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Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model
under the single-mode relaxation time approximation
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The phonon thermal conductivity of the Lennard-Jones argon face-centered cubic crystal is predicted be-
tween temperatures of 20 K and 80 K using the Boltzmann transport equation under the single-mode relaxation
time approximation. The temperature and frequency dependencies of the phonon dispersion and phonon relax-
ation times are obtained from lattice-dynamics calculations based on the results of molecular-dynamics simu-
lations. No fitting parameters are required. The predicted thermal conductivities are in reasonable agreement
with independent predictions made from the simulations using the Green-Kubo method. The assumption of an
isotropic medium, as used in the Boltzmann transport equation formulation, leads to an overprediction of the
Green-Kubo results at low temperatures. At higher temperatures, where anharmonic effects become increas-
ingly important, the harmonic nature of the relaxation time calculation method leads to an underprediction of
the Green-Kubo results. Assuming that the low-frequency behavior of the relaxation times can be extended
over the entire frequency range, that there is no dispersion, or that the dispersion is independent of temperature,
leads to significant errors in the predictions. This finding indicates that in analytical calculations, where such
assumptions are often made, these errors are offset by the use of fitting parameters.

DOI: 10.1103/PhysRevB.69.094303 PACS number~s!: 66.70.1f, 63.20.Dj
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I. INTRODUCTION

While the lattice dynamics of a harmonic solid can
readily analyzed,1,2 such a model predicts an infinite phono
thermal conductivity for a perfect crystal~hereafter, the pho-
non thermal conductivity will be referred to as simply th
thermal conductivity!. To obtain a finite thermal conductiv
ity, anharmonicities in the atomic interactions, which lead
three-phonon~and higher! processes, must be considere
The inclusion of even three-phonon interactions in the lat
dynamics is a formidable task. A number of techniques
predicting the thermal conductivity based on the Boltzma
transport equation~BTE! have been developed.1 Notable are
those involving the single-mode relaxation time~SMRT! ap-
proximation, where every phonon mode is assigned a re
ation time corresponding to the net effect of different sc
tering mechanisms. A lack of understanding of multiphon
interactions requires that the predictions be fit to the exp
mental thermal conductivity data. Therefore, while such
proaches are useful for qualitatively validating the mod
developed, the quantitative validity of the models cannot
assessed. As they are currently used, SMRT techniques
thus not suitable for the analysis of materials whose ther
properties are not already known.

The thermal conductivity can also be predicted using
Green-Kubo~GK! method3 and molecular-dynamics~MD!
simulations. In this case, the analysis is based on a statist
mechanics approach, and is performed in real space@as op-
posed to the BTE, which is formulated in frequency~pho-
non! space#. No assumptions about the nature of the therm
transport are required before determining the thermal c
ductivity. The only required inputs are the equilibriu
atomic positions and an appropriate interatomic poten
This approach has generated reasonable agreement wit
perimental data for a number of dielectric materials.4–10 The
0163-1829/2004/69~9!/094303~12!/$22.50 69 0943
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application of MD simulations to real devices is limited b
the small system sizes (;nm) required for reasonable com
putation times.

The finite size of a MD simulation cell leads to a discre
number of allowed phonon modes, for which relaxati
times can be predicted using lattice-dynamic techniques.11,12

The purpose of this investigation is to use the relaxat
times predicted for the Lennard-Jones~LJ! argon face-
centered cubic~fcc! crystal to develop a continuous relax
ation time function that can then be used in the BTE-SM
model to predict the thermal conductivity. A summary of th
approach to predicting the thermal conductivity, and tho
described in the preceding two paragraphs, is shown in
1.

We begin by reviewing the BTE-SMRT and GK therm
conductivity prediction methods. The GK results are p
sented, and the decomposition of the thermal conducti
into components associated with short and long length s
interactions is described. Methods for predicting the spec
heat, anharmonic phonon dispersion, and phonon relaxa
times using MD are then presented. A continuous model
the relaxation times is developed, and used with the spec
heat and dispersion data to predict the thermal conducti
with the BTE-SMRT method. To the best of our knowledg
this is the first such calculation performed with no fittin
parameters. The GK and BTE-SMRT results are found
agree reasonably well. Common simplifications used in
BTE-SMRT approach are examined, and found to stron
affect the predictions.

II. THERMAL-CONDUCTIVITY PREDICTION

A. Boltzmann transport equation

1. Preliminaries

The BTE for a phonon modei under a temperature grad
ent“T is given by1
©2004 The American Physical Society03-1
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2vg,i•“T
]ni

]T
1S ]ni

]t D
coll ision

50, ~1!

where ni is the phonon mode occupation number,t is the
time, and vg,i is the phonon group velocity, defined a
]v/]k, wherev is the angular frequency andk is the wave
vector. The solution of Eq.~1! describes the steady-state d
tribution of phonons in a system, and how that distributi
comes about through the effects of diffusion~first term! and
scattering~second term, also known as the collision term!.

The main challenge in the solution of Eq.~1! is the mod-
eling of the collision term. Under the SMRT approximatio
a relaxation timet i ,r is assigned to each phonon mode su
that1

S ]ni

]t D
coll ision

5
ni ,o2ni

t i ,r
, ~2!

whereni ,o corresponds to the equilibrium phonon occupat
number, given by the Bose-Einstein distribution. The rel
ation time describes the temporal response of the syste
question when that particular phonon mode is activat
Equation~2! can be used to solve Eq.~1! for ni . By inte-
grating over all phonon modes, neglecting the contribution
optical phonons, and assuming an isotropic phonon dis

FIG. 1. Flow chart showing different methods by which t
thermal conductivity can be predicted. The focus of the curr
investigation is through the lattice dynamics path.
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sion with degenerate transverse branches, the thermal
ductivity k can be expressed using the Fourier law of h
conduction as13

k5
1

6p2 F E0

vL,maxS cv
vg

vp
2

t r D
L

v2dv

12E
0

vT,maxS cv
vg

vp
2

t r D
T

v2dvG . ~3!

Here,L andT correspond to the longitudinal and transver
phonon polarizations, respectively,vL,max andvT,max are the
frequencies of the dispersion branches at the edge of the
Brillouin zone,cv is the specific heat per mode at consta
volume ~and thus has units of J/K!, and vp is the phonon
phase velocity, defined asv/k. All of the quantities inside
the integrals are functions of frequency.

2. Callaway-Holland approach

The challenge in the evaluation of the integrals in Eq.~3!
is the specification of the phonon relaxation times and h
the phonon dispersion~which affects the velocity terms an
the upper limits of the integrals! is modeled. Here, an MD
simulation cell with periodic boundary conditions and n
defects is considered, so that the only source of phonon s
tering is through anharmonic interactions between the p
non ~normal! modes. There are two types of such intera
tions: normal ~N! processes, which conserve cryst
momentum, and Umklapp~U! processes, which do not. A
effective relaxation time for each modet i ,c is then defined
as14

1

t i ,c
5

1

t i ,N
1

1

t i ,U
. ~4!

Note thatt i ,c is not the same as the relaxation timet i ,r that
appears in Eq.~2!. This is because theN and U processes
have different effects on the phonon distribution, such tha
this formulation, the collision term must be modeled as14

S ]ni

]t D
coll ision

5
ni ,l2ni

t i ,N
1

ni ,o2ni

t i ,U
, ~5!

whereni ,l is the distribution that normal processes tend
wards. The relationship betweent i ,r , t i ,c , t i ,N , and t i ,U
was first established by Callaway.14

The t i ,N andt i ,U terms are generally modeled with con
tinuous expressions of the form14,15

1

tk
5Bkv

mkTpk, k5N,U, ~6!

where mk and pk are integers, andBk is a constant. The
choice ofmk andpk is often based on theoretical prediction
limited to low frequencies~where an elastic medium can b
assumed!, and/or for convenience in the subsequent calcu
tions. At low temperatures, it has been predicted that the s
of mk andpk should be five, and at high temperatures, thatpk
should be unity.1,16 There is no available method for predic

t

3-2
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QUANTITATIVE VALIDATION OF THE BOLTZMANN . . . PHYSICAL REVIEW B 69, 094303 ~2004!
ing the Bk coefficients, and closure of BTE-SMRT tech
niques is dependent on the fitting of these parameters
the experimental thermal conductivity data. There is
closed form expression available that covers the entire
quency and temperature ranges of the relaxation times f
given material. As will be shown, an expression of the fo
of Eq. ~6! would not adequate for this purpose.

Callaway14 modeled germanium using a formulatio
based on Eq.~5!. He assumed a Debye model for the phon
density of states~i.e., no dispersion! did not distinguish be-
tween the longitudinal and transverse polarizations, and
counted for the three-phonon interactions using terms w
mk andpk equal to two and three, respectively@see Eq.~6!#.
The resulting expression for the thermal conductivity co
tained two terms. The first was in the form of Eq.~3! with t r
equal totc . The second term, referred to now as the Ca
way correction term, results from the different effects ofN
andU processes described by Eq.~5!, and was assumed neg
ligible. Scattering from imperfections and at the crys
boundaries was included. The fitted function gives reas
able values below and around the maximum in the ther
conductivity (.12 K), but not at higher temperatures.17

Holland17 extended the Callaway model by separating
contributions of longitudinal and transverse phonons, incl
ing an approximate phonon dispersion relation, and us
different forms of the relaxation times. The Callaway corre
tion term was neglected, and theN processes were treated
an additional, but not special, scattering mechanism in
formulation of the total relaxation time. For germanium, t
high-temperature predictions are in better agreement with
experimental data than those from the Callaway model.
Holland model has since been used to investigate many o
materials, and refined to account for more realistic phon
dispersion,18 the effect of the Callaway correction term,19

and additional phonon scattering mechanisms15 ~e.g., four-
phonon processes and dislocations!. The added complexity
leads to more fitting parameters. One could argue that be
agreement with experimental data is a result of these a
tional fitting parameters, and not an improvement of the
tual physical model.

More refined BTE-SMRT models have been develope1

and more general solutions to the BTE based on itera
methods also exist.20,21 However, as a result of the complex
ity of the required calculations, investigators continue to u
the models of Callaway and Holland with only slight mod
fications, mainly due to the ease with which they can
implemented and their general success~albeit with the use of
multiple fitting parameters!.

B. Green-Kubo method: statistical mechanics approach

In a MD simulation, the classical position and momentu
space trajectories of a system of particles are determ
using interatomic forces~which are calculated from an ap
propriate potential-energy function!, Newton’s second law
and the kinematic equations of motion. The net flow of h
in such a system, given by the heat current vectorq, fluctu-
ates about zero at equilibrium. In the GK method, the th
mal conductivity is related to how long it takes for the
fluctuations to dissipate, and is given by3
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k5
1

kBVT2E0

`^q~ t !•q~0!&
3

dt, ~7!

wherekB is the Boltzmann constant,V is the volume of the
simulation cell, and̂ q(t)•q(0)& is the heat current autocor
relation function~HCACF!. The heat current vector for a pa
potential is given by3

q5
d

dt (
i

Eir i5(
i

Eivi1
1

2 (
i , j

~Fi j •vi !r i j , ~8!

where Ei , r i , and vi are the energy, position vector, an
velocity vector of particlei, respectively, andr i j andFi j are
the interparticle separation vector and force vector betw
particlesi andj, respectively. The GK method has been us
in MD simulations of dielectric materials such as amorpho
silicon,4 LJ argon,5,9 diamond,7 b-silicon carbide,6 silicon,8

and silica based crystals.10

It has been shown7,9 that the thermal conductivity of a
crystal with a monatomic unit cell can be decomposed i
contributions from short and long length scale interactio
by fitting the HCACF to a function of the form

^q~ t !•q~0!&
3

[Aac,shexp~2t/tac,sh!1Aac,lgexp~2t/tac,lg!.

~9!

Here, the subscriptsac, sh, and lg refer to acoustic
phonons, short range, and long range, respectively. ThA
terms are constants, and thet terms are time constants. Us
ing Eqs.~7! and ~9!, we have

k5
1

kBVT2
~Aac,shtac,sh1Aac,lgtac,lg![kac,sh1kac,lg .

~10!

The short-range component is associated with phonons
a mean free path equal to one half of their wavelength~the
limiting physical value22–24!, while the long-range compo
nent describes phonons with longer mean free paths.
short-range component and its associated time constan
independent of temperature. The long-range componen
temperature dependent. It accounts for the majority of
thermal conductivity, except at high temperatures, where
diminished due to the increased anharmonicity in the ato
interactions.

III. MOLECULAR-DYNAMICS SIMULATIONS

The fcc LJ crystal is studied. The plane formed by t
@100# and@010# axes is shown in Fig. 2. In the figure,a is the
side length of the conventional unit cell~which contains four
atoms! andL is the side length of the simulation cell~which
is taken to be cubic!. This leads toh5L/a unit cells in each
of the @100#, @010#, and @001# directions, andN54h3 total
atoms. Values ofh of four, five, and six are used, whic
correspond to 256, 500, and 864 total atoms, respectiv
Simulation cells of different sizes are required to obtain
necessary resolution of the wave vectors in the first Brillo
3-3
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A. J. H. McGAUGHEY AND M. KAVIANY PHYSICAL REVIEW B 69, 094303 ~2004!
zone in the BTE-SMRT approach. We define a dimension
wave vectork* as

k* 5
k

2p/a
, ~11!

such thatk* will vary between zero and one in the@100#
direction in the first Brillouin zone.

In an LJ system, the potential energy,Ui j , between atoms
i and j ( iÞ j ) is given by25

Ui j ~r i j !54eLJF S sLJ

r i j
D 12

2S sLJ

r i j
D 6G . ~12!

The depth of the potential energy well iseLJ , and corre-
sponds to an equilibrium particle separation of 21/6sLJ . The
LJ potential describes the noble elements well. Argon,
which sLJ and eLJ have values of 3.40310210 m and 1.67
310221 J, respectively,25 is chosen for the current investiga
tion. The use of a simple system allows for fast simulat
runs and the elucidation of results that may be difficult
resolve in more complex materials.

The simulations are run in theNVE ~constant mass, vol
ume, and energy! ensemble at zero pressure with a time s

FIG. 2. A plane in the fcc crystal. The atoms with black dots a
equivalent through the use of periodic boundary conditions.
09430
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of 4.285 fs, and periodic boundary conditions are imposed
all directions. Temperatures of 20 K, 35 K, 50 K, 65 K, an
80 K are considered. The melting temperature of the M
simulation cell is around 87 K. The unit-cell parameters a
given in Table I. The details of the MD procedures have be
described elsewhere.9 The only significant modifications
made here are that the potential cutoff is fixed at 2.5sLJ and
no correction is made to the pressure calculation. Th
changes ensure that the atomic spacing is the same in
different sized simulation cells.

Due to their classical nature, MD simulations cannot e
plicitly take quantum effects into account. The MD approa
is thus not suitable near and below the maximum in
thermal conductivity@observed experimentally in crysta
around one-tenth of the Debye temperature26, and for argon
at a temperature of 6 K~Ref. 27!#, where quantum effects on
the phonon mode populations are important. The ther
conductivity in this region is also strongly affected by imp
rities and boundary effects, which are not considered h
As such, an MD simulation of a perfect crystal with period
boundary conditions will lead to an infinite thermal condu
tivity at zero temperature, as opposed to the experime
value, which goes to zero. Although temperature and ther
conductivity scaling factors have been suggested that inc
quantum effects,4,6,8 these are not used here, as quantum
fects are not expected to be significant for argon in the te
perature range considered.25

IV. GREEN-KUBO THERMAL CONDUCTIVITY
PREDICTION

The thermal conductivities predicted using the G
method are given in Table I. Each value corresponds to
average of five independent simulations. Also included is
decomposition of the thermal conductivity into the sho
range and long-range components, and the associated
m.
TABLE I. Simulation cell parameters and GK thermal conductivity predictions. The specific heat is given per degree of freedo

T a kGK kac,sh kac,lg tac,sh tac,lg

~K! ~Å! h cv /kB ~W/m-K! ~W/m-K! ~W/m-K! ~ps! ~ps!

0 5.269 1
20 5.315 4 0.976 1.216 0.080 1.137 0.289 8.161

5 1.217 0.074 1.143 0.275 7.776
6 1.218 0.069 1.149 0.263 7.617

35 5.355 4 0.957 0.580 0.090 0.491 0.290 4.438
5 0.587 0.086 0.501 0.281 4.183
6 0.593 0.088 0.505 0.286 4.279

50 5.401 4 0.944 0.323 0.100 0.223 0.289 2.669
5 0.941 0.348 0.091 0.257 0.271 2.518
6 0.942 0.336 0.089 0.246 0.266 2.400

65 5.455 4 0.930 0.219 0.095 0.124 0.261 1.560
5 0.223 0.093 0.130 0.254 1.601
6 0.236 0.098 0.138 0.264 1.826

80 5.527 4 0.924 0.162 0.082 0.080 0.225 0.894
5 0.164 0.084 0.080 0.227 0.919
6 0.177 0.099 0.078 0.247 1.313
3-4
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QUANTITATIVE VALIDATION OF THE BOLTZMANN . . . PHYSICAL REVIEW B 69, 094303 ~2004!
constants@defined in Eqs.~9! and ~10!#.
The thermal conductivity predictions are lower than o

previously reported data,9 due to the smaller lattice spacin
that results from the smaller potential cutoff and removal
the pressure correction. There is no size effect~the thermal-
conductivity predictions fall within at most65% of the
mean value at a given temperature!, consistent with the resul
of Kaburakiet al.5 for LJ systems with greater than 256 a
oms (h54). There is more variation in the components
the thermal-conductivity decomposition and associated t
constants than in the total thermal conductivity, which is d
to the nature of the fit of Eq.~9!. While the total value of the
resulting integral is consistent, there is some ‘‘exchang
between the two components where the dominant beha
changes fromtac,sh to tac,lg . This effect is particularly evi-
dent at the higher temperatures considered, wheretac,sh
;tac,lg .

The experimental values for the thermal conductivity
argon at the temperatures considered are 1.36 W/m-K~20 K!,
0.65 W/m-K ~35 K!, 0.46 W/m-K ~50 K!, 0.35 W/m-K ~65
K!, and 0.30 W/m-K~80 K!. ~Ref. 28!. In general, differ-
ences between predictions from MD simulations and exp
mental data can be attributed to the approximate natur
the interatomic potential, size effects, and the simulation p
cedures. By using a cutoff radius around 4sLJ , we note that
good agreement can be found with the experimental ther
conductivity data for argon. In this investigation, we are co
cerned with checking the internal consistency between
GK and BTE-SMRT approaches, and as such, use the s
dard 2.5sLJ cutoff.

V. BOLTZMANN TRANSPORT EQUATION
FORMULATION

To use Eq.~3! to predict the thermal conductivity,cv , t r ,
vg , vp , and the upper limits of the integrals must be spe
fied.

A. Specific heat

The specific heat is defined thermodynamically as the
of change of the total system energy~kinetic and potential!
as a function of temperature at constant volume.25 Such a
calculation can be explicitly performed using the results
the MD simulations. The predicted specific heats are plo
in Fig. 3 and given in Table I for theh54 simulation cells.
The values given correspond to the specific heat per de
of freedom, as required by Eq.~3!, and no frequency or
polarization dependence is taken into account. The calc
tion is performed by varying the temperature in 0.1 K inc
ments over a60.2 K range around the temperature of inte
est. Five simulations are performed at each of the fi
increments, with energy data averaged over 33105 time
steps. The resulting 25 data points are fit with a linear fu
tion, whose slope is the specific heat. At a temperature o
K, the specific heat has been predicted for each of the si
lation cell sizes~given in Table I!, and no size dependence
evident. While the spread of the energy data in these ca
lations increases with increasing temperature~the R2 value
09430
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of the fit at a temperature of 20 K is 0.9999, while that a
temperature of 80 K is 0.9774!, the consistency in the pre
dicted specific heats suggests that any error present is m
mal.

The specific heat predicted from the MD simulations is
classical-anharmonic value. Also shown in Fig. 3 are
classical-harmonic and the quantum-harmonic specific he
The classical-harmonic valuekB is based on an assumptio
of equipartition of kinetic and potential energy between n
mal modes. The equipartition assumption is always valid
the kinetic energy~i.e., it contributes 0.5kB to cv). How-
ever, for the potential energy, it is only true under the h
monic approximation, which itself is only valid at zero tem
perature. The deviations of the classical-anharmonic res
from the classical-harmonic model are significant. T
quantum-harmonic specific heat is based on the ze
temperature phonon density of states~as calculated from the
MD simulations! and is given by29

cv,quant-harm5kB(
i

xi
2exp~xi !

@exp~xi !21#2
, ~13!

wherex is \v/kBT, \ is the Planck constant divided by 2p,
and the summation is over the normal modes of the syst
As expected, the classical and harmonic specific heats
significantly different at low temperatures, where quantu
effects are important. Prediction of the quantum-anharmo
specific heat~as would be measured experimentally! would
require taking into account the temperature dependence
coupling of the normal modes, and the results would be
pected to converge with the classical-anharmonic value
high temperatures~i.e., on the order of the Debye temper
ture!.

B. Phonon relaxation time

For the case of a monatomic unit cell, in a simulation c
with N atoms there areN points in the first Brillouin zone.
Each point has one longitudinal and two transverse pho
modes associated with it. This leads to the 3N normal
modes. By assuming an isotropic phonon dispersion

FIG. 3. The classical-anharmonic specific heat per degree
freedom predicted from the MD simulations, and the classic
harmonic and quantum-harmonic curves~all scaled bykB).
3-5
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A. J. H. McGAUGHEY AND M. KAVIANY PHYSICAL REVIEW B 69, 094303 ~2004!
smaller subset can be considered in the thermal conduct
calculation. Here, the@100# direction is chosen, in which
there will be h allowed modes. This does not include th
zero-frequency mode, which corresponds to a rigid tran
tion of the simulation cell, and does not contribute to therm
transport. To obtain a sufficient number of points within t
first Brillouin zone to form a continuoust r function, differ-
ent sized simulation cells must be considered. These h
been described in Sec. III.

Ladd et al.11 present a method in which the relaxatio
time of the i th modet i ,r is found using the time history o
the mode potential energyEi ,p . This method is modified
here by considering the total energy~potential and kinetic! of
each mode,Ei ,t .

The normal modes of a system,Si(k,n), wheren corre-
sponds to the mode polarization (L or T) described by a
vectorei(k,n), can be expressed as a sum over the positi
of the atoms in the system as

Si~k,n!5N21/2(
j

M j
1/2exp~2 i k•r j ,o!ei* ~k,n!•uj .

~14!

Here, M is the mass of an atom, * denotes the comp
conjugate,r j ,o is the equilibrium position of atomj, anduj is
the relative displacement of atomj from its equilibrium po-
sition ~i.e., r j2r j ,o).

Under the harmonic approximation, the total energy
each mode of a classical system is given by

Ei ,t5
v i

2Si* Si

2
1

Ṡi* Ṡi

2
, ~15!

where the first term corresponds to the potential energy
the second term to the kinetic energy. The temporal deca
the autocorrelation ofEi ,t is related to the relaxation time o
that mode. The resulting curve for the transverse polariza
at k* 50.5 for theh54 simulation cell at a temperature o
50 K is shown in Fig. 4. The required ensemble averag
realized by averaging the autocorrelation functions (104 time
steps long, based on 23105 time steps of data! over the
@100#, @010#, and @001# directions over five independen
simulations. This leads to 15 data sets for the longitudi
polarization and 30 data sets for the transverse polariza
The relaxation time is obtained by fitting the data with
exponential decay. Based on this formulation, the calcula
time constant must be multiplied by two to get the relaxat
time to be used in the BTE~this will be explained in Sec
VI B !. All of the modes considered show a general behav
consistent with a single relaxation time. The only exceptio
are the longitudinal modes below ak* value of 0.5, where a
secondary decay is evident in the very early stages of
overall decay. In these cases, this portion of the autocorr
tion is neglected when fitting the exponential. Alternative
one could calculate the integral of the autocorrelation a
from that deduce an effective relaxation time.11 Due to the
short extent of the observed deviation from a SMRT, and
subsequent fitting of a continuous function to the discr
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relaxation times, the difference between this approach
that which has been adopted is negligible.

An indication of the error in the predicted relaxation tim
can be obtained by findingt i ,r for each of the data set
before averaging the autocorrelation functions, and look
at the resulting spread. The mean values and standard d
tions corresponding to theh54 simulation cell at a tempera
ture of 50 K are given in Table II. The standard deviation
between 6% and 19% of the mean value for the longitudi
direction, and between 12% and 22% of the mean value
the transverse direction. These values are typical of th
found for the other temperatures. Much of this uncertainty
eliminated when the relaxation times are fit with continuo
functions. This is described next.

Having obtained a set of discretet i ,r values for a given
temperature and polarization, a continuous function,t r , can
now be constructed. The discrete and continuous results
temperature of 50 K are plotted as 1/t i ,r ~or 1/t r) vs v @after
Eq. ~6!# in Fig. 5~a!.

To be physically meaningful, the mean free path,L, of a
phonon should be longer than one half of its waveleng
l.24,22,23 Noting that L5vgt r , l52p/k, and using the
definition of vp , this limit can alternatively be stated as

FIG. 4. Autocorrelation curves for the relaxation time and a
harmonic phonon dispersion calculation methods. The data co
spond to deviations from the mean energy values, and have
normalized against the zero time value of the autocorrelatio
Shown are the total-mode energy~used in the relaxation time cal
culation! and the potential energy~used to obtain the anharmoni
phonon dispersion!. The frequency of the oscillations in th
potential-energy curve is double that of the phonon mode in qu
tion because of the squaring operations in Eq.~15!.

TABLE II. Mean values and spread of the discrete relaxat
times at a temperature of 50 K for theh54 simulation cell. The
calculations are based on finding the relaxation times before a
aging the autocorrelation functions.

k*
(t i ,r)L

~ps!
(s i ,r)L

~ps!
(t i ,r)T

~ps!
(s i ,r)T

~ps!

0.25 7.50 1.42 6.31 0.88
0.50 3.34 0.63 2.90 0.35
0.75 1.38 0.07 2.87 0.40
1.00 1.11 0.07 2.70 0.59
3-6
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1

t r
<

vvg

pvp
, ~16!

and is also shown in Fig. 5~a!. At a temperature of 50 K, the
phonons at the edge of the first Brillouin zone (k* 51) are
outside of the allowed range for both polarizations. As
temperature increases, more of the phonon modes do
satisfy Eq.~16!. At the highest temperature, 80 K, the tra
sition occurs atk* values of 0.77 and 0.81 for the longitu
dinal and transverse polarizations, respectively.

FIG. 5. ~Color online! ~a! Discrete relaxation times (t i ,r) and
continuous curve fits (t r) at T550 K. Also shown is the minimum
physical value of the relaxation time,pvp /vvg . ~b! Raw data and
continuous relaxation time curve fits for the longitudinal polariz
tion at all temperatures considered.~c! Raw data and continuou
relaxation time curve fits for the transverse polarization at all te
peratures considered.
09430
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The data for each polarization can be broken down i
three distinct regions. The first two are fit with low-ord
polynomials. For the longitudinal polarization, the first r
gion is fit with a second-order polynomial through the orig
and the second region with a second-order polynomial.
the transverse polarization, the first region is fit with
second-order polynomial through the origin, and the sec
region with a linear function. The resulting functions are a
shown in Fig. 5~a! and are considered satisfactory fits to t
MD data. As the temperature increases, the behavior in
two regions becomes similar. For both polarizations at a te
perature of 80 K, and for the longitudinal polarization at
temperature of 65 K, a single second-order polynom
through the origin is used to fit the data. In the third regio
the continuous relaxation time functions are taken up to
maximum frequency (vL,max or vT,max) using Eq.~16!.

The raw data and continuous relaxation time functions
all temperatures considered are shown in Figs. 5~b! and 5~c!.
The parts of the relaxation time curves are not forced to
continuous. For both the longitudinal and transverse po
izations, any resulting discontinuities are small, and
purely a numerical effect. The relaxation time functions
not contain the orders of magnitude discontinuities found
the Holland relaxation times for germanium, which res
from the assumed forms of the relaxation times, and how
fitting parameters are determined.30

Theoretical calculations predict that in thek* range
0–0.2, the longitudinal and transverse curves should fol
v2 and v dependencies, respectively.16,31 This is not found
in the relaxation times predicted by the MD simulations. T
second order fit found at the high temperatures is consis
with the high-temperature prediction of Srivastava.1 Of par-
ticular note is the turning over of the low-temperature tra
verse curves at higher frequencies. In general, it is clear
the extension of the low-frequency behavior to the en
frequency range, as is sometimes done, is not generally
able. The effect of such an assumption on the thermal c
ductivity prediction will be considered in Sec. VI C.

C. Phonon dispersion

The phonon dispersion relation for a solid describes
relationship between the phonon frequencies and their wa
lengths. It can thus be used to predict the phonon phase
group velocities, and the upper integration limits, requir
for the evaluation of Eq. ~3!. In some BTE-SMRT
investigations,14,17,24the dispersion has been either neglec
or greatly simplified. The importance of accurately modeli
the dispersion has recently been investigated
germanium.30 The assumption of no dispersion is found
contribute to nonphysical discontinuities in the relaxati
times, which are masked in the final calculation of the th
mal conductivity with the use of fitting parameters. By mo
accurately modeling the dispersion, the size of these disc
tinuities can be reduced~although they are not eliminate
due to the relaxation time models used!.

The zero-temperature phonon dispersion is harmonic,
can be determined exactly at any wave vector using the
equilibrium atomic positions and the interatomic potential

-

-
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A. J. H. McGAUGHEY AND M. KAVIANY PHYSICAL REVIEW B 69, 094303 ~2004!
continuous dispersion relation can thus be obtained. De
tions from this calculation at finite temperature are a resul
two effects.2 Based on the higher-order terms in the expa
sion of the potential energy about its minimum, a solid w
either expand~as seen here!, or contract~e.g., some zeolites!,
as the temperature increases. An expansion will cause
phonon frequencies to decrease. Recalculating the dispe
harmonically with the new lattice constant is known as
quasiharmonic approximation.2 The second effect is a resu
of anharmonicities in the atomic interactions, which beco
increasingly important as the temperature is increased.
exact modeling of this effect is difficult. To account for th
anharmonic effects, the autocorrelation data for the m
potential energy are used to calculate the frequencies o
discrete modes present in the MD simulations. This is sho
in Fig. 4. While the total-energy autocorrelation shows
monotonic decay, that for the potential-energy oscillat
This is an indication of the total mode energy having bo
potential -and kinetic-energy components. An estimate of
anharmonic frequency is obtained by averaging over all n
negligible oscillations in the autocorrelation. This generate
set of discrete anharmonic frequency data. These values
then compared to the associated quasiharmonic frequen
and a second-order polynomial scaling function is co
structed. This function is then applied to the continuo
quasiharmonic data to obtain the full anharmonic dispers
The excellent quality of the mapping from the quasiharmo
data to the anharmonic data~the R2 values of the scaling
functions are;0.999) suggests that minimal error is intr
duced through this procedure.

The frequencies used for the horizontal axes of Figs. 5~a!,
5~b!, and 5~c! are based on the anharmonic dispersion.
note, however, that the frequencies used in the phonon
ergy calculations@Eqs. ~14! and ~15!# must be those corre
sponding to the quasiharmonic dispersion. This is a resu
the phonon dynamics being based on a harmonic the
while the BTE expression for the thermal conductivity is n
The need to use the quasiharmonic frequencies in the pho
energy calculation has been justified by calculating the to
average phonon potential energy and comparing the resu
that directly calculated with the LJ potential. Using th
quasiharmonic frequencies results in an energy that mat
the magnitude and temperature trend of the exact calcula
to within 5% over the entire temperature range conside
The anharmonic results diverge from the exact calculat
and are 36% larger at the highest temperature.

The phonon dispersion for the@100# direction is shown in
Fig. 6~a! for the zero-temperature simulation cell, and for t
quasiharmonic and anharmonic predictions at a tempera
of 50 K. The resultingvg /vp

2 functions, which are required in
Eq. ~3!, are shown in Fig. 6~b!. The effect of the unit-cell
size is significant, and increases with increasing tempera
The anharmonic effects are significant for the longitudi
polarization at all temperatures, and increase with increa
temperature. For the transverse polarization, the deviat
from the quasiharmonic values are only found to be sign
cant at a temperature of 80 K. To our knowledge, the te
perature dependence of the dispersion has not previo
been considered in the SMRT formulation. Typically, one
09430
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of low-temperature data~which is more readily obtained ex
perimentally than high temperature data! is applied over the
entire temperature range of interest. As seen in Figs. 6~a! and
6~b!, such assumption is rather questionable.

VI. BOLTZMANN TRANSPORT EQUATION
THERMAL-CONDUCTIVITY PREDICTION

Having specified the specific heat, phonon velocities, a
phonon relaxation times, the thermal conductivity can
predicted using Eq.~3!. As the LJ fcc crystal has a mon
atomic unit cell, there are only acoustic phonon mod
present, and the assumption of neglecting optical pho
modes is not relevant. The results are given in Table III a
shown in Figs. 7~a! and 7~b!. Included in Table III are the
total values of the thermal conductivity and their decomp
sition into longitudinal and transverse components, alo
with the mean GK values, calculated from Table I.

A. Validation of the BTE-SMRT approach

In order to compare the GK and BTE-SMRT prediction
the nature of each method and the associated uncertai
must be considered.

In the GK method, the thermal conductivity is predicte
without making anya priori assumptions about the nature

FIG. 6. ~Color online! ~a! Phonon dispersion in the@100# direc-
tion. ~b! Variation of vg /vp

2 for the dispersion relations of part~a!.
The curves are identified by the temperature in Kelvin, the po
ization, and the nature of the calculation (h5harmonic, qh
5quasiharmonic, a5anharmonic). The (50T,a! and (50T,qh!
curves are indistinguishable in~b!.
3-8
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QUANTITATIVE VALIDATION OF THE BOLTZMANN . . . PHYSICAL REVIEW B 69, 094303 ~2004!
the thermal transport. As such, we take the prediction of
method to be the ‘‘exact’’ MD value that the BTE-SMR
method should be compared to. As discussed in Sec. IV
Ref. 9, the uncertainty in the GK values is65%.

The complicated nature of the BTE-SMRT formulatio
makes it difficult to assign a uncertainty to the results wi
out making multiple predictions at a given temperature. D
to the need to use different simulation cell sizes, the BT
SMRT approach is significantly more computationally d
manding than the GK approach, making additional pred
tions costly. A second set of thermal conductivity predictio
at temperatures of 20 K, 50 K, and 80 K resulted in values
1.444 W/m-K, 0.369 W/m-K, and 0.133 W/m-K, respe
tively. The good agreement with the thermal conductivit
given in Table III indicates that the uncertainty in the BT
SMRT thermal conductivity predictions is on the order

TABLE III. BTE-SMRT and GK thermal conductivity
predictions.kBTE5kL12kT .

T ~K! kGK

~W/m-K!
kBTE

~W/m-K!
kL

~W/m-K!
kT

~W/m-K!

20 1.217 1.440 0.751 0.345
35 0.587 0.675 0.368 0.154
50 0.335 0.373 0.198 0.087
65 0.226 0.220 0.112 0.054
80 0.167 0.134 0.066 0.034

FIG. 7. ~a! Thermal conductivities predicted by the GK an
BTE-SMRT methods.~b! The relative contributions of the longitu
dinal and transverse polarizations tokBTE .
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that for the GK values~i.e., 5%!. The observed repeatabilit
is in large part a result of the many independent simulati
used to provide data for a given condition. A complete sa
pling of the MD phase space is crucial for obtaining go
statistics with minimal noise.

In the BTE-SMRT approach, two important points mu
be considered. First, the phonon dispersion has been
sumed isotropic. The volume of the associated first Brillou
zone, which is spherical, is 32p4/3a3. The volume of the
real first Brillouin zone is 32p3/a3, which means that the
volume considered in the integral isp/3.1.05 times larger
than the real volume. The isotropic assumption also affe
the phonon relaxation times and velocities, and the res
indicate that these factors lead to an overprediction of
thermal conductivity. This effect is consistent with the pr
dictions of an iterative solution method for the BTE.20

Second, the BTE-SMRT formulation has a harmonic b
sis. Even though anharmonicities have been taken into
count in the phonon dispersion, the expression forEi ,t @Eq.
~15!# assumes a harmonic system. As the temperature is
creased, the validity of this assumption worsens, and lead
an underprediction of the thermal conductivity at the high
temperatures~i.e., the anharmonic effect dominates over t
isotropic effect!. The deviation from the harmonic theory
seen in the specific-heat data~Table I and Fig. 3!, and by
plotting the average phonon energies~scaled by the classica
expectation value,kBT), as shown in Fig. 8. Also shown in
Fig. 8 is the quantum-harmonic phonon energy. At the l
temperatures, the agreement between the MD data and
classical prediction is reasonable, but steadily worsens as
temperature increases. The existence of modes with en
greater than the classical value can be attributed to the
monic nature of the energy calculation.

Based on the above discussion, the agreement betw
the two independent predictions of the thermal conductiv
is considered satisfactory. Thus, for what we believe to
the first time, we have established the quantitative validity
the BTE-SMRT approach. The BTE-SMRT formulatio
could be improved by removing the isotropic assumption a
considering the frequency dependence of the specific h
However, both of these steps would result in more time
tensive calculations, for which the resources may not alw
be available.

FIG. 8. ~Color online! Average phonon mode energies scaled
kBT at temperatures of 20 K, 50 K, and 80 K. Also shown are
quantum-harmonic and classical-harmonic energies.
3-9
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A. J. H. McGAUGHEY AND M. KAVIANY PHYSICAL REVIEW B 69, 094303 ~2004!
B. Investigation of GK and BTE-SMRT formulations

To compare the GK and BTE-SMRT methods, the cum
lative frequency dependencies of the thermal conductivi
predicted by Eqs.~3! and ~7! can be considered.9 This is
shown in Fig. 9. The GK curve corresponds to theh56
simulation cell for a temperature of 50 K. The oscillatio
are a function of the periodic boundary conditions. The m
jority of the GK thermal conductivity is accounted for by
frequency range much smaller than that of the phonon s
trum (0,v,vL,max). To understand this behavior, the di
ference between the phonon frequency and the freque
associated with the phonon relaxation time must be dis
guished. This is seen by expressing the normal modes a11

Si5Si ,oexp@2 i ~v i1 iG i !t#, ~17!

whereSi ,o is the mean value andG i is the line width, equal
to 1/(2t i ,r) ~this is the factor of two that comes into th
relaxation time calculation in Sec. V B!. In the BTE formu-
lation, Eq.~3!, the integration is over the phonon frequen
v i . In the GK formulation, Eq.~7!, the integration is over
the frequency corresponding to the phonon lifetime 2G i
which will be many times the period of oscillation 2p/v i .

The effect of temperature on the BTE-SMRT predicti
can be assessed by plotting the cumulative wave-numbe
pendence of the thermal conductivity. This is shown in F
10 for all the temperatures considered, with the thermal c

FIG. 9. ~Color online! Cumulative frequency dependence of t
thermal conductivity at a temperature of 50 K.

FIG. 10. Cumulative wave-number dependence of the BT
SMRT thermal conductivity at all temperatures considered. T
thermal conductivity is normalized against the total value.
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ductivity normalized against the total value. Note that the
is no apparent temperature effect. A given phonon mode c
tributes equally to the thermal conductivity, independent
the temperature. As well, the weighting of the contribution
the modes to the total thermal conductivity is approximat
uniform. Both of these findings are contrary to the comm
notion that as the temperature decreases, long wavele
~low wave number! modes become increasingly importan
In analytical BTE-SMRT calculations, such a finding ma
have come about due to the assumed piecewise forms o
phonon relaxation times. We note that this behavior may a
be partially a result of the classical nature of the simulatio
where all modes are excited approximately equally~see Fig.
8!. This is not true of a quantum system at low temperatu

It is also interesting to note that the relative contributio
of the longitudinal and transverse polarizations change
only a small amount over the large temperature range c
sidered, as shown in Fig. 7~b! (kL /kBTE;0.5 andkT /kBTE
;0.25). This is in contrast to predictions made for germ
nium, where, albeit with a different crystal structure, t
transverse phonon modes are predicted to account for
majority of the thermal conductivity at high temperatures30

C. Simplifying assumptions in the BTE-SMRT approach

To assess the importance of the detail used in the mo
ing of the terms in Eq.~3!, a number of approximations ar
investigated at a temperature of 50 K. The results are s
marized in Table IV for the following cases:~a! assuming no
dispersion@i.e. vg5vp , so thatvg /vp

251/vg , with the value
taken as thek* 50 intercept for the (50L,a! and (50T,a!
curves of Fig. 6~b!#, ~b! using the zero-temperature dispe
sion relation,~c! using the quasiharmonic dispersion,~d! ex-
tending the low-frequency relaxation time behavior over
entire frequency range, and~e! using a single time constan
taken astac,lg from the thermal conductivity decompositio
of Eq. ~10!.

Assuming no phonon dispersion results in an overpred
tion of thermal conductivity. As is evident from Fig. 6~b!,
taking vg /vp

2 to be constant and equal to thek* 50 value
will overemphasize the contributions of higher frequenci
Using the zero-temperature dispersion results in a sim
value as the full model. This is due to two counteracti

-
e

TABLE IV. BTE-SMRT thermal conductivity predictions at a
temperature of 50 K under simplifying assumptions.kBTE5kL

12kT . ~a! T550 K, no dispersion,~b! T50 K dispersion,~c! T
550 K quasiharmonic dispersion,~d! low-frequency relaxation
time behavior extended to entire frequency range, and~e! single
relaxation time (tac,lg). Under the full model,kBTE50.373 W/m-K,
kL50.198 W/m-K, andkT50.087 W/m-K.

kBTE ~W/m-K! kL ~W/m-K! kT ~W/m-K!

~a! 0.482 0.239 0.122
~b! 0.383 0.187 0.098
~c! 0.332 0.190 0.071
~d! 0.357 0.208 0.074
~e! 0.264 0.144 0.060
3-10
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QUANTITATIVE VALIDATION OF THE BOLTZMANN . . . PHYSICAL REVIEW B 69, 094303 ~2004!
effects: the extension of the integration limits in Eq.~3!,
which will raise the thermal conductivity, and the resultin
lower values ofvg /vp

2 @as seen in Fig. 6~b!#, which will
lower the thermal conductivity. Use of the quasiharmo
dispersion results in an underprediction of the thermal c
ductivity. Using the low-frequency relaxation time behavi
extended over the entire frequency range results in an un
prediction of the thermal conductivity. This can be large
attributed to the high-frequency behavior of the transve
polarization relaxation time curve, not captured in the tre
of the low-frequency behavior. This discrepancy increase
the temperature is decreased@see Fig. 5~c!#. Using tac,lg
~2.53 ps! as a single relaxation time underpredicts the th
mal conductivity. This is because it results in a near elimi
tion of the low-frequency contributions. These findings in
cate that taking the temperature and frequency depende
of the relaxation times and phonon dispersion into accoun
crucial for obtaining a good and physical prediction of t
thermal conductivity.

VII. SUMMARY AND CONCLUSION

The quantitative validity of the BTE-SMRT approach f
predicting the phonon thermal conductivity has been v
dated for the LJ argon fcc crystal by using MD simulatio
to provide the necessary input, and then comparing the
sults to the predictions of the GK method. This approa
eliminates the need for experimental fitting parameters.
success of the predictions is strongly dependent on the c
plete modeling of the temperature and frequency depen
cies of the phonon dispersion and relaxation times. Assu
tions commonly made in the BTE-SMRT approach~e.g.,
extension of the low-frequency behavior of the relaxat
times over the entire frequency range, no dispersion, an
temperature independent dispersion! can lead to poor predic
tions, which suggests that the previous success of these m
els ~e.g., the Callaway-Holland approach! was strongly de-
pendent on fitting the results to experimental data. T
approach presented here is limited by the assumption o
isotropic medium and the harmonic nature of the relaxat
time model. However, the error introduced by these factor
small compared to the gain associated with the elimination
fitting parameters. The methods described can be extend
other dielectric crystals, including those with multiatom u
cells ~where optical phonons will be present!.
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Two sets of time constants have been introduced: th
associated with the relaxation of particular phonon mo
(t r), and those associated with the thermal-conductivity
composition (tac,sh andtac,lg). Both sets of relaxation times
can be used to predict the thermal conductivity, and reas
able agreement in the results has been found. This agree
suggests that there is a link between these time consta
likely of the form

t i5(
j
E

0

v j ,max
gj~v!~t r ! jdv, i 5~ac,sh!,~ac,lg !,

~18!

where the sum is over the phonon polarizations, andgj (v) is
a weighting function. The form of the weighting functio
may be related to the phonon distribution function and
nature of the three-phonon interactions.

The plots in Figs. 9 and 10 dispel a common misconc
tion that the low-frequency/long-wavelength phonon mod
dominate the thermal conductivity. In fact, long length sc
behavior is important@the kac,lg term in Eq.~10!#, but it is
the phonon mean free path, and not its wavelength, tha
relevant. This is the important distinction seen when comp
ing the GK and BTE results in Fig. 9, as described by E
~17!.

The development of relaxation time models is useful
thermal conductivity calculations as used, but will also
applicable to more general BTE calculations, including n
merical solutions based on the phonon equation of radia
transfer32 and the direct simulation Monte Carl
techniques.33 Both of these approaches can be used to mo
larger system sizes~up to the micron level, typical of MEMS
devices and not accessible with MD!. In such calculations,
simple relaxation time models have been used, and in s
cases, a single relaxation time has been assumed to des
an entire system. The use of MD to generate continu
relaxation functions~without the need for experimental fit
ting parameters! will greatly add to the ability of such calcu
lations to accurately model the underlying physics.
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