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Lightly doped dimerized spin chain in the one-dimensionalt-J-J8 model

Alexander Seidel and Patrick A. Lee
Center for Material Science and Engineering and Department of Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA
~Received 11 September 2003; published 19 March 2004!

We study the one-dimensionalt-J-J8-model in the limit of small hole dopingx and smallJ/t, J8/t. Special
emphasis is put on the regimeJ8/J'0.5, where a spin gap is present at small doping and the undoped spin
chain is strongly dimerized. Using a perturbative approach and Luttinger liquid arguments, we demonstrate for
this nonintegrable class of models that the charge degrees of freedom behave as noninteracting spinless solitons
in the dilute hole limit. Our approach is also used to evaluate the energy and mass renormalization of a single
hole. Interestingly, the corrections of these quantities are in powers ofAJ/t. At J8/J50.5 we construct a
variational spin-polaron wave function for the hole and find good agreement with our perturbative results.
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I. INTRODUCTION

The discovery of high-Tc superconductors has generat
great interest in models of strongly correlated insulators
low dimensions, both in the presence and absence of do
carriers. While in two dimensions the problem remains ch
lenging even for the most elementary models that are
lieved to capture some of the physics of the cuprates, m
can be learned from the study of one-dimensional coun
parts of such models. Basic features that characterize
high-Tc materials, such as the absence of a quasiparticle
near the Fermi surface and possibly spin-charge separa
are essential to one-dimensional systems and are well un
stood here.1 The success of the theory in one dimension
due to the availability of powerful exact methods, such
numerical diagonalization and Bethe ansatz, in combina
with the knowledge of a low-energy effective theory whi
has so far been found to describe all gapless degrees of
dom in one-dimensional systems, the Luttinger liquid.2

In the present work we study the effect of doping a sm
concentration of holes into a dimerized spin chain. This
motivated by the idea that in a dimerized system, there n
rally exists an amplitude for pair formation. Upon introdu
tion of carriers phase coherence may be established, resu
in superconductivity. This idea has been previously propo
in the literature.3 We distinguish between two rough physic
pictures of hole doping into a dimerized chain~Fig. 1!. In the
first scenario@Fig. 1~a!# the dimer order remains long range
even after hole doping. The dimers tend to reside on ev
second link of the lattice as in the symmetry broken undo
state, and holes tend to pair on the empty sites in betwe

We note that this case bears some resemblance to d
ladder models.6 Indeed strong superconducting correlatio
have been proposed for dimer models with explicit symm
try breaking.7,8

A second possibility is that the holes enter as dom
walls between different dimer phases@Fig. 1~b!#. Then the
long-range order of dimers is destroyed, but the singlet
remains. If the holes are mobile and become phase cohe
this leads to superconductivity in analogy with the origin
RVB scenario.9 However, the pictures presented in Fig. 1 a
based on the limit of largeJ/t. In physical systems, on th
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n
ed
l-
e-
ch
r-
he
le
n,

er-
s
s
n

ee-

ll
s
u-

ing
d

ry
d
.
ed

-

n

p
nt,
l

other hand,J/t is usually a fraction of unity. In this regime
the hole kinetic energy is dominant and it is less clear in
itively if the dimer picture discussed above applies. In t
present paper, we study this question in the context of
t-J-J8 model in one dimension:

H52tP(
i

~ci ,s
† ci 11,s1H.c.!P

1J(
i

S Si•Si 112
1

4
nini 11D

1J8(
i

S Si•Si 122
1

4
nini 12D1V(

i
nini 11 . ~1!

Here,P is a projection operator that enforces the constra
of no doubly occupied sites. TheSi are spin-1/2 operators
and the nearest- and next-nearest-neighbor couplingsJ and
J8 are assumed positive throughout this paper. In addit
we have included a nearest-neighbor interactionV for later
convenience.

At finite doping, not much is known analytically abou
this model due to its nonintegrable nature. The phase
gram has been established numerically4,5,10 ~Fig. 2!. How-
ever, in the regime arounda[J8/J'0.5 where the undoped
spin chain is strongly dimerized and which is of particu
interest to us, we feel that the numerics are somewhat inc
clusive for small dopingx and J/t&1 as we will discuss
below.

The purpose of this paper is twofold: First, in the case
strong frustrationa[J8/J'0.5 we wish to determine the
fate of the various regions present in the phase diagram

FIG. 1. ~a! doping into frozen dimer state. Ovals represent s
glet pairs.~b! mobile dimers with domain walls.
©2004 The American Physical Society19-1
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FIG. 2. Sketch of the zero temperature phase diagram of thet-J-J8 model as determined numerically in Ref. 4 fora50 ~a!, a50.24~b!,
anda50.5 ~c!. Contours are labeled by values ofKr . The shaded region marks the domain of dominant singlet superconducting co
tions. The dotted lines in~a! were proposed in Ref. 5.
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the t-J-J8 model at small doping and smallJ/t @Fig. 2~c!#. In
particular, we will answer the question whether a regime
dominant singlet superconducting correlations in the vicin
of an instability towards phase separation persists to va
J/t!1 and in the dilute hole limit. This would happen if a
the contours in Fig. 2~c! extrapolate to the origin, which
appears to be a possible interpretation of the numerics
this end, we introduce a perturbative approach valid in t
limit. We find that the scenario mentioned above does
occur, but instead the Luttinger liquid is stable for smallJ/t
and small doping. Luttinger liquid arguments will then imp
that strong superconducting correlations only exist abov
finite critical value ofJ/t.

Second, below the critical value (J/t)c the liquid phase is
stable in the limitx→0, and we will use our method to
demonstrate certain properties that one expects to hold
one-dimensional lattice models based on general ground
particular, spin and charge are expected to correspon
separate degrees of freedom and any microscopic coup
between them should be irrelevant. As a consequence, d
holes that are doped into a correlated spin chain should a
a gas of noninteracting spinless solitons,11 where the cou-
pling to the nontrivial spin background only gives rise to
renormalization of the effective hole mass. This phenome
has been observed in integrable models such as the Hub
model.12 Our perturbative approach allows us to give a de
onstration of the same behavior in the nonintegrablet-J-J8
model, and to calculate the effective energy and mass re
malization of the hole for smallJ/t.

The remainder of this paper is organized as follows.
Sec. II we introduce the model, briefly discuss the numer
phase diagram, and cast the model into a language w
holes are interpreted as domain walls. In Sec. III we treat
spin-charge couplings as a perturbation and derive exp
sions for the ground-state energy, compressibility and Ko
stiffness of the model for smallJ/t, J8/t, and small dopingx.
This will allow us to qualitatively continue the numeric
phase diagram into the region of small doping. In Sec. IV
will explicitly evaluate these expressions as asymptotic
ries in powers ofx andAJ/t, demonstrating the convergenc
of our approach. In Sec. V we discuss the single pola
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energy and mass renormalization. We introduce a spin
laron type variational wave function where the hole is s
rounded by a cloud of tightly bound triplet excitations a
find good agreement with our perturbative results. We c
clude in Sec. VI. Appendix A illustrates the behavior of o
expansion at general order in various limits. An importa
technical issue is discussed in Appendix B.

II. FORMULATION OF THE PROBLEM

We wish to study the Hamiltonian~1! in the limit of van-
ishing exchange couplings and doping. ForV50 the phase
zero temperature diagram of Eq.~1! has been obtained
numerically4,5,10 for various values of the parametera
[J8/J. The results are sketched in Fig. 2. These phase
grams show a Tomonaga-Luttinger liquid~TL! region below
the dashed line labeled spin gap, where both spin and ch
degrees of freedom are gapless. Above the dashed line t
is a spin gapped liquid phase which is subdivided into
regime of dominant singlet superconducting~SS! correla-
tions~shaded gray! and, where present, a regime of domina
charge-density-wave~CDW! correlations. Also shown are
contours of constant values of the Luttinger parameterKr .
Above the Kr line labeled`, there is a region of phas
separation~PS!, where the ground state has a phase bound
between a hole-rich and an electron-rich phase. The par
eter Kr is directly related to the large distance behavior
the various correlation functions of a Luttinger liquid: F
Kr.1 pairing correlations dominate over density-wave c
relations, otherwise density-wave correlations dominate. F
thermore, in the presence of a spin gap, triplet pairing co
lations and spin-density-wave correlations are exponenti
suppressed. In this region, the main competition is there
between CDW and SS correlations, which in the presenc
a spin gap decay asr 2Kr and r 21/Kr, respectively.1,13

At zero doping (x50) it is well known that the spin chain
undergoes a phase transition at a critical value ofac'0.24
~Ref. 14! above which the ground state is dimerized with
gap in the spin excitation spectrum.15 For a.ac this spin
gap remains present over a finite range of doping for a
value ofJ/t, as was shown in Ref. 10. Figure 2 shows that
9-2



wi

h

,
to
te

rc

r

es
b

s

al

ed
sy

tit

ite

ne
we

o
ans

l
ed
ics
fer-
ad-

an
en

it
a

in

ou-
ry
nts

or

by
rest-
y of
ant

he

tw

LIGHTLY DOPED DIMERIZED SPIN CHAIN IN THE . . . PHYSICAL REVIEW B 69, 094419 ~2004!
a50.5 the spin gapped region has considerable overlap
the pairing regionKr.1 even at small values of dopingx.
Furthermore, it appears from the numerics as if allKr con-
tours, including the phase separation boundaryKr5`, flow
to small values ofJ/t at smallx ~cf. Refs. 10,4!. One expects
that these contours will focus on a critical point@x
50,(J/t)c#, as was proposed in Ref. 5 for thet-J model
@J850, Fig. 2~a!#. A possibility that seems consistent wit
the numerics ata50.5 is that (J/t)c50, i.e., all contours
flow into the origin of the phase diagram. In this case
sufficiently small amount of doping would always lead
phase separation, and upon further doping one would en
region of dominant SS correlations. Alternatively, (J/t)c
could be finite but possibly smaller than its value ata50,
which is between 3 and 4@Fig. 2~a!#. This would imply that
the above phenomenology of phase separation and supe
ductivity at small doping occurs only forJ/t.(J/t)c , while
for J/t,(J/t)c the liquid phase is stable at any dopingx. In
the latter case, one would expect the Luttinger parameteKr

to approach the value 1/2 in the dilute hole limitx→0,
which is the value corresponding to noninteracting spinl
degrees of freedom. This behavior is clearly exemplified
the numerical phase diagram of thet-J model @Fig. 2~a!#.
The primary goal of this paper is to determine which of the
two scenarios applies to thet-J-J8 model ata.ac .

We begin our analysis by casting the Hamiltonian~1! into
a language where the holes play the role of domain w
between broken segments of an infinite spin chain16 ~Fig. 3!.
We consider a lattice ofL sites with a number ofNe electrons
andNh5L2Ne holes. Denoting thei th spin on the lattice by
Si we may regard the spins as residing on a ‘‘squeez
lattice where the hole sites have been dropped from the
tem and the labeli of the spin Si is a site label in this
squeezed space, as in Fig. 3. We also introduce inters
sites for the squeezed spin lattice whose labelsj 5 i 11/2
differ from those of the spin sites by 1/2. Each interstitial s
may accommodate a numbernj50,1, . . . ofholes. A faithful
representation of the Hilbert space of Eq.~1! is given by
states labeled by

u . . . ,s i ,ni 11/2,s i 11 , . . . &[u . . . s i . . . &u . . . nj . . . &

(
j

nj5Nh, i 51. . . Ne, j 5 1
2 •••Ne1 1

2 , ~2!

FIG. 3. Domain wall representation of the Hilbert space. T
upper chain represents the spin sector with sites labeled byi. The
holes live on a lattice of interstitial sites labeled byj. Crosses rep-
resent ‘‘empty’’ interstitial sites, circles represent holes between
spins.
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wheres i56 1
2 denotes thez component of the spinSi . This

language turns out to be particularly convenient when o
introduces a large nearest-neighbor hole repulsion, i.e., if
let V5` in Eq. ~1!, such that, it is forbidden for two holes t
occupy neighboring sites. In the present language this me
that the occupancy of the hole cluster labeled byj is now
restricted to benj50,1. This modification of the model wil
be irrelevant in the dilute hole limit which we are interest
in.17 We may now choose to formulate the hole dynam
either in terms of hard-core boson operators or spinless
mion operators. For convenience, we introduce fermion l
der operatorscj , cj

† , where the action ofcj
† can be described

by cutting the spin chain open at the interstitial sitej, intro-
ducing a hole at this position and multiplying the state by
appropriate fermion phase. The hole kinetic energy is th
simply given by

Hc52(
j

~ tcj
†cj 111H.c.!. ~3!

Equation~3! can be thought of as theJ5J850 limit of the
Hamiltonian. In the other limit of interest, namely, the lim
of zero dopingx5Nh /L, the Hamiltonian becomes that of
pure spin chain:

Hs5J(
i

~Xi ,i 111aXi ,i 12!,

where Xi ,i 85Si•Si 82
1
4 , ~4!

where we work at constanta5J8/J from now on, and as-
sume thata.ac , such that the small doping regime is sp
gapped. The combined Hamiltonian

H05Hs1Hc , ~5!

where the spin and charge part are still completely dec
pled, will serve as a starting point for the perturbation theo
we propose. In order to correctly reproduce matrix eleme
of the Hamiltonian~1!, couplings between the spin sect
and the charge sector must be introduced:

H5H01Hsc1Hsc8 , ~6!

Hsc52J(
j

njg j , ~7!

Hsc8 5Ja(
i

Xi 21,i 11ni 21/2ni 11/2, ~8!

where

g i 11/25~12a!Xi ,i 111a~Xi 21,i 111Xi ,i 12!. ~9!

Here,Hsc is a correction which couples spin and charge
adjusting nearest-neighbor bonds and removing next-nea
neighbor bonds in the squeezed spin space in the vicinit
a hole. Certain corrections of the latter sort are redund

o

9-3
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ALEXANDER SEIDEL AND PATRICK A. LEE PHYSICAL REVIEW B69, 094419 ~2004!
whenever two holes are next-nearest neighbors in
space—or nearest neighbors in the present formalism—
this is corrected byHsc8 . Formally, Hsc and Hsc8 are sup-
pressed by powers of bothJ/t and x, and hence can be re
garded as small compared toH0. Our strategy is thus to trea
the spin-charge coupling termsHsc1Hsc8 as a perturbation
We must caution, however, that the hole kinetic energyHc is
very small, or ordertx2, and the small energy denominato
that appear in perturbation theory must be treated with c
We apply this method to the spin gapped regimea.ac and
find it to be a valid procedure in second-order perturbat
theory, in the sense that corrections are indeed small in
limit we consider. The general systematics of this at high
order perturbation theory are elucidated in Appendix A.

In the following section we will show that our approac
gives rise to a perturbative expansion of the ground-s
energy which may be used to analyze the phase diagra
Eq. ~1! in the vicinity of the origin, where the fate of th
various phases is uncertain from numerics fora.ac @Fig.
2~c!#. We note that the procedure proposed here bears s
resemblance to that used by Xianget al. to study thet-J
model in a first-order perturbative approach.18

III. PERTURBATIVE ANALYSIS OF THE MODEL

In gapless one-dimensional systems it is generally p
sible to derive basic features of the phase diagram from s
tral properties by means of Luttinger liquid theory.2 The low-
energy properties of a Luttinger liquid are complete
defined in terms of three parameters which have the dim
sion of a velocity: A sound velocityvs , a ‘‘compressibility’’
parametervN related to elementary charge excitations, an
‘‘stiffness’’ parametervJ related to elementary current exc
tations. These are not independent, but are related by
following universal relations identified by Haldane:2

vN5vs /Kr , vJ5vsKr ~10!

The parametersvN andvJ can be calculated from the depe
dence of the ground-state energyE0 on the carrier densityx
and on a phase twistf, respectively,1 wheref is associated
with a flux Lf penetrating the system when it is imposed
a ring with periodic boundary conditions:

vN5
2

pL

]2E0

]x2
, ~11!

vJ5
p

2L

]2E0

]f2 U
f50

. ~12!

By Eqs. ~11! and ~12!, vN is proportional to the inverse
compressibility of the system, whilevJ is proportional to the
Kohn stiffness,19 which is related to the Drude weight of th
conductivity. Equations~10!–~12! allow the determination of
Kr via

Kr5AvJ

vN
~13!
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from the ground-state energy of the system alone. The s
egy in now to evaluate both the numerator and the deno
nator in Eq.~13! perturbatively.

We now proceed by imposing periodic boundary con
tions on the charge sector and the spin sector of the sys
Eqs. ~6!–~8!, separately. This is apparently not the same
imposing periodic boundary conditions in real space, sin
momenta are now quantized in units of 2p/Ne rather than
2p/L. Note that there is a unique and well defined m
between the state space introduced in Eq.~2! and the Hilbert
space of thet-J-J8 model only for a finite system withopen
boundary conditions. Indeed, imposing open boundary
real spaceis equivalent to imposing them in the spin sect
and the charge sector separately. However, going from o
to periodic boundary conditions is not expected to matter
large system sizes. The unperturbed HamiltonianH0 then has
two separately conserved momenta, and we denote
ground state by

us0 ,c0&[us0&uc0&, ~14!

whereus0& is the ground state of the spin HamiltonianHs on
a ring of Ne spin sites. Although fora.ac the ground state
of Hs has a broken translational symmetry and is dou
degenerate, we will assume thatus0& is a symmetric super-
position of the two symmetry broken ground states and t
has zero lattice momentum. Likewiseuc0& is a noninteract-
ing Fermi sea ofNh spinless Fermions hopping onNe sites
with periodic boundary conditions. The unperturbed groun
state energy we write as

E05Es0
1Ec0

5Es0
2Ne

2t

p
sin~kf !, ~15!

where

kf5p
Nh

Ne
5

px

12x
~16!

andEs0
, Ec0

are the ground-state energy ofHs and the spin-
less fermion kinetic energy, respectively. We will focus o
analysis on the limitx→0 whereJ/t is small but fixed. In
this limit we argue that the ground-state energy of Eq.~6! has
an asymptotic expansion of the form

E5Es0
1L~Ax1Bx21Cx31••• ! ~17!

The coefficientsA,B, . . . will depend onJ/t. At the leading
order, they can in principle be inferred from the spinle
fermion kinetic energy in Eq.~15!. Formally, however it will
be more convenient to work with an expansion of the for

E5Es0
1NeF ÃS kf

p D1B̃S kf

p D 2

1C̃S kf

p D 3

1•••G . ~18!

The coefficients in Eqs.~17! and ~18! will in general not be
the same, due to the nonlinear dependence ofkf on x in Eq.
~16!. However, sinceNe5L(12x), theÃ term in Eq.~18! is
linear in x, and hence

A5Ã, B5B̃. ~19!
9-4
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LIGHTLY DOPED DIMERIZED SPIN CHAIN IN THE . . . PHYSICAL REVIEW B 69, 094419 ~2004!
We will now proceed by evaluating the above series order
order in perturbation theory, treating the spin-charge c
pling terms Hsc1Hsc8 perturbatively as we have outline
above. We write

E5E01E11E21•••1Ek1•••

A5A01A11A21•••1Ak1•••

A ~20!

and similarly for all other coefficients, where the labelk
denotes a term arising atkth order perturbation theory. W
have

A0522t, B050, C05
p2

3
t. ~21!

From Eqs.~11!–~13!, ~17! it follows that at smallJ/t

Kr5
p

2
A Affx

2B16Cx
'

1

2
A tx

B/p21tx
, ~22!

whereAff denotes the second derivative with respect to
phasef introduced above, andA0(f)522t cos(f) was
used. Equation~22! shows that ifB acquires a finite negative
value due to the spin-charge couplings,Kr will diverge as
x→0 even at smallJ/t. This would imply strong supercon
ducting fluctuations and phase separation at the diverge
On the other hand, ifB is zero or positive, the liquid phas
will be stable for smallx and J/t, and dominant supercon
ducting correlations will be absent in the vicinity of the o
gin of the phase diagram. In this case, one would expect
B50 to all orders in perturbation theory, since forB.0 one
would haveKr→0 asx→0, which seems inconsistent wit
the numerical phase diagram. Also,Kr50 is a somewhat
unlikely pathological limit of Luttinger liquid theory, where
the coefficient of the conjugate momentum of the cha
field vanishes and the charges freeze into a classical s
This again seems unlikely in the absence of long-rage in
actions, which one may assume especially in the presenc
a spin gap. As we have argued initially, one would rath
expect the charges to behave as noninteracting spinless
tons in the dilute limit, and Luttinger liquid physics the
implies thatKr assumes the value12 in this limit, provided
that no instability intervenes. This then requires that the
efficientAff andC in Eq. ~22! are not independent, but hav
a constant ratio independent ofJ.

Hence, we distinguish only two cases which we feel
the only ones consistent with the numerical phase diag
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for a.ac , Luttinger liquid theory and general expectatio
from the study of integrable models:2,12 1. B,0, leading to a
phase separation instability in the dilute hole limit for a
value of J/t, and 2.B[0, 6C[p2Aff for any J, corre-
sponding to a stable liquid asx→0 and smallJ/t, where the
charges act as a dilute gas of noninteracting spinless solit
We will now show that the second case applies.

At first order perturbation theory the energy correctio
factorize into mean-field like products, since spin and cha
are not correlated in the ground state wave function~14!. We
have

E15^s0 ,c0uHsc1Hsc8 us0 ,c0&

52NeJ^nj&0^g j&01NeJa^Xi 21,i 11&0^njnj 11&0

52L^g j&0Jx1LJO~x4!, ~23!

hence

A152^g j&0J, ~24!

where^ &0 denotes the expectation value with respect tous0&
or uc0& when no ambiguity is possible. Note that the cont
bution of Hsc8 is of orderx4. The smallness of this term a
x→0 reflects the fact that the holes obey the Pauli princi
which suppresses the probability of two holes being n
each other. We see that already at this order,Hsc8 does not
renormalize any of the coefficients in Eq.~17! that we are
interested in. We will thus drop it from the subsequent d
cussion. To determine leading corrections toB and C, we
will need to go to second order:

E252 (
us,c&

8 ^s0 ,c0uHscus,c&^s,cuHscus0 ,c0&
Ec2Ec0

1Es2Es0

, ~25!

where the sum goes over a complete set of unpertur
eigenstates and the prime excludes the ground state~14!
from the sum. We now rewriteHsc as

Hsc52
J

Ne
(

q
nqg2q , ~26!

where Fourier transforms

nq[(
j

eiq jnj5(
k

ck1q
† ck

gq[(
j

eiq jg j ~27!

have been introduced. Using the fact that the intermed
states in Eq.~25! can be chosen to be momentum eigensta
we have
E252
J2

Ne
2 (

q
(

us,c&

8 ^c0un2quc&^cunquc0&^s0ugqus&^sug2qus0&

Ec2Ec0
1Es2Es0

. ~28!
9-5
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ALEXANDER SEIDEL AND PATRICK A. LEE PHYSICAL REVIEW B69, 094419 ~2004!
It is necessary to distinguish between terms with zero m
mentum exchange between spin and charge and those
qÞ0. We write

E25E2
01E28 , ~29!

where E2
0 contains allq50 terms andE28 contains all the

rest. At q50, nq5(nj5Nh commutes with the Hamil-
tonian, hence there can be no virtual charge excitation
the charge matrix element is diagonal,uc&5uc0&:

E2
052S kf

p D 2

J2(
s

8 ^s0ugq50us&^sugq50us0&
Es2Es0

. ~30!

Note that virtual states without spin excitations do not en
Eq. ~28!, sinceus&5us0& would imply q50 and again the
charge part vanishes unless alsouc&5uc0&, which is ex-
cluded from the sum. Thus fora.ac the energy denomina
tor in Eq. ~28! is bounded from below by the spin gapD
which will dominate over charge excitation energies of ord
tx2 very close to the Fermi surface. This assures that
perturbative expansion is well behaved in the limitx→0 ~see
Appendix A!.

For qÞ0 we note thatnq excites only single-particle-hole
excitations. We can thus convert the sum over these te
into a double integral over a hole momentumk1 and a par-
ticle momentumk2:

E2852NeE
2kf

kf dk1

2p E
kf

2p2kf dk2

2p
f ~k1 ,k2!, ~31!

where

f ~k1 ,k2!5
J2

Ne
(
us&

8 ^s0ugk22k1
us&^sugk12k2

us0&

e~k2!2e~k1!1Es2Es0

~32!

and e(k)522tcos(k) is the free-fermion dispersion. Fo
later convenience, we also introduce the function

F~q!5
1
2 F f S q

2
,2

q
2D1 f S 2

q
2

,
q
2D G

5
J2

2Ne
S (

us&

8 ^s0ug2qus&^sugqus0&
Es2Es0

1~q→2q! D ,

~33!

where the symmetry ofe(k) was used.
The leading correction to the energy at second order

turbation theory is a contribution to theA coefficient in Eq.
~17!:

A25
p

Ne

]

]kf
E28U

kf50

52E
0

2p dk

2p
f ~0,k!. ~34!

To leading order inJ/t the integral over momenta may b
carried out to give a quantity defined in terms of the pu
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spin chainHs . This will demonstrate that the present expa
sion is well behaved, but we defer the evaluation to the f
lowing section in order to continue with the analysis of t
crucial B coefficient. Its correction at this order reads

B25
p2

2Ne
US ]2

]kf
2

E2
01

]2

]kf
2

E28D U
kf50

52F~0!1
p2

2Ne

]2

]kf
2

E28U
kf50

. ~35!

Again, the contribution fromE28 is evaluated by straightfor
ward differentiation of Eq.~31!. Only boundary terms sur
vive, as all derivatives of the integrand vanish by symme
when the limitkf→0 is taken, using the 2p periodicity of f
in the second argument. We find

B252F~0!1 1
2 @F~2kf !1F~2h!#ukf→0 . ~36!

At this point we have introduced an infinitesimalh since
terms with zero momentum transfer are really excluded
the sum definingE28 . However, we argue that the functio
F(q) will be continuous atq50 and henceB2 vanishes. We
note that this is the effect of a nontrivial cancellation b
tweenq50 processes and processes withq→0. Physically,
the continuity ofF(q) can be seen by interpretingF(q) as
the second-order energy response of a pure spin chain d
a periodic perturbation, as we explain in detail in Append
B. Hence, by Eq.~36!

B250. ~37!

We have convinced ourselves that a similar cancellation
the B coefficient takes place at third order perturbati
theory.20 We therefore propose that

B50 ~38!

to all orders in perturbation theory, and thus for smallJ/t the
liquid remains stable in the limitx→0 even in the casea
'0.5 @Fig. 2~c!#. The physical implication of Eq.~38! is that
indeed the holes act as spinless fermions whose interactio
short ranged, and is irrelevant in the dilute limit. The Pa
principle severely suppresses the wave function when
holes approach each other. The range of this suppressio
larger in one dimension than for dimensions greater than o
since in higher dimensions a curvature of the wave funct
is less costly at small distances. Therefore, in one dimen
this effect is strong enough in order to prevent a short-ra
interaction from generating a term of orderx2 in the energy.

As we have argued above, the noninteracting nature of
charge degrees of freedom in combination with Lutting
liquid arguments also imposes constraints on the linear
cubic terms inx when a magnetic flux is imposed. We no
move on to verify these relations perturbatively. Note th
B50 leads toC5C̃ in Eqs.~17! and ~18!, such that
9-6
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C25
p3

6Ne

]3

]kf
3

E28U
kf50

. ~39!

In this case boundary terms such as those displayed in
~36! do not contribute, since they vanish by symmetry
kf→0 when another derivative is acting on them. Instead,
have now again a ‘‘bulk’’ contribution analogous to that
Eq. ~34!:

C252
1

6

p

2E0

2p

dk
]2

]kf
2

f ~kf ,k!U
kf50

. ~40!

As explained above, this is to be compared to the coeffic
A2,ff . The phase twistf will modify all hopping matrix
elements viat→teif in Eq. ~3! and leads to the following
replacement of the free hole dispersion in the funct
f (k1 ,k2) in Eq. ~32!:

e~k!→ef~k!522t cos~k1f!,

f ~k1 ,k2!→ f f~k1 ,k2!. ~41!

Hence from Eq.~34!

A2,f,f5
]2

]f2
A2U

f50

52E
0

2p dk

2p

]2

]f2
f f~0,k!U

f50

.

~42!

However, using the fact that

f f~0,k!5 f ~f,k1f! ~43!

holds, it follows by shifting the integration variable and com
parison with Eq.~40! that

6C25p2A2,ff ~44!

is satisfied. Again, we have confirmed an identical relation
third order perturbation theory,20 and this suggests that in
deed

6C5p2Aff ~45!

to all orders. Hence, although the parametersvN and vJ in
Eq. ~13! each receive nontrivial corrections, their ratio
fixed to leading order inx such thatKr always approaches12
in the limit x→0. Luttinger liquid theory then implies tha
the dilute holes share all the universal properties of a ga
noninteracting spinless particles. Presumably, this pic
will hold in the entire regimeJ/t,(J/t)c , where for J/t
.(J/t)c small doping will give rise to phase separation.

IV. EXPLICIT EVALUATION OF COEFFICIENTS

In the preceding section we have shown that our per
bative approach is consistent in all details with a pictu
where the charge degrees of freedom behave as noninte
ing spinless solitons in the dilute limit, and are effective
decoupled from the spin dynamics. The second-order exp
sions we derived involve complicated sums over both s
and charge degrees of freedom. We will now show that
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expressions forA2 andC2 can be evaluated more explicitly
to leading order inJ/t, in terms of quantities that are derive
from a pure spin chain problem. In this way we obtain e
plicit asymptotic expansions for the ground-state energy
the compressibility parametervN , showing that second-orde
corrections are suppressed by nontrivial powers ofJ/t com-
pared to the leading orders. Also, these quantities are rel
to the single-hole energy and mass renormalization, wh
will be clarified in the following section.

We stress once more that the results we present here
valid in the limit x2!J/t. In this limit the low-lying charge
excitations are dominated by the curvature near the b
bottom of the bare dispersione(k) and their contribution to
the energy denominator in Eq.~31! is dominated by that of
the gapped spin excitations. In the opposite limitJ/t!x2 the
perturbation theory presented here is still valid, yet a cro
over will take place and the asymptotic expansion~17! will
not hold ~see Appendix A!.

With this in mind, the first- and second-order energy c
rections are dominated by the following terms:

E1 /L.A1x52^g j&0Jx

E2 /L.A2x. ~46!

We will now show that the second-order term is indeed s
pressed by powers ofJ/t compared to the first-order term
which is of orderJx. To achieve a systematic expansion
A2 in J/t we rewrite Eq.~34! in the form

A252E
0

2p dk

2pE dE
A~k,E!

e~k!2e~0!1E2Es0

, ~47!

where we have introduced a spectral function

A~k,E!5
J2

Ne
(
s

8
u^s0ugkus&u2d~Es2E!

[(
n

Kn~E!eikn ~48!

and its energy dependent Fourier coefficientsKn(E). In
terms of the latter we may write

A252
1

2tE dE(
n

Kn~E!E
0

2p dk

2p

eikn

11
E2Es0

2t
2cos~k!

.

~49!

The k integral is readily performed to give

A252
1

2tE dE(
n

Kn~E!
~11D2A~11D!221! unu

A~11D!221
,

where

D[
E2Es0

2t
. ~50!
9-7
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The matrix elements definingKn(E) will decay rapidly when
E is a few timesJ and hence we may expand Eq.~50! in
powers ofD. Keeping only the leading term this yields

A2.2
1

2t
E dE(

n
Kn~E!

1

AE2Es0

t

.2
t

2
G1/2S J

t
D 3/2

, ~51!

where the coefficientG1/2 is a quantity defined only in term
of eigenstates of the doped spin chain. For later convenie
we define the more general function

Gp5Jp22E dE
A~q50,E!

~E2Es0
!p

5
1

Ne
(
us&

8 ^s0ugq50us&^sugq50us0&

S Es2Es0

J
D p . ~52!

Hence, it is apparent from Eqs.~46! and ~51! that

E2

E1
;S J

t D
1/2

~53!

indicating the convergence of our perturbative approach
small J/t. In Appendix A, we will further comment on con
vergence and expansion parameters of this series in va
limits. Note that the nonanalytic nature of the expans
originates from the gaplessness of the charge degrees of
dom and the existence of a regime where the spin gap do
nates the energy denominator in Eq.~47!. Similarly, in
second-order perturbation theory the compressibility par
etervN reads to leading order inx:

vN.S 4pt1
12

p
C2D x. ~54!

By means of Eq.~40! the evaluation ofC2 goes analogous to
that of A2 and we get

C2.2
p2

12
G3/2AJt

vN.ptS 42G3/2AJ

t D x. ~55!

Numerically, we found G1/250.2502(2) and G3/2
50.474(3) ata50.5 ~Fig. 4!. Hence, although the com
pressibilityk;vN

21 increases withJ, no unstable value ofJ
can be inferred that lies within the validity of our perturb
tion theory.
09441
ce
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V. SINGLE SPIN-POLARON PICTURE

We will now develop a variational picture of the polaron
effects of a single hole on its spin environment at smallJ/t
in the special casea50.5. The perturbation theory presente
in the preceding section for a finite carrier concentration m
be applied to the problem of doping a single hole into t
infinite spin chain as well, such that we will be able to com
pare variational and perturbative results. In second-order
turbation theory, the energy of a single hole at momentumk
reads:

Ep~k!522t cos~k!2^g j&0J2E
0

2pdk2

2p
f ~k,k2!1•••,

~56!

where we have not included the contributionEs0
from the

spin background. Atk50 we immediately see by compar
son with Eqs.~21!, ~24!, and~34! that

Ep[Ep~k50!5A01A11A21•••[A ~57!

holds for the single polaron energy in second-order pertur
tion theory. Likewise, for the renormalized mass of the s
polaron we have, comparing to Eqs.~21! and ~40!

FIG. 4. Numerical determination ofG1/2 and G3/2 by exact di-
agonalization ofHs for a5

1
2 . System sizes of up toN518 have

been diagonalized. Results are plotted for the two degene
ground states with momentap50 ~crosses! and p5p ~squares!.
The extrapolated values have been determined by fitting their a
ages~diamonds! to the functionf (N)5a1b exp(2cN).
9-8
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m21[
]2

]k2
Epuk505

6

p2
~C01C21••• ![

6

p2
C ~58!

at this order. We may therefore rewrite the ground-state
ergy of the system at finite doping~17! as

E5Es0
1LS Epx1

p2

6m
x31••• D

5Es0
1NeE

2kf

kf dk

2p
Ep~k!1O~kf

4!. ~59!

Hence up to third order inx the ground-state energy of th
system is apparently given by the energy of noninterac
spinless particles with a dispersionEp(k), where interaction
effects enter only beyond this order. This further confirms
picture established in the preceding sections.

We now focus on the Majumdar-Gosh pointa50.5,
where the ground state of the spin HamiltonianHs is known
exactly.21 It consists of a direct product of uncorrelated s
glet pairs:

uMG&5)
i

1

A2
~ u↑↓&2u↓↑&)2i ,2i 11 . ~60!

Note that we useuMG& to denote one of the two doubl
degenerate symmetry broken ground states, whereasus0& has
been used to denote their symmetric superposition. Aa
50.5, our results for the single polaron energy and m
Eqs.~57! and ~58! take the concrete form

Ep52tS 22
9

16

J

t
10.125S J

t D
3/2

1••• D
m215tS 220.237AJ

t
1••• D . ~61!

We may write the ground state of the unperturbed Ham
tonianH0 as a superposition of states depicted in Figs. 5~a!
and 5~b!:

uV0&5
1

ANe
(

j
u j &cuMG&s , ~62!

whereu j &c denotes a state with a hole at the interstitial sitj
and ‘‘c’’ and ‘‘ s’’ refer to the spin sector and the charg
sector of the state. When the interactionHsc is taken into
account, a hole in the stateu2 j &c will excite a spin configu-
ration where the two dimers adjacent to the hole are in trip
states, and the two triplets form a singlet@Fig. 5~c!#. More
precisely, the oval in Fig. 5~c! denotes the following spin
state:

~63!
09441
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We may now denote such a triplet pair excitation which
centered around the hole site 2j by u2 j &s . Similarly, the hole
state u2 j 11&c will excite the spin statesu2 j &s and u2 j
12&s . Clearly, a variational wave function will need admix
tures of states such as shown in Fig. 5~c!. However, in the
vicinity of the hole the kinetic energyHc is the dominant
part of the Hamiltonian, and it will allow the hole to mov
away from the excited triplet states as shown in Fig. 5~d!. To
optimize the kinetic energy, it is hence necessary to inclu
the more general states of Fig. 5~d! into the wave function.
We therefore write down the following trial wave functio
for a state with one hole at momentumk:

utk&5
1

ANe
(

j
eik j u j &c^~ uMG&s

1a(
2 j 8

e2u j 22 j 8ub1 i ( j 22 j 8)du2 j 8&s. ~64!

Hence utk& lives in the subspace of all states that can
reached by acting once with the perturbationHsc on the ze-
roth order wave function~62! and then acting an arbitrar
number of times with the hopping operatorHc . We also note
that indeed certain exact excited states of a Majumdar-G
spin chain are given in terms of the tightly bound tripl
excitations shown in Eq.~63! and Fig. 5~Ref. 22!. The fol-
lowing matrix elements are needed to evaluate the energ
the state~64!:

s^MGu2Jg j u2 j 8&s5
A3

8
J~d j ,2j 81d j 21,2j 81d j 11,2j 8!,

~65!

s^2 j 8u2J g j u2 j 8&s5
9

16
J2~21! j

3

16
J

1
1

4
J~3d j ,2j 82d j 21,2j 82d j 11,2j 8!,

~66!

FIG. 5. ~a! and ~b! Single hole basis states forming the grou
state of the noninteracting HamiltonianH0 @Eq. ~62!#. Lines denote
the singlet pairs in Eq.~60!. ~c! A pair of triplets excited by the
presence of the hole. The oval denotes a singlet formed by
triplet states on the links adjacent to the hole, as displayed in
~63!. ~d! States used to form the variational wave function~64!.
9-9
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s^2 j 8uHsu2 j 8&s5s^MGuHsuMG&s1J52
3

4
JNe1J.

~67!

In addition, bothg j andHs do not have off-diagonal matrix
elements among the statesu2 j &s . This leads to the following
expectation values:

^tkuHcutk&522t cos~k!24tuau2j3cos~k1d!, ~68a!

^tkuHsutk&52
3

4
JNe^tkutk&1Juau2~j11j2!, ~68b!

^tkuHscutk&5
9

16
J^tkutk&1

A3

16
J@112e2bcos~d!#~a1a* !

1O~Juau2!, ~68c!

^tkutk&511uau2~j11j2!, ~68d!

where the constantsj1 andj2 are proportional to the weigh
of spin excited states with the hole on even positions and
positions, respectively, andj3 arises from hopping betwee
even and odd sites in the presence of a spin excitation:

j15
1

2 (
j 8

e22bu2 j 8u5
1

4b
1

1

3
b1•••,

j25
1

2 (
j 8

e22bu2 j 821u5
1

4b
2

1

6
b1•••,

j35
1

4 (
j 8

e2bu2 j 8u~e2bu2 j 821u1e2bu2 j 811u!

5
1

4b
2

1

24
b1•••. ~69!

Terms of orderJuau2 were only kept in Eq.~68! when they
are multiplied byj i;1/b. It is apparent from Eq.~68a! that
d52k has to be chosen, and from Eq.~68c! that a is real
and negative. Keeping only leading terms, this leads to
variational energy function

Ep
var~k;a,b![^tkuHc1Hs1Hscutk&/^tkutk&

522t cos~k!1
9

16
J1

1

2
ta2b2t

a2

b
@12cos~k!#

1J
a2

2b
1

A3

8
Ja@112cos~k!#, ~70!

where again the bulk contribution of the spin chain was
included. We first minimize this function fork50 and find
for the variational parameters at the stationary point

b05AJ

t
, ~71a!

a052
3A3

16
AJ

t
. ~71b!
09441
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By Eq. ~71a!, the size of the spin polaron cloud is propo
tional to (J/t)21/2 in agreement with Eq.~56!, where the
dominant contributions to the integral come from the reg
where k2

2 is of the order of the spin gap. The variation
energy of the spin polaron atk50 is thus

Ep
var[Ep

var~k50;a0 ,b0!52tF22
9

16

J

t
1

27

256S J

t D
3/2G .

~72!

This is indeed of the same form as Eq.~61!, where the first
two terms are reproduced exactly, as they are mean-field
in character. Moreover, the coefficient of the last term
about 0.105 and hence matches the one obtained by pe
bative and numerical methods in Eq.~61! within roughly
15%.

The appearance of a mass term proportional toAJ/t as in
Eq. ~61! may also be understood from this variational a
proach. It is seen in Eq.~70! that a term of ordera2/b
;AJ is no longer precisely canceled at finitek. The reason
for this is that at finitek time reversal symmetry is absen
and a nonzero value of the parameterd introduced in Eq.
~64! is generally allowed. We have tunedd such that the
polaronic corrections in the kinetic energy~68a! do not have
the samek dependence as the leading term. This is givi
rise to aa2/b term at finitek. It leads to the variational mas

~mvar!215
]2

]k2
Ep

var~k;a0 ,b0!uk50

5tS 22
27

256
AJ

t
1••• D . ~73!

Here, the dependence ofa and b on k2 need not be taken
into account because of stationarity. The coefficient of
second term happens to be the same as the one showing
Eq. ~72! which is now off by about a factor of 2 when com
pared to the mass shown in Eq.~61!. This may be attributed
to the variational character of the state~64!, since the mass
comes from a subdominant term proportional tok2. How-
ever, the correct dependence onJ as well as the right order o
magnitude are again obtained. We therefore conclude tha
wave function~64! provides a quite accurate picture of th
large polaronic cloud in the limit of smallJ/t, especially at
k50.

In view of our original motivation to examine the stabilit
of the liquid phase of thet-J-J8 model asx→0 at smallJ/t,
it is interesting to think about the possibility of the formatio
of bound hole states. It is generally expected that either at
critical value for the onset of phase separation, (J/t)c , or at
an even smaller critical value (J/t)c1

,(J/t)c bound states of
two holes will exist11 ~see also Ref. 5!. The existence of such
bound states can be discussed on a qualitative level base
the variational spin polaron picture proposed in this secti
To form a bound state, the single polaron wave functio
must significantly overlap, hence the size of a bound s
will be of orderr;(J/t)21/2. The potential energy gain wil
be of order (J/t)3/2 since the mean-field term of orderJ in
Eq. ~72! will not be affected by pair formation. However, th
9-10
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kinetic-energy cost of such a state is of order 1/r 2;J/t and is
dominant. We conclude that bound states of holes will
quire finiteJ/t of order 1 or greater, in agreement with th
picture of free single-hole-like charge degrees of freed
established in the preceding sections.

VI. CONCLUSION

We have examined thet-J-J8 model in one dimension, in
the regime of smallx andJ/t by perturbative and variationa
approaches. This parameter regime is most challengin
numerical methods, and earlier numerical studies did no
low a firm conclusion whether a phase separation instab
and a phase of dominant singlet superconducting fluctuat
extend down to values ofJ/t,1 in the casea5J8/J'0.5,
where a spin gap is present at small doping.

Using an approach where couplings between spin
charge degrees of freedom are treated as a perturbation
have presented a detailed analysis of the model in sec
order perturbation theory, showing that no instability
present at smallJ/t. Instead, using Luttinger-liquid argu
ments and by studying the dispersion of a single hole
mersed into the correlated spin system, we have dem
strated that the hole degrees of freedom precisely behav
free spinless solitons in the dilute limit, despite their micr
scopic coupling to the nontrivial spin background. This b
havior conforms to Luttinger liquid physics, where spin a
charge are separate degrees of freedom, and coupling
tween them are regarded as irrelevant in a renormaliza
group sense. While this point of view is generally accep
for one-dimensional systems, in microscopic on
dimensional lattice models it usually may be firmly demo
strated only at special integrable points.2,12 The method we
established in Sec. III provides a perturbative framework
such a demonstration in a nonintegrable model over a ra
of parameters. Moreover, it allows the calculation of no
trivial quantities such as the leading corrections to the sin
hole energy and mass renormalization, which depend
nonanalytic powers ofJ/t. The numerical calculation of the
coefficients in this expansion still requires an exact diagon
ization of a pure spin problem. We used these results fo
comparison to a variational approach. Proposing a va
tional wave function where the hole is surrounded by a
laronic cloud of tightly bound pairs of triplet excitations w
were able to confirm the perturbative results for the dep
dence of the single polaron energy and mass onJ/t, as well
as the order of magnitude of the coefficients. In particu
the second-order perturbative energy corrections are in c
quantitative agreement with the variational result. Based
these findings, we argue that for the parametera50.5 the
onset of phase separation at small doping as well as the
mation of bound states requireJ/t to be at least of order 1.

To conclude, the theory of thet-J-J8 model presented
here is limited to small values ofJ/t and cannot access
region of dominant superconducting correlations, which
a50.5 might exists at moderate values ofJ/t and small
doping from numerics. In a real system, additional interch
effects must be taken into account, that can either fa
dimer locking, or a superconducting dimer liquid whe
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dimer locking is frustrated~cf. Ref. 23!. This calls for further
investigations.
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APPENDIX A: CONVERGENCE AND CROSSOVER
BEHAVIOR OF THE PERTURBATIVE EXPANSION

Here we briefly illustrate the behavior of our expansion
kth order perturbation theory, where one will encoun
terms analogous to Eq.~31!:

~A1!

The phase space consists ofm-hole momenta andn-particle
momenta. It is enough to consider the casem1n5k. There
will be terms with fewer integrals also, but they are mul
plied by additional powers ofx such as in Eq.~30!.

We focus on the regimekf
2!J/t first. Sincee(k)'const

1tk2, the integrand does not significantly depend on
hole momenta such that each of the hole integrals will g
rise to a factor ofx. The integral over particle momentapi
will be dominated by the region where all momenta a
within a range ofAD/t of the Fermi points, whereD;J is
the spin gap. In this regime, all of thek21 factors in the
denominator are dominated by the spin gap and are of o
D. Hence we obtain the following estimate for the term d
played in Eq.~A1!:

~A1!;xm~D/t !n/2
Jk

Dk21
;xm~AJ/t !nJ. ~A2!

The leading contribution toEk in the limit x2!J/t will thus
be a term of order

Ek;x~AJ/t !k21J. ~A3!

Equation~A3! shows that subsequent orders in perturbat
theory are always suppressed by powers ofAJ/t, as we veri-
fied explicitly up to second order@cf. Eq. ~53!#. Note that
relations~A2! and ~A3! are valid asymptotically in a given
limit, they do not imply the existence of a systematic expa
sion in powers ofx and AJ/t. Rather, theEk’s are quite
complicated functions ofx and J. Relation ~A3! will hold
until x2/J;1/t, and upon further increase of this ratio
crossover will take place. We may however write down
asymptotic expansion inx:
9-11
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Ek5L@Ak~J!x1Bk~J!x21Ck~J!x31Dk~J!x41•••#

E5const1E11E21••• ~A4!

as we did in second-order perturbation theory. Recall fr
Eqs. ~51! and ~55! that A2;(J/t)3/2, C2;(J/t)1/2 while B2
50. Formally, however,B2 is of orderJ. This implies that in
generalAtx2/J is the expansion parameter of the series~A4!.

In the opposite limitJ!tx2 it is easily seen from Eq.~A1!
that now Ek;Jk holds. In this limit it is not necessary
though still permissible, to include the spin chain partHs in
the unperturbed HamiltonianH0. Instead one may apply de
generate perturbation theory in the spin couplings, wh
gives rise to an asymptotic expansion inJ:

E5const1L@a~x!J1b~x!J21c~x!J31d~x!J41•••#
~A5!

This method has been applied in Ref. 10 to calculate
intersection of the spin gap phase boundary with thex axis.
Note that in Eq.~A5! x need not be small, whereas in E
~A4! both J/t andx2t/J have to be small. However, due t
the limitationJ!tx2, Eq. ~A5! cannot be used to address t
nature of the phase diagram in the dilute hole limit.

APPENDIX B: THE CONTINUITY OF THE FUNCTION
F „q…

We will now give an argument for the continuity of th
function F(q) which leads to the crucial cancellation in E
~36!. This question is more subtle than it may seem, and
following argument would require more scrutiny in the ga
less casea,ac . We restrict ourselves to the spin gapp
case, as we have done throughout the paper. Recall the
nition of F(q) from Eq. ~33!:

F~q!5
J2

2Ne
S (

us&

8 ^s0ug2qus&^sugqus0&
Es2Es0

1~q→2q!D .

~B1!

Physically, the continuity ofF(q) can be seen by inter
pretingF(q) as the second-order energy response of a p
spin chain due to a periodic perturbation. More precisely,
consider the following auxiliary spin chain problem:

Hq~l!5Hs1lJ(
j

cos~q j !g j

5Hs1
l

2
J~gq1g2q!, ~B2!
e

09441
h

e

e
-

efi-

re
e

where Hs is as defined in Eq.~4!. Let Eq(l) denote the
ground-state energy per site of this problem. Then it is ea
seen from second-order perturbation theory and the de
tion ~B1! that atq50

F~0!52 1
2 E q509 ~B3!

holds, where the prime denotes a derivative with respect tl
taken atl50. On the other hand, atqÞ0 the same argu-
ment gives

F~qÞ0!52E q9 . ~B4!

Note the factor of 2 difference between Eqs.~B3! and~B4!.
Despite this apparent difference between the casesq50 and
qÞ0, it is E q9 which is discontinuous atq50, notF(q), as
the following argument shows: In the vicinity of a sitej the
ground state ofHq(l) will have great overlap with the
ground state of Hq50@l( j )# as q→0, where l( j )
[lcos(qj). In other words, asq→0 it should be justified to
replace the oscillating perturbation inHq(l) by a flat pertur-
bation in a sufficiently large local region around each sitej.
The size of this region can still be chosen to be!1/q. One
can thus argue that up to powers ofq the ground-state energ
will be given by a sum over local contributionsEq50@l( j )#:

Eq→0~l!5
1

Ne
(

j
Eq50@l~ j !#

'
1

Ne
E

0

Ne
dxEq50@l cos~qx!#

5
1

Ne
E

0

Ne
dxS Eq501l cos~qx!Eq508

1
1

2
l2cos2~qx!E q509 1••• D

'Eq501 1
4 l2E q509 . ~B5!

From Eqs.~B4! and ~B3! it then follows that

F~q→0!52 1
2 E q509 5F~0!. ~B6!

Note that the local point of view taken here is better justifi
in the gapped case, where any local perturbation decays
ponentially in space.
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13J. Sólyom, Adv. Phys.28, 201 ~1979!.
14R. Jullien and F.D.M. Haldane, Bull. Am. Phys. Soc.28, 344

~1983!.
15F.D.M. Haldane, Phys. Rev. B25, 4925~1982!.
16We thank F.D.M. Haldane for pointing out to us this possibilit
17Note that for small doping andJ/t the PS region consists of a

insulating x50 phase~no holes! and a liquid phase withx
5xc , wherexc is the critical doping at which phase separati
just occurs. Sincexc is small in the region of interest, it is
09441
justified to consider the holes as dilute even in the PS regim
18T. Xiang and N. d’Ambrumenil, Phys. Rev. B45, 8150~1992!.
19W. Kohn, Phys. Rev.133, A171 ~1964!.
20A. Seidel, Ph.D. thesis, Massachusetts Institute of Technolo

2003 ~unpublished!.
21C.K. Majumdar and D.K. Gosh, J. Math. Phys.10, 1388~1969!.
22W.J. Caspers and W. Magnus, Phys. Lett.88A, 103 ~1982!.
23A. Seidel, C.A. Marianetti, F.C. Chou, G. Ceder, and P.A. Le

Phys. Rev. B67, 020405~R! ~2003!.
9-13


