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Surface and bulk acoustic waves in two-dimensional phononic crystal consisting
of materials with general anisotropy
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~Received 15 July 2003; revised manuscript received 15 October 2003; published 10 March 2004!

Successful application of photonic crystals has led recently to a rapidly growing interest in the analogous
acoustic effects in periodic elastic structures called phononic crystals. This study is aimed at developing a
theory for two-dimensional phononic crystal consisting of materials with general anisotropy. Explicit formu-
lations of the plane harmonic bulk wave and the surface wave dispersion relations in such a general phononic
structure are derived based on the plane wave expansion method. Two-dimensional phononic structures with
either the square or the hexagonal lattice are considered in the numerical examples. Band gap characteristics of
the phononic structures with different anisotropic background materials~isotropic, cubic, hexagonal, and ortho-
rhombic! are calculated and discussed.
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I. INTRODUCTION

The existence of complete band gaps of electromagn
waves in photonic structures extending throughout the B
louin zone has demonstrated a variety of fundamental
practical interests.1,2 This has led to a rapidly growing inter
est in the analogous acoustic effects in periodic elastic st
tures called the phononic crystals. Surface wave propaga
on layered superlattices with traction free surface paralle
the layers has been explored extensively in the past.3 How-
ever, investigations on surface wave properties of solids
which the periodic modulation occurs on the traction fr
surface has not started until recently.4–8 Vinceset al.4,5 stud-
ied experimentally the surface waves generated by a l
focus acoustic lens at the water-loaded surfaces of a num
of two-dimensional superlattices that intersect the surf
normally. Propagation of Scholte-like acoustic waves at
liquid-loaded surfaces of period structures has also b
studied.6

The superlattices considered in Refs. 4–6, 8 are mad
isotropic materials. As for superlattices consist of anisotro
materials, Tanaka and Tamura7 reported detail calculation
for surface waves on a square superlattice consisting of c
materials~AlAs/GaAs! and many salient features of surfa
waves in two-dimensional superlattices have been descri
In addition, Tanaka and Tamura8 also reported detail calcu
lations for surface waves on a hexagonal superlattice con
ing of isotropic materials~Al/polymer!.

Analyses of bulk acoustic waves in phononic structu
consisted of isotropic materials have been conducted and
ported in literatures.9–15 Three different schemes were us
ally adopted in the calculation, i.e., the plane wave expans
method, the multiple scattering method, and the finite diff
ence time domain method. Kushwahaet al.9,10 utilized the
plane wave expansion method to calculate the first full b
structure of the transverse polarization mode for period
elastic composite and further, calculated the band struct
for the transverse polarization modes of nickel alloy cyl
ders in aluminum alloy host. In Refs. 11–14, the multip
scattering theory was applied to study the band gaps of th
0163-1829/2004/69~9!/094301~10!/$22.50 69 0943
tic
l-
d

c-
on
o

in

e-
er
e
e
n

of
ic

ic

d.

st-

s
re-

n
-

d
,
es
-

e-

dimensional periodic acoustic composites and the band st
ture of a phononic crystal consisting of complex a
frequency-dependent Lame´ coefficients. Garcia-Pablo
et al.15 used the finite difference time domain method to
terpret the experimental data of two-dimensional syste
consisting of cylinders of fluids~Hg, air, and oil! inserted
periodically in a finite slab of Al host.

In this paper, we extend Tanaka and Tamura’s work7 to
study phononic band gaps of surface waves in tw
dimensional phononic structures consist of general an
tropic materials. The explicit formulations of the plane ha
monic bulk wave and the surface wave dispersion relati
in such a general phononic structure are derived based on
plane wave expansion method. Two-dimensional phono
structures with either the square or the hexagonal lattice
considered in the numerical examples. Band gap charact
tics of the phononic structures with different anisotrop
background materials~isotropic, cubic, hexagonal, an
orthorhombic! are calculated and discussed.

II. EQUATIONS OF MOTION OF 2D PHONONIC
CRYSTALS

In an inhomogeneous linear elastic anisotropic medi
with no body force, the equation of motion for the displac
ment vectoru(r ,t) can be written as

r~r !üi~r ,t !5] j@Ci jmn~r !]num~r ,t !#, ~1!

where r5(x,z)5(x,y,z) is the position vector, r~r !,
Ci jmn(r ) are the position-dependent mass density and ela
stiffness tensor, respectively. In the following, we conside
phononic crystal composed of a two dimensional perio
array (x-y plane! of materialA embedded in a backgroun
material B. Both materialsA and B are crystals with the
lowest symmetry, i.e., belonging to the triclinic symmetr
Due to the spatial periodicity, the material constants,r~x!,
Ci jmn(x) can be expanded in the Fourier series with resp
to the two-dimensional reciprocal lattice vectors~RLV!, G
5(G1 ,G2), as
©2004 The American Physical Society01-1
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r~x!5(
G

eiG•xrG , ~2!

Ci jmn~x!5(
G

eiG•xCG
i jmn , ~3!

where rG and CG
i jmn are the corresponding Fourier coef

cients and are defined as

rG5Ac
21E d2xr~x!e2 iG•x, ~4!

CG
i jmn5Ac

21E d2xCi jmn~x!e2 iG•x . ~5!

In the above equations,Ac is the area of the primitive uni
cell of a two-dimensional phononic structure. On utilizin
the Bloch theorem and expanding the displacement ve
u(r ,t) in Fourier series, we have

u~r ,t !5(
G

eik•x2 ivt~eiG•xAGeikzz!, ~6!

wherek5(k1 ,k2) is the Bloch wave vector,v is the circular
frequency,kz is the wave number along thez direction, and
AG is the amplitude of the displacement vector. We note t
as the component of the wave vectorkz equals to zero, Eq
~6! degenerates into the displacement vector of a bulk ac
tic wave.

Substituting Eqs.~2!, ~3! and ~6! into Eq. ~1!, and after
collecting terms systematically, we obtain

3
S MG,G8

(1)

1kzSG,G8
(1)

1kz
2NG,G8

(1)
D S LG,G8

(1)

1kzOG,G8
(1)

1kz
2TG,G8

(1)
D S UG,G8

(1)

1kzKG,G8
(1)

1kz
2VG,G8

(1)
D

S LG,G8
(2)

1kzOG,G8
(2)

1kz
2TG,G8

(2)
D S MG,G8

(2)

1kzSG,G8
(2)

1kz
2NG,G8

(2)
D S UG,G8

(2)

1kzKG,G8
(2)

1kz
2VG,G8

(2)
D

S WG,G8
(1)

1kzJG,G8
(1)

1kz
2XG,G8

(1)
D S WG,G8

(2)

1kzJG,G8
(2)

1kz
2XG,G8

(2)
D S MG,G8

(3)

1kzSG,G8
(3)

1kz
2NG,G8

(3)
D 4

•F AG8
1

AG8
2

AG8
3
G50, ~7!

where then3n matricesMG,G8
(1) , MG,G8

(2) , MG,G8
(3) , SG,G8

(1) ,
etc. are functions of the Bloch wave vectork, components of
the two-dimensional RLV, circular frequencyv, the Fourier
coefficients of mass densityrG and components of elasti
stiffness tensorCG

i jmn . n is the total number of RLV used in
the Fourier expansion. The expressions of the 27 matri
MG,G8

(1) , MG,G8
(2) , MG,G8

(3) , SG,G8
(1) , etc., in Eq.~7! are listed in

the Appendix.
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The form of Eq.~7! can be rewritten in the form of a
generalized eigenvalue problem with respect tokz as

~Akz
21Bkz1C!•U50, ~8!

where

A5F NG,G8
(1) TG,G8

(1) VG,G8
(1)

TG,G8
(2) NG,G8

(2) VG,G8
(2)

XG,G8
(1) XG,G8

(2) NG,G8
(3)

G , ~9!

B5F SG,G8
(1) OG,G8

(1) KG,G8
(1)

OG,G8
(2) SG,G8

(2) KG,G8
(2)

JG,G8
(1) JG,G8

(2) SG,G8
(3)

G , ~10!

C5F MG,G8
(1) LG,G8

(1) UG,G8
(1)

LG,G8
(2) MG,G8

(2) UG,G8
(2)

WG,G8
(1) WG,G8

(2) MG,G8
(3)

G , ~11!

and

U5F AG8
1

AG8
2

AG8
3
G . ~12!

Equation ~8! is more complicated than that of the two
dimensional phononic crystal with cubic symmetry given
Tanaka and Tamura7 in such a way that the coefficient matri
B is not vanished. However, it can be solved by introduc
V5kzU and rewritten in the form as16

F 0 I

2A21C 2A21BG FUVG5kzFUVG . ~13!

III. BULK AND SURFACE WAVES IN 2D PHONONIC
CRYSTALS

It is worth noting that the case of bulk wave is a spec
case of Eq.~8!. When kz in Eq. ~8! is equal to zero, the
equation degenerates into the eigenvalue problem of b
waves as

C•U50. ~14!

The dispersion relations of bulk waves propagating in tw
dimensional phononic crystals with both the filling mater
and the background material belong to the triclinic syste
can be obtained by setting the determinant of matrixC equal
to zero.

For material with symmetry higher~and equal to! than
orthorhombic symmetry, the componentsUG,G8

(1) , UG,G8
(2) ,

WG,G8
(1) , WG,G8

(2) in matrix C are zero and Eq.~14! can be
decoupled into two different polarization modes as
1-2
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FMG,G8
(1) LG,G8

(1)

LG,G8
(2) MG,G8

(2) G FAG8
1

AG8
2 G50 ~15!

for mixed polarization modes@i.e., longitudinal~L! and shear
horizontal~SH!# and

@MG,G8
(3)

#@AG8
3

#50 ~16!

for shear vertical~SV! modes with polarization of the dis
placement along thez direction~i.e., the filler’s length direc-
tion!.

For the case of surface wave, the 6n eigenvalueskz
( l ) of

Eq. ~13! are the apparent wave numbers of the plane wa
in the z direction. According to the exponential dependen
of z in Eq. ~6!, the real part ofkz

( l ) denotes the plane wav
propagation in thez direction, and a positive nonvanishin
imaginary part represents attenuation in thez direction. For
surface waves propagate in a half space (z.0), only 3n
eigenvalues, which attenuate in the positivez direction are
chosen, i.e., Im(kz

(l)).0. Accordingly, the surface wave dis
placement can be expressed as

u~r ,t !5( 8
G

ei (k1G)•x2 ivtS (
l 51

3n

AGeikz
( l )zD

5( 8
G

ei (k1G)•x2 ivtS (
l 51

3n

Xl«G
( l )eikz

( l )zD , ~17!

where «G
( l ) is the associated eigenvector of the eigenva

kz
( l ) . The prime of the summation denotes that the sum o

G is truncated up ton. Xl is the undetermined weightin
coefficient which can be determined from the traction fr
boundary conditions on the surfacez50, i.e.,

T i3uz50[Ci3mn]numuz5050 ~ i 51,2,3!. ~18!

Substituting Eq.~17! into Eq. ~18!, we have

F H1,G
(1) H1,G

(2)
¯ H1,G

(3n)

H2,G
(1) H2,G

(2)
¯ H2,G

(3n)

H3,G
(1) H3,G

(2)
¯ H3,G

(3n)
GF X1

X2

]

X3n

G[H̃X50, ~19!

whereH̃ is a 3n33n matrix and its components are

H1,G
( l ) 5F ~CG–G8

35
1CG–G8

45
1CG–G8

55
!~k11G18!«G8

3(l )
1

~CG–G8
35

1CG–G8
45

1CG–G8
55

!~kz
( l )!«G8

1(l ) G ,

~20!

H2,G
( l ) 5F ~CG–G8

34
1CG–G8

44
1CG–G8

54
!~k21G28!«G8

3(l )
1

~CG–G8
34

1CG–G8
44

1CG–G8
54

!~kz
( l )!«G8

2(l ) G ,

~21!
09430
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H3,G
( l ) 5F ~CG–G8

31
1CG–G8

41
1CG–G8

51
!~k11G18«G8

1(l )
1

~CG–G8
32

1CG–G8
42

1CG–G8
52

!~k21G28«G8
2(l )

1

~CG–G8
33

1CG–G8
43

1CG–G8
53

!~kz
( l )!«G8

3(l )
1

~CG–G8
36

1CG–G8
46

1CG–G8
56

!~k11G18«G8
2(l )

1

~CG–G8
36

1CG–G8
46

1CG–G8
56

!~k21G28«G8
1(l )

G .

~22!

For the existence of a nontrivial solution ofXl , the fol-
lowing condition must be satisfied, i.e.,

det~H̃ !50. ~23!

Equation ~23! is the dispersion relation for surface wav
propagating in two-dimensional phononic crystals with bo
the filling material and the background material belong to
triclinic system. The relative magnitude of the eigenvect
Xl can be obtained by substitutingkz and v, which satisfy
Eq. ~23!, into Eq. ~19!.

IV. NUMERICAL EXAMPLES

The Fourier coefficients,rG and CG
i jmn , in Eqs. ~4! and

~5!, can be expressed as

aG5H aAf 1aB~12 f ! for G50,

~aA2aB!FG for GÞ0,
~24!

wherea5(r,Ci jmn), f is the filling fraction that defines the
cross-sectional area of a cylinder relative to a unit-cell ar
andFG is called the structure function defined as

FG5Ac
21E

Ac

d2xe2 iG•x . ~25!

FIG. 1. Phononic structures with the square lattice~a! and the
hexagonal lattice~b!.
1-3
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In the above equation,Ac is the cross section area of th
filling structure. The structure function is then reduced to

FG5
2 f J1~Gr0!

Gr0
~26!

with J1(x) a first order Bessel function.
In this paper, phononic structures with square lattice a

hexagonal lattice are considered. These lattices consis
circular cylinders (A) embedded in a background mater
(B) forming two-dimensional lattices with lattice spacinga
as shown in Fig. 1~a! ~square lattice! and Fig. 1~b! ~hexago-
nal lattice!. Figures 2~a! and 2~b! are the Brillouin regions of
the square lattice and the hexagonal lattice, respectively

FIG. 2. Brillouin zone of the square lattice~a! and the hexagona
lattice ~b!.
09430
d
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the square lattice, the reciprocal lattice vector isG
5(2pN1 /a,2pN2 /a), whereN1 ,N250,61,62,... and the
filling fraction is f 5(pr 0

2)/a2. The irreducible part of the
Brillouin zone of a square lattice is shown in Fig. 2~a!, which
is a triangle with verticesG, X, M . The reciprocal lattice
vector of a hexagonal lattice isG5„2pN1 /a,2p(2N2
2N1)/)a…, where N1 ,N250,61,62,... and the filling
fraction is f 5(2pr 0

2)/)a2. The irreducible part of the Bril-
louin zone of a hexagonal lattice is shown in Fig. 2~b!, which
is a triangle with verticesG, K, M . The elastic properties o
the materials utilized in the following examples are adop
from Ref. 17 and listed in Table I and Table II.

A. Isotropic materials: Al ÕNi square lattice

Consider a phononic structure consisting of aluminu
~Al ! circular cylinders embedded in a background materia
Ni forming a two-dimensional square lattice with lattic
spacinga. Figure 3 shows the dispersion relations along
boundaries of the irreducible part of the Brillouin zone wi
filling ratio f 50.6. The vertical axis is the normalized fre
quencyv* 5va/Ct and the horizontal axis is the reduce
wave numberk* 5ka/p. As the elastic waves propaga
along thex axis, the nonvanishing displacement of the sh
horizontal mode, shear vertical mode and longitudinal mo
are uy , uz , and ux respectively. For the sequence mod
appear, we denominate the same type mode as the funda
tal, the first and the second modeset al. For example, in Fig.
3, the thin solid lines represent the SV bulk acoustic mo
~the fundamental mode is SV0 and the first mode is SV1),
and the square symbols are those for the longitudinal ac
tic mode~L!. The thin dashed line represents the fundam
tal shear horizontal mode SH0, while the lines with ‘‘1’’
symbols represent the first shear horizontal mode SH1. In
Fig. 3, for bulk mode propagation along thex direction
(G-X), there are clear band gaps exist for the SV (v*

TABLE I. The elastic properties of the materials utilized in th
examples~I!.

Material Symmetry
Density
(kg/m3)

Elastic constants (31010 N/m2)

C11 C12 C13 C33 C44

Ni Isotropic 8905 32.4 16.4 8
Al Isotropic 2695 11.1 6.1 2.5

AlAs Cubic 3760 12.02 5.70 5.89
GaAs Cubic 5360 11.88 5.38 5.94
ZnO Hexagonal 5680 20.97 12.11 10.51 21.09 4.2
TABLE II. The elastic properties of the materials utilized in the examples~II !.

Material Symmetry
Density
(kg/m3)

Elastic constants (31010 N/m2)

C11 C12 C13 C23 C22

Ba2NaNb5O15 Orthorhombic 5300
23.9 10.4 5.0 5.2 24.4
C33 C44 C55 C66

13.5 6.5 6.6 7.6
1-4
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SURFACE AND BULK ACOUSTIC WAVES IN TWO- . . . PHYSICAL REVIEW B 69, 094301 ~2004!
51.36) and SH (v* 51.22) bulk modes and the phase v
locities of the SV mode~thin solid line! are larger than those
of the SH mode. The boundary of the Brillouin zoneX-M of
Fig. 3 represents the dispersion of the bulk waves w
propagating direction varied 0° –45° counterclockwise aw
from x direction. At a first glance, it seems that the disp
sion curves of the fundamental and the first shear horizo
modes, SH0 and SH1, make a cross at pointT. However,
detail calculation around the pointT ~Fig. 4! shows that the
fundamental and the first shear horizontal modes do not c
over, instead, these two modes bend away from each o
The corresponding wave propagating direction of pointT is
about 28.44°.

To understand further the peculiar behavior of the sh
horizontal modes at pointT, we calculated the displaceme
fields of the SH0 and SH1 modes along all the boundaries
the Brillouin zone as those shown in Figs. 5 and 6. In
G-X section, the nonvanishing displacement of the sh
horizontal mode isuy as expected and it vanishes at the ba
gap pointX. As the propagating direction move away fro
the X point, one finds thatuy remains very small; however
ux increases gradually until the pointT. At this particular
propagating direction,ux suddenly jumps to a very sma

FIG. 3. Dispersion relations of all bulk modes~Al/Ni, f 50.6,
sq.!.

FIG. 4. Detail calculation around the pointT.
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value, instead,uy jumps from a small value to a finite valu
and then decays to zero at the band gap pointM . Figure 6
shows the similar calculated result of the displacement fi
of the SH1 mode. In contrast to the SH0, at point X, uy
decreases from a finite value gradually until the pointT, then
a sudden jump to a very small value. At pointT, ux jump up
suddenly from a very small value to a finite value. With Fig
5 and 6, we find clearly the mode interchange appears a
sharp bend of the dispersion curve~point T in Fig. 4!. It is
worth noting that in both of the SH0 and SH1 modes~Figs. 5
and 6!, the magnitudes of the displacementsux anduy on the
G-M section are equal due to the symmetry of the latt
arrangements.

Figure 7 shows the dispersion relation of the surface w
modes in the phononic structure with Al/Ni square lattic
The solid circles represent the dispersion relations of the
face wave modes~SAW! and the open circles are those f
the pseudosurface wave~PSAW! modes. For later conve
nience in discussing the interaction of the surface wave
bulk wave, the dispersion of the bulk modes are also sho
in the figure. Result showed that as the normalized freque
of the surface wave mode lies between the SH0 and SH1

FIG. 5. Displacement fields of the SH0 modes along all the
boundaries of the Brillouin zone~Al/Ni, f 50.6, sq.!.

FIG. 6. Displacement fields of the SH1 modes along all the
boundaries of the Brillouin zone~Al/Ni, f 50.6, sq.!.
1-5
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TSUNG-TSONG WU, ZI-GUI HUANG, AND S. LIN PHYSICAL REVIEW B69, 094301 ~2004!
modes, the surface wave degenerates into the pseudosu
wave mode. Unlike the normal surface wave mode, the
placement of the pseudosurface wave mode does not d
to zero at large depth. In the present case, one finds th
point X, instead of the SAW-SAW band gap, there only e
ists SAW-PSAW band gap. It is worth noting that in Fig.
from X to M , the higher SAW mode ceased approximately
the T point where the sharp bend of the bulk SH mode
curs.

To test the convergence of the plane wave expans
method, we chose the fundamental shear vertical mode0
as an example and calculated the dispersion curves with
ferent number of the reciprocal lattice vectors. The test
results showed that as the reciprocal lattice vector num
increases to a specific value, the normalized frequency of
SV0 mode almost converges to a constant value. For
ample, the difference between the results using 49 RLV
those using 169 RLV is about 0.5%. The convergence tes
the SAW mode also showed a similar trend as that of
bulk acoustic wave. For computing time consideration,
used 49 RLV in all the calculations conducted in this pap

FIG. 7. Dispersion relations of BAW and SAW modes~Al/Ni,
f 50.6, sq.!.

FIG. 8. Dispersion relations of BAW and SAW modes~AlAs/
GaAs, f 50.564, sq.!.
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B. Cubic materials: AlAsÕGaAs square lattice

In Ref. 7, the dispersion curves of the surface wav
propagate in a two-dimensional square lattice consisting
circular cylinders of AlAs embedded in a background ma
rial of GaAs with filling fraction f 50.564 have been re
ported. Shown in Fig. 8 is dispersion curves reproduced fr
this study, one finds that the result is exactly the same as
in Ref. 7. Details of the discussions of bulk and surface wa
dispersions in this phononic structure can be found there

C. Hexagonal materials:
Al ÕZnO square lattice and hexagonal lattice

In this subsection, we consider a phononic structure c
sisting of circular cylinders of Al embedded in a backgrou
material of ZnO forming a two-dimensional square lattic
The material of the filling cylinders is isotropic aluminum
and the base material ZnO is in hexagonal symmetry. In
following calculations, thex-y plane is parallel to the~001!
plane and thex axis is parallel to the@100# direction of ZnO
and the filling ratio is 0.6. Shown in Fig. 9 are the dispersi
curves for both of the bulk modes and surface acou
modes. Similar to the case of the isotropic material shown
Fig. 3, the thin solid lines represent the SV bulk acous
modes (SV0 and SV1), and the square symbols are those
the longitudinal acoustic mode (L). The thin dashed line

FIG. 9. Dispersion relations of BAW and SAW modes~Al/ZnO,
f 50.6, sq.!.

FIG. 10. An enlarged plot of Fig. 9 around the sharp bends.
1-6
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SURFACE AND BULK ACOUSTIC WAVES IN TWO- . . . PHYSICAL REVIEW B 69, 094301 ~2004!
represents the fundamental shear horizontal mode S0,
while the lines with ‘‘1’’ symbols represent the first shea
horizontal mode SH1. The dispersion of the bulk mode
shows similar characteristics as that of the isotropic Al
case. Except that in theG-X section, the higher and lowe
SV and SH modes are almost overlapped, and therefore
band gap widths of these two modes are similar at the B
louin boundary pointX. In the X-M section, the dispersion
curves of the SH0 and SH1 modes still approaching to eac
other, however, the bends at the closest point are of no
sharp as those in the Al/Ni case.

In Fig. 9, unlike the Al/Ni phononic square lattice show
in Fig. 8, we found that the lower SAW mode exists throu
all the boundaries of the Brillouin zone. No PSAW exists
this branch for in this case, all the SAW velocities a
smaller than the bulk shear and longitudinal wave velocit
We note that in theG-X section, the higher SAW mode be
comes PSAW, while in theX-M section, it preserves th
SAW characteristics and extends fromX to approximately
the sharp bend position, and then, degenerates into
PSAW for a small section as shown in the figure. On
other hand, the higher surface acoustic wave extends f
theM point belongs to the PSAW as shown in Fig. 9. It en
at approximately the sharp bends of the SH1 mode. An en-
larged plot of Fig. 9 around the sharp bends is shown in F
10. One finds clearly that the PSAW mode extends from
X point is tangentially merged into the SH0 mode and cease
at the intersection point. On the other hand, the PSAW m
extends from theM point is tangentially merged into the SH1
mode and ceased at the intersection point.

Shown in Fig. 11 are the dispersion curves of the b
modes and surface acoustic modes of the Al/ZnO phono
structure with hexagonal lattice. For the shear horizon
modes SH0 ~thin dashed line! and SH1 ~1 symbols!, unlike
that of the square lattice, we find no sharp bend occurs in
K-M section. Therefore, there is no SH mode intercha
exists in this phononic structure with hexagonal lattice. Fr
Fig. 11, we found that atK point, there is no surface wav
band gap existed. However, along theG-M boundary, a
SAW-PSAW band gap exists at the boundary pointM .

D. Orthorhombic materials: Al ÕBa2NaNb5O15 square lattice
and hexagonal lattice

In this subsection, we consider a phononic structure c
sisting of circular cylinders of Al embedded in a backgrou
material of barium sodium niobate (Ba2NaNb5O15) forming
a two-dimensional square lattice. The material of the filli
cylinders is isotropic aluminum and the base material
barium sodium niobate with orthorhombic symmetry. In t
following calculations, thex-y plane is parallel to the~001!
plane and thex axis is parallel to the@100# direction of
barium sodium niobate. The filling fraction isf 50.6.

Shown in Fig. 12 are the dispersion curves for both of
bulk modes and surface acoustic modes. The surface w
dispersion curves alongG-X and G-M directions lie below
the dispersion curves of transverse waves and degenera
PSAW along the boundaries ofX-M andG-M . At one of the
vertex of the Brillouin region,M , there is a clear frequenc
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band gap with nondimensional width of 0.26 between PSA
and PSAW. At the vertexX, we found a frequency band ga
between SAW and SAW with nondimensional width of 0.5
Similar to the isotropic Al/Ni square lattice, the surface wa
and higher SAW mode continues to exist alongX-M bound-
ary up to about 39.35° and 24.70° rotated fromX point in
Fig. 12.

For some materials with symmetry higher~and equal to!
than hexagonal symmetry, thex-y plane is isotropic for all
the propagation modes. The irreducible part of the Brillou
zone of a square lattice is an isosceles right-angled trian
showed in Fig. 2~a!. But the material with orthorhombic
symmetry is anisotropic in thex-y plane; the dispersion re
lations of propagation alongx axis andy axis are different.
The irreducible part of the Brillouin zone of a square latti
is extended to a square with verticesG, X, M , Y shown in
Fig. 2~a!. However, due to the small difference betweenC11
andC22 and betweenC13 andC23, we found that the differ-
ences of dispersion relations alongG-X and G-Y are very
small in this case, therefore, onlyG, X, M are considered in
Fig. 12.

To further investigate the anisotropic effect on the disp
sion of a phononic structure, we considered theY-cut barium

FIG. 11. Dispersion relations of BAW and SAW modes~Al/
ZnO, f 50.6, hex.!.

FIG. 12. Dispersion relations of BAW and SAW modes~Al/
barium sodium niobate,f 50.6, sq.!.
1-7
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sodium niobate as the background material. Shown in Fig
are the dispersion curves of the bulk modes and sur
acoustic modes of the Al/barium sodium niobate (Y-cut!
phononic structure with hexagonal lattice. According to t
discussions in the above paragraph, the irreducible par
the Brillouin zone of a hexagonal lattice for anisotropic m
terials must be extended to the first quadrant in original h
agonal lattice with verticesG, K, L, Y shown in the inset of
Fig. 13.

For the longitudinal modesL ~square symbols!, unlike
that of the square lattice, we find that band gap occurs in
G-K section~the width is 0.91!. It is seen that the dispersio
relations inK-L section are almost symmetric respect to t
center of the section (M point!. It is worth noting that in the
L-Y section, sharp bends of the dispersion curves occur
tween SH1 and L modes and betweenL and SH0 modes.
Therefore, there are mode interchanges~SH andL) exist in
this phononic structure with hexagonal lattice. In theG-Y

FIG. 13. Dispersion relations of BAW and SAW modes@Al/
barium sodium niobate~Y cut!, f 50.6, hex.#.
09430
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section, the waves propagation are alongy axis, the displace-
ment fields of longitudinal and shear horizontal modes areuy
andux , respectively.

From Fig. 13, we find that atK point, there is no surface
wave band gap existed. However, along theG-Y boundary, a
PSAW-PSAW band gap exists at the boundary pointY. The
phenomenon shows the characteristics of an anisotropic
terial.

V. CONCLUSION

In this paper, we studied the phononic band gaps of s
face waves in two-dimensional phononic structures con
of general anisotropic materials. The explicit formulations
the plane harmonic bulk wave and the surface wave dis
sion relations in such a general phononic structure are
rived based on the plane wave expansion method. T
dimensional phononic structures with either the square or
hexagonal lattice are considered in the numerical examp
Band gap characteristics of the phononic structures with
ferent anisotropic background materials~isotropic, cubic,
hexagonal and orthorhombic! are calculated and discussed.
is worth noting that some of the crossing over of the disp
sion curves~apparently! is indeed sharp bends of the dispe
sion curves. Around this sharp bend area, the mode exch
suddenly. Results of this paper can serve as a basis for
numerical and experimental investigations of phononic cr
tal structures consist of general anisotropic materials.
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APPENDIX

The expressions of the 27 matrices in Eq.~7! are
MG,G8
(1)

5F v2rG2G8
2~G11k1!~G181k1!CG2G8

11
2~G11k1!~G281k2!CG2G8

16

2~G21k2!~G181k1!CG2G8
16

2~G21k2!~G281k2!CG2G8
66

G , ~A1!

MG,G8
(2)

5F v2rG2G8
2~G11k1!~G181k1!CG2G8

66
2~G11k1!~G281k2!CG2G8

26

2~G21k2!~G181k1!CG2G8
26

2~G21k2!~G281k2!CG2G8
22

G , ~A2!

MG,G8
(3)

5F v2rG2G8
2~G11k1!~G181k1!CG2G8

55
2~G11k1!~G281k2!CG2G8

45

2~G21k2!~G181k1!CG2G8
45

2~G21k2!~G281k2!CG2G8
44

G , ~A3!

SG,G8
(1)

5F2~G11k1!CG2G8
15

2~G21k2!CG2G8
56

2~G181k1!CG2G8
15

2~G281k2!CG2G8
56 G , ~A4!
1-8
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SG,G8
(2)

5F2~G11k1!CG2G8
46

2~G21k2!CG2G8
24

2~G181k1!CG2G8
46

2~G281k2!CG2G8
24 G , ~A5!

SG,G8
(3)

5F2~G11k1!CG2G8
35

2~G21k2!CG2G8
34

2~G181k1!CG2G8
35

2~G281k2!CG2G8
34 G , ~A6!

NG,G8
(1)

52CG2G8
55 , NG,G8

(2)
52CG2G8

44 , NG,G8
(3)

52CG2G8
33 , ~A7!

LG,G8
(1)

5F2~G11k1!~G181k1!CG2G8
16

2~G11k1!~G281k2!CG2G8
12

2~G21k2!~G181k1!CG2G8
66

2~G21k2!~G281k2!CG2G8
26 G , ~A8!

LG,G8
(2)

5F2~G11k1!~G181k1!CG2G8
16

2~G11k1!~G281k2!CG2G8
66

2~G21k2!~G181k1!CG2G8
21

2~G21k2!~G281k2!CG2G8
26 G , ~A9!

OG,G8
(1)

5F2~G11k1!CG2G8
14

2~G21k2!CG2G8
46

2~G181k1!CG2G8
56

2~G281k2!CG2G8
25 G , ~A10!

OG,G8
(2)

5F2~G11k1!CG2G8
56

2~G21k2!CG2G8
25

2~G181k1!CG2G8
14

2~G281k2!CG2G8
46 G , ~A11!

TG,G8
(1)

52CG2G8
45 , TG,G8

(2)
52CG2G8

45 , ~A12!

UG,G8
(1)

5F2~G11k1!~G181k1!CG2G8
15

2~G11k1!~G281k2!CG2G8
14

2~G21k2!~G181k1!CG2G8
56

2~G21k2!~G281k2!CG2G8
46 G , ~A13!

UG,G8
(2)

5F2~G11k1!~G181k1!CG2G8
56

2~G11k1!~G281k2!CG2G8
46

2~G21k2!~G181k1!CG2G8
25

2~G21k2!~G281k2!CG2G8
24 G , ~A14!

KG,G8
(1)

5F2~G11k1!CG2G8
13

2~G21k2!CG2G8
36

2~G181k1!CG2G8
55

2~G281k2!CG2G8
45 G , ~A15!

KG,G8
(2)

5F2~G11k1!CG2G8
36

2~G21k2!CG2G8
23

2~G181k1!CG2G8
45

2~G281k2!CG2G8
44 G , ~A16!

VG,G8
(1)

52CG2G8
35 , VG,G8

(2)
52CG2G8

34 , ~A17!

WG,G8
(1)

5F2~G11k1!~G181k1!CG2G8
15

2~G11k1!~G281k2!CG2G8
56

2~G21k2!~G181k1!CG2G8
14

2~G21k2!~G281k2!CG2G8
46 G , ~A18!

WG,G8
(2)

5F2~G11k1!~G181k1!CG2G8
56

2~G11k1!~G281k2!CG2G8
25

2~G21k2!~G181k1!CG2G8
46

2~G21k2!~G281k2!CG2G8
24 G , ~A19!

JG,G8
(1)

5F2~G11k1!CG2G8
55

2~G21k2!CG2G8
45

2~G181k1!CG2G8
13

2~G281k2!CG2G8
36 G , ~A20!

JG,G8
(1)

5F2~G11k1!CG2G8
45

2~G21k2!CG2G8
44

2~G181k1!CG2G8
36

2~G281k2!CG2G8
23 G , ~A21!

XG,G8
(1)

52CG2G8
35 , XG,G8

(2)
52CG2G8

34 . ~A22!

In the above equations, Voigt’s notation has been used to rewriteCG
i jmn asCG

IJ .
094301-9
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