
PHYSICAL REVIEW B 69, 094421 ~2004!
Current-induced magnetization switching in small domains of different anisotropies
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Several recent experimental studies have confirmed the possibility of switching the magnetization direction
in small magnetic domains by pumping large spin-polarized currents through them. On the basis of equations
proposed by Slonczewski for domains with uniform magnetization, we analyze the stability and switching in
two cases which differ by the anisotropy type. One of anisotropy types corresponds to that of the existing
experimental device. Qualitatively different behavior is found in shapes of bistable regions and regions with
stable precession. Stabilization of unusual ‘‘canted’’ equilibria is found in one of the cases. The sensitivity of
the switching pattern to a change in anisotropy pattern underscores the necessity of theoretical guidance for the
interpretation of experimental results. We propose experiments to search for stabilized canted equilibria and
precession cycles. Our study is analytic as opposed to recent numeric work and the method can be applied to
other anisotropy patterns as the experimental interest develops.
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I. INTRODUCTION

Currently considerable experimental interest1–23 is de-
voted to the torques created by spin-polarized currents
magnet. This interest is in part fueled by the proposals
developing a convenient writing process for the magne
nonvolatile random access memory where the reading
cess will be based on the magnetoresistance effect.24 A gen-
eral theoretical framework for the description of such ‘‘sp
transfer’’ torques is set in Refs. 25–27. The spin-trans
effect is the nonequilibrium interaction induced by the ele
tric current I flowing between two metallic ferromagne
separated by a normal metal spacer. This interaction is qu
tatively different from the Ruderman-Kittel-Kasuya-Yosid
exchange observed atI 50, and should also be distinguishe
from the interaction with the Oersted field of the curre
Spin transfer is a subject of recent interest in the field
spintronics.

One of the particular experimental setups in which t
effect can be studied is a thin ('100 nm) normal metal wire
~called a ‘‘pillar’’ in the papers of the Cornell group10! with
two magnetic pieces embedded in it~see Fig. 1!. If the dis-
tance between the magnetic pieces does not exceed the
diffusion lengthl sd in the normal spacer between them, a
their magnetizations are noncollinear, a current pass
through the wire will induce spin-transfer torques, arisi
from the interaction of electron spins polarized by one m
net with the magnetization of another magnet. Such a se
was originally considered by Slonczewski.26 There it was
assumed that both magnetic pieces are isotropic and tha
tially their magnetizations are not collinear. A counterintu
tive prediction of Slonczewski26 was that in the presence o
the current both magnetizations will rotate in a fixed pla
keeping the angle between them constant. This was call
0163-1829/2004/69~9!/094421~19!/$22.50 69 0944
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‘‘windmill,’’ because the way in which longitudinal motion
of the current is transformed into the rotational motion of t
magnetization is quite similar to the way in which the long
tudinal motion of wind is transformed into the rotational m
tion of the sails in the mechanical windmill.

The windmill effect was predicted in the framework of a
assumption that there is no magnetic anisotropy in
pieces. However for the real material one must also take
account magnetic crystalline anisotropies and the interac
with the induced magnetic field~shape anisotropy!. Clearly,
anisotropy will work against a windmill effect by creatin
barriers to reversal. The magnetization motion thus beco
more complicated. The spin-transfer torque now leads
switching between the equilibrium directions defined by t
strong anisotropy. Such switching results from the comp
tion between the energy dissipation described by Gilb
damping coefficient and energy influx from the electron c
rent described by spin-transfer torque. Switching happ
when the current exceeds a critical value~determined by the
anisotropies and applied external magnetic field!, which
gives potential for memory applications.

In this paper we summarize our work on the exact so
tions of the dynamic equation with the spin-transfer term

FIG. 1. Experimental setup. Currentj is passed through a nano
wire with two magnetic pieces~shaded areas!. External magnetic
field B can be applied in an arbitrary direction.
©2004 The American Physical Society21-1
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several types of anisotropy. Our results were briefly repor
in a series of short publications.28–30 There were other at
tempts to incorporate anisotropies including approxim
treatments in earlier experimental reports.10,14 An extensive
numeric treatment of a particular experimental situation w
given by Sun.31 Later, a numerical calculation was used
Grollier et al.16 to find critical currents for a certain aniso
ropy. In contrast, our approach gives exact results and th
fore can be very important for the comparison of experim
tal results and the spin-transfer theory.

Currently, experiments are performed with structures
which one of the magnetic pieces is much larger than
other. This brings a considerable simplification into the pro
lem as follows. At a given current densityj the spin-transfer
torqueTst is proportional to the cross section of the wire.
the same time the torquesTa created by the anisotropy term
are proportional to the volume of the magnetic piece. The
fore the ratioTst /Ta;1/L, where L is the length of the
piece, and the small piece will be affected by the sp
transfer torque starting from a much smaller value ofj. One
can therefore neglect the effect ofTst on the large piece
called a polarizer, and assume its magnetization to be c
stant. Torques on the small piece then occur from sp
polarized itinerant electrons coming into it either direc
from the large piece or after multiple reflections between
pieces. Magnetizations of the large and small pieces will
denoted asML andMS , respectively.

Our method of finding the switching diagram is as fo
lows. We assume that the analyzer is in a single domain s
and therefore its magnetization is described by the modi
Landau-Lifshitz equation with spin-transfer term included26

For each (j ,B) point we find the equilibrium positions ofMS
and then analyze their stability exactly. Knowing the natu
of each and all equilibria we can construct the topology
the time-evolution flow ofMS ~phase portrait! and predict
qualitatively the overall behavior of the system. As the p
rameters change, the nature of some equilibria changes
stable to unstable, at which point the whole phase port
changes. This is when the switching occurs. Sometimes
ther of the equilibria is stable which implies the existence
stable cycles, becauseMS moves along the compact man
fold ~sphere!. Such stable cycles were first considered fo
particular setup32 and observed numerically.31 Due to energy
dissipation they would be impossible without the curre
However forj Þ0 there is a constant supply of energy whi
feeds the periodic motion ofMS .

To test the theory, one would like to be able to control t
direction of the magnetization of the polarizer with respec
the anisotropy directions of the small piece. The easiest
to changeML is an application of the external magnetic fie
B. Of course,B will also act on the small piece and must b
taken into account in the equations of motion. The proper
of a system with a given anisotropyKik can ultimately be
presented as a phase diagram in the four-dimensional s
of parameters (j ,B) with spin-transfer effects determined b
the magnitude of the current and by the direction of the s
polarizerML5ML(B). Different regions of such a diagram
would correspond to different stable directions ofMS . The
boundaries between them will show where the small m
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netic piece switches from orientation to the other; thus
will call it a ‘‘switching diagram.’’ In this paper we calculate
a section of the full four-dimensional switching diagram f
certain directions ofB and certain anisotropies. Our metho
can be applied to similar calculation for other directions ofB
and other anisotropy tensors as the experimental nee
them will arise.

Note that for technical applications in the memory writin
process one is interested in finding anisotropy tensors wh
satisfy the following conditions:~a! there is a section of the
phase diagram at a fixed external fieldB0 where MS is
bistable at j 50; ~b! the two metastable states differ in
property that is easy to measure, usually in their resistiv
which depends on the angle betweenMS and ML ; ~c! by
passing a current one can switch back and forth betw
these two metastable states. However for the purpose
testing the theory of spin-transfer torques it is reasonabl
start with the cases where the phase diagram is simplest
be calculated exactly, and then compare theoretical and
perimental results. We will discuss the structures conside
in this paper in terms of their potential for application
memory devices in conclusion, Sec. V.

A current can also act on the magnetic pieces in a m
conventional way through the magnetic field induced by
current ~Oersted field!. Such induced fields are alway
present, and their effect, used in existing techni
applications,33 can be much larger than that of electron sp
transfer. However induced magnetic fields decrease as
size of the structure goes down and at sufficiently small s
their effect will become negligible compared to the sp
transfer effect~see Appendix A!.

If the size of the pieces is larger than the domain w
width, the magnetization may not be uniform throughout t
piece. In this case continuous equations27,34 must be used
inside each piece to determine the magnetic configurat
Our previous results27 showed that for large current densitie
substantial deviations from the easy-axis direction can re
at the interface, which heal in an oscillatory fashion into t
bulk with a length scale comparable to the domain w
width. In the present paper we assume that the small m
netic piece is sufficiently smaller than the domain wall wid
in all directions, and treat it as magnetically uniform. N
meric studies of some nonuniform configurations were do
in Refs. 35–37.

The paper is organized as follows. In Sec. II we discu
the modified Landau-Lifshitz equation with spin-transf
term, and describe how we find equilibria and analyze th
stability. In Sec. III we discuss the ‘‘axial’’ anisotropy patter
for which the calculations are simpler, but which is mo
difficult to realize experimentally. The axial case is used
an example to introduce and discuss important concepts
approximations which we then use in Sec. IV to analyze
structure used in actual experiments of the Cornell grou10

In Sec. V we make conclusions and describe several sub
ties that were ignored in the present paper but may be
portant in a real experiments and call for further work.

II. DYNAMIC EQUATION FOR THE SMALL PIECE

To write down the conventional Landau-Lifshitz equatio
we need to know the magnetic energy of the small piece.
1-2
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CURRENT-INDUCED MAGNETIZATION SWITCHING IN . . . PHYSICAL REVIEW B69, 094421 ~2004!
given by a sum of intrinsic anisotropy term, shape anisotro
term, interaction with external magnetic field, and exchan
interaction with the large piece. We approximate the shap
the small piece by an ellipsoid, so that the shape anisotr
is given by a demagnetization tensorNik :38

F

V
5

1

2
~2Kik

( intr )nink14pMiNikMk!2BiMi2Jexsini ,

~1!

where Mi5MSi is the magnetization of the small piec
K ( intr ) is the intrinsic anisotropy tensor, andJex is the ex-
change coupling between the pieces across the spacer.
tors n ands are unit vectors along the magnetization of t
small and large pieces, respectively. According
Slonczewski,26 the modified Landau-Lifshitz equation forM
has the form

Ṁ52
g

V
L̇5gF2

dF

dM
3M G

1
g

V

\

2
A

j

e
g~P,sn!„n3@s3n#…1ã@n3ṅ#, ~2!

whereg5gmB /\ is the gyromagnetic ratio,V andA are the
volume and cross-section area of the piece,ã is the Gilbert
damping coefficient,P is the degree of spin polarization o
the electrons coming out of the large piece, and the s
polarization factorg(P,sn) is given by

g~P,sn!5
1

f ~P!~31sn!24
; f ~P!5

~11P!3

4P3/2
. ~3!

The second term in Eq.~2! represents the spin-transfe
torque. Details of the derivation can be found in Ref. 26.
would like to emphasize that calculation of the sp
polarization factor is a subject of many papers and the is
is not completely resolved at the present time. Its magnit
was investigated in different regimes as a function of
degree of spin polarization in the ferromagnets, propertie
the boundaries, mean free path, and spin-relaxa
lengths.39–45 Here we use the expression derived
Slonczewski.26 It is generally true for all expressions of th
spin-polarization factor that it is a growing function of th
angle betweens andn with maximum value reached for th
antiparallel configuration. The physical meaning of such
behavior is rather simple: since it is harder to pump the c
rent through the antiparallel configuration, the process g
erates more torque. For example, for a complete spin po
ization the resistance of the antiparallel configuration
infinite and correspondinglyg(1,21)5`. Comparison with
experiment can show how accurate were the assumpt
made in Ref. 26 to deriveg.

Equation~2! can be rewritten in terms ofn

ṅ5@~vW H1v̂Kn!3n#1v jg~P,sn!†n3@s3n#‡1a@n3ṅ#

5F~n!1a@n3ṅ# ~4!

with rescaled coefficients
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Jex

M
sD , ~vK! i j 5

g

M
~Ki j

( intr )24pM2Ni j !

v j5
g

V

\

2
A

j

e

1

M
, a5

ã

M
. ~5!

CoefficientsvH , vK , and v j have the dimension of fre
quency. The first two quantities are given by the regular
pressions for frequencies associated with magnetic field
anisotropy energy. The third one is the new expression fo
frequency associated with a current.

The behavior of the small piece will be completely dete
mined by these parameters. The orientation ofvW H ands vec-
tors with respect to the principal axis of the anisotropy ten
v̂K is the only connection between the spin space and
space that exists in the problem. For example, the direc
of the currentj with respect to the anisotropy axis is irre
evant. The only thing that matters is which of the magne
pieces is upstream and which is downstream with respec
the flow of electrons, so the current is a scalar variable.
explained above, the dependences5s(vW H) is given by the
properties of the polarizer.

The vector equation~4! has the form

ṅ2a@n3ṅ#5F~n!, ~6!

where we have moved all terms with a derivative to the rig
First we transform this vector equation onn(t) into a system
of equations on the polar anglesf(t), u(t) which are de-
fined in the standard way~see Appendix B for derivation!.
This gives

F sinu 2a

2a sinu 21G H ḟ

u̇
J 5H vf~f,u!

vu~f,u!
J

or

H ḟ

u̇
J 5

1

11a2 U1/sinu 2a/sinu

2a 21
US vf

vu
D . ~7!

To find equilibrium positions one must solve

vf50, vu50 ~8!

from which all equilibrium points (u i ,f i) would be ob-
tained. Near each equilibrium Eq.~7! can be linearized,

V̂[U]vf /]f ; ]vf /]u

]vu /]f ; ]vu /]u
UH ḟ

u̇
J

5
1

11a2 U1/sinu 2a/sinu

2a 21
UV̂H df

du J
5D̂H df

du J . ~9!

We will call D̂ a ‘‘dynamic matrix.’’ It’s eigenvaluesm1,2
determine the nature of the equilibrium. When the eigenv
1-3
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ues are complex conjugatem1,25Rem6 i Imm, one has a fo-
cus, which is stable for Rem,0 and unstable in the opposit
case. For two realm ’s one has a stable center form1,2,0, an
unstable center for 0,m1,2, and a saddle form1,0,m2.

Below we are going to calculate the switching diagra
for two experimental situations. The first one is simpler a
easier to interpret, but requires a modification of structu
used in experiment. The second one corresponds to the a
experiment of the Cornell group,10 and shows a much mor
complicated behavior, including the stabilization of ne
‘‘canted’’ configurations which would never be stable wit
out the current.

III. AXIAL CASE

A. Axial case switching diagram

Assume that the polarizer is characterized by an easy-
anisotropy. The small piece has a uniaxial anisotropy w
respect to the same axis, with the total anisotropy ene
given by

2 1
2 K~n•nW !2,

wherenW is the direction of the axis andK can have either
sign. One will have an easy axis forK.0 and an easy plan
for K,0. Next, assume that the external magnetic field
also directed alongnW . Such situation withK.0 was consid-
ered before32 using a different method.

The total anisotropy of each magnetic piece is given b
sum of the magnetocrystalline anisotropy and shape an
ropy. The shape anisotropy will be an easy axis for a lo
cylinder (L@2R, whereR is the wire radius and an eas
plane for the disk (L!2R) with nW along the wire. To obtain
the total anisotropy with the same axis, one has to choo
material with a uniaxial anisotropy along a certain crys
axis and grow it with this axis being parallel to the wire.

For example, it was found46,47 that cobalt nanowires grow
with intrinsic easy axis perpendicular to the wire for lar
wire diametersR>25 nm~‘‘thick wire’’ ! and with easy axis
along the wire for smallerR ~‘‘thin wire’’ !. With a thin wire
one can realize bothK.0 andK,0 cases. ForLS@2R the
shape and magnetocrystalline anisotropies add to an
axis along the wire. ForLS!2R they subtract and the tota
constant is given byK5K ( intr )24pM2. If M is sufficiently
large, one has an easy plane anisotropy. For cobaltK55
3106 erg/sm3 andM51.43103 emu, so asLS is decreased
there will be a transition from an easy axis to an easy pla

We find (vf ,vu) according to Appendix B, where for th
axial case

F5@„vW H2K~n•nW !nW …3n#1v jg~P,sn!†n3@s3n#‡

and we are free to chooseẑ5nW . The calculation is straight
forward and we find that the equilibrium positions are giv
by

vf5vHsinu1vKcosu sinu50, ~10!

vu5v jg~cosu!sinu50.
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In the axial case we have a special property:g is independent
of f. Also, Eqs.~10! were derived with the assumption th
the direction ofs does not depend onB. In reality the polar-
izer will be switched by sufficiently large negative magne
field andvf ,vu will change. We will discuss this issue at th
end of this section.

When v jÞ0, the system can be only satisfied if sinu
50, i.e., the only stable positions ofn on the unit sphere are
the North and South Poles, independent of the current va
For v j50 there is an additional set of equilibrium points:
parallel determined by cosu52vh /vK .

Our next step is to determine the stability of equilibri
Equation ~9! cannot be used directly when sinu50 @at u
5(0,p) the mapping of the spherical surface on the (f,u)
plane is singular#. To study dynamics in the neighborhood
these points one has to either change the direction ofẑ axis
or use the local nonsingular coordinates, e.g.,x5u cosf,y
5u sinf, near the North Pole. The latter proves to be eas
We get

H ẋ

ẏ
J 5F2u sinf cosf

u cosf sinf G H ḟ

u̇
J , ~11!

substitute (ḟ,u̇) from Eqs. ~9! and ~10!, and linearize Eq.
~11! in (x,y):

H ẋ

ẏ
J 5

1

11a2
D̂1H x

yJ , ~12!

D̂15F2@v jgn1a~vH1vK!# 2~vH1vK2av jgn!

vH1vK2av jgn 2@v jgn1a~vH1vK!#
G ,

gn5g~P,1!.

The Gilbert damping coefficienta is small and we expand i
up to the first order. Then the eigenvalues of the approxim
dynamic matrix are

mN52v jg~1!2a~vH1vK!6 i uvH1vK2av jg~1!u.
~13!

Several general remarks should be made. We deal w
232 dynamic matrices the eigenvalues of which alwa
have the form

m1,25A~vH ,v j !6AB~vH ,v j !. ~14!

Two important lines in the (vH ,v j ) parameter space ar
defined by equationsA50 andB50. In theB,0 domain
the eigenvalues are complex conjugate. Here crossing thA
50 line means changing the nature of the focus betw
stable and unstable. In theB.0 both eigenvalues are rea
TheA50 line is irrelevant, but two additional lines emerg
m15A1AB50 and m25A2AB50. They divide theB
.0 domain of the parameter space into three regions wh
the equilibrium is a stable focus, an unstable focus, an
saddle. The general situation of such a division is shown
Fig. 2.
1-4
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In the axial case the situation is degenerate:B<0 every-
where. The North Pole is a focus@except for the line given
by vH1vK2av j g(1)50, where it is a center#, which is
stable for

v jN.2
a~vH1vK!

g~P,1!
. ~15!

We see that the ‘‘critical current’’ needed to get to the stab
ity boundary is proportional to the smalla. This will be the
case for all equilibria we consider in this paper. In that se
the switching current will be sometimes obtained by expa
ing the formulas in smallv j;a(vK ,vH). Experimentally,
however, the ‘‘small’’ currents are of the order 107 A/cm2.
We will comment on the other instabilities happening f
large currentsv j;vK ,vH , but these instabilities are no
probed in the present-day experiments.

Switching happens when the equilibrium changes its
ture from a stable to an unstable focus. Without the curr
the focus is stable due to the positiveness of the Gilb
damping coefficienta, which, in turn, is the consequence
the energy dissipation in the magnetic piece. The equilibri
becomes unstable not because the potential energy cha
from a local minimum to a local maximum or a saddle, b
because the total damping gets negative. The physical re
is the possibility to extract energy from the flow of curre
through the piece. Here it is useful to note that the sp
transfer term in Eq.~4! cannot be absorbed by a change
the energyF, i.e., it is not a gradient of any function. T
prove this statement one can check that the curl of the s
transfer term is nonzero.

For the South Pole we perform the same linearizati
The nonsingular coordinates now arex52du cosf, y
52du sinf with du[u2p and the dynamic matrix has th
form

D̂5F2@v jgs1a~vH2vK!# vH2vK2av jgs

vH2vK2av jgs v jgs1a~vH2vK!
G ,

FIG. 2. Generic shape of the switching diagram near the cr
ing of theA50 andB50 lines ~see text!: ~I! stable focus,A,0,
B,0; ~II ! unstable focus,A.0, B,0; ~III ! unstable centerB
.0, m1,2.0; ~IV ! saddleB.0, m1,0,m2; and~V! stable center
B.0, m1,2,0.
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gs5g~P,21!. ~16!

The eigenvalues are

mS5v jg~21!1a~vH2vK!6 i uvH2vK2av jg~21!u
~17!

and the stability condition is

v jS,2
a~vH2vK!

g~P,21!
. ~18!

The regions of stability of the North and South Poles a
shown in Fig. 3. In this figure we also show the flow patte
on the unit sphere. To do that we project the sphere on
plane, so that the South Pole is represented by the origin
the North Pole is projected to infinity. First of all, we see th
there is a region where neither equilibrium is stable. T
will be discussed in the following section. Out of the oth
three regions two have just one stable state and the third
has two stable states. In the former cases any initial posi
of n on the sphere evolves into the corresponding sta
equilibrium. In the latter case, the sphere is divided into t
parts: the basins of attraction to both equilibria. This situ
tion closely resembles the one with one absolute minim
and one metastable minimum of energy. However one ha
remember that energy is not conserved in the presence o
current and we obtained the information about the flow a

s-

FIG. 3. ~Color online! Switching phase diagram for the axia
case.~I! Easy axis in the small piece;~II ! easy plane in the smal
piece. Regions are marked either by listing possible stable confi
rations~thick arrow representss and thin arrow representsn) or by
PS which is the precession region. The small hatched regions
discussed in Sec. III B. Time-evolution flow on the projected sph
~N is mapped to infinity and S to the origin! is shown for the case
of easy axis:~A! For stable North Pole,~B! for bistable region,
~C! for stable South Pole, and~D! for stable precession cycle. Th
easy-plane flow is slightly more complicated, as explained
Appendix C.
1-5
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stability of equilibria not from the energy minimization, bu
from the dynamic equations analysis. The phase flow d
grams for cases with one and two stable points are show
Fig. 3~A,B,C!. In Fig. 3~I,II ! we show regions of stability
indicating bistable regimes which will produce hystere
upon switching in current with fixed magnetic field, for e
ample.

When a current is changed at fixedvH the system will
follow a vertical line on the phase diagrams shown in F
3~I,II !. If this line crosses the bistable region, a hystere
behavior will be observed. For example if one starts from
domain where only parallel configuration is stable and
creases the current, the configuration will be stable all
way down tov jN line, where a switch to the antiparalle
configuration occurs. If one goes back by increasing the
rent, the antiparallel configuration will remain stable up
the v jS line. At both switching points a jump in the resis
tance of the wire will be observed due to the giant mag
toresistance effect. The case when thevH5const line crosses
the precession region will be discussed in the following s
tion.

B. Precession states in the axial case

It is important that there is a region on the diagram wh
both equilibrium points are unstable. Since the sphere
compact manifold, this necessarily means that there exis
stable cycle, around whichn performs a periodic motion. O
course, the energy is still dissipated due to the presenc
the Gilbert damping term in the equations. But it also can
drawn from the current. In the precession state there
balance between the energy influx and it’s dissipation.

In general, stability analysis of equilibria does not gi
any information about the shape of such cycle. But in
axial case it is easy to guess thatn will be circling around a
parallel determined by an angleu0, such thatu̇50. From
Eq. ~7! this means

u̇5v j

g~cosu0!

a
1~vH1vKcosu0!50, ~19!

ḟ5vH1vKcosu0 .

These equations give the position of the cycle and the
quencyv5ḟ of the precession. The sign ofv gives the
direction of precession. We see thatf does not enter Eq
~19!. From the second equation cosu05(v2vH)/vK , so we
reduce the system to one equation

v j

a
gS v2vH

vK
D1v50, ~20!

which, due to the requirement21<cosu0<1, should be
solved on the interval

v2<v<v1 , ~21!

v2[vH2uvKu, v1[vH1uvKu.

We rewriteg(x) as
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g~x!5
1

f ~P!~31x!24
5

1

f ~P!~x1j!
, ~22!

j[32
4

f ~P!
,

where, according to Eq.~3!, PP@0,1# correspondsf (P)
P@2,1`) andjP@1,3#, and cast Eq.~20! in the form

v jvK

a f ~P!
52v~v2vH1jvK!. ~23!

Solutions of this quadratic equation on the interval~21!
are analyzed in Appendix C. First, it always has one solut
in the PS region of the switching diagram. For this case
flow on the sphere is shown in Fig. 3~D!. It is somewhat
similar to the flow in Fig. 3~B!: in both cases the upper an
lower parts of the sphere are separated by a cycle, but it
stable cycle in the former case and an unstable one in
latter case.

Second, Eq.~23! can also have solutions outside of the P
region. To understand what happens, recall that our stab
analysis of the equilibrium points cannot predict the num
of cycles between equilibria. It turns out, that when Eq.~23!
has solutions outside the PS region, there are two cy
between South and North Poles: one stable and anothe
stable. An unstable cycle separates the stable cycle and
stable equilibrium. This situation will be called a ‘‘cycle-and
pole’’ state. Its domain of existence is shown in Fig. 3~I,II !
by the hatched regions and is labeled as PS1N or PS1S on
the switching diagram, where the second letter denotes
stable pole. The cycle-and-pole state transforms into a s
with a single stable pole when stable and unstable cy
merge and annihilate. This event happens far away from
equilibrium points and therefore cannot be detected
studying their stability.

It is instructive to follow the transformation of the flow
pattern asv j changes from large positive to large negati
values at a fixedvH . For example, let us consider the case
vK,0 and choosevH so that during thev j sweep we will
cross both the PS region and PS1S region~see Fig. 4!. At
v j5v jN the North Pole becomes unstable. A stable cy
nucleates around it and starts to grow. Whenv j reachesv jS ,
an unstable cycle nucleates around the South Pole. This
becomes stable and is now separated by the unstable c
from the stable cycle. The stable and unstable cycles m
towards each other, until they collide at somev jc and anni-
hilate. After that, only the South Pole is stable.

If we would increasev j from a negative value, we would
observe how atv jc two cycles are created on the sphere a
then travel to the opposite poles. First the unstable cy
would reach the South Pole atv j5v jS and disappear, then
the stable cycle would reach the North Pole atv j5v jN and
disappear as well.

When thevH5const line crosses the PS region but do
not cross the cycle-and-pole region, the behavior of
stable cycle is simpler. As one enters the precession reg
the stable equilibrium becomes unstable by developing
infinitesimal stable cycle around itself. Upon going furth
1-6
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into the PS region, the size of the precession cycle beco
larger and eventually the magnetization of the small pi
precesses along the equator of the unit sphere. After that
precession cycle begins to shrink around the other equ
rium. It finally converges on the other equilibrium and mak
it stable. Thus as one crosses the PS region the ang
stable precession continuously changes betweenu50 and
u5p. The resistance of the wire will change continuous
between the parallel and antiparallel values.

C. Evaluation of the frequency

The precession state is an interesting candidate for ob
vation with a magnetic force microscope, which can det
the oscillations of the magnetic moment by the mechan
response of its cantilever and measure their frequency.
shown in Appendix C that as one performs a current swee
a fixedvH through the precession region two situations
possible. If at a givenvH the cycle-and-pole state does n
exist, the frequency of oscillations changes in the inter
vH6uvKu. If the cycle-and-pole state exists, the frequen
changes in the interval@vH2uvKu,vc# ~see Appendix C for
details!. The possible value ofvH , however, depends on th
location of the precession domain on the parameter plan

For the easy-axis case one has

vH,2vK

g~21!1g~1!

g~21!2g~1!
,0

in the PS domain. Therefore by the order of magnitude p
cession has a frequency ofvK and higher. In other words, th

FIG. 4. ~Color online! Evolution of the stable equilibria and
cycles in a current sweep. The regions are marked like in Fig
The value ofvH is chosen so that both pure precession and ‘‘cyc
and-pole’’~hatched! regions are crossed. Appendix C discusses
phase flow in greater detail.
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current excites ferromagnetic resonance modes in the s
magnetic piece.

In the easy-plane case (vK,0) the PS region includes th
points withv j50. At zero current the precession frequen
is always zero~this is just a statement that any direction
the easy plane is an equilibrium!. For the small currentv j
→0, we havev→0 and its sign determines the direction
the precession. In this regime the termv/vK→0 on the
right-hand side of Eq.~20! can be neglected. This gives

v'
v j

a f ~vH /vK1j!
. ~24!

To estimatev j we can approximate the magnetizationM of
the ferromagnet byM5mB /a3 where a is the lattice con-
stant. Then

v j5g
\

2

j

e

1

l s

1

M
5

j

e

a3

l s
.

Taking a50.5 nm, l s510 nm we estimate

v j~1/s!'780j ~A/cm2!.

Let us further assumea50.05 andP50.5, so thatf 52.4,
j51.3. Then

vF1

sG' 6.53103

vH /vK11.3
j F A

cm2G .
In the small current approximation (uv j u!uvKu) used to ob-
tain this formula it is appropriate to consider thatvH /vK
P@21,1# in the precession region.

D. Polarizer switch by external magnetic field

Everywhere above we implicitly assumed that the pol
izer does not change its direction regardless of the magni
of the external magnetic field. In real life this is of course n
true. Even if the polarizer is made from a very hard magne
material, large enough negative magnetic field will switch
into the opposite direction. How will that change the switc
ing diagrams considered above?

First of all, the diagrams must be now cut off at som
negative fieldvHP corresponding to the coercive force of th
polarizer. As drawn, they are valid only forvH.vHP . Sec-
ond, from the symmetry of the Eq.~4! it is intuitively clear
~and can be derived mathematically!, that with the polarizer
switched to the opposite direction we can use the results
the point (v j ,2vH) on the already available switching dia
gram. The corresponding equilibrium directions of the an
lyzer will be the same relative to the new direction ofs. The
new switching diagram will be a mirror reflected image
the original one. Note that this symmetry argument is o
valid when vectorss andB lie in one of three planes forme
by principal axes of the anisotropy tensorv̂K , which is true
in all cases discussed in the present paper.

If during the experiment some polarizer switching eve
occur, both switching diagrams, for the original direction
the polarizer and for the reversed direction, have to be u

3.
-
e

1-7
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An example of this is shown in Fig. 5 for the axial case w
analyzer having easy-axis anisotropy.

IV. AXIS AND PLANE CASE

Here we expand the treatment for the case when all th
principal components ofv̂K are different. In particular we
will assume that the small piece has two contributions
anisotropy: an easy plane and an easy axis that is directe
this plane. This is the actual anisotropy pattern of the Cor
group experiment10 ~see Fig. 6!. Magnetic pieces there ar
thin disks—that give an easy-plane contribution tov̂K ~the
plane is the plane of the disk, i.e., in this experiment it
perpendicular to the wire!. The easy-axis contribution come
from either magnetocrystalline anisotropy that has an a
perpendicular to the wire, or from the additional shape c
tribution in the case of the noncylindrical nanopillar studi
in Ref. 11. In accord with the experimental setting we

FIG. 5. ~Color online! Switching diagrams for the easy-axis ca
with the polarizer switching at the coercive field6vHP . It is as-
sumed thatuvHPu is less than the field of precession state onset. T
left panel shows the diagram fors prepared pointing along the1z
direction. At vH52vHP a polarizer switch to the2z direction
occurs after which the right panel is applicable. The polari
switches back if the field is increased up to1vHP . Then the left
panel becomes again applicable.

FIG. 6. ~Color online! Schematic view of the Cornell grou
‘‘nanopillar’’ and its anisotropies.
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sume that a specific direction of the external magnetic fie
namely,B, is collinear with the easy axis of the pieces. In t
paper of Sun31 this arrangement is called an ‘‘on-axis’’ ge
ometry. We will denote the strength of the easy-plane anis
ropy by vp>0 and the easy-axis anisotropy byva>0.

We note that in the actual experiment10 the polarizer was
designed to switch in a very low magnetic field.48 Therefore
only thevH.0 part of the switching diagram is probed~see
Sec. III D!. However we present results for arbitraryvH
which can be useful for the future setups.

The ‘‘axis and plane’’ anisotropy has both cases cons
ered in Sec. III as its limiting cases. If we setvp50, equa-
tions will reduce to those of the ‘‘axial easy axis’’ case f
va.0 and to those of the ‘‘axial easy plane’’ forva,0.
Here we want to remind that spin transfer is independen
the relative orientation of the currentj and spin polarization
s ~see Sec. II!. What matters is the relative orientation ofs
with respect to the principal axis ofK̂. If one could prepare
a sample with pure easy axis perpendicular to the wire
put it in the external field along this axis, the system wou
behave in the same way as the axial easy axis of Sec. I

To study the axis and plane case we will use two coor
nate systems, characterized by differentz axis of the spheri-
cal coordinates in the spin space. In thez' system, thez axis
is perpendicular to the easy-plane, and in thezuu system it is
aligned along the easy axis~and s). We do that to avoid
working with equilibria near the North and South Pole
which are the singular points of the polar coordinate syste
As we saw in Sec. III, one has to modify coordinates to stu
the stability of an equilibrium point if it happens to coincid
with N or S. We will see that in the axis and plane case th
are four equilibrium directions ofn: two collinear directions
n↑↑s, n↑↓s and two canted directionsnC and nD . If only
one spin coordinate system is used, some of these direc
under certain conditions approach N and S. By using t
coordinate systems one can avoid the difficulties in study
the stability of those equilibria.

A. Calculation in the z� system: Collinear equilibria

The magnetic field is given byvW H5vHex , the polarizer
direction bys5ex , and the anisotropy tensor by

v̂K5Uva 0 0

0 0 0

0 0 2vp

U .

We now substitute that into Eq.~4! and following Appendix
B we derive

vf52h cosu cosf2~Kp1Kacos2f!sinu cosu2Ig sinf,

vu5h sinf1Kasinu sinf cosf2Ig cosu cosf,
~25!

g5g~sinu cosf,P!.

e

r

1-8
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1. Equilibrium directions ofn

First we observe, that Eqs.~25! can be rewritten in the
form

vf5cosu@2h cosf2~Kp1Kacos2f!sinu#2Ig sinf,

vu5sinf~h1Kasinu cosf!2Ig cosu cosf,

which clearly shows that there is a solution cosu50, sinf
50. This defines two equilibrium directions ofn: parallel
(nA :u5p/2, f50) and antiparallel (nB :u5p/2,f5p) to
s. Positions of these equilibria do not depend on the curr
and applied magnetic field. In thez' coordinates we will be
studying only those two equilibria. Other equilibria will b
studied in thezuu coordinates.

2. Stability analysis of the collinear equilibria

For an arbitrary point (f,u) one has the expansion

S dvf

dvu
D 5UV11 V12

V21 V22
US df

du D , ~26!

V115vHcosu sinf12vasinu cosu sinf cosf

2v jg cosf2v j f g2sinu sin2f,

V125vHsinu cosf1~sin2u2cos2u!~vacos2f1vp!

1v j f g2cosu sinf cosf,

V215vHcosf1vasinu~cos2f2sin2f!

1v jg cosu sinf~12 f g sinu cosf!,

V225vacosu sinf cosf1v jg cosf~sinu

1 f g cos2u cosf!.

Now for the equilibrium directionnA we obtain

V̂A5U2v jg~1,P! vH1~va1vp!

vH1va v jg~1,P!
U.

The dynamic matrix for sinu51 is given by

DA5U 1 2a

2a 21
UV̂

5U2v jgA2a~vH1va! vH1va1vp

2~vH1va! 2IgA2a~vH1va1vp!
U,

wheregA5g(1,P), and has the following eigenvalues:

mA52@v jgA1a~vH1va1vp/2!#

6A2~vH1va!~vH1va1vp!.

Here we calculated up to the lowest order ina. We see that
in terms of the discussion of Eq.~14! the expression for
B(vH ,v j ) contains zero order terms, i.e., small current c
not change its sign and we may neglect the higher ter
HoweverA(vH ,v j ) starts with terms linear ina and v j .
09442
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Therefore small current can switch between stable and
stable foci. In the present caseB(vH ,v j ) is positive for
2(va1vp)<vH<2va and negative otherwise. We ma
conclude that everywhere inside the interval@2(va1vp),
2va#, except very close to its ends where the square r
term and the first term are comparable, the eigenvaluesmA
are real numbers with opposite signs and so the equilibr
is a saddle. In terms of Fig. 2 regions III and V become ve
narrow wedges and we ignore them in our discussion. O
side of the interval@2(va1vp),2va# the equilibrium is a
focus, stability of which~again everywhere except very clos
to the ends of the interval where higher-order terms in thea
expansion will play a role! is determined by RemA,0. We
get two conditions for the stability region of thenA equilib-
rium:

v j>2a
2vH12va1vp

2g~1,P!
, ~27!

vH <2~va1vp! or vH>2va .

For the antiparallel equilibriumnB we have

V̂B5Uv jg~21,P! 2vH1~va1vp!

2vH1va 2v jg~21,P!
U

and the dynamic matrix

DB5U 1 2a

2a 21
UV̂B

5Uv jgB2a~2vH1va! 2vH1va1vp

vH2va v jgBa~2vH1va1vp!
U

with gB5g(21,P). The eigenvalues are

mB5v jgB2a~2vH1va1vp/2!

6A2~va2vH!~va1vp2vH!.

Now B(vH ,v j ) is positive forva<vH<va1vp and nega-
tive otherwise, and the conclusion, valid again everywh
except very close to the ends of this interval, is that ins
the interval the point is a saddle and outside it is a focus. T
stability of the focus is given by RemB,0. Together with the
domain of existence of the focus it gives two conditions

v j<a
22vH12va1vp

2g~21,P!
,

vH>va1vp or vH<va .

B. Calculation in the zzz system: Noncollinear equilibria

First we repeat the derivation ofvf ,vu . The magnetic
field is equal tovW H5vHez , the polarizer direction is given
by s5ez and the anisotropy tensor is equal to
1-9
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v̂K5U2vp 0 0

0 0 0

0 0 va

U .

Again with Eq.~4! and Appendix B we derive

vf5h sinu2~Ka1Kpcos2f!sinu cosu,

vu52Kpsinu sinf cosf1Ig sinu, ~28!

g5g~cosu,P!.

We see that thezuu coordinate system gives simpler expre
sions for the force projectionsvf ,vu , and recall that the
only reason for doing the calculation in thez' coordinates
was to avoid the singularities associated with the equilibri
directionsnA/B in the zuu system.

1. Equilibrium directions

First of all we see that sinu50 solves Eqs.~28!. This
corresponds to pointsu50 andu5p i.e., directionsnA and
nB that were already considered before. For sinuÞ0 we have
the following system:

vH2~va1vpcos2f!cosu50,

vpsinf cosf1v jg50,

from where we get

cosu52
vH

va1vpcos2f
,

vpsinf cosf5v jg~cosu,P!.

From the first equation we can get expressions for cos2f and
sin2f through cosu as

cos2f5
2va2vH /cosu

vp
,

sin2f5
vp1va1vH /cosu

vp
. ~29!

We substitute these expressions into the second equ
squared, use the form ofg, Eq. ~22!, and get

2@~vp1va!cosu1vH#~vacosu1vH!5
v j

2cos2u

f 2~cosu1j!2
.

~30!

The plots of both sides as a function ofz5cosu are shown in
Fig. 7. There are two solutions: pointsC and D. These are
states whose magnetization lies at an angle, canted, to
easy axis~ands andB). For zero current we get

cosuC52vH /~va1vp!, sinfC50, ~31!

cosuD52vH /va , cosfD50.
09442
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Dependence of the solutions of Eq.~30! on the parameters
vH andv j means that by changing these parameters one
change the equilibrium directionsnC/D , or equivalently
move pointsC andD along the surface of the unit sphere
sketched in Fig. 7. From the graphic solution we can c
clude qualitatively that when current is increased at fix
magnetic field,C andD move towards each other, eventual
merge, and annihilate. When magnetic field is changed
fixed current,C andD move towards North or South Poles o
the z' coordinate system, and merge withnA/B equilibria.

We start by looking for the domains of existence of t
solutionsC andD. Since Eq.~30! is a fourth-order algebraic
equation, it has to be solved numerically. A representa
picture is shown in Fig. 8. The characteristic height of t
domes in this picture can be estimated atvH50,

v j max' f jA~va1vp!va . ~32!

2. Stability analysis ofnB and nC equilibria

First of all one can check that at zero currentC and D
equilibria correspond to the maxima of the magnetic ene
They are therefore unstable and play no role in the us
magnetic studies. However we will see below that in t
presence of the current they can be stabilized. In a sense
is a phenomenon opposite to the one discussed in Sec. I
There a stable equilibrium was destabilized by the curren

Expansion ofvf ,vu gives theV̂ matrix defined in Eq.~9!,

V̂5U2
vp

2
sin 2f cos 2u U

2vpsinu cos 2f 2
vp

2
cosu sin 2f1v j gW

U ,

W5~cosu1 f g sin2u!,

U5vHcosu1cos 2u~va1vpcos2f!,

where we useddg5 f g2sinudu in the zuu system. The dy-
namic matrix

FIG. 7. Left panel: graphical solution of Eq.~30! for the vH

.0 case. The left-hand side of Eq.~30! is represented by a dashed
dotted line and the right-hand side is represented by a dashed
Right panel: The trajectories of the pointsC andD on the sphere as
their position changes with increasing current.
1-10
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D̂5U1/sinu 2a/sinu

2a 21
U V̂5UD11 D12

D21 D22
U

has components

D115vp~2cosu sin 2f1a cos2f!,

D125U/sinu1
avpcosu sin 2f

2 sinu
2

av jgW

sinu
,

D215vp~sinu cos 2f1 1
2 sin 2f sin 2u!,

D2252aU1
vp

2
cosu sin2f1v jgW,

and the eigenvalues are given by

m5
D111D22

2
6A~D112D22!

2

2
1D12D21. ~33!

At the equilibrium directions using Eqs.~28! and ~29! we
have

sin 2f5
2v jg

vp
,

cos 2f52
2va1vp12vH /cosu

vp
,

cos2f5
2va2vH /cosu

vp
,

which makes it possible to express allf-dependent terms in
D̂ through cosu. This gives U5vH(12cos2u)/cosu and
then

D11522v jg cosuaS 2va1vp1
2vH

cosu D ,

D125
1

sinu S vH

12cos2u

cosu
1av jg~cosu2W! D ,

FIG. 8. Domains of existence of solutionsC and D for va

5vp . For zero currentD exists for2va<vH<va andC exists for
2va2vp<vH<va1vp . However for finite currentD can exist
for a larger interval.
09442
D215sinuS 2av jg cosu22va2vp2
2vH

cosu D , ~34!

D2252avH

12cos2u

cosu
1v jg~cosu2W!.

Now we can substitute Eq.~34! into Eq. ~33!, and get an
expressionm(cosu,vj ,vH). To study stability, Eq.~30! has to
be solved for cosu and its solution substituted into
m(cosu,vj ,vH). Knowing m(v j ,vH) we can divide the pa-
rameter plane (v j ,vH) into regions wherenC/D exist and
subregions where they are stable. For arbitrary (v j ,vH) this
procedure requires a numeric solution of the fourth-order
gebraic equation~30!.

3. Stability analysis ofnCÕD equilibrium direction for small
currents

Several simplifications happen when the current mag
tude is small, i.e.,v j!v j max. Using Eq.~33! we see that the
first term inm, Eq.~33!, is of the first order in currentv j and
damping coefficienta, while the expression under the squa
root starts with a zero-order term. Such situation was alre
discussed in Secs. III A and IV A 2: the switching betwe
stable and unstable focuses is controlled by the first-or
terms and therefore can happen forv j;av j max.

For nonzero current pointsC and D move from their
original positions. But from Eq.~30! we see that correction
to cosu are starting with the terms quadratic inv j , so in the
linear approximation we can use Eq.~31!.

To begin with, we determine whether equilibria are foci
saddles/centers. We calculateQ5(D112D22)

2/41D12D21
leaving only zero-order terms. For pointC

QuC52S 12
vH

2

~va1vp!2D ~va1vp!vp,0,

where the last inequality is true for all values ofvH at which
C exists. ThereforeC is a focus. For pointD

QuD5S 12
vH

2

va
2 D vavp.0,

where again the inequality is always fulfilled as long as eq
librium D exists for v j→0 . SinceD111D22;a,v j is a
small value, the eigenvalues of the dynamic matrix at po
D almost always~see corresponding discussion in Se
IV A 2 ! have opposite signs and hence pointD is a saddle.
Accordingly it is never a stable equilibrium and we can d
regard it in the further analysis.

PointC is a focus, stability of which is determined by th
sign of RemC5(1/2)(D111D22)uC . Expansion of this quan-
tity up to the linear terms inv j anda reads

RemC5
1

2 H 2v jgF 22vH

va1vp
1 f gS 12

vH
2

~va1vp!2D G
1aS 2vp1va2

vH
2 D J
va1vp

1-11
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and changes sign at

v jC5
a@2vp1va2vH

2 /~va1vp!#

gV
, ~35!

V52
2vH

va1vp
1 f gS 12

vH
2

~va1vp!2D .

The numerator of the formula is positive,g is always
positive as well, butV changes sign on the intervalvH
P@2va2vp ,va1vp# since V(vH52va2vp)52 and
V(vH5va1vp)522. We find that the pointv* whereV
50 is given by

v* 5~va1vp!@j2Aj221#

so that

~322A2!~va1vp!,v* ,~va1vp!.

Finally, examining the sign of RemC one can check that fo
vH,v* point C is stable forv j.v jC , and forvH,v* it is
stable forv j,v jC . Thus we identify a novel equilibrium
phase, the canted phase. Its angle with regard to the easy
is given to first order by Eq.~31!. An example of the time-
evolution flow for the case whenC is stabilized by the cur-
rent is shown in Fig. 9.

The stability regions of equilibriaA, B, and C on the
parameter plane are shown in Fig. 10. Their boundaries
given by Eqs.~27!, ~28!, and~35!. As in the axial case, ther
are regions where neither equilibria is stable and thus a
cession state occurs. Here we cannot make a stronger s
ment about the absence of the precession states in other
of the switching diagram. In fact our experience from t
axial case, where precession states were analyzed in d
shows that such situation may well occur. This figure p
sents the low current limit of the switching diagram of t
Cornell nanopillar device. Below we make several rema
about it.

Different types of behavior are now predicted for the e
periments in which a current is swept at fixedvH . As men-
tioned at the beginning of Sec. IV, the actual experim
measures only thevH.0 part of the switching diagram
There are three regimes for positive magnetic field.

For 0,vH,va the switching pattern will be similar to
the axial case, but in addition, here the canted equilibriumC
will become stable for large enough positivev j . Since this
will happen on top of already stable equilibriumA, a switch
to C is unlikely. However one can put the system into theC
state by following a different path on the parameter plane.
obtain the canted state at zero magnetic field, for exam
one could start at negative field, increase the current pas
critical value forC equilibrium, and then decrease the field
zero.

For va,vH,va1vp the switching will happen eithe
betweenA and precession state~without hysteresis! or be-
tweenA andC ~with hysteresis!. It is important to note that
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in this regime switching with hysteresis happens not betw
parallel and antiparallel states, but between parallel
canted states.

For va1vp,vH we return back to hysteretic switchin
betweenA andB similar to the axial case. The canted state
never stabilized in this regime.

The experimental results9–12are consistent with those pre
dictions for 0,vH,va , where hysteretic switching was ob
served. They also observe several different precession
gimes forva1vp,vH . The intervalva1vp,vH was not
yet investigated systematically.

FIG. 9. Time-evolution flow whenB andC are stable equilibria
andA is an unstable equilibrium.

FIG. 10. ~Color online! Switching diagram of the ‘‘axis and
plane’’ case for small currents. The domains of stability are mar
by letters~see text! and arrows, showing the relative orientation
s ~thick arrow! andn ~thin arrow!. The parallel configurationnA is
stable inside two wedges opening up, the antiparallel configura
nB is stable inside two wedges opening down, and the canted
figuration nC is stable in two domains above and below the ho
zontal axis, but both lying inside the6(va1vp) interval. Within
the shaded regions neither equilibrium is stable, thus a stable
cession is happening.
1-12
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C. Comments on the ‘‘axis and plane’’ case

It is easy to check that forvp50 we recover the axia
case, Sec. III, Fig. 3. The only subtlety here will be that sin
for vp50 positions of the pointsC andD are given by the
same expression cosu5vH /va , those points formally coin-
cide. In reality those points just do not exist as we saw
Sec. III. The gap betweenva and va1vp in the lines of
stability of equilibria nA/B closes forvp50 and thus the
axial case is exactly reproduced.

Now consider the ratio of the critical currentsv jC and
v jB at vH50. One has

v jC~vH50!5a
2vp1va

f g2~0!
5a~2vp1va! f j2, ~36!

v jB~vH50!5a
2va1vp

2g~21!
5aS va1

1

2
vpD f ~j21!.

Thus

v jC

v jB
52

2vp1va

vp12va

j2

j21
>4

and the stability line ofC in Fig. 10 is always higher than th
stability line of B at vH>0. This is important for the com
parison with the results of the Cornell group experiment10

because there only thevH>0 region of the switching dia-
gram is probed as explained in the beginning of Sec. IV.

When vH is in the vicinity of v* , the critical current,
given by Eq.~35!, diverges, violating the underlying assum
tion of small current. This poses a question of the real
havior of the stability boundary ofC in this region. Using
exact formulas from the preceding section we have p
formed a numeric calculation for a representative set of
rameters and found that the switching boundary indeed
tends upward, where it joins the line ofC-D convergence as
shown in Fig. 12. Recall here that the positions of pointsC
andD are given by Eq.~31! only for small current. For large
currents Eqs.~29! and ~30! must be solved. As a result th
positions ofC and D move along the sphere as current
increased and eventually these two points coalesce and
appear.

The canting angle depends on the current and magn
field, and these can be used to engineer a desired ‘‘switc
angle’’ between pointsC andA. This angle can be change
between 0° and 180° by sweeping the magnetic fieldB, Eq.
~31!. But according to Eqs.~29! and ~30! it also can be ad-
justed by increasing the current. To give an example,
calculated the current dependent changesdu( j ) and df( j )
of the polar angles of pointC. The magnetic field was set t
vH5(va1vp)/2, which gives auC5120° angle betweenA
andC at zero current. The spin-polarization degree was ta
to beP535%, and Gilbert damping was set toa50.01. In
Fig. 11 du( j ) and df( j ) are shown as functions ofj / j C ,
where j C is the minimal current stabilizing the canted sta
~36!. Note thatdu( j ) is much smaller thandf( j ). For vH
50 the angleu does not change at all and pointC moves
along the paralleluC590°. Since the resistance of the stru
ture is a function ofuC , it would not be a very sensitive
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indicator of the current-induced displacements of equil
rium C. For the particular set of parameters used to plot F
11 the polar angle changes are small forj ' j C . They become
significant for currentsj '10j C . These current values corre
spond to the upper boundary of the stable canted state in
12.

For the particular set of parameters chosen to calculate
switching diagram in Fig. 12 pointC was still a focus for all
the values of current, even though the argument of S
IV B 3 does not apply any more when the current is n
small. PointD was a saddle for all currents as well. The
statements were only violated very close to the merg
point whereQ→0 and the higher-order terms ina started to
play a role~cf. Sec. IV A 2!. Representative results for th
switching diagram are shown in Fig. 12. We show this figu
to give a general idea of the topology of the diagram
large v j . The actual calculations should be made as
plained at the end of Sec. IV B 2, but they will be on

FIG. 11. Deflection of pointC by a large current.

FIG. 12. ~Color online! A representative switching diagram fo
the ‘‘axis and plane’’ case for all values of current. Labeling is t
same as in Fig. 10. The upper boundary of the canted state sta
region is the line where equilibriaC andD merge. More precession
regions, marked PS, show up for large currents. Figure 10 is
blowup of this figure at small currents.
1-13
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needed if experimental currents could be increased by a
tor of 1/a;100 compared to the values of Ref. 10.

There is a restriction onP which should hold in order for
us to be able to calculate in the small current approximat
Critical currents for equilibrium directionsnA,B,C are given
by formulas~27!, ~28!, and~35!, each of which hasa in the
numerator andg, evaluated at the appropriate equilibriu
point, in the denominator. In order for the small current a
proximation to hold the critical current must be much sma
than the current at whichC andD merge, i.e.,v j!va1vb
must be true. From here it follows thata/g!1 should hold,
and sinceg(x)51/@ f (x1j)#, this gives a requirement

a f ~P!!1. ~37!

Here a is a small parameter, butf (P)5(11P)3/(4P(3/2))
can become large asP→0. At smallP we can approximate
~37! by

P@~2a!(2/3). ~38!

For a50.01 it givesP@0.07 which can be satisfied for ma
terials with large spin polarization. However already fora
50.05 one would requireP@0.22 so the small current ap
proximation would not be too good and one should num
cally solve Eq.~30! and find the eigenvalues of the dynam
matrix given by Eq.~34!.

V. CONCLUSIONS

We have obtained exact results about the stable equili
of the magnetic piece with a spin-polarized current flowi
through it. It is seen that the switching pattern depends c
cially on the magnetic anisotropy and the direction of pol
ization of incoming current. For more complicated anis
ropy new hysteresis patterns are possible and n
equilibrium configurations can be stabilized. Therefore o
should be careful in applying the intuition gained from a t
study of one anisotropy pattern to ‘‘similar’’ patterns. Pred
tions made for the axial and axis and plane cases can be
to experimentally test the spin-transfer theory,26 in particular
the accuracy of the factorg(P,sn). This is especially inter-
esting because alternative descriptions of current driven
citations are put forth in the literature. Obtained switchi
diagrams show that axial easy axis configuration~Fig. 3! and
axis and plane configuration for the magnetic field such t
vH lies outside of the@va ,va1vp# interval~Fig. 10! satisfy
the criteria for application in memory cells discussed in
Introduction. For other configurations and values of ma
netic field the modified Landau-Lifshitz equation predic
new phenomena: stabilization of canted state and preces
states. If observed experimentally these could becom
strong argument in favor of the spin-transfer theory in
present form.

Our method is fairly general and can be used to calcu
exact switching diagrams for devices with new anisotro
patterns as they will be fabricated for future experimen
Although it does not give a complete picture~no information
about the stable cycles far away from equilibrium points c
be obtained!, it is still very useful to develop an understan
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ing of the current-induced magnetic switching.
For example, since up to date magnetization direction

not experimentally measured but rather inferred from the
sistive state of the wire, it is important and greatly simplifi
comparison between theory and experiment that the num
or resistive states can be different for axial and axis a
plane cases due to the possibility of stabilizing the can
configuration. Also in these two cases the switching curre
have qualitatively different dependence on the magn
field. In experiments capable of direct measurement ofMS
one will see that it rotates by 180° degrees in the axial c
and by a magnetic-field-dependent angleuC(B) in the axis
and plane case. The precession state can be a good cand
for observation with the magnetic force microscope, es
cially since its frequency can be tuned by current.

To get an estimate of the switching current density
calculate criticalv j for the axial easy plane case atvH50
using Eq.~15! and converting to normal units using Eq.~5!.
We get

v j5a
uvKu

g~P,1!
⇒ j 5aS e

\ D uK ( intr )24pM2u
g~P,1!

LS .

For a small piece withLS51 nm, dampinga50.05, and
40% polarization degree one getsj '6.73107 A/cm2 using
the values ofK ( intr ) andM for cobalt.

Below we make several remarks on the issues that w
postponed so far and will be left for the future work.

According to Slonczewski,26 the spin-transfer effect can
be described by an additional term in the Landau-Lifsh
equation representing the torque induced by the curr
Therefore Ref. 26 and other papers, which follow this sch
of thought~including the present one!, implicitly assume that
the magnets are completely described by the possibly sp
and time-dependent mean-field magnetizationM (r ,t), and
the spin-transfer torque leads to a rotation ofM . Another
point of view, expressed in particular in Ref
1–3,9,10,49,50, is that the current creates spin-wave ex
tions in the magnetic piece~see Appendix D!. In a previous
calculation27 we found that spin waves can be even induc
in a bulk magnet by a large current density (.108 A/cm2).
The analysis of the spin-wave picture and its comparis
with the coherent rotation picture is beyond the scope of
present paper, but is a necessary direction of future inve
gations.

As derived in Ref. 26, the torques acting onMS andML
are equal in absolute value, because of an implicit assu
tion l sd→` made in the derivation. For a finite ratiod/ l sd ,
whered is the thickness of the normal spacer between
magnetic pieces, the torque acting on the piece which e
trons cross first as they flow with the current will be small
To establish the interaction electrons have to spend tim
both pieces. Those hitting the piece downstream are alre
polarized by the upstream piece. But the magnetization
the upstream piece itself can only be influenced by the e
trons reflected back to it from the downstream piece, a
those electrons have to travel twice more distance in
normal spacer. Since the polarization decays in the spa
those electrons will induce a smaller torque. The small m
1-14
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netic piece will be upstream or downstream depending on
current direction, thus the torque formula will change wh
the current direction changes. We neglect this effect whic
reasonable in the limitd/ l sd→0.

Everywhere in the derivation we assumed the Gilb
damping coefficienta to be a constant. However even fo
bulk materialsa can depend on the direction ofn ~see dis-
cussion in Ref. 10!. This is even more true in the layere
materials with ferromagnet–normal metal boundaries, wh
the possibility of electrons entering and leaving the fer
magnet leads to additional damping.49,51–54For our analysis
this complication would mean that each equilibrium will b
characterized by a separate value ofa that will be a function
of the relative angle between the polarizer and analyzer
this particular equilibrium. For example, the dependence
thenC equilibrium direction for the axis and plane case, S
IV, on the magnitude of external magnetic field will transla
into the aC(B) dependence. The displacement of this eq
librium due to the current was negligible and can be igno
for a as well. For the precession state one expects to
sensitive toa averaged over the cycle. We want to note th
the calculation of enhanced damping anda angular
dependence53 was done in the zero-current state, while t
calculation of spin-transfer torque did not take into acco
the motion of magnetization. A systematic investigation
the interplay between these two processes may reveal m
subtleties.

In summary, we have calculated the dynamics of mag
tization reversal in a nanowire, as functions of applied c
rent and magnetic field. Magnetic switching, as per exp
ment, is the dominant behavior. Switching can also occur,
find, to a new canted phase. Precession regions are pres
the parameter space. The case of easy plane perpendicu
current has a particularly rich phase diagram. Compari
with experimental results for anisotropies considered in
work shows considerable areas of agreement with
switching diagrams. Overall, we find that switching diagra
depend critically on the anisotropy type and on orientation
spin polarizer and magnetic field. In experiments with a d
ferent combination of these external controls the switch
diagram can and should be recalculated using the me
developed here. It will generally contain the same types
regions: stable parallel and antiparallel configurations, sta
canted configurations, various regions of bistability, and p
cession regions.

Our analysis allows us to make some qualitative conc
sions about the dynamics of magnetization switching. M
netization reversal dynamics can be strongly affected by
presence of canted phases in the phase diagram, even if
ing is not stable for a given current and magnetic field. R
versal processes can be complex, and the presence o
stable magnetic states has the potential to both speed up
slow down reversal times. This has the intriguing poten
for canted states to be used to engineer optimal reve
times.
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APPENDIX A: CONSTRAINT ON THE WIRE RADIUS

To calculate the wire radius at which switching due to t
induced circular~‘‘Oersted’’! magnetic field is replaced by
the spin-transfer effect switching one would need a go
theory of the former. To appreciate the difference betwe
the mechanisms, recall that induced field switching alwa
happens through an instability towards a nonuniform m
netic configuration because a circular magnetic field wo
have no effect on the monodomain magnetic section o
circular wire.

For a very rough estimate we argue as follows. The m
netic field created by the current on the surface of a wire
radiusR is B' jR/c, wherej is the current density. It create
a M3B torque per unit volume. We estimateM'mB /a3,
wherea is the lattice constant and take the maximum p
sible value of the torqueTH associated with induced field:

TH

V
5

mB

a3

jR

c
.

The maximum value of the spin-transfer torque can be e
mated asTST'\I /e where I is the total current. SinceI
5pR2L j , whereL is the length of the magnetic piece,

TST

V
5\

j

eL

and the conditionTST@TH leads to

R!
a3

r 0L
,

r 05mc2/e2'10215 m

(r 0 is sometimes called a ‘‘classical radius of an electron!
Now for a'3 Å andL'5 nm we getR!1 mm, as the wire
radius below which spin-transfer torques should dominat

APPENDIX B: DEFINITION OF VECTORS AND
DERIVATION OF THE EQUATION OF MOTION IN THE

„f,u… COORDINATES.

To transform the vector equation~4! into a system of
equations on (f,u) we introduce two vectors orthogonal ton
and parallel to the surface of the sphere~see Fig. 13!:

ef5
@ez3n#

sinu
,

eu5@n3ef#5 ez2n cosu sinu.

This gives
1-15
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ef5$2sinf,cosf,0%5
1

sinu
$2ny ,nx ,0%,

eu5$2cosu cosf,2cosu sinf,sinu%.

For n itself one has

n5$nx ,ny ,nz%5$sinu cosf,sinu sinf,cosu%.

From there

@eu3ef#5n,

@n3ef#52eu ,

@eu3n#52ef ,

and

ėu52 u̇er1ḟ cosuef ,

ėf52ḟ~sinuer1cosueu!,

ṅ5 u̇eu1ḟ sinuef .

More useful relationships follow

@n3ṅ#5 u̇efḟ sinueu ,

@n3z#52sinuef .

Next, we derive the equation of motion in the (f,u) co-
ordinates. The end of vectorn moves along the unit sphere
So we haveṅ'n and F'n, and bothṅ and F can be ex-
panded as a linear combination ofef andeu . First

F5vfef1vueu

with

vf5~F•ef!; vu5~F•eu!

and second, from Eq.~B1!,

ṅ5ḟ sinuefu̇eu .

FIG. 13. Polar angles (f,u) and vectorsef , ef , andn on the
unit sphere.
09442
We obtain

@n3ṅ#5 u̇ef1ḟ sinueu

so

ṅ2a@n3ṅ#5$efeu% F sinu 2a

2a sinu 21G H ḟ

u̇
J

and Eq.~6! transforms to

F sinu 2a

2a sinu 21G H ḟ

u̇
J 5H vf

vu
J . ~B1!

APPENDIX C: DETAILS OF PRECESSION
CALCULATIONS IN THE AXIAL CASE

To consider the properties of this quadratic equation

v jvK

a f ~P!
52v~v2vH1jvK!

let us look at a graph~Fig. 14!. With (v jvK)/(a f )[ i plotted
along the horizontal axis andv plotted along the vertica
axis, the graph is a parabola rotated by 90°. It crosses
vertical line i 50 at the pointsv150 andv25hjvK . The
vertex of the parabola is located atvc5(vH2jvK)/2, i c
52vc(vc2vH1jvK)5(vHjvK)2/4.

We see that in general Eq.~23! has two solutions for
i< i c and zero solutions otherwise. However if Eq.~21! has
to be satisfied, there may be values ofi< i c , for which there
is only one acceptable solution. The number of accepta
solutions depends on the position of the parabola vertex
vc lies betweenv2 andv1 , there are at least some value
of i with two solutions. Otherwise, there is only one acce
able solution for alli< i c . The intervals ofi where solutions
exist can be described as follows. There is one accept
solution for

i ~v2!< i< i ~v1!,

i ~v![2v~v2vH1jvK!,

and there are two solutions in the interval

FIG. 14. Graphical solution of Eq.~23!.
1-16
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max~ i ~v2!,i ~v1!!< i< i c .

In the latter case there are two cycles, and it is possible
check that one is stable and the other is unstable. Using
formulas for v6 and i c we can now in principle plot the
domains with one and two cycles on the (v j ,vH) plane.

To see how those domains will fit in with the stabili
domains of the North and South Poles, we now establis
relationship between the values ofi (v6) and the stability
boundaries of those equilibrium points. We have

v jN52a
vH1vK

g~1!
52a~vH1vK! f ~11j!,

v jS52a
v2vK

g~21!
52a~vH2vK! f ~211j!,

therefore

i N52~vH1vK!vK~11j!,

i S52~vH2vK!vK~211j!.

On the other hand

i ~v1!52~vH1uvKu!~ uvKu1jvK!,

i ~v2!52~vH2uvKu!~2uvKu1jvK!,

which means that forvK.0

i ~v1!5 i N , i ~v2!5 i S

and forvK,0

i ~v1!5 i S , i ~v2!5 i N .

First, these relationships mean that there is one preces
solution for i betweeni N and i S ~depending onvK andvH
one can havei N. i S or i N, i S). Existence of a solution in
this interval either means that a stable cycle exists betw
the poles when they are both unstable or an unstable c
separates two stable poles. Second, for

max~ i N ,i S!< i< i c ~C1!

there are two cycles: one stable and one unstable. Sinc
those values ofi only one of the poles is stable, the overa
configuration is a stable cycle and a stable pole, separate
an unstable cycle. We will call this state a cycle-and-p
state, and denote it as PS1N or PS1S depending on which
pole is stable.

Conditionv2<vc<v1 gives the interval ofvH ,

vH1<vH<vH2vH1[2jvK22uvKu,

vH2[2jvK12uvKu

for which the cycle-and-pole state exists. Note that the
bility lines for the North and South Poles cross at the po
vH5vHc given by the equationv jN5v jS from which we
getvHc52jvK5(vH11vH2)/2. So the region of existenc
of the cycle-and-pole state is symmetric with respect tovHc .
In the (v j ,vH) switching diagram it lies next to the regio
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of stable North Pole forvK.0 and next to the region of the
stable South Pole forvK,0 as shown in Fig. 3.

As current is swept through the precession region at c
stantvH , the frequency of the precession changes conti
ously and one can pose a question about the boundarie
the interval the frequency sweeps. Here we will discuss
question rather briefly. For those values ofvH where the
cycle-and-pole does not exist, the precession cycle is cre
near one of the poles and then moves towards the ot
where it becomes the stable point. In this case the freque
changes in the interval@v2 ,v1#. If the cycle-and-pole ex-
ists, the stable cycle does not reach the other pole, but
appears due to mutual annihilation with an unstable cy
which was created at the other pole and moved towards
stable cycle. The next step is to convince oneself that pre
sion exists fori (v2), i (v1) and using Fig. 14 see that fo
increasing current the stable cycle is created ati 5 i (v2),
then the unstable cycle is created ati 5 i (v1), and finally
cycles merge and annihilate ati 5 i c . The frequency of the
stable cycle changes in the interval@v2 ,vc#. This picture
shows that the boundary between PS region and the cy
and-pole region happens when an unstable cycle is crea
Consequently nothing happens there with the stable c
and there is no singularity inv(v j ) dependence when thi
line is crossed.

There is one final note about the properties of the tim
evolution flow. In the discussion above we concentrated
finding the values ofu for which u̇50 and obtained stable
and unstable cycles. However those values ofu for which
ḟ50 also play an important role in the shape of the ph
flow; namely, at those lines the flow can change direct
from clockwise to counterclockwise as shown in Fig. 15.
the absence of the currentḟ50 andu̇50 lines coincide, but
for nonzero current this is not true any more. One sho
always bear this peculiarity in mind while thinking abo
particular cases of phase flow.

FIG. 15. Precession direction is reversed on the parallel w

ḟ50. This is an additional element of the time-evolution flo

which must be taken into account when parallels withḟ50 and

u̇50 do not coincide.
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APPENDIX D: SPIN-WAVE PICTURE

The idea about the possibility of spin-wave excitation fi
comes from considering current propagation through
normal-metal–ferromagnet boundary in the diffusive regi
where the mean free pathl of the electrons is much smalle
than the spin-diffusion lengthl sd . In this case the equilibra
tion of electrons with the same spin happens much fa
than equilibration between two different spin directions an
non-equilibrium state near the boundary can be descr
well by two chemical potentials55 m↑(r ) andm↓(r ) of elec-
trons with spins being parallel and antiparallel to the mag
tization of the ferromagnet. When the current is passed, th
two chemical potentials become different near the bound
~see Fig. 16!. For example, when electrons flow from th
normal metal into the ferromagnet, the energy of the sp
down electrons is larger than that of spin up. This is a n
equilibrium effect andm↓2m↑ is proportional to the curren
magnitude.

One can notice that this energy difference could be
leased if an additional mechanism of spin flipping would
provided. Spin-wave generation at the boundary is exa
such mechanism. An electron flips the spin from21/2 to
11/2 and excites a magnon withs51, thus spin conserva
tion is satisfied. Normally due to the anisotropies in the f
romagnet, the spin-wave spectrum has a gapV0; so to sat-
isfy the energy conservation one should increase current
m↓2m↑>V0 is true. This condition sets the current thres
old for spin-wave generation. It was suggested1,25 that the
resistivity jump observed in the experiment with current
jection into a multilayer was the signature of reaching t
threshold. There was however no clear understanding o
ther generation mechanism or the mechanism by which
waves lead to a resistivity jump.

The fact that spin-wave generation is allowed by ene
and spin conservation was emphasized very early
Berger.49 The next~and not yet understood! question is the
generation mechanism and the nature of the spin-wave s
In particular, it is not known whether the spin waves crea
will be coherent or incoherent. The coherent spin waves
be described with a time- and space-dependent magne
tion M (r ,t). This was first done by the authors27 by deriving
a continuous version of the modified Landau-Lifshitz equ
tions and considering the effect of current on spin waves
the bulk ferromagnet~see also Ref. 34!. For some specia
cases of multilayer structures this was done analytical37

and numerically.35,36 In this approach it is still assumed th
each electron interacts with the mean-field magnetizationM
and only the cumulative effect of many electrons drives
o
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09442
t
e
e

er
a
d

-
se
ry

-
-

-

ly

-

til
-

-
s
i-
in

y
y

te.
d
n
a-

-
n

e

wave. The precession states described in this paper a
particular case of coherent spin waves with no spatial dep
dence~or zero wave vector!.

The incoherent spin waves are described not byM (r ,t)
but by a distribution function of magnons. The differen
between them and coherent spin waves is analogous to
difference between the sound waves and the ther
phonons. Although both are associated with the same ela
properties of the solid, they represent different states of
solid body. For example, the incoherent thermal phonons
not create deformations. To have sound one needs a coh
superposition of many phonons in one state. Analogously,
presence of incoherent magnons does not create a prece
M „t… in the ferromagnet but rather decreases the magnit
of M . In the incoherent picture each magnon is created b
spin flip of an individual electron~compare with the
‘‘magnon-assisted tunneling’’ picture56!, while in the coher-
ent spin-wave picture many electrons are needed to drive
wave. In terms of influencing the current propagation, a s
with incoherent magnons is also very different from a sin
coherent spin-wave state. Formally the influence of magn
appears as a change of a collision integral in the Boltzm
equation for electrons, while the single spin-wave influen
modifies the electron motion between the collisions and
pears as a change of the convective terms.

The questions about the mechanisms of spin-wave g
eration and about the nature of the spin wave state of
ferromagnetic pieces are very important but are not clea
understood at the present time, which calls for more work
future.

FIG. 16. ~Color online! Left up: splitting chemical potentials
near the normal metal–ferromagnet boundary with electric cur
flowing perpendicular to it. Left down: spectrum of spin waves in
ferromagnet with the uniaxial anisotropy. Right: spin conservat
in the process of magnon emission.
Ph.

Ph.

-P.
1M. Tsoi, A.G.M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Ts
and P. Wgyder, Phys. Rev. Lett.80, 4281~1998!.

2M. Tsoi, A.G.M. Jansen, J. Bass, W.-C. Chiang, V. Tsoi, and
Wyder, Nature~London! 406, 46 ~2000!.

3M. Tsoi, V. Tsoi, J. Bass, A.G.M. Jansen, and P. Wyder, Ph
Rev. Lett.89, 246803~2002!.
i,

.

.

4J.E. Wegrowe, D. Kelly, Y. Jaccard, Ph. Guittienne, and J.-
Ansermet, Europhys. Lett.45, 626 ~1999!.

5Y. Jaccard, Ph. Guittienne, D. Kelly, J.-E. Wegrowe, and J.-
Ansermet, Phys. Rev. B62, 1141~2000!.

6J.-E. Wegrowe, D. Kelly, T. Truong, P. Guittienne, and J.
Ansermet, Europhys. Lett.56, 748 ~2001!.
1-18



er

ly,

u-

C.

pl.

r-

an

.H

rt

ni

hy

et

v.

g

hy

ing

ys.

s of
als,

l.

s

s.

A.

ys.

L.
gn.

la,

ont,

ett.

r-

CURRENT-INDUCED MAGNETIZATION SWITCHING IN . . . PHYSICAL REVIEW B69, 094421 ~2004!
7J.-E. Wegrowe, X. Hoffer, Ph. Guittienne, A. Fabian, L. Gravi
T. Wade, and J.-Ph. Ansermet, J. Appl. Phys.91, 6806~2002!.

8J.-E. Wegrowe, A. Fabian, Ph. Guittienne, X. Hoffer, D. Kel
J.-P. Ansermet, and E. Olive, Appl. Phys. Lett.80, 3775~2002!.

9E.B. Myers, D.C. Ralph, J.A. Katine, R.N. Louie, and R.A. B
hrman, Science285, 867 ~1999!.

10J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, and D.
Ralph, Phys. Rev. Lett.84, 3149~2000!.

11F.J. Albert, J.A. Katine, R.A. Buhrman, and D.C. Ralph, Ap
Phys. Lett.77, 3809~2000!.

12F.J. Albert, N.C. Emley, E.B. Myers, D.C. Ralph, and R.A. Buh
man, Phys. Rev. Lett.89, 226802~2002!.

13E.B. Myers, F.J. Albert, J.C. Sankey, E. Bonet, R.A. Buhrm
and D.C. Ralph, Phys. Rev. Lett.89, 196801~2002!.

14J.Z. Sun, J. Magn. Magn. Mater.202, 157 ~1999!.
15J.Z. Sun, D.J. Monsma, D.W. Abraham, M.J. Rooks, and R

Koch, Appl. Phys. Lett.81, 2202~2002!.
16J. Grollier, V. Cros, A. Hamzic, J.M. George, H. Jaffres, A. Fe

G. Faini, J. Ben Youssef, and H. Legall, Appl. Phys. Lett.78,
3663 ~2001!.

17J. Grollier, V. Cros, H. Jaffres, A. Hamzic, J.M. George, G. Fai
J.B. Youssef, H. Le Gall, and A. Fert, Phys. Rev. B67, 174402
~2003!.

18F.B. Mancoff and S.E. Russek, IEEE Trans. Magn.38, 2853
~2002!.

19M.R. Pufall, W.H. Rippard, and T.J. Silva, Appl. Phys. Lett.83,
323 ~2003!.

20W.H. Rippard, M.R. Pufall, and T.J. Silva, Appl. Phys. Lett.82,
1260 ~2003!.

21S. Urazhdin, Norman O. Birge, W.P. Pratt, Jr., and J. Bass, P
Rev. Lett.91, 146803~2003!.

22S. Urazhdin, H. Kurt, W.P. Pratt, Jr., and J. Bass, Appl. Phys. L
83, 114 ~2003!.

23S. Urazhdin, W.P. Pratt, Jr., and J. Bass, cond-mat/0304299~un-
published!.

24Collection of articles in IBM J. Res. Dev.42 ~1998!.
25L. Berger, Phys. Rev. B33, 1572~1986!; J. Appl. Phys.63, 1663

~1988!.
26J. Slonczewski, J. Magn. Magn. Mater.159, L1 ~1996!; US Patent

No. 5,695,864~Dec. 9 1997!.
27Ya.B. Bazaliy, B.A. Jones, and Shoucheng Zhang, Phys. Re

57, R3213~1998!.
28Ya.B. Bazaliy, B.A. Jones, and Shoucheng Zhan

cond-mat/0009034~unpublished!.
29Ya.B. Bazaliy, B.A. Jones, and Shoucheng Zhang, J. Appl. P

89, 6793~2001!.
30Ya.B. Bazaliy and B.A. Jones, Physica B329-333, 1290~2003!.
31J.Z. Sun, Phys. Rev. B62, 570 ~2000!.
09442
,

,

.

,

,

s.

t.

B

,

s.

32J. Slonczewski, unpublished talks on many conferences, includ
APS 2000, EMMA2000, talks at IBM seminars, etc.

33K. Bussman, G.A. Prinz, S.-F. Cheng, and D. Wang, Appl. Ph
Lett. 75, 2476~1999!.

34J. Fernandez-Rossier, M. Braun, and A. MacDonald, Abstract
the 47th Conference on Magnetism and Magnetic Materi
Tampa, Florida, FD-14, 292,~2002! ~unpublished!.

35J. Miltat, G. Albuquerque, A. Thiaville, and C. Vouille, J. App
Phys.89, 6982~2001!.

36R. H. Koch ~unpublished!.
37J. Slonczewski, J. Magn. Magn. Mater.195, L261 ~1999!.
38L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuou

Media ~Elsewier, Amsturdam, 1996!, Sec. 45.
39X. Waintal, E.B. Myers, P.W. Brouwer, and D.C. Ralph, Phy

Rev. B62, 12 317~2000!.
40G.E.W. Bauer, Ya. Tserkovnyak, D. Huertas-Hernando, and

Brataas, Phys. Rev. B67, 94 421~2003!.
41K. Xia, P.J. Kelly, G.E.W. Bauer, A. Brataas, and I. Turek, Ph

Rev. B65, 220401~2002!.
42Al. Kovalev, A. Brataas, and G.E.W. Bauer, Phys. Rev. B66,

224424~2002!.
43M.D. Stiles and A. Zangwill, Phys. Rev. B66, 014407~2002!; J.

Appl. Phys.91, 6812~2002!.
44C. Heide, Phys. Rev. Lett.87, 197201~2001!; Phys. Rev. B65,

054401~2002!.
45S. Zhang, P.M. Levy, and A. Fert, Phys. Rev. Lett.88, 236601

~2002!.
46J.-L. Maurice, D. Imhoff, P. Etienne, O. Durand, S. Dubois,

Piraux, J.-M. George, P. Galtier, and A. Fert, J. Magn. Ma
Mater.184, 1 ~1998!.

47U. Ebels, A. Radulescu, Y. Henry, L. Piraux, and K. Ounadje
Phys. Rev. Lett.84, 983 ~2000!.

48F. Albert ~private communication!.
49L. Berger, Phys. Rev. B33, 1572 ~1986!; 54, 9353 ~1996!; J.

Appl. Phys. 81, 4880 ~1997!; IEEE Trans. Magn.34, 3837
~1998!.

50M.V. Tsoi and V.S. Tsoi, JETP Lett.73, 98 ~2001!.
51P. Monod, H. Hurdequint, A. Janossy, J. Obert, and J. Chaum

Phys. Rev. Lett.29, 1327~1972!; H. Hurdequint and G. Dunifer,
J. Phys.~Paris!, Colloq. 49, C8-1717~1988!; H. Hurdequint, J.
Magn. Magn. Mater.93, 336 ~1991!.

52L. Berger, J. Appl. Phys.90, 4632~2001!.
53Y. Tserkovnyak, A. Brataas, and G.E.W. Bauer, Phys. Rev. L

88, 117601~2002!; Phys. Rev. B66, 224403~2002!.
54B. Heinrich, Y. Tserkovnyak, G. Woltersdorf, A. Brataas, R. U

ban, and G.E.W. Bauer, Phys. Rev. Lett.90, 187601~2003!.
55P.C. van Son, H. van Kempen, and P. Wyder, Phys. Rev. Lett.58,

2271 ~1987!.
56E. McCann and V.I. Fal’ko, Appl. Phys. Lett.81, 3609~2002!.
1-19


