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We study the one-dimensionl-J'-model in the limit of small hole doping and small/t, J'/t. Special
emphasis is put on the regindé/J~0.5, where a spin gap is present at small doping and the undoped spin
chain is strongly dimerized. Using a perturbative approach and Luttinger liquid arguments, we demonstrate for
this nonintegrable class of models that the charge degrees of freedom behave as noninteracting spinless solitons
in the dilute hole limit. Our approach is also used to evaluate the energy and mass renormalization of a single
hole. Interestingly, the corrections of these quantities are in powek&hf At J'/J=0.5 we construct a
variational spin-polaron wave function for the hole and find good agreement with our perturbative results.
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I. INTRODUCTION other handJ/t is usually a fraction of unity. In this regime,
the hole kinetic energy is dominant and it is less clear intu-

The discovery of highF, superconductors has generateditively if the dimer picture discussed above applies. In the
great interest in models of strongly correlated insulators irfPresent paper, we study this question in the context of the
low dimensions, both in the presence and absence of dopéddJ-J’ model in one dimension:
carriers. While in two dimensions the problem remains chal-
lenging even for the most elementary models that are be- T
lieved to capture some of the physics of the cuprates, much H= _tPZ (Ci,oCiv1oTH.C)P
can be learned from the study of one-dimensional counter-
parts of such models. Basic features that characterize the 1
high-T. materials, such as the absence of a quasiparticle pole +‘]Z (Si "Siv1~ Z”ini+1)
near the Fermi surface and possibly spin-charge separation,
are essential to one-dimensional systems and are well under- 1
stood heré. The success of the theory in one dimension is +\]'Ei (Si'SHZ_ 2 MNi+2
due to the availability of powerful exact methods, such as

numerical diagonalization and Bethe ansatz, in combinatioere, P is a projection operator that enforces the constraint
has so far been found to describe all gapless degrees of fregnq the nearest- and next-nearest-neighbor coupiingysd
dom in one-dimensional systems, the Luttinger licfiid. J' are assumed positive throughout this paper. In addition,

In the present work we study the effect of doping a smallye have included a nearest-neighbor interactibfor later
concentration of holes into a dimerized spin chain. This is;gnvenience.

motivated by the idea that in a dimerized system, there natu- At finite doping, not much is known analytically about
rally exists an amplitude for pair formation. Upon introduc- this model due to its nonintegrable nature. The phase dia-
tion of carriers phase coherence may be established, resultigam has been established numeridayf (Fig. 2. How-

in superconductivity. This idea has been previously propose%?,er, in the regime around=J'/J~0.5 where the undoped

in the literature’ We distinguish between two rough physical spin’chain is strongly dimerized and which is of particular
pictures of hole doping into a dimerized ch&ig. 1). Inthe  jnterest to us, we feel that the numerics are somewhat incon-
first scenaridFig. 1(a)] the dimer order remains long ranged ¢|ysive for small dopingx and J/t<1 as we will discuss
even after hole doping. The dimers tend to reside on everyg|ow.

second link of the lattice as in the symmetry broken undoped The purpose of this paper is twofold: First, in the case of
state, and holes tend to pair on the empty sites in betweengyong frustrationa=J'/J~0.5 we wish to determine the

We note that this case bears some resemblance t0 dopggle of the various regions present in the phase diagram of
ladder model$. Indeed strong superconducting correlations

have been proposed for dimer models with explicit symme-

b a)
D@D EDAD - -
A second possibility is that the holes enter as domain

walls between different dimer phasfsig. 1(b)]. Then the

long-range order of dimers is destroyed, but the singlet gap

remains. If the holes are mobile and become phase coherent, @@ . @@@ ] @

this leads to superconductivity in analogy with the original

RVB scenaric’ However, the pictures presented in Fig. 1 are  FIG. 1. (a) doping into frozen dimer state. Ovals represent sin-
based on the limit of largd/t. In physical systems, on the glet pairs.(b) mobile dimers with domain walls.

+V2 niNj+1. (1)

0163-1829/2004/69)/09441913)/$22.50 69 094419-1 ©2004 The American Physical Society



ALEXANDER SEIDEL AND PATRICK A. LEE PHYSICAL REVIEW B 69, 094419 (2004

a) 5 b) s ¢ s
0=.0 o=.24
I PS I
JA e Jt Jit
I ——— i I
0 1 1 1 1 |X 1 1 1 1 1 o 1 L 1 1 IX 1 1 1 1 1 0 1 1 1 1 )l( 1 1 1 1 1

FIG. 2. Sketch of the zero temperature phase diagram dfdhé& model as determined numerically in Ref. 4 tor=0 (a), «=0.24(b),
anda=0.5(c). Contours are labeled by values Kf . The shaded region marks the domain of dominant singlet superconducting correla-
tions. The dotted lines ifa) were proposed in Ref. 5.

thet-J-J’ model at small doping and smalit [Fig. 2(c)]. In ~ energy and mass renormalization. We introduce a spin po-
particular, we will answer the question whether a regime ofaron type variational wave function where the hole is sur-
dominant singlet superconducting correlations in the vicinityrounded by a cloud of tightly bound triplet excitations and
of an instability towards phase separation persists to valuefnd good agreement with our perturbative results. We con-
J/t<1 and in the dilute hole limit. This would happen if all clude in Sec. VI. Appendix A illustrates the behavior of our
the contours in Fig. @) extrapolate to the origin, which expansion at general order in various limits. An important
appears to be a possible interpretation of the numerics. Ttechnical issue is discussed in Appendix B.
this end, we introduce a perturbative approach valid in this
limit. We find that the scenario mentioned above does not
occur, but instead the Luttinger liquid is stable for snitl
and small doping. Luttinger liquid arguments will then imply ~ We wish to study the Hamiltoniafl) in the limit of van-
that strong superconducting correlations only exist above &hing exchange couplings and doping. R6+0 the phase
finite critical value ofJ/t. zero temperature diagram of E@l) has been obtained
Second, below the critical valudit). the liquid phase is numerically>'° for various values of the parameter
stable in the limitx—0, and we will use our method to =J'/J. The results are sketched in Fig. 2. These phase dia-
demonstrate certain properties that one expects to hold fagrams show a Tomonaga-Luttinger liquitlL) region below
one-dimensional lattice models based on general grounds. the dashed line labeled spin gap, where both spin and charge
particular, spin and charge are expected to correspond fdegrees of freedom are gapless. Above the dashed line there
separate degrees of freedom and any microscopic coupling a spin gapped liquid phase which is subdivided into a
between them should be irrelevant. As a consequence, dilutegime of dominant singlet superconducti(®S correla-
holes that are doped into a correlated spin chain should act &iens(shaded grayand, where present, a regime of dominant
a gas of noninteracting spinless solitdhsyhere the cou- charge-density-wavéCDW) correlations. Also shown are
pling to the nontrivial spin background only gives rise to acontours of constant values of the Luttinger paramétgr
renormalization of the effective hole mass. This phenomenoibove theK, line labeled«, there is a region of phase
has been observed in integrable models such as the HubbasdparatiorlPS, where the ground state has a phase boundary
model*? Our perturbative approach allows us to give a dem-between a hole-rich and an electron-rich phase. The param-

Il. FORMULATION OF THE PROBLEM

onstration of the same behavior in the nonintegrahlel’ eterK,, is directly related to the large distance behavior of
model, and to calculate the effective energy and mass renothe various correlation functions of a Luttinger liquid: For
malization of the hole for small/t. K,>1 pairing correlations dominate over density-wave cor-

The remainder of this paper is organized as follows. Inrelations, otherwise density-wave correlations dominate. Fur-
Sec. Il we introduce the model, briefly discuss the numericathermore, in the presence of a spin gap, triplet pairing corre-
phase diagram, and cast the model into a language whetations and spin-density-wave correlations are exponentially
holes are interpreted as domain walls. In Sec. Il we treat thsuppressed. In this region, the main competition is therefore
spin-charge couplings as a perturbation and derive exprebetween CDW and SS correlations, which in the presence of
sions for the ground-state energy, compressibility and Kohra spin gap decay as ¥ andr ~», respectively:*3
stiffness of the model for small't, J'/t, and small doping. At zero doping &= 0) it is well known that the spin chain
This will allow us to qualitatively continue the numerical undergoes a phase transition at a critical valuexrgf0.24
phase diagram into the region of small doping. In Sec. IV we(Ref. 14 above which the ground state is dimerized with a
will explicitly evaluate these expressions as asymptotic segap in the spin excitation spectrumFor a> a, this spin
ries in powers ok and \JJ/t, demonstrating the convergence gap remains present over a finite range of doping for any
of our approach. In Sec. V we discuss the single polarowvalue ofJ/t, as was shown in Ref. 10. Figure 2 shows that at
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4 * * * whereo; = *+ ; denotes the component of the spi6; . This
* * * *_ language turns out to be particularly convenient when one
i i+1 i+2 introduces a large nearest-neighbor hole repulsion, i.e., if we
let V= in Eq. (1), such that, it is forbidden for two holes to
occupy neighboring sites. In the present language this means
that the occupancy of the hole cluster labeledjkg now
Jeivli2 4l j+2 restricted to ben;=0,1. This modification of the model will
be irrelevant in the dilute hole limit which we are interested
FIG. 3. Domain wall representation of the Hilbert space. Thejn 17 \w\je may now choose to formulate the hole dynamics
upper chain represents the spin sector with sites labeléd Bye  gjther in terms of hard-core boson operators or spinless fer-
holes I|:/e on ?_Iattlce_ pf m_terstlt!al sites labeled jpyCrosses rep-  ,ion operators. For convenience, we introduce fermion lad-
res_,ent empty” interstitial sites, circles represent holes between twoder operators; ij, where the action O:E]T can be described
spins. - . - . e
by cutting the spin chain open at the interstitial gitentro-
ucing a hole at this position and multiplying the state by an
ppropriate fermion phase. The hole kinetic energy is then
simply given by

() ()
A4 N4

a=0.5 the spin gapped region has considerable overlap witﬁolj
the pairing regiork ,>1 even at small values of doping
Furthermore, it appears from the numerics as ifg)lcon-
tours, including the phase separation boundgyy-, flow
to small values ofi/t at smallx (cf. Refs. 10,4. One expects He=— 2 (tc;rcj+1+ H.c.). (3)
that these contours will focus on a critical poifik J
=0,(J/t).], as was proposed in Ref. 5 for theJ model
[J'=0, Fig. Aa)]. A possibility that seems consistent with
the numerics akx=0.5 is that (/t).=0, i.e., all contours
flow into the origin of the phase diagram. In this case,
sufficiently small amount of doping would always lead to
phase separation, and upon further doping one would enter a
region of dominant SS correlations. Alternatively]/t). He=J>, (Xiit1taXiia),
could be finite but possibly smaller than its valueast 0, ‘
which is between 3 and @Fig. 2(a)]. This would imply that
the above phenomenology of phase separation and supercon- where X;;=S§-§/— i (4)
ductivity at small doping occurs only fak/t>(J/t)., while
for J/t<(J/t). the liquid phase is stable at any dopirgin
the latter case, one would expect the Luttinger parantefer
to approach the value 1/2 in the dilute hole limit-0,
which is the value corresponding to noninteracting spinless
degrees of freedom. This behavior is clearly exemplified by
the numerical phase diagram of thel model [Fig. 2(a)].
The primary goal of this paper is to determine which of thes
two scenarios applies to thiel-J’ model ata> «.

We begin our analysis by casting the Hamilton{@ninto
a language where the holes play the role of domain wall
between broken segments of an infinite spin ctaiRig. 3.
We consider a lattice df sites with a number dfl, electrons _ ,
andN,=L — N, holes. Denoting théth spin on the lattice by H=Ho*Hsct Hee, ©
S we may regard the spins as residing on a “squeezed”
lattice where the hole sites hgve b(_aen drppped fro_m th(_a sys- Hoo= _JZ nv;, @)
tem and the label of the spinS is a site label in this ]
squeezed space, as in Fig. 3. We also introduce interstitial
sites for the squeezed spin lattice whose laheis + 1/2
differ from those of the spin sites by 1/2. Each interstitial site Hi=da2 Xio1j1Mi- 100412, (8)
may accommodate a numbgr=0,1, . .. ofholes. A faithful '
representation of the Hilbert space of HG) is given by \ynere
states labeled by

Equation(3) can be thought of as th&=J"=0 limit of the

Hamiltonian. In the other limit of interest, namely, the limit

of zero dopingxk=N;/L, the Hamiltonian becomes that of a
ure spin chain:

where we work at constant=J'/J from now on, and as-
sume thate> «., such that the small doping regime is spin
gapped. The combined Hamiltonian

Ho=Hs+H., (5)

where the spin and charge part are still completely decou-
epled, will serve as a starting point for the perturbation theory
we propose. In order to correctly reproduce matrix elements
of the Hamiltonian(1), couplings between the spin sector
2nd the charge sector must be introduced:

Yisr2=(1—a)Xjjs1ta(Xi—gjs1+Xii12). 9

|...,0'i,ni+1/2,0'i+1,...>E|...O'i...>|...nj...> ) ) ) )
Here,H. is a correction which couples spin and charge by

adjusting nearest-neighbor bonds and removing next-nearest-
2 n=Np i=1...Ne j= 1N+ ®) neighbor bonds in the squeezed spin space in the vicinity of
] a hole. Certain corrections of the latter sort are redundant
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whenever two holes are next-nearest neighbors in redfom the ground-state energy of the system alone. The strat-
space—or nearest neighbors in the present formalism—anelyy in now to evaluate both the numerator and the denomi-
this is corrected byH{.. Formally, Hs. and H/. are sup- nator in Eq.(13) perturbatively.
pressed by powers of both't and x and hence can be re- We now proceed by imposing periodic boundary condi-
garded as small comparedHty. Our strategy is thus to treat tions on the charge sector and the spin sector of the system,
the spin-charge coupling terné..+H/_ as a perturbation. Eds.(6)—(8), separately. This is apparently not the same as
We must caution, however, that the hole kinetic enetigyis ~ Imposing periodic boundary conditions in real space, since
very small, or ordetx?, and the small energy denominators momenta are now quantized in units ofrN. rather than
that appear in perturbation theory must be treated with carem/L. Note that there is a unique and well defined map
We apply this method to the spin gapped regiatea, and ~ between the state space introduced in @yand the Hilbert
find it to be a valid procedure in second-order perturbatiorspace of the-J-3° model only for a finite system witbpen
theory, in the sense that corrections are indeed small in th@oundary conditions. Indeed, imposing open boundary in
limit we consider. The general systematics of this at higherf€al spacés equivalent to imposing them in the spin sector
order perturbation theory are elucidated in Appendix A.  and the charge sector separately. However, going from open
In the following section we will show that our approach to periodic boundary conditions is not expected to matter for
gives rise to a perturbative expansion of the ground-stattrge system sizes. The unperturbed Hamiltomigrthen has
energy which may be used to analyze the phase diagram V0 separately conserved momenta, and we denote its
Eq. (1) in the vicinity of the origin, where the fate of the ground state by
various phases is uncertain from numerics or o, [Fig.

2(c)]. We note that the procedure proposed here bears some |70.,40) =] 0} o). (14
resemblance to that used by Xiaegal. to study thet-J  where|o,) is the ground state of the spin Hamiltonikig on
model in a first-order perturbative approaéh. a ring of N, spin sites. Although for> a the ground state
of Hg has a broken translational symmetry and is doubly
Ill. PERTURBATIVE ANALYSIS OF THE MODEL degenerate, we will assume tHaty) is a symmetric super-

position of the two symmetry broken ground states and thus
Shas zero lattice momentum. Likewi$ey) is a noninteract-
e?ﬁg Fermi sea ofN;, spinless Fermions hopping o\, sites

In gapless one-dimensional systems it is generally po
sible to derive basic features of the phase diagram from sp
tral properties by means of Lutpnger I'.qu'.d thedryhe low- with periodic boundary conditions. The unperturbed ground-
energy properties of a Luttinger liquid are completely state energy we write as
defined in terms of three parameters which have the dimen-
sion of a velocity: A sound velocity s, a “compressibility” 2t
parameteu  related to elementary charge excitations, and a Eo=Eo,tEyy=Eqy~Nesin(ky), (19
“stiffness” parametern ; related to elementary current exci-
tations. These are not independent, but are related by thehere
following universal relations identified by Haldafe:

Nh X
on=vs/K,, vi=uvK, (10) kﬁ:WREZZI:; (16

The parametersy andv ; can be calculated from the depen- gnd E‘To’ Ewo are the ground-state energytdf and the spin-

dence of the ground-state enerigy on the carrier density  |a55 fermion kinetic energy, respectively. We will focus our
and on a phase twish, respectively, where¢ is associated analysis on the limix—0 whereJ/t is small but fixed. In
with a fluxL ¢ penetrating the system when it is imposed 0npis jimit we argue that the ground-state energy of @jjhas

a ring with periodic boundary conditions: an asymptotic expansion of the form

2 J°E, E=E, +L(AX+Bx>+Cx3+ ) 17
UNT Pl (11 0
The coefficient®,B, ... will depend onl/t. At the leading
) order, they can in principle be inferred from the spinless
_ T = (12) fermion kinetic energy in Eq.15). Formally, however it will
YL a2 o be more convenient to work with an expansion of the form
. . . AR AT A
By Egs.(11) and(12), vy is proportional to the inverse E=E, +N, A(—) +Bl —| +C| =] +--.. (19
compressibility of the system, whilg, is proportional to the 0 ™ ™ ™

conductivity. Equation$10)—(12) allow the determination of  {he same, due to the nonlinear dependende; @ x in Eq.

K, via (16). However, sincéN,=L(1—x), theA term in Eq.(18) is
5 linear inx, and hence
=\ (13) - ~
UN A=A, B=B. (19
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We will now proceed by evaluating the above series order byor a> «., Luttinger liquid theory and general expectations
order in perturbation theory, treating the spin-charge coufrom the study of integrable models?1. B<0, leading to a
pling terms Hg.+H{. perturbatively as we have outlined phase separation instability in the dilute hole limit for any

above. We write value of J/t, and 2.B=0, 6C572A¢,¢, for any J, corre-
sponding to a stable liquid as—0 and smalll/t, where the
E=Eg+E;+Ep+ - +E+--- charges act as a dilute gas of noninteracting spinless solitons.

We will now show that the second case applies.
At first order perturbation theory the energy corrections

A=Agt At Ayt - T A factorize into mean-field like products, since spin and charge
are not correlated in the ground state wave functioh. We
(20 have
and similarly for all other coefficients, where the label
denotes a term arising &th order perturbation theory. We E1=(00,ho|HsctHid oo, tho)
have
== NeJ(Npo{¥j)o+ Neda(Xi-1j+1)0{NjNj+1)0
7 = —L(y;)odx+LIO(x* 23
Ag=-2t, By=0, Co=—t. (1) (720X (. 23
hence
From Egs.(11)—(13), (17) it follows that at smallJ/t Ar=—(7)0J, (29

where( ), denotes the expectation value with respeditg)

T A 4 X 1 tx or | o) when no ambiguity is possible. Note that the contri-
Ko=5 5 ! (22 pution of H.. is of orderx?. Th I f thi
2 V2B+6Cx 2 NV B/72+tx ution of Hy is of orderx™. The smallness of this term as
x—0 reflects the fact that the holes obey the Pauli principle

whereA,,, denotes the second derivative with respect to thevhich suppresses the probability of two holes being near
phase ¢ introduced above, and\(¢)=—2tcos() was each oth_er. We see that alrgaply at .thIS orttEr, does not
used. Equatioii22) shows that i3 acquires a finite negative eéhormalize any of the coefficients in EAL7) that we are
value due to the spin-charge couplings, will diverge as mter_ested in. We W|_II thus d_rop it from_the subsequent dis-
x—0 even at small/t. This would imply strong supercon- CuSsion. To determine leading correctionsBaand C, we
ducting fluctuations and phase separation at the divergenc¥ill need to go to second order:

On the other hand, iB is zero or positive, the liquid phase ,

will be stable for small and J/t, and dominant supercon- E,=— > {00, YolHsd 7. ¥)(o. ¢1Hsd 00, o)
ducting correlations will be absent in the vicinity of the ori- lo, ) E,— E¢0+ Eo— Erro

gin of the phase diagram. In this case, one would expect th
B=0 to all orders in perturbation theory, since #®r0 one
would haveK ,—0 asx—0, which seems inconsistent with
the numerical phase diagram. Alsi,,=0 is a somewhat
unlikely pathological limit of Luttinger liquid theory, where J

the coefficient of the conjugate momentum of the charge Hse=—\C > NgY_q. (26)
field vanishes and the charges freeze into a classical state. e d

This again seems unlikely in the absence of long-rage interwhere Fourier transforms

actions, which one may assume especially in the presence of

a spin gap. As we have argued initially, one would rather - +

expect the charges to behave as noninteracting spinless soli- anZ elanj:; Cx+qCk

tons in the dilute limit, and Luttinger liquid physics then J

. (29

Hhere the sum goes over a complete set of unperturbed
eigenstates and the prime excludes the ground $fade
from the sum. We now rewritél; as

implies thatK,, assumes the valug in this limit, provided o

that no instability intervenes. This then requires that the co- y=2 €9y, (27)
efficientA,,, andC in Eq. (22) are not independent, but have J

a constant ratio independent &f have been introduced. Using the fact that the intermediate

Hence, we distinguish only two cases which we feel arestates in Eq(25) can be chosen to be momentum eigenstates,
the only ones consistent with the numerical phase diagrarwe have

E2=—J—22 EI: <‘/fo|n—q|df)('r/f|nq|l//0><0'o|’yq|0'><o'|'y_q|g-o>.

(28)
Ng q |o.w) EL//_ Ez//0+Eo'_E0'0
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It is necessary to distinguish between terms with zero mospin chainHg. This will demonstrate that the present expan-

mentum exchange between spin and charge and those witlion is well behaved, but we defer the evaluation to the fol-

g#0. We write lowing section in order to continue with the analysis of the
crucial B coefficient. Its correction at this order reads

E,=ES+Ej, (29
where E) contains allg=0 terms andE} contains all the B.— || & £0, 9 £/
rest. At q=0, ny=32n;=N, commutes with the Hamil- 272N, (9_kf2 2 a_kf 2
tonian, hence there can be no virtual charge excitation and ki=0
the charge matrix element is diagonak) = | ¢): 5
T
=—-F(0)+ ——E; (35
2Ng z?kfz 2

(30) ky=0

ﬁ 2J2 ’ <‘70|7q:0|0'><0'|7q:o|00>
™ - E(,—EU0 )

Note that virtual states without spin excitations do not ente/*92in, the contribution fronE; is evaluated by straightfor-
Eq. (28), since| )=o) would imply g=0 and again the ward differentiation of Eq(31). Only boundary terms sur-

charge part vanishes unless als®=|yo), which is ex- vive, as aII. dgrivativgs of the intggrand vanish b.y.symmetry
cluded from the sum. Thus far> a, the energy denomina- yvhen the limitk;— 0 is taken, using the 2 periodicity of f

tor in Eq. (28) is bounded from below by the spin gap N the second argument. We find

which will dominate over charge excitation energies of order

E9=—

tx? very close to the Fermi surface. This assures that the B,=—F(0)+ 3[F(2ki)+F(27)]lk,—o0- (36)
perturbative expansion is well behaved in the limit 0 (see
Appendix A). At this point we have introduced an infinitesimal since

Forg+0 we note thah, excites only single-particle-hole terms with zero momentum transfer are really excluded in
excitations. We can thus convert the sum over these terntbe sum definingg;. However, we argue that the function
into a double integral over a hole momentlkmand a par- F(q) will be continuous agj=0 and hencd, vanishes. We

ticle momentunk,: note that this is the effect of a nontrivial cancellation be-
tweenq=0 processes and processes vjth-0. Physically,
E— N f"f dky Zﬂ’kf%f(k k) (31) the continuity ofF(q) can be seen by interpretirfé(q) as
2 ¢k 2m )i 2 L2l the second-order energy response of a pure spin chain due to

a periodic perturbation, as we explain in detail in Appendix
where B. Hence, by Eq(36)

32 (ool vi,-k,| ool v, k| o0)
f(kyko)=— 2> (32)
Ne o) e(ky)—e(k)+E,—E,

B,=0. (37)

We have convinced ourselves that a similar cancellation in
and e(k)=—2tcosK) is the free-fermion dispersion. For the B coefficient takes place at third order perturbation

later convenience, we also introduce the function theory?® We therefore propose that
_Ll¢fa _a (_9 9) B=0 38

2 [ to all orders in perturbation theory, and thus for sndéllthe
= %(E <0°|7’£|(?<Ea|yq|ao> +(qa—q)), liquid remains stable in the limit—0 even in the caser
e\ o) o T ~0.5[Fig. 2(c)]. The physical implication of Eq38) is that
(33 indeed the holes act as spinless fermions whose interaction is
short ranged, and is irrelevant in the dilute limit. The Pauli
Iprinciple severely suppresses the wave function when two
holes approach each other. The range of this suppression is

where the symmetry ofé(k) was used.

The leading correction to the energy at second order pe
turb_atlon theory is a contribution to thcoefficient in Q. |arger in one dimension than for dimensions greater than one,
(17): since in higher dimensions a curvature of the wave function
is less costly at small distances. Therefore, in one dimension

A,= 77 iEé this effect is strong enough in order to prevent a short-range
Ne K k=0 interaction from generating a term of order in the energy.
As we have argued above, the noninteracting nature of the
2rdk charge degrees of freedom in combination with Luttinger
=- fo ﬁf(O,k)- (34)  liquid arguments also imposes constraints on the linear and

cubic terms inx when a magnetic flux is imposed. We now

To leading order in)/t the integral over momenta may be move on to verif)i these relations perturbatively. Note that
carried out to give a quantity defined in terms of the pureB=0 leads toC=C in Egs.(17) and(18), such that
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expressions foA, andC, can be evaluated more explicitly,
(39 to leading order ind/t, in terms of quantities that are derived
k=0 from a pure spin chain problem. In this way we obtain ex-
) ) ~_plicit asymptotic expansions for the ground-state energy and
In this case boundary terms such as those displayed in E¢ne compressibility parameteg,, showing that second-order
(36) do not contribute, since they vanish by symmetry as;orrections are suppressed by nontrivial powerd/ofcom-
ki—0 when another derivative is acting on them. Instead, Wey5red to the leading orders. Also, these quantities are related
have now again a “bulk” contribution analogous to that in 5 the single-hole energy and mass renormalization, which
Eq. (34): will be clarified in the following section.
We stress once more that the results we present here are
(40) valid in the limit x2<J/t. In this limit the low-lying charge
excitations are dominated by the curvature near the band
bottom of the bare dispersias(k) and their contribution to
As explained above, this is to be compared to the coefficienthe energy denominator in E¢B1) is dominated by that of
Az44- The phase twisip will modify all hopping matrix  the gapped spin excitations. In the opposite ligdit<x? the
elements viad—te'? in Eq. (3) and leads to the following perturbation theory presented here is still valid, yet a cross-
replacement of the free hole dispersion in the functionover will take place and the asymptotic expansiai) will

Coe s 3 £’
2_6_’\163(9_k? 2

S PP
=752/, a—kfz(f,)

ke=0

f(kq,ky) in Eq. (32): not hold (see Appendix A
With this in mind, the first- and second-order energy cor-
€(k)— €e4(k)=—2t cogk+¢), rections are dominated by the following terms:
f(klik2)*>f¢(klik2) (41) E1/L2A1X=—<yl>OJX
Hence from Eq(34)
92 2ndk ¢° . -
Ao s=—7A2 = _f ~— —1,(0K) We will now show that the second-order term is indeed sup-
T ag? $=0 0 27 §¢p? =0 pressed by powers af/t compared to the first-order term,

(420  which is of orderJx. To achieve a systematic expansion of

However, using the fact that A, in J/t we rewrite Eq.(34) in the form

(0K =1(k+ ) 9 | [ R L
0 - — Foy

holds, it follows by shifting the integration variable and com-

parison with Eq(40) that where we have introduced a spectral function

6C= A4 (44) ,
is satisfied. Again, we have confirmed an identical relation at AkE)= 2 ool wdo)|?8(E,—E)
third order perturbation theoR, and this suggests that in- ¢’
deed .
=2 Ky(E)e*" (48)
6C=m"Ays (45) "

to all orders. Hence, although the parametegsandv, in ~ and its energy dependent Fourier coefficieKt(E). In
Eq. (13) each receive nontrivial corrections, their ratio is terms of the latter we may write

fixed to leading order ix such tha , always approaches i

in the limit x—0. Luttinger liquid theory then implies that ~ , _ _ if dES K (E)F”% e

the dilute holes share all the universal properties of a gas of " 2 2t T " 0 2 E-E,,
noninteracting spinless particles. Presumably, this picture 1+ ot —cogk)
will hold in the entire regimel/t<(J/t)., where forJ/t (49)
>(J/t). small doping will give rise to phase separation.

Thek integral is readily performed to give
IV. EXPLICIT EVALUATION OF COEFFICIENTS

] 2_13In|

In the preceding section we have shown that our pertur- A,=— i dEE Kn(E)(lJrA d+a)y-1) ,
bative approach is consistent in all details with a picture 2t n J(1+4)’-1
where the charge degrees of freedom behave as noninteracth
ing spinless solitons in the dilute limit, and are effectivelyW ere
decoupled from the spin dynamics. The second-order expres- E_E
sions we derived involve complicated sums over both spin A= 70 (50)
and charge degrees of freedom. We will now show that the 2t
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The matrix elements defining,(E) will decay rapidly when I

172 T T T T T
E is a few timesJ and hence we may expand E&O) in - + o
powers ofA. Keeping only the leading term this yields o3k + ]
o]
1 1 025 .
Azz——J dEY) Kn(E) —=—=
2t n E-E +
() 02 o
t +
015 r - " - 1
p=n O
== EF 1/2( ?) ) (51 0L |average © +
fit —
where the coefficienf , is a quantity defined only in terms %05 000 007 008 005 ol N
of eigenstates of the doped spin chain. For later convenienor
we define the more general function 3/2 T ] T ' '
+
0.6 o b
A(q=0,E)
I, =32 f dE—— .
_ p
(E-E,) |
_ 1 2, <UO|7q=O|U><U|7q=O|UO> (52) |
Ne |o) Ea'_ E(ro P . O
02 p=0 + T .
J p=n O
01 |average < o -
Hence, it is apparent from Eq&t6) and (51) that fit _ . . . +
?).05 0.06 0.07 0.08 0.09 0.1 1/N
E J 1/2
E,” (T) (53 FIG. 4. Numerical determination df,, andT'y, by exact di-

agonalization ofH for a= % System sizes of up tbl=18 have
indicating the convergence of our perturbative approach fopeen dlagonallzgd. Results are plotted for the two degenerate
small J/t. In Appendix A, we will further comment on con- 970und states with momenta=0 (crossep and p= (squares
vergence and expansion parameters of this series in varinge extrapolated values have been determined by fitting their aver-
L . . i i =a+ —cN).

limits. Note that the nonanalytic nature of the expansmnages(d'amomls";to the functionf(N)=a-+b exp(-cN)
originates from the gaplessness of the charge degrees of free-

X > ; ; V. SINGLE SPIN-POLARON PICTURE
dom and the existence of a regime where the spin gap domi-

nates the energy denominator in E@7). Similarly, in We will now develop a variational picture of the polaronic
second-order perturbation theory the compressibility parameffects of a single hole on its spin environment at snail
etervy reads to leading order ixt in the special case=0.5. The perturbation theory presented

in the preceding section for a finite carrier concentration may
12 be applied to the problem of doping a single hole into the
01\12(477“r ;Cz)x. (54 infinite spin chain as well, such that we will be able to com-
pare variational and perturbative results. In second-order per-
By means of Eq(40) the evaluation o, goes analogous to turbation theory, the energy of a single hole at momenkum
that of A, and we get reads:

2rd k
m? E (k)= —2t cogk)—(y; J—f —2f(k,Ky) + - - -
CZZ_EFB/Z\/E p( ) i ) <’)’J>O o 20 ( ’ 2) ’

(56)
3 where we have not included the contributi(ir,}0 from the
UN=7Tt<4—F3/2\[f>X (55  spin background. Ak=0 we immediately see by compari-

son with Egs.(21), (24), and(34) that

Numerically, we found I';,=0.2502(2) and I3,
=0.474(3) atae=0.5 (Fig. 4). Hence, although the com-
pressibility k~v ! increases withl, no unstable value of  holds for the single polaron energy in second-order perturba-
can be inferred that lies within the validity of our perturba- tion theory. Likewise, for the renormalized mass of the spin
tion theory. polaron we have, comparing to Eq&1) and (40)

E,=Ep(k=0)=Ag+A+Ay+---=A  (57)
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(92
k2

1 6

7T2

6
(C0+C2+ .. .)E

77_2

Eplk-0= C (59

at this order. We may therefore rewrite the ground-state en-

ergy of the system at finite dopind7) as

2

T
3
—X°4+ ...

6m

E=E, +L|Epx+
0

fkf
=E, +N
ag e K

R

dk ,
5 Ep(k)+O(K). (59)

Hence up to third order ix the ground-state energy of the

system is apparently given by the energy of noninteracting

spinless particles with a dispersi&p(k), where interaction

effects enter only beyond this order. This further confirms the

picture established in the preceding sections.

We now focus on the Majumdar-Gosh point=0.5,
where the ground state of the spin Hamiltontdgis known
exactly?!
glet pairs:

1

iMG)=11 \/§(|Tl>_|lT>)2i,2i+1- (60)

Note that we uséMG) to denote one of the two doubly
degenerate symmetry broken ground states, whéseasas

It consists of a direct product of uncorrelated sin-

PHYSICAL REVIEW B 69, 094419 (2004

a)

—e —eo O o—oe —=e —o
2
b
) —e o—o d/C_)\h —+o o—o
2j+1
)
—e —eo —o

d)._. —ae O o—oe .—@—0
2

FIG. 5. (a) and(b) Single hole basis states forming the ground
state of the noninteracting Hamiltonity [Eq. (62)]. Lines denote

the singlet pairs in Eq(60). (c) A pair of triplets excited by the
presence of the hole. The oval denotes a singlet formed by two
triplet states on the links adjacent to the hole, as displayed in Eq.
(63). (d) States used to form the variational wave functiéd).

We may now denote such a triplet pair excitation which is
centered around the hole sitg¢ By |2j)s. Similarly, the hole
state |2j +1). will excite the spin stated2j); and |2]
+2). Clearly, a variational wave function will need admix-
tures of states such as shown in Figc)5 However, in the
vicinity of the hole the kinetic energi. is the dominant

been used to denote their symmetric superposition.aAt part of the Hamiltonian, and it will allow the hole to move

=0.5, our results for the single polaron energy and mas

Egs.(57) and(58) take the concrete form

9 J 3/2
Epz—t(2—1—6?+0.12%?) +)

J
m‘1=t<2—0.237\[¥+~--

(61)

We may write the ground state of the unperturbed Hamil-

tonianH, as a superposition of states depicted in Fida) 5
and 5b):

1
WNe

where|j). denotes a state with a hole at the interstitial ite

Q)= 2 1)eIMG)s, (62

away from the excited triplet states as shown in Figl) 5To

optimize the kinetic energy, it is hence necessary to include
the more general states of Figidbinto the wave function.
We therefore write down the following trial wave function
for a state with one hole at momentum

|tk>=%; eiljo@ (IMG)s

+ay, e li-2'lB+ia-209 )y
2j’

Hence |t) lives in the subspace of all states that can be
reached by acting once with the perturbatlég, on the ze-
roth order wave functior{62) and then acting an arbitrary
number of times with the hopping operatdg. We also note
that indeed certain exact excited states of a Majumdar-Gosh
spin chain are given in terms of the tightly bound triplet

(64)

and “c” and “s” refer to the spin sector and the charge excitations shown in Eq63) and Fig. 5(Ref. 22. The fol-

sector of the state. When the interactibip, is taken into
account, a hole in the statj). will excite a spin configu-

lowing matrix elements are needed to evaluate the energy of
the state(64):

ration where the two dimers adjacent to the hole are in triplet

states, and the two triplets form a sing|&ig. 5(c)]. More
precisely, the oval in Fig. (6) denotes the following spin
state:

[ o)

1
:E( (Tl DutLL) @1 e

1
(TN AT+ LT | -
(63

L3
S<MG|_J’)/]|2J >S:?‘J(5j,2j’+5j*l,2j’+ 6j+1,2j')’

(65
- 1! 9 3
2 [=3n[2)s=gd =~ (- Diggd
1
+ 2903278127 = bjr1a1),
(66)
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3 By Eq. (719, the size of the spin polaron cloud is propor-
2)'[Hel2)")s=(MG[HMG)s+J= — 7 INe+J. tional to (3/t)"¥2 in agreement with Eq(56), where the

(67) dominant contributions to the integral come from the region
where kg is of the order of the spin gap. The variational
energy of the spin polaron &=0 is thus

9J 27/J\%2
161 256\ 1

In addition, bothy; andH; do not have off-diagonal matrix
elements among the state ). This leads to the following
expectation values:
El';arE E'F’,ar(k=0;a0,,80)= _t|:2
(t|Het) = — 2t cog k) — 4t|al?&scogk+ 8), (68 72
This is indeed of the same form as E1), where the first
two terms are reproduced exactly, as they are mean-field like
in character. Moreover, the coefficient of the last term is
9 3 about 0.105 and hence matches the one obtained by pertur-
<tk|Hsc|tk>:1_6‘]<tk|tk>+EJ[1+267BC035)](a+a*) bative and numerical methods in E(1) within roughly

3
(tulHglti)=— 29 Ne(tylte) +I|al?(£1+ &), (68D

15%.
+0(J|al?), (680 The appearance of a mass term proportionalift as in
) Eqg. (61) may also be understood from this variational ap-
(tdty=1+al*(&1+ &), (68d  proach. It is seen in Eq(70) that a term of ordem® B

where the constantg, andé, are proportional to the weight V3 is no longer precisely canceled at finkeThe reason
of spin excited states with the hole on even positions and odfPr this is that at finitek time reversal symmetry is absent
positions, respectively, angs arises from hopping between and a nonzero value of the parameteintroduced in Eq.
even and odd sites in the presence of a spin excitation: (64 is generally allowed. We have tunetl such that the
polaronic corrections in the kinetic ener(§8a do not have

1 _2802}"] 1 1 the samek dependence as the leading term. This is giving
§61=5 2 e “ag " 3BT rise to aa®/ B term at finitek. It leads to the variational mass
j
1 11 7
_ it vary—1_ _~ gvargp.
gz:i?’ o 2612] 1|:E_5’8+ o (m”2%) akZEp (k;a9,80) k=0

1 o1 _ s _ i1 =
é—’szz E efﬁ‘zJ ‘(e Bl2j 1‘+e Bl2j +:|-|)
J'/

i_ i (69) into account because of stationarity. The coefficient of the

= B+---. . .
4B 24 second term happens to be the same as the one showing up in
Eq. (72) which is now off by about a factor of 2 when com-
pared to the mass shown in E§1). This may be attributed
to the variational character of the stdf), since the mass
gomes from a subdominant term proportionalkfo How-
ever, the correct dependencedas well as the right order of
magnitude are again obtained. We therefore conclude that the
E,”Ja’(k;a,,B)E<tk|Hc+ He+ Hod ti)/{titi) wave functior)(64) proyides a q.uite accurate picture of the
large polaronic cloud in the limit of small/t, especially at
k=0.
In view of our original motivation to examine the stability
of the liquid phase of the-J-J’ model asx— 0 at smallJ/t,
a? 3 it is interesting to think about the possibility of the formation
T Jﬁ +g-Jal1+2cogk)], (700 of bound hole states. It is generally expected that either at the
critical value for the onset of phase separatialit)., or at
where again the bulk contribution of the spin chain was nolyn even smaller critical Va|Ue](t)c1<(J/t)c bound states of

'fnd;’hded‘ W? f|rst| m|n|m|z;a th|stf;1hnctl?nt_fd(=0 andtf|nd two holes will exist! (see also Ref.)5 The existence of such
or the variational parameters at the stationary poin bound states can be discussed on a qualitative level based on
3 the variational spin polaron picture proposed in this section.
Bo= \/;

) 27\P
e 2meVit

Here, the dependence afand 8 on k? need not be taken

(73

Terms of orderd|a|? were only kept in Eq(68) when they
are multiplied by¢;~1/B8. It is apparent from Eq(68a that
6= —k has to be chosen, and from E§8¢) thata is real
and negative. Keeping only leading terms, this leads to th
variational energy function

B ) 9 1, a’ )
= —2tcoq )+EJ+§ta ,B—tE[l—cos( )]

(719  To form a bound state, the single polaron wave functions
must significantly overlap, hence the size of a bound state
will be of orderr~ (J/t) “*2. The potential energy gain will

e — ﬂ J (710 be of order 0/t)%?2 since the mean-field term of orddrin
0 16 Vit Eq. (72 will not be affected by pair formation. However, the
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kinetic-energy cost of such a state is of order4/J/t and is  dimer locking is frustratedcf. Ref. 23. This calls for further
dominant. We conclude that bound states of holes will reinvestigations.
quire finite J/t of order 1 or greater, in agreement with the
picture of free single-hole-like charge degrees of freedom ACKNOWLEDGMENTS
established in the preceding sections.
We thank F.D.M. Haldane for insightful discussions. This
work was supported by the MRSEC program of the NSF

VI. CONCLUSION under Grant No. DMR 0201069.
We have examined theJ-J’ model in one dimension, in
the regime of smalk andJ/t by perturbative and variational APPENDIX A: CONVERGENCE AND CROSSOVER

approaches. This parameter regime is most challenging to BEHAVIOR OF THE PERTURBATIVE EXPANSION
numerical methods, and earlier numerical studies did not al-

low a firm conclusion whether a phase separation instability Here we briefly illustrate the behavior of our expansion at
and a phase of dominant singlet superconducting fluctuatiortéh order perturbation theory, where one will encounter
extend down to values af/t<1 in the casex=J'/J~0.5, terms analogous to E¢31):

where a spin gap is present at small doping.

Using an approach where couplings between spin and kg kg 2m—ky 2a—ky
charge degrees of freedom are treated as a perturbation, W‘Ek“ﬁk dhy ... fﬁk dhmjk dpi... L dp,
have presented a detailed analysis of the model in second- ! 4 4 4
order perturbation theory, showing that no instability is JM(hy .. hyipy .. PO Opy)
present at small/t. Instead, using Luttinger-liquid argu- X 2 (ep)—€eth)+E. —E_ () O
ments and by studying the dispersion of a single hole im- o1 -1 LEP ! 7 T
mersed into the correlated spin system, we have demon- k-1 factors

strated that the hole degrees of freedom precisely behave a:
free spinless solitons in the dilute limit, despite their micro-

scopic coupling to the nontriv_ial .spin ba}ckground. This be-The phase space consistsrofhole momenta and-particle
havior conforms to Luttinger liquid physics, where spin and ,omenta. It is enough to consider the case n=k. There

charge are separate degrees of freedom, and couplings Bgj he terms with fewer integrals also, but they are multi-
tween them are regarded as irrelevant in a renormalizatio lied by additional powers af such as in Eq(30).

group sense. While this point of view is generally accepte We focus on the regimk,?<J/t first. Sincee(k)~const

for one-dimensional systems, in microscopic One'thkz, the integrand does not significantly depend on the

gggf;;'gg?l ;ttéceeé?;;diﬁi 'tr:t‘:’lléall)éi%né)frﬁg xg{%’ogevrygn'hole momenta such that each of the hole integrals will give
y P 9 P ' rise to a factor ofx. The integral over particle momenfa

established in Sec. Il provides a perturbative framework for

b . will be dominated by the region where all momenta are
such a demonstration in a nonintegrable model over a ran%ithin a range ofyATt of the Fermi points, wherd~J is
of parameters. Moreover, it allows the calculation of non- . 9 . . P ’ .
the spin gap. In this regime, all of tHe-1 factors in the

trivial quantities such as the leading corrections to the single-, enominator are dominated by the spin gap and are of order

hole energy and mass renormalization, which depend o Hence we obtain the following estimate for the term di
nonanalytic powers od/t. The numerical calculation of the ce w _' wing estl IS
Iplayed in Eq.(AL):

coefficients in this expansion still requires an exact diagona
ization of a pure spin problem. We used these results for a 3
comparison to a variational approach. Proposing a varia- um 2 Y om n
tional wave function where the hole is surrounded by a po- (AD~x(ATY) Ak-1 X"(VIO™. (A2)
laronic cloud of tightly bound pairs of triplet excitations we
were able to confirm the perturbative results for the depenThe leading contribution t&, in the limit x2<J/t will thus
dence of the single polaron energy and massd/ftnas well  be a term of order
as the order of magnitude of the coefficients. In particular,
the second-order perturbative energy corrections are in close E~X( \/ﬂ)k— 13, (A3)
guantitative agreement with the variational result. Based on
these findings, we argue that for the parameter0.5 the  Equation(A3) shows that subsequent orders in perturbation
onset of phase separation at small doping as well as the fotheory are always suppressed by powers/dft, as we veri-
mation of bound states requidét to be at least of order 1. fied explicitly up to second orddicf. Eq. (53)]. Note that

To conclude, the theory of theJ-J’ model presented relations(A2) and(A3) are valid asymptotically in a given
here is limited to small values af/t and cannot access a limit, they do not imply the existence of a systematic expan-
region of dominant superconducting correlations, which asion in powers ofx and \J/t. Rather, theE,'s are quite
a=0.5 might exists at moderate values &ft and small complicated functions ok and J. Relation (A3) will hold
doping from numerics. In a real system, additional interchairuntil x?/J~ 1/, and upon further increase of this ratio a
effects must be taken into account, that can either favocrossover will take place. We may however write down an
dimer locking, or a superconducting dimer liquid when asymptotic expansion ir:

+.. . (A1)
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Ex=L[A(I)X+B(I)Xx?+ C(I)x3+ Dy (I)x*+ - - -] where Hg is as defined in Eq(4). Let &(\) denote the
ground-state energy per site of this problem. Then it is easily
E=consttE;+E,+ - - (A4) seen from second-order perturbation theory and the defini-

as we did in second-order perturbation theory. Recall fron%Ion (B1) that atq=0

Egs. (51) and (55) that A,~ (J/t)%?, C,~ (J/t)¥? while B, L
=0. Formally, howeverB, is of orderJ. This implies that in F(0)=-3&4-0 (B3)

general\/tXZIJ is the expansion parameter of the se(i&4). ) o )
In the opposite limii<tx? it is easily seen from EqAL) holds, where the prime denotes a derivative with respext to

that now E,~JX holds. In this limit it is not necessary, t@ken at\=0. On the other hand, &+0 the same argu-
though still permissible, to include the spin chain gdgtin ~~ MeNt gives
the unperturbed Hamiltoniad . Instead one may apply de-
generate perturbation theory in the spin couplings, which F(q#0)=—¢&q. (B4)
gives rise to an asymptotic expansionJin
Note the factor of 2 difference between E¢B3) and (B4).
E=const-L[a(x)J+b(x)I*+c(x)I3+d(x)I*+ -] Despite this apparent difference between the cgse8 and
(AS) g#0, itis E’é which is discontinuous aj=0, notF(q), as
This method has been applied in Ref. 10 to calculate théhe following argument shows: In the vicinity of a sjt¢he
intersection of the spin gap phase boundary withxfexis.  ground state ofHy(\) will have great overlap with the
Note that in Eq.(A5) x need not be small, whereas in Eq. ground state of Hq_o[A(j)] as g—0, where A(j)
(A4) both J/t and x?t/J have to be small. However, due to =\cos(]). In other words, ag— 0 it should be justified to
the limitationJ<tx?, Eq.(A5) cannot be used to address the replace the oscillating perturbation iy (\) by a flat pertur-

nature of the phase diagram in the dilute hole limit. bation in a sufficiently large local region around each gite
The size of this region can still be chosen to<é&/q. One

APPENDIX B: THE CONTINUITY OF THE FUNCTION can thus argue that up to powerspthe ground-state energy
F(q) will be given by a sum over local contributiod§—o[A(j)]:

We will now give an argument for the continuity of the 1
function F(q) which leads to the crucial cancellation in Eq. Eqo(N) == E Eq=olM(i)]
(36). This question is more subtle than it may seem, and the Ne ]
following argument would require more scrutiny in the gap- 1 (N
less casex<a.. We restrict ourselves to the spin gapped ~—f edxgq:o[)\ coggx)]
case, as we have done throughout the paper. Recall the defi- NeJo
nition of F(q) from Eq. (33):

1JN9 (
- =—| “dx{ &_o+\cogqx)E_
F( ):i 2 <(To|77q|0'><0'|7q|0'o>+( L—q) NeJo q=0 10X)Ey—0
! 2Ne | 1) Es—Eq, ==/ .
(B1) +§)\2c052(qx)é’g=o+...

Physically, the continuity of(q) can be seen by inter-
preting F(q) as the second-order energy response of a pure

spin chain due to a periodic perturbation. More precisely, wi .
consider the following auxiliary spin chain problem: eFrom Egs.(B4) and (B3) it then follows that

~Eq—ot INEgp- (B5)

Hq(x)=HS+>\J§j) cogqj)y, F(0—0)=—3E3-0=F(0). (B6)

Note that the local point of view taken here is better justified

—H ot iJ(VqJF Yoo (B2) in the gappgd case, where any local perturbation decays ex-
2 ponentially in space.
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