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Orbital antiferromagnetism in coupled planar systems
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A realistic model for the electronic structure of SrRuO3 is examined to determine the possibility of orbital
antiferromagnetic order in this material. By calculating the susceptibility to orbital and spin antiferromagnetic
order, it is shown that the band structure of SrRuO3 serves to destabilize the Ne´el ordered state and that the
susceptibility to orbital antiferromagnetic order is larger over a range of doping. The resultant orbital antifer-
romagnetic state consists of coupled two-dimensional planes. The effect of the coupling on the planar system
is calculated; the energy shifts of different configurations depend only on the total current in the sample and are
linear in this quantity. An orbital antiferromagnetic ground state is found which has no net current flowing
along the bonds.
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It has recently been proposed1,2 that the pseudogap
observed3 in the transition-metal oxide SrRuO3 above its fer-
romagnetic transition temperature ofTC'150 K may be ex-
plained by a three-dimensional version of the flux states
vented by Affleck and Marston.4 As suggested by Ahn,5

SrRuO3 appears to be near a Mott transition as can be s
from doping with calcium to form CaxSr12xRuO3. The on-
site Coulomb repulsion is most likely in the range ofU
53 –5 eV, as estimated from photoemission6 and optical
conductivity measurements.5 The resistivity has been ob
served to pass through the Ioffe-Regel limit witho
saturation,7 a behavior indicative of a ‘‘bad metal.’’8 In ad-
dition to the peak at low frequencies (v'250 cm21) which
leads us to identify the state as pseudogapped, at high
quency the optical conductivity scales with the non-Fer
liquid value ofv21/2.3

In this paper, the nature of the orbital antiferromagne
~OAF!, or flux-phase, order in SrRuO3 is revisited using a
multiband model which encompasses the key features of
material’s electronic structure. Precisely how the electro
structure affects the susceptibility to form an OAF state
calculated and compared to the case of a spin antiferrom
net ~SAF! or Néel state. While SrRuO3 is a three-
dimensional material, its band structure consists of set
intersecting planar sheets. We show how the orbital anti
romagnetic order develops in these planes and how coup
between intersecting planes determines the configuratio
currents in the material. Models proposing different mec
nisms for the non-Fermi-liquid behavior of SrRuO3 have
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been proposed by Laad and Mu¨ller-Hartmann9 and
Liebsch.10 While the pseudogap in SrRuO3 only appears
aboveTC , we propose that this is due to the ferromagne
state being preferred below this point. As such, we are c
sidering in this paper only the state at zero temperature
investigating the effects of a realistic electronic band str
ture on the stability of the orbital antiferromagnetic grou
state.

I. BAND STRUCTURE

SrRuO3 has an orthorhombic crystal structure, becomi
strictly cubic at temperatures greater than 900 K.11 There are
five bands crossing the Fermi surface formed by hybridiz
the rutheniumd orbitals and oxygenp orbitals. As a starting
point for our model we use the Slater-Koster parameters
tained by Mazin12 using the linear augmented plane-wa
method with a set of 14 bands at 165 momentum points
the Brillouin zone. We restrict our attention to the thr
bands formed from the hybridizedt2g-pp orbitals. As pointed
out by Mazin, the band structure contains nearly-flat ba
betweenG andM. This feature arises from the virtual lack o
dispersion out of the plane of thet2g d orbitals. Therefore,
SrRuO3 may be considered to be composed of a set of in
secting planes where the dispersion between adjacent pl
and between intersecting planes is minimal.

The effective tight-binding Hamiltonian for the band o
predominantlydxy character is given by
Hxy5S t2g1Vddp~cosqx1cosqy! 2iVpdpsin
qx

2
2iVpdpsin

qy

2

22iVpdpsin
qx

2
pp12Vpps

(2) cosqy 2~Vpps2Vppp!sin
qx

2
sin

qy

2

22iVpdpsin
qy

2
2~Vpps2Vppp!sin

qx

2
sin

qy

2
pp12Vppscosqx

D , ~1!
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FIG. 1. Effective two-
dimensional band structure for hy
bridized t2g-pp bands. The ener-
gies are given in meV and the
inset shows the path connectin
the symmetry points in the Bril-
louin zone.
. I
r-
th
a

se

le
d
ly
en
in
d

k
i-
rm
ag

he
s

v

is

-
e

as
ed,
chl
or

un-

e
e

a

as

al-
-
the

e
with

ed

real
the
tal
where the state vector is ordered asdxy , py in the x̂ direc-
tion, and px in the ŷ direction. The remaining twot2g-pp

bands are obtained by cyclic permutation of the indices
writing down this Hamiltonian we are ignoring the dispe
sion out of the plane as well as the coupling between
different t2g bands. The latter effect will be reintroduced as
perturbation in Sec. III and both effects are, in any ca
small.

The dispersion relation obtained from Eq.~1! is shown in
Fig. 1. The reader is referred to the work of Mazin12 for the
Slater-Koster parameters used in this calculation. It is c
from Fig. 1 that the actual band structure of the system
viates significantly from a model which incorporates on
nearest-neighbor hopping. The van-Hove singularity m
tioned earlier is not visible in Fig. 1 because only the
plane momentum vectors are shown. In the out-of-plane
rection the bands appear nearly flat as seen in the wor
Mazin.12 In the following section we explore how this add
tional structure alters the susceptibility of the system to fo
states with orbital antiferromagnetic and spin antiferrom
netic order.

II. ORBITAL ANTIFERROMAGNETIC SUSCEPTIBILITY

In this section we examine how the susceptibility of t
state to OAF order is affected by the band structure discus
in Sec. I. Given the proximity of SrRuO3 to a Mott transition
and the large value of the Coulomb repulsion, we belie
that a consideration of a generalizedt-J model can give in-
sight into the physics of SrRuO3. As the t-J model is the
infinite-U limit of the Hubbard model, whether or not this
a good approximation depends on whethert/U!1 or, as was
suggested by Reischlet al.,13 whether W/U<1. As men-
tioned in the Introduction, the value ofU is somewhere be
tween 3 and 5 eV. The value oft can be estimated from th
band-structure calculations of Mazin12 and in terms of the
Slater-Koster parameters is given byVpd

2 /(ed2ep), which is
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approximately 1 eV. This gives a value oft/U'0.25, sug-
gesting that thet-J model is reasonable in this case. As far
meeting the second phrasing of the criterion is concern
the analysis is slightly less clear since the work of Reis
et al.13 was conducted for a model with nearest-neighb
hopping whereW58t. This would give a value of 8t/U
'2 for this system, yet the band structure of SrRuO3 is not
of this type and the bands are much narrower than the
frustrated value of 8t. Therefore, while the use of thet-J
model for SrRuO3 certainly pushes the validity of the infinit
U limit of the Hubbard model, it gives information about th
OAF order in the system that cannot be obtained from
mean-field treatment of the Hubbard model.

Still assuming that the bands are uncoupled, we take
our model the two-dimensional single-band Hamiltonian

H5(
qs

eqcqs
† cqs1J(̂

i j &
Si•Sj , ~2!

whereeq is the dispersion relation determined by diagon
izing the Hamiltonian in Eq.~1!. In order to obtain the sus
ceptibility we define a set of magnetic quasiparticles via
canonical transformation

S aks
†

bks
† D 5S cosuk i sinuk

i sinuk cosuk
D S cks

†

ck1Qs
D , ~3!

where the magnetic ordering vectorQ5p and lies in the
plane of thet2g orbitals. In order to simplify the notation, w
assume throughout this section that we are concerned
the dxy orbital.

The onset of orbital antiferromagnetism is characteriz
by the imaginary part ofx i j 5^cis

† cj s& acquiring a nonzero
expectation value. This, in turn, means that there are
microscopic currents circulating around the plaquettes in
lattice. In terms of the quasiparticles in Eq. 3, the orbi
order parameter is given by
7-2
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x i j 5
1

N (
k

8

eik•x@cos~2uk!2 ieiQ•r isin~2uk!#n̄ks , ~4!

wherex5r i2r j , the prime on the sum indicates that it
restricted to the reduced Brillouin zone, andN is the number
of sites in the lattice. The number operatorn̄ is the difference
in occupancies of the upper and lower magnetic bands:n̄ks

5^aks
† aks2bks

† bks&.
Taking the expectation value of the Hamiltonian we o

tain

^H&5 (
k6s

Ek6nk6s1
3NJ

4
uxu2, ~5!

where the number operatorsnk6s correspond to the uppe
(1) and lower (2) magnetic bands. Implicit in Eq.~5! is the
fact that we are dealing with Fock states so that the biq
dratic term in the Hamiltonian factorizes.Ek6 defines the
magnetic band energies:

Ek65
ek1ek1Q

2
6F S ek2ek1Q

2
2

3J

4

3Re@x#~coskx1cosky! D cos~2uk!

1
3J

4
Im@x#~coskx2cosky!sin~2uk!G . ~6!

Since minimizing Eq.~5! with respect to Re@x# and Im@x#
reproduces Eq.~4!, we can treat these as variational para
eters independent of theuk . Eq. ~5! can then be minimized
in order to determine the anglesuk and upon substitution
yields

Ek65
ek1ek1Q

2
6F S ek2ek1Q

2
2

3J

4

3Re@x#~coskx1cosky! D 2

1S 3J

4
Im@x#~coskx2cosky! D 2G1/2

. ~7!

The mean-field equations are then obtained by minimiz
with respect to the order parameters. DefiningE0
5(k6sEk6nk6s the equations read

]E0

]Re@x#
1

3NJ

2
Re@x#50, ~8!

]E0

]Im@x#
1

3NJ

2
Im@x#50. ~9!

The susceptibility to form an OAF state follows from th
second of these equations. We can rewrite this in terms
Stoner criterionJxOAF51 where
09440
-

a-

-

g

a

xOAF5
3

2N (
k

8 ~coskx2cosky!2~nk2nk1Q!

ek2ek1Q23JRe@x#~coskx1cosky!/2
.

~10!

This should be compared with the susceptibility for a sp
antiferromagnetic state which is almost identical except
the factor in the numerator:

xSAF5
4

N (
k

8 ~nk2nk1Q!

ek2ek1Q23JRe@x#~coskx1cosky!/2
.

~11!

Note that Eqs.~10! and~11! are completely general for mod
els of the form in Eq.~2!. Here, we are interested in th
effect of theeq term on these susceptibilities. While the pr
pensity to order for both types of magnetic systems relies
the nesting of the Fermi surface at the ordering wave ve
Q, this nesting is only important around the pointsX in the
OAF system~see Fig. 1! due to the vanishing of the numera
tor around the pointskx5ky .

Numerical calculation of the susceptibility for the orbit
antiferromagnetic state is not entirely trivial, as one m
solve the simultaneous integral Eqs.~8! and~10!. In addition,
the occupanciesnk appearing in these equations are det
mined byd and the magnetic band energies in Eq.~7!. Since
we are looking for the critical value ofJ at which the system
acquires a nonzero value of Im@x#, we can set this equal to
zero in Eqs.~7! and ~8!. The occupancies are then entire
determined by the productJRe@x#. This in turn determines
Re@x# ~and henceJ) through Eq.~8!, which can be written
out explicitly as

Re@x#5
1

N (
k

8

~coskx1cosky!~nk2nk1Q!. ~12!

In this way Re@x# is determined as a function ofJ. The
solution of the Stoner criterion using Eq.~10! is then a single
integral equation forJ, whose solution is straightforward.

Figure 2 shows the values ofJ for which the Stoner cri-
terion is satisfied for the susceptibilities in Eqs.~10! ~solid
line! and ~11! ~dashed line! for a range of dopingd51
2Ne /N. The spin-exchange energy has been scaled to
bandwidthW5259 meV. It is noteworthy that around th
point d521/4 the orbital antiferromagnetic state forms a
lower value ofJ than the spin antiferromagnetic state. Th
behavior is entirely due to incorporating the realistic ba
structure discussed in Sec. I into the model. In models w
only near-neighbor hopping, the analogous calculation sh
that the susceptibility is always larger for the SAF than t
OAF state. Two points should be noted in regards to Fig
The first is that away fromd50 there are terms which
should strictly be included in the Hamiltonian of ordert/U,
but that have been neglected in adopting thet-J model in Eq.
~2!. Second, while the trends seen here undoubtedly per
it is not clear to what degree the numerical values forJ, and
indeed the presence or absence of a crossing in the sus
tibilities, would be altered if one went beyond the mean-fie
treatments employed in this paper.
7-3
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FIG. 2. Susceptibility to OAF
~solid line! and SAF~dashed line!
as a function of dopingd and the
ratio of the spin exchange to th
bandwidth: J/W. Not shown in
the figure is that belowd'21/4
the critical value ofJ rises rapidly
for both types of order.
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We have also calculated the magnetization of the mo
by solving Eqs.~8! and ~9! numerically using 106 momen-
tum points. Figure 3 shows the flux per plaquette determi
from

F5 (
plaquette

arctan
Im@x#

Re@x#
. ~13!

The different curves are for different values ofJ/W ranging
from 0.1 to 0.3. While the susceptibility reaches its larg
value aroundd521/4, the magnetization is largest neard
50. In the following section we will perform all calculation
for J50.3W and at half filling where the flux order is we
developed:F52/3.
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III. COUPLING

In order to take into account the effect of interplane co
pling on the system we add a term to the Hamiltonian in E
~2! of the form

H85(
i j

(
s

(
nÞn8

t i j
nn8cins

† cj n8s , ~14!

which will be treated as a perturbation. The first nonvani
ing correction to the energy will be second order intnn8. This
perturbation may be rewritten in momentum space as

H85(
qs

(
nÞn8

Tnn8~q!cqns
† cqn8s , ~15!
-

FIG. 3. Flux per plaquetteF
as a function of dopingd. The dif-
ferent curves are for different val
ues ofJ/W.
7-4
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ORBITAL ANTIFERROMAGNETISM IN COUPLED . . . PHYSICAL REVIEW B69, 094407 ~2004!
where we have defined:

Tnn8~q!5(
j

eiq•(r i2r j )t i j
nn8 . ~16!

Note that due to translational invariance there is no dep
dence ofTnn8 on i. Based on the form of the tight-bindin
Hamiltonian12 we take this to be

Txy,yz5t8sinqxsinqz , ~17!

and cyclic permutations thereof. The end results of the
culation will turn out to be rather insensitive to the actu
form of the hopping matrix element.

For each band there is a doubling of the unit cell with t
onset of orbital order. However, the ordering wave vect
are not the same in the three bands and this requires re
ing the Hamiltonian in terms of an eight-atom unit cell. W
therefore take

H85(
q

8

(
nÞn8

(
s

(
i 51

8

Tnn8~q1Qi !cq1Qins
† cq1Qin8s ,

~18!

where the prime on the momentum sum indicates that
only sum over the reduced cubic Brillouin zone and wh
the ordering vectorsQi are given in Table I.

For a given bandn, the orbital order is given by

x i j
n 5Re@x#1 ieicnpeiQn•r ieip(x

j

n22x
i

n2)Im@x#, ~19!

wheren2 is the Cartesian index corresponding to the sec
in-plane direction of the given band~i.e., y for thexy band!,
Qn is the ordering vector for that band, andcn50,1 shifts the
current pattern by one lattice site. This last term is import
since it affects the overlap of intersecting planes. For e
band, the ordering wave vector has two possible values,
responding to currents which align or antialign in adjac
planes. These can be summarized as

Qn5p~ x̂n1
1 x̂n2

1pnx̂n3
!, ~20!

wherepn50 ~aligned! or 1 ~antialigned! and wheren3 is the
out-of-plane Cartesian index~i.e., z for the xy band!. In the
absence of coupling, there is no difference in the energie
the states for different values of thecn andpn . After adding
the perturbation, we will calculate the response of the sys
to the perturbation for all 26 configurations arising frompn ,
cn5$0,1%.

The effects of thecn are shown in Fig. 4. In Fig. 4~a!,
corresponding tocn50 for all n, the currents cancel alon
the three bonds intersecting the origin. The remainder of
currents in the lattice are only determined when thepn have

TABLE I. Momentum ordering vectors for coupled plan
model.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0 p x̂ p ŷ p ẑ p( x̂1 ŷ) p( ŷ1 ẑ) p( ẑ1 x̂) p
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been specified, determining whether the currents in adja
planes are aligned or antialigned. Figure 4~b! shows the ef-
fect of switching one of thecn’s, causing the currents to ad
along two of the three bands intersecting the origin. It sho
be clear from the figure that there is no configuration wh
the currents add along all of the bonds.

Given the orbital order in Eq.~19!, and dropping the ir-
relevant spin index, the Hamiltonian for the system may
written as

Hn5
3NJ

4
1(

q
cnq

† hn~q!cnq , ~21!

wherecq
†5(cq1Q1

† , . . . ,cq1Q8

† ). The matrixhn(q) is given

by

@hn~q!# i j 5H eq1Qi
1

3J

4
Re@x#(

k51

2

cos~q1Qi !nkJ d i j

2
3iJ

4
eipcnIm@x#(

k51

2

~21!kcos~q1Qi !nk

3d~Qi2Qj2Qn!. ~22!

This Hamiltonian is solved numerically to obtain the eig
magnetic quasiparticles for each of the three bandsn. Upon
inversion, the solution is of the form

cq1Qins
† 5(

z51

4

@a~q,n,i ,z!azqns
† 1b~q,n,iz!bzqns

† #,

~23!

where the labelz indexes the magnetic bands and thea and
b particles correspond to the upper and lower magn
bands, respectively, as they did in Eq.~3!.

We assume that the termt8 appearing in Eq.~14! is small
so that we can consider only the first nonvanishing term
the perturbation. For simplicity, we also assume that the s
tem is at half filling. This means that we can ignore all term
in the perturbing Hamiltonian which containa, since all the
states in the lower magnetic bands will be filled. The pert
bation is then given by

FIG. 4. Current distributions for intersecting plane model. T
insets in each of the plaquettes show the direction of the curren
that planar band. The dark lines show the net current flowing al
the bonds. Two configurations are shown:~a! in which the currents
cancel along the three dark bonds intersecting the origin and~b! in
which they add along two of the three bonds.
7-5



-
-

D. F. SCHROETER AND S. DONIACH PHYSICAL REVIEW B69, 094407 ~2004!
FIG. 5. The energy-level split-
tings as a function of 1/L for
which the calculation was per
formed. The curves show the ex
trapolations toL5`.
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H88(
q

8

(
nÞn8

(
s

(
z,z851

tnn8
zz8 ~q!azqns

† bz8qn8s , ~24!

where the dot signifies that the equality is only strictly tr
when the perturbing Hamiltonian acts to the left on t
ground state at half filling. The effective hopping parame
between the magnetic bands is given by

tnn8
zz8 ~q!5(

i 51

8

Tnn8~q1Qi !a~q,n,i ,z!b* ~q,n8i ,z8!.

~25!

The excited states of interest are those with a single part
hole pair created out of the ground state. These are of
form: uCX&5bykmh

† ay8km8h8uC0&, where uC0& is the Fock
state with the lower magnetic bands filled. Including con
butions to second order int8, the energy shift of the ground
state will be given by
09440
r
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he
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DE5(
X

u^C0uH8uCX&u
E02EX

~26!

52(
q

8

(
nÞn8

(
z,z851

4 utnn8
zz8 ~q!u2

ez8n8q
2

2eznq
1

,

~27!

where e6 refer to the energies of the quasiparticles in t
upper and lower magnetic bands and where the factor o
comes from the sum over spin.

Equation~27! has been solved numerically to obtain th
energy splittings; the results are shown in Fig. 5. The cal
lations were performed at the pointJ50.3W andd50, cor-
responding to a magnetization ofF52/3. The calculation is
performed usingN5L3 momentum points, diagonalizing th
Hamiltonian in Eq.~22! at each momentum point to find th
eigenstates and eigenvalues, and using these to comput
f

r

r

FIG. 6. Energy-level splittings
as a function of the number o
bonds carrying current in the
eight-atom unit cell. The four data
points correspond to the only fou
possibilities for net current: cur-
rent on 0, 1/3, 1/2, or 2/3 of all
bonds. The dotted line is a linea
fit through the four data points.
7-6
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ORBITAL ANTIFERROMAGNETISM IN COUPLED . . . PHYSICAL REVIEW B69, 094407 ~2004!
terms in Eqs.~25! and~27!. The calculation is performed fo
all possible combinations of thecn and pn for a range ofL
values as shown in Fig. 5.

In the presence of the perturbation, the degenerate s
are split into four distinct states. These can be uniquely
beled by the number of bonds which carry current within
eight–atom unit cell. As the readers may convince the
selves by drawing cubes ad nausea, there are only four
tinct states. Either all of the currents cancel out between
intersecting planes, or currents remain on 1/3 of the bon
on 1/2 of the bonds, or on 2/3 of the bonds. This is a pur
geometrical constraint owing to the fact that all current loo
must close on themselves. Representative states for ea
the current-carrying configurations are shown in Fig. 7.

The data from Fig. 5 are used to extrapolate toL5`
using an exponential fit:f (L)5a exp@2b/L#; the results of
this are shown in Fig. 6. The calculation was performed
all 26 possible choices of thecn , pn , and all of these fall
directly onto one of the four data points shown in the figu
The calculation clearly demonstrates that the coupling to
perturbation depends only on the total current in the unit
and is linear in this quantity, a fact which is not obvious fro
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the form of Eq.~27!. The state which couples most strong
to the perturbation is the state where all the currents can
which requirespn51 for all n and that thecn be equal.

IV. DISCUSSION

We propose that the pseudogap state seen in the c
transition metal oxides may be described by a set of in
secting planes in which orbital antiferromagnetic order h
developed. The deviation of the tight-binding model fro
nearest-neighbor hopping leads to regions ofd where the
susceptibility to orbital antiferromagnetism, or flux order,
actually larger than the susceptibility to spin antiferroma
netism, or Ne´el order. As this result is based on a mean-fie
treatment, future work will be done to numerically verif
whether or not this effect persists when the constraint
double occupancy is strictly enforced. In these coupled p
nar systems, coupling between the bands selects a con
ration in which the currents along all bonds cancel perfec
Since there are no net currents on the bonds, experim
such as neutron diffraction which have been proposed to
termine the presence of orbital order in two14 and three1 di-
mensions will not be effective probes for this system. Ev
though the net current in the sample is predicted to be z
the electrons are in a true orbital antiferromagnetic state,
signatures from optical conductivity measurements1 will still
be present. Future work should center around how to m
sure OAF order without directly measuring the local ma
netic fields in the sample.
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