiment with current in-not create deformations. To have sound one needs a coherent
jection into a multilayer was the signature of reaching thissuperposition of many phonons in one state. Analogously, the
threshold. There was however no clear understanding of epresence of incoherent magnons does not create a precessing
ther generation mechanism or the mechanism by which spiM (t) in the ferromagnet but rather decreases the magnitude
waves lead to a resistivity jump. of M. In the incoherent picture each magnon is created by a

The fact that spin-wave generation is allowed by energypin flip of an individual electron(compare with the
and spin conservation was emphasized very early bymagnon-assisted tunneling” pictut®, while in the coher-
Berger*® The next(and not yet understogdjuestion is the ent spin-wave picture many electrons are needed to drive the
generation mechanism and the nature of the spin-wave stat@ave. In terms of influencing the current propagation, a state
In particular, it is not known whether the spin waves createdvith incoherent magnons is also very different from a single
will be coherent or incoherent. The coherent spin waves cagoherent spin-wave state. Formally the influence of magnons
be described with a time- and space-dependent magnetizappears as a change of a collision integral in the Boltzmann
tion M(r,t). This was first done by the authéfy deriving equation for electrons, while the single spin-wave influence
a continuous version of the modified Landau-Lifshitz equa-modifies the electron motion between the collisions and ap-
tions and considering the effect of current on spin waves irpears as a change of the convective terms.
the bulk ferromagnetsee also Ref. 34 For some special The questions about the mechanisms of spin-wave gen-
cases of multilayer structures this was done analytitally eration and about the nature of the spin wave state of the
and numerically™>3® In this approach it is still assumed that ferromagnetic pieces are very important but are not clearly
each electron interacts with the mean-field magnetizaifon understood at the present time, which calls for more work in
and only the cumulative effect of many electrons drives thefuture.
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