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Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model
under the single-mode relaxation time approximation
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The phonon thermal conductivity of the Lennard-Jones argon face-centered cubic crystal is predicted be-
tween temperatures of 20 K and 80 K using the Boltzmann transport equation under the single-mode relaxation
time approximation. The temperature and frequency dependencies of the phonon dispersion and phonon relax-
ation times are obtained from lattice-dynamics calculations based on the results of molecular-dynamics simu-
lations. No fitting parameters are required. The predicted thermal conductivities are in reasonable agreement
with independent predictions made from the simulations using the Green-Kubo method. The assumption of an
isotropic medium, as used in the Boltzmann transport equation formulation, leads to an overprediction of the
Green-Kubo results at low temperatures. At higher temperatures, where anharmonic effects become increas-
ingly important, the harmonic nature of the relaxation time calculation method leads to an underprediction of
the Green-Kubo results. Assuming that the low-frequency behavior of the relaxation times can be extended
over the entire frequency range, that there is no dispersion, or that the dispersion is independent of temperature,
leads to significant errors in the predictions. This finding indicates that in analytical calculations, where such
assumptions are often made, these errors are offset by the use of fitting parameters.
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[. INTRODUCTION application of MD simulations to real devices is limited by
the small system sizes<(nm) required for reasonable com-
While the lattice dynamics of a harmonic solid can beputation times.
thermal conductivity for a perfect crystéiereafter, the pho- number of allowed phonon modes, for which relaxation
non thermal conductivity will be referred to as simply the iMes can be predicted using lattice-dynamic technidhés.

o : - . The purpose of this investigation is to use the relaxation
thermal conductivity. To obtain a finite thermal conductiv- . '
Y times predicted for the Lennard-JonékJ) argon face-

ity, anharmonicities in the atomic interactions, which lead to ) X
three-phonon(and highey processes, must be considered ce_nter_ed cub|c(f_cc) crystal to develop a c_ontlnuous relax-
' ‘ation time function that can then be used in the BTE-SMRT

The inclusion of even three-phonon interactions in the Iatticefnodel to predict the thermal conductivity. A summary of this

dynamics is a formidable task. A number of techniques forapproach to predicting the thermal conductivity, and those

predicting the thermal conductivity based on the Boltzmanrygqcriped in the preceding two paragraphs, is shown in Fig.
transport equatiofBTE) have been developéd\otable are 1.
those involving the single-mode relaxation tit®MRT) ap- We begin by reviewing the BTE-SMRT and GK thermal
proximation, where every phonon mode is assigned a relaxsonductivity prediction methods. The GK results are pre-
ation time corresponding to the net effect of different scatsented, and the decomposition of the thermal conductivity
tering mechanisms. A lack of understanding of multiphononinto components associated with short and long length scale
interactions requires that the predictions be fit to the experiinteractions is described. Methods for predicting the specific
mental thermal conductivity data. Therefore, while such apheat, anharmonic phonon dispersion, and phonon relaxation
proaches are useful for qualitatively validating the modelgimes using MD are then presented. A continuous model for
developed, the quantitative validity of the models cannot béhe relaxation times is developed, and used with the specific-
assessed. As they are currently used, SMRT techniques aeat and dispersion data to predict the thermal conductivity
thus not suitable for the analysis of materials whose thermavith the BTE-SMRT method. To the best of our knowledge,
properties are not already known. this is the first such calculation performed with no fitting
The thermal conductivity can also be predicted using thdarameters. The GK and BTE-SMRT results are found to
Green-Kubo(GK) method and molecular-dynamicéviD) agree reasonably well. Common simplifications used in the
simulations. In this case, the analysis is based on a statisticdBTE-SMRT approach are examined, and found to strongly
mechanics approach, and is performed in real spasep-  affect the predictions.
posed to the BTE, which is formulated in frequengho-
non spacé. No assumptions about the nature of the thermal Il. THERMAL-CONDUCTIVITY PREDICTION
transport are required before determining the thermal con- A. Boltzmann transport equation
ductivity. The only required inputs are the equilibrium
atomic positions and an appropriate interatomic potential.
This approach has generated reasonable agreement with ex-The BTE for a phonon modieunder a temperature gradi-
perimental data for a number of dielectric materfa® The  entVT is given by

1. Preliminaries
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@ = N sion with degenerate transverse branches, the thermal con-
J 3_) @xv ductivity k can be expressed using the Fourier law of heat

conduction a&
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58 HeazGguens Single Mode g frequencies of the dispersion branches at the edge of the first
= g q(t,T) Relaxation Times 3 Brilloui . h ific h d tant
Z 2 A T (ov,T) z rillouin zone, ¢, is the specific heat per mode at constan
gg Gr;{ent—hlzt;bo o f 2. volume (and thus has units of JJKand v, is the phonon
" e i phase velocity, defined as/«. All of the quantities inside
Thel.mﬁmsport“ the integrals are functions of frequency.
Time Constants
T i1y Ty (1) z_%ggﬁ&)i?? 2. Callaway-Holland approach
% Equation The challenge in the evaluation of the integrals in 8.
is the specification of the phonon relaxation times and how
Thermal Conductivity i fgm&‘;ﬂkm the phonon dispersiofwhich affects the velocity terms and
k(T) ?a)Nafur_e okaispersion the upper limits of the integrglss modeled. Here, an MD
(e.g., Debye Model) simulation cell with periodic boundary conditions and no
Experimental Data defects is considered, so that the only source of phonon scat-
(. Fit Constrnts in Model) tering is through anharmonic interactions between the pho-
Callaway-Holland Approach non (norma) modes. There are two types of such interac-

FIG. 1. Flow chart showing different methods by which the tions: normal (N) processes, which conserve crystal
fnomentum, and UmklappJ) processes, which do not. An

thermal conductivity can be predicted. The focus of the curren - . . . .
investigation is through the lattice dynamics path. efsflictlve relaxation time for each modeg, is then defined
a

=0, (1) 21t 4

_Vg,i'VT .
Tic TiN TiU
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&ni ani
at

)collision
h is the ph . beis th Note thatr; . is not the same as the relaxation timg that
wheren; is the phonon mode occupation numbeis the 5 h0 a5 in"Eq(2). This is because thdl and U processes

time, and vy, is the phonon group velocity, defined as 5y gifferent effects on the phonon distribution, such that in

Jwldr, wherew is the angular frequency andis the wave —nis formulation, the collision term must be modeled‘as
vector. The solution of Eq1) describes the steady-state dis-

tribution of phonons in a system, and how that distribution

comes about through the effects of diffusidinst term) and

scattering(second term, also known as the collision t&rm
The main challenge in the solution of Ed) is the mod-  heren; , is the distribution that normal processes tend to-

eling of the collision term. Under the SMRT approximation, ywards. The relationship between,, 7., 7y, and 7

a relaxation timer; , is assigned to each phonon mode suchwas first established by Callawy. ’ ' ’

an;

on; :ni,)\_ni+ni,o_ni
ot

: ®)

)collision Ti,N Ti,u

that The 7; y and 7; |, terms are generally modeled with con-
tinuous expressions of the fotfn'®
an; ni o—N;
E
t collision Ti,r _:Bk(.l) kT k, k:N,U, (6)

Tk

wheren; , corresponds to the equilibrium phonon occupationwhere m, and py are integers, andy is a constant. The
number, given by the Bose-Einstein distribution. The relax-choice ofm, andpy is often based on theoretical predictions
ation time describes the temporal response of the system iimited to low frequenciegwhere an elastic medium can be
question when that particular phonon mode is activatedassumey and/or for convenience in the subsequent calcula-
Equation(2) can be used to solve E@l) for n;. By inte-  tions. At low temperatures, it has been predicted that the sum
grating over all phonon modes, neglecting the contribution obf m, andp, should be five, and at high temperatures, that
optical phonons, and assuming an isotropic phonon dispeshould be unity:*® There is no available method for predict-
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ing the By coefficients, and closure of BTE-SMRT tech- 1 =(q(t)-q(0))
nigues is dependent on the fitting of these parameters with = 2j 3 dt, (7)
the experimental thermal conductivity data. There is no kgVT=Jo

closed form expression available that covers the entire freWherekB is the Boltzmann constan¥ is the volume of the

guency and temperature ranges of the relaxation times for&mulation cell, andq(t)-q(0)) is the heat current autocor-

of E6.(6) wouid o aioqul fof s purmose, - Tealion ncior(HCACE). The heat urent vector or pai
a. q purpose. potential is given by

Callaway* modeled germanium using a formulation
based on Eq(5). He assumed a Debye model for the phonon d 1
density of statesi.e., no dispersiondid not distinguish be- =5 > Ern=> Ev+ > > (Fj-vrj, (8
tween the longitudinal and transverse polarizations, and ac- ! ! L]
counted for the three-phonon interactions using terms wn@vhere E,, r;, andv, are the energy, position vector, and

my andpy equal to two and three, respectivéiee Eq(6)]. velocity vector of particlg, respectively, and;; andF;; are

The resulting EXpression for the thermal conduct|.V|ty COMthe interparticle separation vector and force vector between
tained two terms. The first was in the form of E@) with 7,

| Th q terred he Cal particlesi andj, respectively. The GK method has been used
equal tor, . The second term, referred to now as the Callaj, \ip simulations of dielectric materials such as amorphous
way correction term, results from the different effectsNof

. ilicon? LJ argon>® diamond’ B-silicon carbidé® silicon?
andU processes described by E§), and was assumed neg- :Inld silica bas%d cryslta]tg psil roiae, st
ligible. Scattering from imperfections and at the crystal '

boundar cluded. The fitted functi . It has been showr that the thermal conductivity of a
oundaries was inciuded. 1he fitted tunction gives reason'rystal with a monatomic unit cell can be decomposed into
able values below and around the maximum in the therm

o ; ontributions from short and long length scale interactions
conductivity (=12 K), but not at higher temperatur¥s. b g eng

Holland'” extended the Callaway model by separating the y fitting the HCACF to a function of the form
contributions of longitudinal and transverse phonons, includ-<q(t) -q(0))
ing an approximate phonon dispersion relation, and usin
different forms of the relaxation times. The Callaway correc- 3 9
tion term was neglected, and theprocesses were treated as ©)

an additional, but not special, scattering mechanism in thejere, the subscriptaac, sh, and Ig refer to acoustic
formulation of the total relaxation time. For germanium, thephononS, short range, and long range, respectively. Ahe

high-temperature predictions are in better agreement with thgsrms are constants, and théerms are time constants. Us-
experimental data than those from the Callaway model. Thghng Eqgs.(7) and (9), we have

Holland model has since been used to investigate many other
materials, and refined to account for more realistic phonon
dispersiont® the effect of the Callaway correction terh, k= ——
and additional phonon scattering mechani$his.g., four- kgVT
phonon processes and dislocatipriBhe added complexity (10)

leads to more fitting parameters. One could argue that bettef,o short-range component is associated with phonons with

agreement with experimental data is a result of these addiy mean free path equal to one half of their wavelerigie
tional fitting parameters, and not an improvement of the aClimiting physical valud?=23, while the long-range compo-

tual physical model. nent describes phonons with longer mean free paths. The
More refined BTE-SMRT models have been developed, short.range component and its associated time constant are
and more gener_egpgflutlons to the BTE based on iterativg,jependent of temperature. The long-range component is
methods also exist-" However, as a result of the complex- temperature dependent. It accounts for the majority of the
ity of the required calculations, investigators continue to US§nhermal conductivity, except at high temperatures, where it is

the models of Callaway and Holland with only slight modi- giminished due to the increased anharmonicity in the atomic
fications, mainly due to the ease with which they can beuieractions.

implemented and their general succéabeit with the use of
multiple fitting parameteps

EAac,sheXF( - t/Tac,sh) + Aac,lgeXF( - t/Tac,Ig)-

(Aac,shTac,sh+ Aac,lg 7'ac,lg) = kac,sh+ kac,lg .

Ill. MOLECULAR-DYNAMICS SIMULATIONS

B. Green-Kubo method: statistical mechanics approach The fcc LJ crystal is studied. The plane formed by the

In a MD simulation, the classical position and momentum[100] and[010] axes is shown in Fig. 2. In the figurajs the
space trajectories of a system of particles are determineside length of the conventional unit cévhich contains four
using interatomic force$which are calculated from an ap- atomg andL is the side length of the simulation céhich
propriate potential-energy functipnNewton’s second law, is taken to be cubjc This leads top=L/a unit cells in each
and the kinematic equations of motion. The net flow of heaof the [100], [010], and[001] directions, andN=47? total
in such a system, given by the heat current vegtofluctu-  atoms. Values ofp of four, five, and six are used, which
ates about zero at equilibrium. In the GK method, the thercorrespond to 256, 500, and 864 total atoms, respectively.
mal conductivity is related to how long it takes for these Simulation cells of different sizes are required to obtain the
fluctuations to dissipate, and is givenby necessary resolution of the wave vectors in the first Brillouin

094303-3



A. J. H. McGAUGHEY AND M. KAVIANY

e o C
o @ vica © @
O ¢
Pre e g
L

FIG. 2. Aplane in the fcc crystal. The atoms with black dots are
equivalent through the use of periodic boundary conditions.

zone in the BTE-SMRT approach. We define a dimensionles

wave vectork* as

o (1)
N PP
such thats* will vary between zero and one in t§&00]
direction in the first Brillouin zone.
In an LJ system, the potential energy; , between atoms

i andj (i#]) is given by”
E) 12_(2)6

The depth of the potential energy well &;, and corre-
sponds to an equilibrium particle separation &f2_;. The

Uij(rij) =4e€Ly (12

LJ potential describes the noble elements well. Argon, for

which o 5 and €, ; have values of 3.4010 **m and 1.67
X 10721 J, respectively? is chosen for the current investiga-
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of 4.285 fs, and periodic boundary conditions are imposed in
all directions. Temperatures of 20 K, 35 K, 50 K, 65 K, and
80 K are considered. The melting temperature of the MD
simulation cell is around 87 K. The unit-cell parameters are
given in Table I. The details of the MD procedures have been
described elsewherfeThe only significant modifications
made here are that the potential cutoff is fixed ab2;5nd

no correction is made to the pressure calculation. These
changes ensure that the atomic spacing is the same in the
different sized simulation cells.

Due to their classical nature, MD simulations cannot ex-
plicitly take quantum effects into account. The MD approach
is thus not suitable near and below the maximum in the
thermal conductivity[observed experimentally in crystals
around one-tenth of the Debye temperattjrand for argon
at a temperature of 6 KRef. 27], where quantum effects on
the phonon mode populations are important. The thermal
conductivity in this region is also strongly affected by impu-
rities and boundary effects, which are not considered here.
As such, an MD simulation of a perfect crystal with periodic
boundary conditions will lead to an infinite thermal conduc-
tivity at zero temperature, as opposed to the experimental
value, which goes to zero. Although temperature and thermal
conductivity scaling factors have been suggested that include
quantum effect4®®these are not used here, as quantum ef-
fects are not expected to be significant for argon in the tem-
perature range consideré&d.

IV. GREEN-KUBO THERMAL CONDUCTIVITY
PREDICTION

tion. The use of a simple system allows for fast simulation The thermal conductivities predicted using the GK

runs and the elucidation of results that may be difficult to
resolve in more complex materials.
The simulations are run in thdVE (constant mass, vol-

method are given in Table |. Each value corresponds to the
average of five independent simulations. Also included is the
decomposition of the thermal conductivity into the short-

ume, and energyensemble at zero pressure with a time steprange and long-range components, and the associated time

TABLE |. Simulation cell parameters and GK thermal conductivity predictions. The specific heat is given per degree of freedom.

T a kek Kac,sh Kac,ig Tac,sh Tac,lg

(K) (R) 7 C,/kg (W/m-K) (W/m-K) (W/m-K) (8] (P9

0 5.269 1

20 5.315 4 0.976 1.216 0.080 1.137 0.289 8.161
5 1.217 0.074 1.143 0.275 7.776
6 1.218 0.069 1.149 0.263 7.617

35 5.355 4 0.957 0.580 0.090 0.491 0.290 4.438
5 0.587 0.086 0.501 0.281 4.183
6 0.593 0.088 0.505 0.286 4.279

50 5.401 4 0.944 0.323 0.100 0.223 0.289 2.669
5 0.941 0.348 0.091 0.257 0.271 2.518
6 0.942 0.336 0.089 0.246 0.266 2.400

65 5.455 4 0.930 0.219 0.095 0.124 0.261 1.560
5 0.223 0.093 0.130 0.254 1.601
6 0.236 0.098 0.138 0.264 1.826

80 5.527 4 0.924 0.162 0.082 0.080 0.225 0.894
5 0.164 0.084 0.080 0.227 0.919
6 0.177 0.099 0.078 0.247 1.313
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constantgdefined in Eqs(9) and (10)]. 1.05

The thermal conductivity predictions are lower than our
previously reported dathdue to the smaller lattice spacing 1.00
that results from the smaller potential cutoff and removal of - .
the pressure correction. There is no size efftéoe thermal- 0.95} . . -7
conductivity predictions fall within at most-5% of the £ 090l /" '
mean value at a given temperatymeonsistent with the result < e
of Kaburakiet al® for LJ systems with greater than 256 at- 0.85} /'
oms (p=4). There is more variation in the components of / . ‘
the thermal-conductivity decomposition and associated time 0.80} K g‘;z:;zﬁ:i“nlhﬁ;:fm
constants than in the total thermal conductivity, which is due /'~ - - - Quantum Harmonic
to the nature of the fit of Eq9). While the total value of the 0-7510 30 L 30 %0 30
resulting integral is consistent, there is some “exchange” T (K)

between the two components where the dominant behavior

changes fromr,¢ sn 10 74 g - This effect is particularly evi-
dent at the higher temperatures considered, whegey,

~ Taclg -

The experimental values for the thermal conductivity of

argon at the temperatures considered are 1.36 WA20KK),
0.65 W/m-K (35 K), 0.46 W/m-K (50 K), 0.35 W/m-K (65
K), and 0.30 W/m-K(80 K). (Ref. 28. In general, differ-

FIG. 3. The classical-anharmonic specific heat per degree of
freedom predicted from the MD simulations, and the classical-
harmonic and quantum-harmonic curvedl scaled bykg).

of the fit at a temperature of 20 K is 0.9999, while that at a
temperature of 80 K is 0.97J4the consistency in the pre-
dicted specific heats suggests that any error present is mini-

ences between predictions from MD simulations and experimal.

mental data can be attributed to the approximate nature of The specific heat predicted from the MD simulations is a
the interatomic potential, size effects, and the simulation proclassical-anharmonic value. Also shown in Fig. 3 are the
cedures. By using a cutoff radius around;4, we note that classical-harmonic and the quantum-harmonic specific heats.
good agreement can be found with the experimental thermdlhe classical-harmonic valug; is based on an assumption
conductivity data for argon. In this investigation, we are con-of equipartition of kinetic and potential energy between nor-
cerned with checking the internal consistency between th&al modes. The equipartition assumption is always valid for
GK and BTE-SMRT approaches, and as such, use the staihe kinetic energyi.e., it contributes 0.%g to c,). How-
dard 2.5 ; cutoff. ever, for the potential energy, it is only true under the har-
monic approximation, which itself is only valid at zero tem-
perature. The deviations of the classical-anharmonic results
from the classical-harmonic model are significant. The
quantum-harmonic specific heat is based on the zero-
temperature phonon density of statas calculated from the
MD simulationg and is given b§’

V. BOLTZMANN TRANSPORT EQUATION
FORMULATION

To use Eq(3) to predict the thermal conductivitg,, , 7, ,
vg, Up, and the upper limits of the integrals must be speci-
fied.
x2exp(x;)

(13

Cy quantharm= kBE N
A. Specific heat v T [exp(x)— 172

The specific heat is defined therquyr_lamically as the rat& herex is #hwlkgT, % is the Planck constant divided byr2
of change of the total system energiynetic and potential 5 the summation is over the normal modes of the system.

as a function of temperature at constant volffh&uch a g expected, the classical and harmonic specific heats are

calculation can be explicitly performed using the results Ofsignificantly different at low temperatures, where quantum

the MD simulations. The predicted specific heats are plottedfects are important. Prediction of the quantum-anharmonic

in Fig. 3 and .given in Table | for they=4 s.ir.nulation cells. specific heatas would be measured experimentaliyould

The values given cor.respond to the specific heat per degrer@quire taking into account the temperature dependence and
of freedom, as required by Ed3), and no frequency or ., pjing of the normal modes, and the results would be ex-

polarization dependence is taken into account. The calculaﬁected to converge with the classical-anharmonic value at

tion is performed by varying the temperature in 0.1 K incre—high temperature§i.e., on the order of the Debye tempera-
ments over at 0.2 K range around the temperature of inter- ture).

est. Five simulations are performed at each of the five
increments, with energy data averaged ovet18° time
steps. The resulting 25 data points are fit with a linear func-
tion, whose slope is the specific heat. At a temperature of 50 For the case of a monatomic unit cell, in a simulation cell
K, the specific heat has been predicted for each of the simwith N atoms there ar®& points in the first Brillouin zone.
lation cell sizeggiven in Table }, and no size dependence is Each point has one longitudinal and two transverse phonon
evident. While the spread of the energy data in these calcunodes associated with it. This leads to th&l :iormal
lations increases with increasing temperat(ire R? value  modes. By assuming an isotropic phonon dispersion, a

B. Phonon relaxation time
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smaller subset can be considered in the thermal conductivity 1.0
calculation. Here, th¢100] direction is chosen, in which
there will be » allowed modes. This does not include the
zero-frequency mode, which corresponds to a rigid transla-
tion of the simulation cell, and does not contribute to thermal
transport. To obtain a sufficient number of points within the
first Brillouin zone to form a continuous, function, differ-
ent sized simulation cells must be considered. These have
been described in Sec. Ill.

Ladd et al* present a method in which the relaxation

#:(T=50 K, n =4, x* = 0.5, Transverse Polarization)
Total Energy (Kinetic and Potential)
Potential Energy

<E{DE{0)>/<E(0)E0)>

time of theith moder; ; is found using the time history of 0g 4 - 6 10

the mode potential energl; ,. This method is modified P

here by considering the total ener@otential and kineticof FIG. 4. Autocorrelation curves for the relaxation time and an-
each modeE; ;. harmonic phonon dispersion calculation methods. The data corre-

The normal modes of a systei8(«,v), wherev corre-  spond to deviations from the mean energy values, and have been
sponds to the mode polarizatioh (or T) described by a normalized against the zero time value of the autocorrelations.
vectore (r,v), can be expressed as a sum over the positionShown are the total-mode ener@ysed in the relaxation time cal-
of the atoms in the system as culation and the potential energjused to obtain the anharmonic

phonon dispersion The frequency of the oscillations in the
potential-energy curve is double that of the phonon mode in ques-
Si(k,v)= N‘l/ZZ Mjl’zeXQ— irc: rj,o)el*("v v)- uj. tion because of the squaring operations in 8d).
]

14
(14 relaxation times, the difference between this approach and
Here, M is the mass of an atom, * denotes the complexthat which has been adopted is negligible.

conjugater; , is the equilibrium position of atorj) andu; is An indication of the error in the predicted relaxation times
the relative displacement of atojrfrom its equilibrium po- can be obtained by finding; , for each of the data sets
sition (i.e., rj—r; o). before averaging the autocorrelation functions, and looking
Under the harmonic approximation, the total energy ofat the resulting spread. The mean values and standard devia-
each mode of a classical system is given by tions corresponding to the=4 simulation cell at a tempera-

ture of 50 K are given in Table Il. The standard deviation is

WSS S*Sﬁ b_etwegn 6% and 19% of the mean value for the longitudinal

E =+ ——, (15)  direction, and between 12% and 22% of the mean value for
’ 2 2 the transverse direction. These values are typical of those
found for the other temperatures. Much of this uncertainty is

where the first term corresponds to the potential energy angiiminated when the relaxation times are fit with continuous
the second term to the kinetic energy. The temporal decay G{inctions. This is described next.

the autocorrelation (fi,t is related to the relaxation time of Having obtained a set of discreter values for a given

that mode. The resulting curve for the transverse polarizatiofemperature and polarization, a continuous function,can

at «*=0.5 for they=4 simulation cell at a temperature of now be constructed. The discrete and continuous results at a
50 K is shown in Fig. 4. The required ensemble average igemperature of 50 K are plotted as-1/ (or 1/7,) Vs w [after
realized by averaging the autocorrelation functiong (tife Eq. (6)] in Fig. 5(a). ’

steps long, based on>210° time steps of dajaover the To be physically meaningful, the mean free path,of a

[100], [010], and [001] directions over five independent Ehonon should be longer than one half of its wavelength,
simulations. This leads to 15 data sets for the longitudina) 242223 Noting that A=vy7,, N\=2m/k, and using the
polarization and 30 data sets for the transverse polarizatiogefinition ofv,, this limit can alternatively be stated as
The relaxation time is obtained by fitting the data with an
exponential decay. Based on this formulation, the calculated | d d of the di laxati
time constant must be multiplied by two to get the relaxation_ TAB't‘E Itll Meant va uefssgnK fprfa 3 the lnst_crete f ?ﬁatlon
time to be used in the BTEhis will be explained in Sec. imes at a temperature of 50 K for thg=4 simulation cell. The
. . _calculations are based on finding the relaxation times before aver-

VI B). All of the modes considered show a general behavior”. . :

. . . . . . aging the autocorrelation functions.
consistent with a single relaxation time. The only exceptions

are the longitudinal modes belowxd value of 0.5, where a

(TioL (oL (tin)T (o107

secondary decay is evident in the very early stages of the, « 09 8] 09 8]
overall decay. In these cases, this portion of the autocorrela-

tion is neglected when fitting the exponential. Alternatively,0.25 7.50 1.42 6.31 0.88
one could calculate the integral of the autocorrelation ana.50 3.34 0.63 2.90 0.35
from that deduce an effective relaxation tiffeDue to the .75 1.38 0.07 2.87 0.40
short extent of the observed deviation from a SMRT, and tha og 1.11 0.07 2.70 0.59

subsequent fitting of a continuous function to the discrete
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@ The data for each polarization can be broken down into
WOrTsx 7 nL T ! 4 three distinct regions. The first two are fit with low-order
g T = polynomials. For the longitudinal polarization, the first re-
et 6 & & gion is fit with a second-order polynomial through the origin,
. t—— and the second region with a second-order polynomial. For
6

the transverse polarization, the first region is fit with a
second-order polynomial through the origin, and the second
region with a linear function. The resulting functions are also
shown in Fig. %a) and are considered satisfactory fits to the
MD data. As the temperature increases, the behavior in the

Ormax two regions becomes similar. For both polarizations at a tem-
i perature of 80 K, and for the longitudinal polarization at a
temperature of 65 K, a single second-order polynomial
through the origin is used to fit the data. In the third region,
. . . . . . the continuous relaxation time functions are taken up to the
Longitudinal Polarization maximum frequency ¢ max OF @t may Using Eq.(16).

The raw data and continuous relaxation time functions for

all temperatures considered are shown in Figl) &nd Kc).
The parts of the relaxation time curves are not forced to be
continuous. For both the longitudinal and transverse polar-
izations, any resulting discontinuities are small, and are
purely a numerical effect. The relaxation time functions do
not contain the orders of magnitude discontinuities found in
the Holland relaxation times for germanium, which result
from the assumed forms of the relaxation times, and how the

Switch of Fit
Functional Form

lir,, or Iz, (10'21/s)

® (10'2 rad/s)

(®)
2.0

l/r;, or 1/x, (10'21/s)

14 fitting parameters are determinéd.
® (102 rad/s) Theoretical calculations predict that in the* range
13 © 0-0.2, the longitudinal and transverse curves should follow
““[ rmnsvarss Polarizarion ' ' w? and w dependencies, respectivéfy*! This is not found

in the relaxation times predicted by the MD simulations. The
second order fit found at the high temperatures is consistent
with the high-temperature prediction of Srivastavaf par-
ticular note is the turning over of the low-temperature trans-
verse curves at higher frequencies. In general, it is clear that
the extension of the low-frequency behavior to the entire
frequency range, as is sometimes done, is not generally suit-
able. The effect of such an assumption on the thermal con-
ductivity prediction will be considered in Sec. VI C.

=
[

0.8f

l/z,, or 1/x, (1012 1/s)
=g
N

10

® (10'2 rad/s)

C. Phonon dispersion

FIG. 5. (Color onling (a) Discrete relaxation times{(,) and The phonon dispersion relation for a solid describes the
continuous curve fits%,) atT=>50 K. Also shown is the minimum  ya|ationship between the phonon frequencies and their wave-
physical value of the relaxation timerw,/wvg. (b) Raw data and angihs |t can thus be used to predict the phonon phase and

cpntinuous relaxation time curve fits for the longitudinal polariza—group velocities, and the upper integration limits, required
tion at all temperatures considergd) Raw data and continuous for the evaluation of Eq.(3). In some BTE-SMRT

relaxation tim rve fits for the transver larization Il tem- S . . .
elaxation time curve fits for the transverse polarization at all tems,, o i ationd41724the dispersion has been either neglected
peratures considered.

or greatly simplified. The importance of accurately modeling
the dispersion has recently been investigated for
germaniunt® The assumption of no dispersion is found to
contribute to nonphysical discontinuities in the relaxation
times, which are masked in the final calculation of the ther-
and is also shown in Fig.(8). At a temperature of 50 K, the mal conductivity with the use of fitting parameters. By more
phonons at the edge of the first Brillouin zone*(=1) are  accurately modeling the dispersion, the size of these discon-
outside of the allowed range for both polarizations. As thetinuities can be reducealthough they are not eliminated
temperature increases, more of the phonon modes do ndte to the relaxation time models used

satisfy Eq.(16). At the highest temperature, 80 K, the tran-  The zero-temperature phonon dispersion is harmonic, and
sition occurs at* values of 0.77 and 0.81 for the longitu- can be determined exactly at any wave vector using the MD
dinal and transverse polarizations, respectively. equilibrium atomic positions and the interatomic potential. A

1_ev 16)
T MU,
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continuous dispersion relation can thus be obtained. Devia-
tions from this calculation at finite temperature are a result of
two effects’ Based on the higher-order terms in the expan-
sion of the potential energy about its minimum, a solid will
either expandas seen hejeor contracte.g., some zeolites

as the temperature increases. An expansion will cause the
phonon frequencies to decrease. Recalculating the dispersion
harmonically with the new lattice constant is known as the
quasiharmonic approximatidriThe second effect is a result

of anharmonicities in the atomic interactions, which become
increasingly important as the temperature is increased. The
exact modeling of this effect is difficult. To account for the
anharmonic effects, the autocorrelation data for the mode
potential energy are used to calculate the frequencies of the
discrete modes present in the MD simulations. This is shown
in Fig. 4. While the total-energy autocorrelation shows a
monotonic decay, that for the potential-energy oscillates.
This is an indication of the total mode energy having both
potential -and kinetic-energy components. An estimate of the
anharmonic frequency is obtained by averaging over all non-
negligible oscillations in the autocorrelation. This generates a
set of discrete anharmonic frequency data. These values are
then compared to the associated quasiharmonic frequencies,
and a second-order polynomial scaling function is con-
structed. This function is then applied to the continuous
guasiharmonic data to obtain the full anharmonic dispersion.
The excellent quality of the mapping from the quasiharmonic
data to the anharmonic datthe R? values of the scaling
functions are~0.999) suggests that minimal error is intro-
duced through this procedure.

The frequencies used for the horizontal axes of Figs, 5
5(b), and Fc) are based on the anharmonic dispersion. We
note, however, that the frequencies used in the phonon e
ergy calculation§Eqgs. (14) and (15)] must be those corre-
sponding to the quasiharmonic dispersion. This is a result
the phonon dynamics being based on a harmonic theor
while the BTE expression for the thermal conductivity is not.
The need to use the quasiharmonic frequencies in the phono
energy calculation has been justified by calculating the total,
average phonon potential energy and comparing the result to
that directly calculated with the LJ potential. Using the

the magnitude and temperature trend of the exact calculatio,
to within 5% over the entire temperature range considerecjg}’I
The anharmonic results diverge from the exact calculation
and are 36% larger at the highest temperature.

The phonon dispersion for t§&00] direction is shown in

of 50 K. The resulting, /v

Eqg. (3), are shown in Fig. @®). The effect of the unit-cell
size is significant, and increases with increasing temperature.
The anharmonic effects are significant for the longitudinal

polarization at all temperatures, and increase with increasing

15

1.2

1.0

0.8

v/ vpz (1073 s/m)
<
[«
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(a)

L: Longitudinal

T: Transverse

h: Harmonic

gh: Quasi-Harmonic
a: Anharmonic

1.0

L: Longitudinal
T: Transverse
h: Harmonic
gh: Quasi-Harmonic
a: Anharmonic

0 0.2

0.4

0.6 0.8 1.0
K*

FIG. 6. (Color online (a) Phonon dispersion in tHe.00] direc-
tion. (b) Variation ofvg/vf) for the dispersion relations of pa(d).
The curves are identified by the temperature in Kelvin, the polar-
ization, and the nature of the calculation =harmonic, gh
=quasiharmonic, aanharmonic). The (50a and (50,qgh)
urves are indistinguishable (i).

0(1;f low-temperature datéwhich is more readily obtained ex-
perimentally than high temperature dais applied over the
Bntire temperature range of interest. As seen in Fi@s.ahd
6rgb), such assumption is rather questionable.

VI. BOLTZMANN TRANSPORT EQUATION

THERMAL-CONDUCTIVITY PREDICTION
guasiharmonic frequencies results in an energy that matches Having specified the specific heat, phonon velocities, and

onon relaxation times, the thermal conductivity can be
redicted using Eq(3). As the LJ fcc crystal has a mon-
atomic unit cell, there are only acoustic phonon modes
present, and the assumption of neglecting optical phonon
modes is not relevant. The results are given in Table Il and
shown in Figs. @ and 7b). Included in Table Il are the

_ . NPEratufiy)| values of the thermal conductivity and their decompo-
p functions, which are required in - gjion into longitudinal and transverse components, along
with the mean GK values, calculated from Table I.

A. Validation of the BTE-SMRT approach

temperature. For the transverse polarization, the deviations In order to compare the GK and BTE-SMRT predictions,
from the quasiharmonic values are only found to be signifithe nature of each method and the associated uncertainties
cant at a temperature of 80 K. To our knowledge, the temmust be considered.

perature dependence of the dispersion has not previously In the GK method, the thermal conductivity is predicted
been considered in the SMRT formulation. Typically, one setwithout making anya priori assumptions about the nature of
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TABLE Ill. BTE-SMRT and GK thermal conductivity 1.1 P
predictions kgre=k + 2kt . = 2 5 A a
o A 50 o e
T(K) Kek Kere ke Kr 10 A e
(W/m-K) (W/m-K) (W/m-K) (W/m-K) TR o % o B N
20 1.217 1.440 0.751 0.345 5 [\eT B
35 0.587 0.675 0.368 0.154 09\
50 0.335 0.373 0.198 0.087 |
65 0.226 0.220 0.112 0.054 ! E(class-harm) = kyT
80 0.167 0.134 0.066 0.034 ogl_\ . ===< E(quant-harm) = fie/[exp(x)-1]
) 1 2 3 4 5
x = holkyT

the thermal transport. As such, we take the prediction of this . .
method to be the “exact” MD value that the BTE-SMRT FIG. 8. (Color onling Average phonon mode energies scaled by
method should be compared to. As discussed in Sec. IV anlff‘T at ten;peratu.res 0(]; 2? K’.SOI E and 80 K. Als_o shown are the
Ref. 9, the uncertainty in the GK values 1s5%. quantum- armonic ana classical-narmonic energies.

The complicated nature of the BTE-SMRT formulation that for the GK valuegi.e., 5%9. The observed repeatability
makes it difficult to assign a uncertainty to the results with-is in large part a result of the many independent simulations
out making multiple predictions at a given temperature. Duaused to provide data for a given condition. A complete sam-
to the need to use different simulation cell sizes, the BTEpling of the MD phase space is crucial for obtaining good
SMRT approach is significantly more computationally de-statistics with minimal noise.
manding than the GK approach, making additional predic- In the BTE-SMRT approach, two important points must
tions costly. A second set of thermal conductivity predictionsbe considered. First, the phonon dispersion has been as-
at temperatures of 20 K, 50 K, and 80 K resulted in values obumed isotropic. The volume of the associated first Brillouin
1.444 W/m-K, 0.369 W/m-K, and 0.133 W/m-K, respec- zone, which is spherical, is 32#/3a®. The volume of the
tively. The good agreement with the thermal conductivitiesreal first Brillouin zone is 32°%/a3, which means that the
given in Table Il indicates that the uncertainty in the BTE- volume considered in the integral i8/3=1.05 times larger
SMRT thermal conductivity predictions is on the order of than the real volume. The isotropic assumption also affects

the phonon relaxation times and velocities, and the results

(a)

1.5

k (W/m-K)
S

=
w
T

o kgx
o Kkgre

10

0.55

50 70
7(K)
(b)

30 90

k; Iy oF 2k kg
e
in
S

0.45

° ok, lkprp

° u 2Uiplhyrs

10

50 70

T(K)

30 90

indicate that these factors lead to an overprediction of the
thermal conductivity. This effect is consistent with the pre-
dictions of an iterative solution method for the BTE.

Second, the BTE-SMRT formulation has a harmonic ba-
sis. Even though anharmonicities have been taken into ac-
count in the phonon dispersion, the expressionHpy [Eq.

(15)] assumes a harmonic system. As the temperature is in-
creased, the validity of this assumption worsens, and leads to
an underprediction of the thermal conductivity at the higher
temperaturesi.e., the anharmonic effect dominates over the
isotropic effect. The deviation from the harmonic theory is
seen in the specific-heat dafdable | and Fig. 3 and by
plotting the average phonon energiesaled by the classical
expectation valuekgT), as shown in Fig. 8. Also shown in
Fig. 8 is the quantum-harmonic phonon energy. At the low
temperatures, the agreement between the MD data and the
classical prediction is reasonable, but steadily worsens as the
temperature increases. The existence of modes with energy
greater than the classical value can be attributed to the har-
monic nature of the energy calculation.

Based on the above discussion, the agreement between
the two independent predictions of the thermal conductivity
is considered satisfactory. Thus, for what we believe to be
the first time, we have established the quantitative validity of
the BTE-SMRT approach. The BTE-SMRT formulation
could be improved by removing the isotropic assumption and
considering the frequency dependence of the specific heat.

FIG. 7. (a) Thermal conductivities predicted by the GK and However, both of these steps would result in more time in-
BTE-SMRT methods(b) The relative contributions of the longitu- tensive calculations, for which the resources may not always
dinal and transverse polarizationskgrg .

be available.
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TABLE V. BTE-SMRT thermal conductivity predictions at a
temperature of 50 K under simplifying assumptiorge=k_
+2ky. (@) T=50 K, no dispersion(b) T=0 K dispersion,(c) T
=50 K quasiharmonic dispersion(d) low-frequency relaxation
time behavior extended to entire frequency range, @dingle
relaxation time ). Under the full modelkgrg=0.373 W/m-K,
k_=0.198 W/m-K, andk;=0.087 W/m-K.

k (W/m-K)

kere (W/m-K) k. (W/m-K) Ky (W/m-K)

(@ 0.482 0.239 0.122

12 (b) 0.383 0.187 0.098

® (1012 rad/s) (©) 0.332 0.190 0.071
(d) 0.357 0.208 0.074

FIG. 9. (Color onling Cumulative frequency dependence of the

thermal conductivity at a temperature of 50 K. © 0.264 0.144 0.060

B. Investigation of GK and BTE-SMRT formulations o ) )
ductivity normalized against the total value. Note that there

To compare the GK and BTE-SMRT methods, the cumusg g gpparent temperature effect. A given phonon mode con-
lative frequency dependencies of the thermal conductivitiegipytes equally to the thermal conductivity, independent of
predicted by Eqs(3) and (7) can be consideretiThis is e temperature. As well, the weighting of the contribution of
shown in Fig. 9. The GK curve corresponds to the6 e modes to the total thermal conductivity is approximately
simulation cell for a temperature of 50 K. The oscillations piform, Both of these findings are contrary to the common
are a function of the periodic boundary conditions. The Maygtion that as the temperature decreases, long wavelength
jority of the GK thermal conductivity is accounted for by a (low wave number modes become increasingly important.
frequency range much smaller than that of the phonon spegy analytical BTE-SMRT calculations, such a finding may
trum (0<w<w_ mad. To understand this behavior, the dif- haye come about due to the assumed piecewise forms of the
ference between the phonon frequency and the frequengyhonon relaxation times. We note that this behavior may also
associated with the phonon relaxation time must be distinpe partially a result of the classical nature of the simulations,
guished. This is seen by expressing the normal modeés as where all modes are excited approximately equésie Fig.

. . . 8). This is not true of a quantum system at low temperature.

S=S o0& i (e i), (17) It is also interesting tg note thatythe relative contﬁbutions
whereS; , is the mean value anfi; is the line width, equal of the longitudinal and transverse polarizations change by
to 1/(27;,) (this is the factor of two that comes into the only a small amount over the large temperature range con-
relaxation time calculation in Sec. V)BIn the BTE formu-  sidered, as shown in Fig.(5) (k. /kgrg~0.5 andk+/Kgte
lation, Eqg.(3), the integration is over the phonon frequency ~0.25). This is in contrast to predictions made for germa-
w; . In the GK formulation, Eq(7), the integration is over nium, where, albeit with a different crystal structure, the
the frequency corresponding to the phonon lifetimE; 2 transverse phonon modes are predicted to account for the
which will be many times the period of oscillation2w; . majority of the thermal conductivity at high temperatuf®s.

The effect of temperature on the BTE-SMRT prediction
can be assessed by plotting the cumulative wave-number de- Simplifying assumptions in the BTE-SMRT approach
pendence of the thermal conductivity. This is shown in Fig.

10 for all the temperatures considered, with the thermal con- 10 assess the importance of the detail used in the model-
ing of the terms in Eq(3), a number of approximations are

1.0 . . . . investigated at a temperature of 50 K. The results are sum-
2 marized in Table IV for the following case&®) assuming no
0.8 dispersior{i.e.v4=vy, SO thatvg/vf,z 1l g, with the value
. taken as thex* =0 intercept for the (50,8 and (50,a)
& 06 curves of Fig. @)], (b) using the zero-temperature disper-
= sion relation,(c) using the quasiharmonic dispersidd) ex-
% 0.4 - tending the low-frequency relaxation time behavior over the
-8 7 20 entire frequency range, artd) using a single time constant,
0.2 // e gg taken asr, 4 from the thermal conductivity decomposition
/7 & of Eq. (10).
0 = 80 Assuming no phonon dispersion results in an overpredic-
0 0.2 0.4 0.6 0.8 1.0 tion of thermal conductivity. As is evident from Fig(§,

taking vg/vrz, to be constant and equal to th& =0 value
FIG. 10. Cumulative wave-number dependence of the BTE-Will overemphasize the contributions of higher frequencies.

SMRT thermal conductivity at all temperatures considered. ThéJsing the zero-temperature dispersion results in a similar
thermal conductivity is normalized against the total value. value as the full model. This is due to two counteracting
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effects: the extension of the integration limits in ES), Two sets of time constants have been introduced: those
which will raise the thermal conductivity, and the resulting associated with the relaxation of particular phonon modes
lower values ofvg/vf, [as seen in Fig. ®)], which will (7;), and those associated with the thermal-conductivity de-

lower the thermal conductivity. Use of the quasiharmonicCOomposition @ sp aNd 7, q). Both sets of relaxation times
dispersion results in an underprediction of the thermal conean be used to predict the thermal conductivity, and reason-
ductivity. Using the low-frequency relaxation time behavior able agreement in the results has been found. This agreement
extended over the entire frequency range results in an undesuggests that there is a link between these time constants,
prediction of the thermal conductivity. This can be largelylikely of the form

attributed to the high-frequency behavior of the transverse _

polarization relaxation time curve, not captured in the trend T':E fwjvmaxg.(w)(T ) do. i=(ac.sh).(ac.lg).

of the low-frequency behavior. This discrepancy increasesas T Jo ) i

the temperature is decreasgsbe Fig. §c)]. Using 7a¢q (18

(2.53 p3 as a single relaxation time underpredicts the theryynere the sum is over the phonon polarizations, gyteb) is
mal conductivity. This is because it results in a near eliminay eighting function. The form of the weighting function

tion of the low-frequency contributions. These findings indi-may be related to the phonon distribution function and the
cate that taking the temperature and frequency dependenciggyre of the three-phonon interactions.

of the relaxation times and phonon dispersion into account is The plots in Figs. 9 and 10 dispel a common misconcep-

crucial for obtaining a good and physical prediction of thetjon that the low-frequency/long-wavelength phonon modes

thermal conductivity. dominate the thermal conductivity. In fact, long length scale
behavior is importanfthe k4 term in Eq.(10)], but it is

VIl. SUMMARY AND CONCLUSION the phonon mean free path, and not its wavelength, that is

o - levant. This is the important distinction seen when compar-
The quantitative validity of the BTE-SMRT approach for re - :
predicting the phonon thermal conductivity has been vaIi-'rig the GK and BTE results in Fig. 9, as described by Eq.
dated for the LJ argon fcc crystal by using MD simulations( 7. . . .
to provide the necessary input, and then comparing the re: The developrr_le_nt of relaxgtlon time models |s.useful for
sults to the predictions of the,GK method. This approachthermal conductivity calculations as used, but will also be
eliminates the need for experimental fitting parameters. Thgppl_lcable to more general BTE calculaﬂons,_ |nclud|ng_ nu-
success of the predictions is strongly dependent on the Corﬁ‘qen(;aliszsolutl(()jns tt;\asec(lj_on tthe phorllotlj equil/ltlont of r?:dl('?tlon
plete modeling of the temperature and frequency dependeﬁr—ans e an e direct simuiation onte arlo

; 3
cies of the phonon dispersion and relaxation times. Assumpi[—eChn'queg' Both of these approaches can be used to model

tions commonly made in the BTE-SMRT approathg., arger system size@ip to the micron level, typical of MEMS

extension of the low-frequency behavior of the relaxationd€Vvices and not accessible with MOn such calculations,

times over the entire frequency range, no dispersion, and/cftjmple relaxaltlon |t|met.mocti.els r;]avebbeen used, %n? 'g So”?g
temperature independent dispersioan lead to poor predic- ©3S€S: @ SINgie reéfaxation ime has been assumed 1o describe

tions, which suggests that the previous success of these mof entire system. The use of MD to generate continuous

Is (e.q.. th llawav-Hollan ; ronal ) r_elaxation functio_ns(without the need fo_r_experimental fit-
Sesn(o?e%t, tor? f?[filng tar?;: r?as%lti igpe?(?;::?rse?\tt; %gte?.eTh ing parametenswill greatly add to the ak_nllty of sych calcu-
approach presented here is limited by the assumption of aRuons to accurately model the underlying physics.
isotropic medium and the harmonic nature of the relaxation
time model. However, the error introduced by these factors is
small compared to the gain associated with the elimination of This work has been supported by the U.S. Department of
fitting parameters. The methods described can be extended Emergy, Office of Basic Energy Sciences under Grant No.
other dielectric crystals, including those with multiatom unit DE-FG02-00ER45851, and the Horace H. Rackham School
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