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Surface and bulk acoustic waves in two-dimensional phononic crystal consisting
of materials with general anisotropy
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Successful application of photonic crystals has led recently to a rapidly growing interest in the analogous
acoustic effects in periodic elastic structures called phononic crystals. This study is aimed at developing a
theory for two-dimensional phononic crystal consisting of materials with general anisotropy. Explicit formu-
lations of the plane harmonic bulk wave and the surface wave dispersion relations in such a general phononic
structure are derived based on the plane wave expansion method. Two-dimensional phononic structures with
either the square or the hexagonal lattice are considered in the numerical examples. Band gap characteristics of
the phononic structures with different anisotropic background matéisaisopic, cubic, hexagonal, and ortho-
rhombig are calculated and discussed.
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[. INTRODUCTION dimensional periodic acoustic composites and the band struc-
ture of a phononic crystal consisting of complex and
The existence of complete band gaps of electromagnetiffequency-dependent Lamecoefficients. = Garcia-Pablos

waves in photonic structures extending throughout the Brilet al'® used the finite difference time domain method to in-
louin zone has demonstrated a variety of fundamental anterpret the experimental data of two-dimensional systems
practical interests? This has led to a rapidly growing inter- consisting of cylinders of fluid¢Hg, air, and oil inserted
est in the analogous acoustic effects in periodic elastic strud2eriodically in a finite slab of Al host.
tures called the phononic crystals. Surface wave propagation '" this paper, we extend Tanaka and Tamura’s ‘K’d'd(
on layered superlattices with traction free surface parallel t$tUdy Phononic band gaps of surface waves in two-
the layers has been explored extensively in the bakiw- dimensional phononic structures consist of general aniso-

ever, investigations on surface wave properties of solids irlimp'C materials. The explicit formulations of the plane har-

which the periodic modulation occurs on the traction freel1ONC bulk wave and the surface wave dispersion relations

surface has not started until recerftif Vinceset al 5 stud- in such a general phononic structure are derived based on the

) . . plane wave expansion method. Two-dimensional phononic
ied experimentally the surface waves generated by a ImeF—) P P

f l h loaded surf ¢ bstructures with either the square or the hexagonal lattice are
ocus acoustic lens at the water-loaded surfaces of a NUMDEE siqered in the numerical examples. Band gap characteris-

of two-dimensional superlattices that intersect the surfacg.q of the phononic structures with different anisotropic

normally. Propagation of Scholte-like acoustic waves at thebackground materials(isotropic, cubic, hexagonal, and
liquid-loaded surfaces of period structures has also beeBrthorhombic are calculated and discussed.

studied®
The superlattices considered in Refs. 4—6, 8 are made of
isotropic materials. As for superlattices consist of anisotropic !l EQUATIONS OF MOTION OF 2D PHONONIC
materials, Tanaka and Tam@reeported detail calculations CRYSTALS
for surface waves on a square superlattice consisting of cubic |, an inhomogeneous linear elastic anisotropic medium
materials(AlAs/GaAs) and many salient features of surface yjth no body force, the equation of motion for the displace-
waves in two-dimensional superlattices have been_ describeghent vectoru(r,t) can be written as
In addition, Tanaka and Tamiralso reported detail calcu-
lations for surface waves on a hexagonal superlattice consist- .
ing of isotropic materialgAl/polymer). p(N)Gi(r,0)=dj[ Cijmn(r) dnlm(r,0)], @)
Analyses of bulk acoustic waves in phononic structures
consisted of isotropic materials have been conducted and r&¢here r=(x,z)=(x,y,z) is the position vector,p(r),
ported in literature$.® Three different schemes were usu- Cijmn(r) are the position-dependent mass density and elastic
ally adopted in the calculation, i.e., the plane wave expansiostiffness tensor, respectively. In the following, we consider a
method, the multiple scattering method, and the finite differfphononic crystal composed of a two dimensional periodic
ence time domain method. Kushwabtal®° utilized the array x-y plane of material A embedded in a background
plane wave expansion method to calculate the first full bandnaterial B. Both materialsA and B are crystals with the
structure of the transverse polarization mode for periodiclowest symmetry, i.e., belonging to the triclinic symmetry.
elastic composite and further, calculated the band structurd3ue to the spatial periodicity, the material constap(s),
for the transverse polarization modes of nickel alloy cylin-Cjjmn(X) can be expanded in the Fourier series with respect
ders in aluminum alloy host. In Refs. 11-14, the multipleto the two-dimensional reciprocal lattice vectdRLV), G
scattering theory was applied to study the band gaps of three=(G,,G,), as
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The form of Eq.(7) can be rewritten in the form of a

P(X)Zg e'®*pg, (2)  generalized eigenvalue problem with respeckj@s
i (Ak2+Bk,+C)-U=0, (8)
Ciimn(0) =2, €°*Cd™, 3
G where
where pg and Cgm” are the corresponding Fourier coeffi- N T v T
cients and are defined as (e,)er (Gf (G)G
2 2 2
A= TG,G’ NG,G’ VG,G’ ) )
pG=Ag1f d*xp(x)e~"CX, 4 Xoo Xoo Noo
B . S(l) ) O(l) , K(l) ,_
CLM=A" f d*X Cijma(x)€™ %, (5) o o oy
B=| Oge Sce Kgo |, (10
In the above equationd. is the area of the primitive unit JE;l)G J(GZ)G SS)G _
cell of a two-dimensional phononic structure. On utilizing
the Bloch theorem and expanding the displacement vector (1) (1) 1)
; ; ; Mce Lo Use
u(r,t) in Fourier series, we have (2’) (é) 2)
C=| Lge Mgo Ugo |, (13)
U(r =3 el iotelexageka), ©) Woo Wes MGe
G
. . . and
wherek = (kq,k,) is the Bloch wave vectoi is the circular
frequencyk, is the wave number along tredirection, and Al
A is the amplitude of the displacement vector. We note that <23
as the component of the wave vecigrequals to zero, Eq. U=| Ag |. (12
(6) degenerates into the displacement vector of a bulk acous- Ag,

tic wave.

Substituting Egs(2), (3) and (6) into Eq. (1), and after  Equation (8) is more complicated than that of the two-
collecting terms systematically, we obtain

: (1) (2) (3) (1)
where thenxn matricesMg,, Mg Mg S

etc. are functions of the Bloch wave vectgrcomponents of
the two-dimensional RLV, circular frequeney, the Fourier

dimensional phononic crystal with cubic symmetry given by
Tanaka and Tamufan such a way that the coefficient matrix

) Mg)e Lg)e Ug)G B is not vanished. However, it can be solved by introducing
+SE, +k,08, k3, V=k,U and rewritten in the form a8
1 1 1
+KNG, +KETYY, +K2VEL, 0 CoTul Tu
(2) (2) (2) =k . 13
Y MGor Ugo [—Alc —AIBHV} Z{V} (13
+k,08%, +k, Sy +kKE),
2 2 2
+k§T53,)G' +k§N53,)G' +k§V(G,)G' I1l. BULK AND SURFACE WAVES IN 2D PHONONIC
(1) (2) (3) CRYSTALS
WG,G’ WG,G’ MG,G’
+k I8, +k %), +k,SE), It is worth noting that the case of bulk wave is a special
+k2X(i) +kzx(2’) +kzN(s’) case of Eq.(8). Whenk, in Eq. (8) is equal to zero, the
L 2°G,G’ z2°G,G’ 2'NG,G! equation degenerates into the eigenvalue problem of bulk
Al waves as
G!
2
Agr | =0, (7) c.u=o. (14
AL

The dispersion relations of bulk waves propagating in two-
dimensional phononic crystals with both the filling material
and the background material belong to the triclinic system,
can be obtained by setting the determinant of ma@riequal

coefficients of mass densityg and components of elastic tO zero.

stiffness tensofC

ijmn
G

. n is the total number of RLV used in

For material with symmetry highefand equal tp than

. . . . . 1 2
the Fourier expansion. The expressions of the 27 matrice®rthorhombic symmetry, the Componem%,é,, Ug)G

Mg,)ew Mg)(;,, MS)G,, Sg)(;,, etc., in Eq.(7) are listed in
the Appendix.

Wg)G W2, in matrix C are zero and Eq(14) can be

decoupled into two different polarization modes as
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MCe Lok |[Ag]_ 5 F(CY g+l g+ C ) (ky+ Gpel+ ]
= 32 42 52 1 2(1)
Lg,)(;' Mg,)er Aé, (Co g tCq g TCq g (katGoeg, '+
HiL=| (C&e +Cea+Ca e (kg +
for mixed polarization modés.e., longitudinal(L) and shear (Cgﬁ_G, + C4GG_G, + Cff_e,)(kﬁ Gigé(rl)+
horizontal(SH)] and (Cgee-ef+C4ee-ef+céﬁ_ef)(k2+G§€cl;('l) |
(3) 3 (22)
[MG‘G,][AG,]=0 (16)

For the existence of a nontrivial solution ¥f, the fol-

for shear verticalSV) modes with polarization of the dis- lowing condition must be satisfied, i.e.,
placement along the direction(i.e., the filler’s length direc- _
tion). de{(H)=0. (23

For the case of surface wave, tha gigenvaluek!’ of
Eq. (13) are the apparent wave numbers of the plane wav
in the z direction. According to the exponential dependenc
of z in Eq. (6), the real part ok!) denotes the plane wave
propagation in the direction, and a positive nonvanishing
imaginary part represents attenuation in thdirection. For
surface waves propagate in a half spaze-Q), only 3n
eigenvalues, which attenuate in the positéirection are
chosen, i.e., IM{)>0. Accordingly, the surface wave dis- IV. NUMERICAL EXAMPLES
placement can be expressed as

eEquation (23) is the dispersion relation for surface waves
epropagating in two-dimensional phononic crystals with both
the filling material and the background material belong to the
triclinic system. The relative magnitude of the eigenvectors
X, can be obtained by substituting and w, which satisfy
Eq. (23), into Eq.(19).

The Fourier coefficientspg and Ci™", in Egs.(4) and
(5), can be expressed as

apf+ag(l—Ff) for G=0,

3n
U(I’,t)=§’ ei(kJrG).xia)t(lzl AGeik(z')Z)
(aA—a'B)FG fOI’ G#O,

(24)

ac=

3n
ro i i i . - . .
= e'(k+G)'X"‘”‘( > X,sg)e'k(z)z), (17  wherea=(p,C'I™"), f is the filling fraction that defines the
G =1 cross-sectional area of a cylinder relative to a unit-cell area,

andF is called the structure function defined as
where sg) is the associated eigenvector of the eigenvalue

k(. The prime of the summation denotes that the sum over ~ e

. : : I Fe=A.1| d?xe iCx (25)
G is truncated up tn. X, is the undetermined weighting G e A :
coefficient which can be determined from the traction free
boundary conditions on the surfaze 0, i.e.,

®oC ‘//\@J@ -
- . L A A 2/ > @
Ti3|z=0=Ci3mn(9num|z=0:0 (i=1,2,3). (18 o A B & s -
{ | — )
w W \J A A 0/
Substituting Eq(17) into Eq. (18), we have 'Y ¥ Y Y1 B |A
UewvwVw
n e 6 A Half space
( 3
Hid HE - HED §1 xp [AA 9 \\"'/‘a\;’/
HOL MR HD | % | <Fix=o, a9 (L’) y
1 2 3 ’ a
HGL MR g ]| X,
00 o o o
whereH is a 3nX3n matrix and its components are BQ o ¢ =
® 0o ¢ 9 o B
35 45 55 3(l o =)
| (CG—G'+CG—G'+CG—G')(k1+Gi)SG(')+ e o o & y .
Hg.)G: 35 45 55 )y 10) s v 9 9 @ z =/
' (ColertCola T Coa) (ks G NN AN N . A
20 N® © & 0 0
(20) 2\
Half space
X
34 44 54 3(
0 (CE o+ CE o +Ce o) (Kot Gy el + ()
H6= c34 c c54 Ky 20 | . _
(Co g +tCo g tCo (k) eg FIG. 1. Phononic structures with the square latigeand the

(21 hexagonal latticéb).
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k TABLE |. The elastic properties of the materials utilized in the
Y exampleq]).

X
a

id M
_ Elastic constantsx 10" N/m?)
Density
Material Symmetry (kg/m®) C;; Cip Ci3 Ca3 Cus
Ni Isotropic 8905 324 16.4 8
B % k Al Isotropic 2695 11.1 6.1 2.5

X

T AlAs Cubic 3760 12.02 5.70 5.89
GaAs Cubic 5360 11.88 5.38 5.94
ZnO Hexagonal 5680 20.97 12.11 10.51 21.09 4.247

the square lattice, the reciprocal lattice vector &

@) =(2wNq/a,2wN,/a), whereN,;,N,=0,+1,=2,... and the
filling fraction is f=(=r3)/a’. The irreducible part of the

ky Brillouin zone of a square lattice is shown in FigaR which
is a triangle with verticed”, X, M. The reciprocal lattice

vector of a hexagonal lattice i$S=(27N,/a,27(2N,

—N,)/v3a), where N;,N,=0,=1,+2,... and the filling
fraction isf=(27rr§)/1/§a2. The irreducible part of the Bril-

Y L
M louin zone of a hexagonal lattice is shown in Figh)2 which
is a triangle with vertice$’, K, M. The elastic properties of
k the materials utilized in the following examples are adopted
‘/K X

from Ref. 17 and listed in Table | and Table II.

I
A. Isotropic materials: Al/Ni square lattice
Consider a phononic structure consisting of aluminum
(Al) circular cylinders embedded in a background material of
(b) Ni forming a two-dimensional square lattice with lattice
spacinga. Figure 3 shows the dispersion relations along the
FIG. 2. Brillouin zone of the square latti¢a) and the hexagonal boundaries of the irreducible part of the Brillouin zone with
lattice (b). filling ratio f=0.6. The vertical axis is the normalized fre-
quency w* = wal/C; and the horizontal axis is the reduced
In the above equatior. is the cross section area of the wave numberk* =ka/x. As the elastic waves propagate
filling structure. The structure function is then reduced to along thex axis, the nonvanishing displacement of the shear
horizontal mode, shear vertical mode and longitudinal mode

21J1(Grp) are uy, u,, andu, respectively. For the sequence modes
GZG—rO (26) appear, we denominate the same type mode as the fundamen-
tal, the first and the second modsatsal. For example, in Fig.
with J;(x) a first order Bessel function. 3, the thin solid lines represent the SV bulk acoustic modes

In this paper, phononic structures with square lattice andthe fundamental mode is $\and the first mode is SY,
hexagonal lattice are considered. These lattices consist @nd the square symbols are those for the longitudinal acous-
circular cylinders A) embedded in a background material tic mode(L). The thin dashed line represents the fundamen-
(B) forming two-dimensional lattices with lattice spacing tal shear horizontal mode $H while the lines with “+”
as shown in Fig. () (square latticeand Fig. 1b) (hexago- symbols represent the first shear horizontal mode .SH
nal lattice. Figures 2a) and 2b) are the Brillouin regions of Fig. 3, for bulk mode propagation along the direction
the square lattice and the hexagonal lattice, respectively. II’-X), there are clear band gaps exist for the So/*(

TABLE Il. The elastic properties of the materials utilized in the examglies

Elastic constantsx 10'° N/m?)

Density
Material Symmetry (kg/n®) Cpy Cy, Cis Cos Cyo
. 23.9 10.4 5.0 5.2 24.4
Ba,NaNh,O Orthorhombic 5300
%NaNkOss Cx  Cu  Cs  Ce
13.5 6.5 6.6 7.6
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Dispersion Relation of BAW, Cylinder: Al / Base: Ni/ f = 0.6, sq. Displacement Fields of SH; Mode, Cylinder: Al / Base: Ni/f = 0.6, sq.

- N
o IN] o w
T T T T

Amplitudes

Normalized Frequency (wa/Cy)

e
o
T

% | Y I I | I I |
r X M T
Reduced Wave Vector (ka/r)

o

Reduced Wave Vector (ka/m)

FIG. 5. Displacement fields of the gHnodes along all the
boundaries of the Brillouin zon€I/Ni, f=0.6, sg).

FIG. 3. Dispersion relations of all bulk mod€Al/Ni, f=0.6,
sq).

=1.36) and SH ¢* =1.22) bulk modes and the phase ve- value, insteady, jumps from a small value to a finite value

locities of the SV modéthin solid ling are larger than those 2nd then decays to zero at the band gap pbintFigure 6

of the SH mode. The boundary of the Brillouin zaXieM of shows the similar calculated result of the dlsplacement field
Fig. 3 represents the dispersion of the bulk waves wit?f the SH mode. In contrast to the Sk at point X, uy
propagating direction varied 0°—45° counterclockwise awa);iecreaseg from a finite value gradually until the pd‘lnthen
from x direction. At a first glance, it seems that the disper-& Sudden jump to a very small value. At pointu, jump up
sion curves of the fundamental and the first shear horizontfflUddenly from a very small value t(_) afinite value. With Figs.
modes, Sl and SH make a cross at poirif. However, 5 and 6, we find clegrly thg mode |nt.ercha'1nget appears at the
detall calculation around the poifit (Fig. 4 shows that the sharp ber_1d of thg dispersion curigoint T in Fig. 4)'. Itis
fundamental and the first shear horizontal modes do not cro&¥0rth noting that in both of the Sjnd SH modes(Figs. 5
over, instead, these two modes bend away from each othetnd 8, the magnitudes of the displacemenfsanduy on the

The corresponding wave propagating direction of pdirs I'-M section are equal due to the symmetry of the lattice
about 28.44°. arrangements.

To understand further the peculiar behavior of the shear Fi9ure 7 shows the dispersion relation of the surface wave
horizontal modes at poir, we calculated the displacement M0des in the phononic structure with Al/Ni square lattice.
fields of the SH and SH modes along all the boundaries of The solid circles represent the dispersion relations of the sur-
the Brillouin zone as those shown in Figs. 5 and 6. In theface Wavg mo?e$SAW) g)nSdAthe op%n C|rc'::Ies lare those for
I'-X section, the nonvanishing displacement of the shea‘he pseu C(i)_suraqe V\{ﬁ\(. ¢ V\btmo efst'h or ?ter conve- d
horizontal mode isi, as expected and it vanishes at the ban lence In discussing the interaction of the surtace wave an

gap pointX. As the propagating direction move away from ulk wave, the dispersion of the bulk modes are also shown
the X point, one finds that, remains very small: however in the figure. Result showed that as the normalized frequency
Ll y 1 1

u, increases gradually until the poifit At this particular of the surface wave mode lies between the,Stid SH

propagatlng dlrectlonux SUddenIy jumps to a very small 14 Displacement Fields of SH, Mode, Cylinder: Al / Base: Ni/ f = 0.6, sq.

3.332

3.33
3.328
3.326
3.324
3.322

3.32
3.318
3.316
3.314
3.312

3.31

Normalized Frequency (wa/Cy)

Dispersion Relation of SHp and SH¢ modes at T point

- +

e
4w“’+++¢,¢ SH +
— ++¢+***+
AL TSN
/ i
/
— /

/
- ,/ SH,
= /
/

3.308

0.53

0.535

0.54

0.545

0.55

Amplitudes

1.2

08

0.6

04

02

Uy

Reduced Wave Vector (ka/r)

Reduced Wave Vector (ka/r)
FIG. 6. Displacement fields of the $Hnodes along all the

FIG. 4. Detail calculation around the poimt boundaries of the Brillouin zon@l/Ni, f=0.6, sq).
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5 Dispersion Relation of BAW & SAW, Cylinder: Al / Base: Ni/f = 0.6, sq. 5 Dispersion Relation of BAW & SAW, Cylinder: Al / Base: ZnO / f = 0.6, sq.

®, eestod —
O, cooe!
psaw’****® /

Normalized Frequency (wa/Cy)
Normalized Frequency (wa/Cy)
N
(4]

SAW modes
r o PSAW modes or bulk band
Shear vertical modes (SV)
— — —  Shear horizontal modes (SHO)
Higher shear horizontal modes (SH1) % *
Longitudinal modes (L)

r X M r
Reduced Wave Vector (ka/r) Reduced Wave Vector (ka/r)
FIG. 7. Dispersion relations of BAW and SAW modesl/Ni, FIG. 9. Dispersion relations of BAW and SAW modgs/ZnO,
f=0.6, sq). f=0.6, sq).

modes, the surface wave degenerates into the pseudosurface B. Cubic materials: AlAs/GaAs square lattice
wave mode. Unlike the normal surface wave mode, the dis- In Ref. 7, the dispersion curves of the surface waves

placement of the pseudosurface wave mode does not decgy,hagate in a two-dimensional square lattice consisting of

to zero at large depth. In the present case, one finds that gfcjar cylinders of AlAs embedded in a background mate-
point X, instead of the SAW-SAW band gap, there only ex-yi5 of Gaas with filling fraction f=0.564 have been re-

ists SAW-PSAW band gap. It is worth noting that in Fig. 7, horted. Shown in Fig. 8 is dispersion curves reproduced from
from X to M, the higher SAW mode ceased approximately als study, one finds that the result is exactly the same as that
the T point where the sharp bend of the bulk SH mode oc+j Ref. 7. Details of the discussions of bulk and surface wave

curs. _ dispersions in this phononic structure can be found therein.
To test the convergence of the plane wave expansion

method, we chose the fundamental shear vertical mode SV )
as an example and calculated the dispersion curves with dif- C. Hexagonal materials: .
ferent number of the reciprocal lattice vectors. The testing AlIZnO square lattice and hexagonal lattice
results showed that as the reciprocal lattice vector number |n this subsection, we consider a phononic structure con-
increases to a specific value, the normalized frequency of theisting of circular cylinders of Al embedded in a background
SV, mode almost converges to a constant value. For exmaterial of ZnO forming a two-dimensional square lattice.
ample, the difference between the results using 49 RLV and'he material of the filling cylinders is isotropic aluminum
those using 169 RLV is about 0.5%. The convergence test fasind the base material ZnO is in hexagonal symmetry. In the
the SAW mode also showed a similar trend as that of théollowing calculations, the-y plane is parallel to th€001)
bulk acoustic wave. For computing time consideration, weplane and the axis is parallel to th¢100] direction of ZnO
used 49 RLV in all the calculations conducted in this paperand the filling ratio is 0.6. Shown in Fig. 9 are the dispersion
curves for both of the bulk modes and surface acoustic
c?uiﬁl%frs-ioATA':?'gt;Z? greAg ?&W_é,q mpdes. Similar to the case of the isotropic material shown .in
51— e N R Fig. 3, the thin solid lines represent the SV bulk acoustic
: L modes (SY and SV{), and the square symbols are those for
the longitudinal acoustic modelL}. The thin dashed line

w

N}

Normalized Frequency (wa/Cy)
N
o

1 s SAW - > Kk ° SAW modes A
° T (o, PSAW modes or bulk band * ®g\

o Shear vertical modes (SV) \'. e

0.5 R «= == = Shear horizontal modes (SH0) N

- + Higher shear horizontal modes (SH1)

4 ° Longitudinal modes (L)

0 l |

r X M T

Reduced Wave Vector (ka/r)

p———

FIG. 8. Dispersion relations of BAW and SAW modeslAs/
GaAs, f=0.564, sq. FIG. 10. An enlarged plot of Fig. 9 around the sharp bends.
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represents the fundamental shear horizontal modg SH 57DispersionRelatiqnbofBAW&SAW,Cylinder:AIIBase:ZnO/f=0.6,hex.
while the lines with “+” symbols represent the first shear NN
horizontal mode SIi The dispersion of the bulk modes

shows similar characteristics as that of the isotropic Al/Ni _

case. Except that in thE-X section, the higher and lower § 35

equency (

band gap widths of these two modes are similar at the Bril-
louin boundary poiniX. In the X-M section, the dispersion
curves of the Skland SH modes still approaching to each
other, however, the bends at the closest point are of not s¢
sharp as those in the Al/Ni case.

In Fig. 9, unlike the Al/Ni phononic square lattice shown
in Fig. 8, we found that the lower SAW mode exists through
all the boundaries of the Brillouin zone. No PSAW exists in
this branch for in this case, all the SAW velocities are Reduced Wave Vestor (kalr)
smaller than the bulk shear and longitudinal wave velocities. FIG. 11. Dispersion relations of BAW and SAW modesl/
We note that in thd™-X section, the higher SAW mode be- ZnO, f=0.6, hex).
comes PSAW, while in theX-M section, it preserves the
SAW characteristics and extends frofto approximately

the sharp bend position, and then, degenerates into t . . . d
PSAW for a small section as shown in the figure. On the etween SAW and SAW with nondimensional width of 0.52.

other hand, the higher surface acoustic wave extends frorﬁimilar to the isotropic Al/Ni square lattice, the surface wave
the M point belongs to the PSAW as shown in Fig. 9. It endsand higher SAW mode continues to exist alodgd bouna-

at approximately the sharp bends of the,SHode. An en- Ieztlré/ ulp2 to about 39.35° and 24.70° rotated frofrpoint in
larged plot of Fig. 9 around the sharp bends is shown in Fig. For some materials with symmetry highend equal t

10. One finds clearly that the PSAW mode extends from the 9 .
X point is tangentially merged into the lfhode and ceased than hexagonal symmetry, thgy plar_1e Is Isotropic for.all .
at the intersection point. On the other hand, the PSAW modg1e propagation mOd?S' The |rredu0|ble part of the Brlll_oum
extends from thé&/ point is tangentially merged into the $H zone of a square lattice is an |soscgles rlght-angled tngngle
mode and ceased at the intersection point. showed in Fig. £a). But the material with orthorhombic

Shown in Fig. 11 are the dispersion curves of the buligmmetry is anisotropic in the-y plane; the dispersion re-

Normalized Fr

band gap with nondimensional width of 0.26 between PSAW
d PSAW. At the verteX, we found a frequency band gap

modes and surface acoustic modes of the Al/ZnO phononi tior_ls of pr_opagation along ‘f‘XiS _andy axis are different._
structure with hexagonal lattice. For the shear horizontal he irreducible part of the .B””OU'.n zone of a square Igttlce
modes SH (thin dashed linpand SH (+ symbolg, unlike IS extendad to a sq(l;are W'Lh vertuﬂég_)f(f, M, ¥ EhOWéI’;}II’I
that of the square lattice, we find no sharp bend occurs in thg'gd' 2a). (;)vt\)/ever, ue to :j € sma fl ergnﬁe Etwd.ﬁﬂ
K-M section. Therefore, there is no SH mode interchangé"@m C», and betweerC,3 andCy;, we found that the differ-

exists in this phononic structure with hexagonal lattice. FronENces of dispersion relations aloigX andI'-Y are very
Fig. 11, we found that aK point, there is no surface wave small in this case, therefore, only; X, M are considered in

band gap existed. However, along theM boundary, a Fig. 12.

SAW-PSAW band gap exists at the boundary paiht ~ To further investigate the anisotropic effect on the disper-
sion of a phononic structure, we consideredYheut barium

Dispersion Relation of BAW & SAW,

D. Orthorhombic materials: Al/Ba,NaNbsO,5 square lattice Cylinder: Al Base: Barium-Sodium-Niobate / f = 0.6, sq.

and hexagonal lattice

In this subsection, we consider a phononic structure con-
sisting of circular cylinders of Al embedded in a background _ *
material of barium sodium niobate (B4aNh;O,5) forming 35
a two-dimensional square lattice. The material of the filling

3
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o
—
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Q
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®
=
Q
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»

barium sodium niobate with orthorhombic symmetry. In the
following calculations, the-y plane is parallel to th€001)
plane and thex axis is parallel to thg100] direction of
barium sodium niobate. The filling fraction fs=0.6.

Shown in Fig. 12 are the dispersion curves for both of the
bulk modes and surface acoustic modes. The surface wav

N

Normalized Frequency (wa/Cy
- N
(4, o

dispersion curves along-X andI'-M directions lie below = X M r
the dispersion curves of transverse waves and degenerate Reduced Wave Vector (kalr)
PSAW along the boundaries ¥f M andI’-M. At one of the FIG. 12. Dispersion relations of BAW and SAW modésl/

vertex of the Brillouin regionM, there is a clear frequency barium sodium niobatef,=0.6, sq).
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Cylinder: Allgzzfgé?ari?é?gznﬁfhﬁﬁgé (?/lécwu’t)/f=0.6, hex. SeCtion' the Waves_ pro.pagation are alwis’ the diSplace_

L S N4 ment fields of longitudinal and shear horizontal modesigre

NSt andu,, respectively.

From Fig. 13, we find that & point, there is no surface

' S wave band gap existed. However, along Ih&' boundary, a

N NG PSAW-PSAW band gap exists at the boundary p¥infThe
phenomenon shows the characteristics of an anisotropic ma-

terial.

oy £
w o s~ >

N

Normalized Frequency (wa/Cy)
N
(&

V. CONCLUSION

o

BN

In this paper, we studied the phononic band gaps of sur-
face waves in two-dimensional phononic structures consist
of general anisotropic materials. The explicit formulations of

r K B Y r the plane harmonic bulk wave and the surface wave disper-
Reduced Wave Vector (ka/m) sion relations in such a general phononic structure are de-
FIG. 13. Dispersion relations of BAW and SAW modps/  fived based on the plane wave expansion method. Two-
barium sodium niobatéY cut), f=0.6, hex]. dimensional phononic structures with either the square or the
hexagonal lattice are considered in the numerical examples.
sodium niobate as the background material. Shown in Fig. 18and gap characteristics of the phononic structures with dif-
are the dispersion curves of the bulk modes and surfacierent anisotropic background materigfisotropic, cubic,
acoustic modes of the Al/barium sodium niobaté-quy  hexagonal and orthorhombiare calculated and discussed. It
phononic structure with hexagonal lattice. According to thelS Worth noting that some of the crossing over of the disper-
discussions in the above paragraph, the irreducible part ofion curvesapparently is indeed sharp bends of the disper-
the Brillouin zone of a hexagonal lattice for anisotropic ma-Sion curves. Around this sharp bend area, the mode exchange
terials must be extended to the first quadrant in original hexsuddenly. Results of this paper can serve as a basis for both
agonal lattice with verticeE, K, L, Y shown in the inset of numerical and experimental investigations of phononic crys-

SAW modes
o PSAW modes
Shear vertical modes (SV)

o
o

Fig. 13. tal structures consist of general anisotropic materials.
For the longitudinal modes& (square symbo)s unlike
that of the square lattice, we find that band gap occurs in the ACKNOWLEDGMENTS
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L-Y section, sharp bends of the dispersion curves occur be-
tween SH and L modes and betweeh and SH modes.

Therefore, there are mode interchang®bl andL) exist in APPENDIX
this phononic structure with hexagonal lattice. In theY The expressions of the 27 matrices in Ef). are
|
lal)sziG, 16
MEBJ-,)G’: _(Gl+ kl)(Gi‘F kl)C?G*G’_(Gl_F kl)(Gé"‘ kZ)Cg’GﬁG/ , (Al)
—(Gatkp)(Gitky)Cyl 5 — (Gt ky)(Gatky)CL )
- e(gsz_G, 26 -
M(Gz,)@: —(G1+ky)(Gy+ kl)cgefer_((-ﬁ*' kl)(Gé_‘_kZ)Cg{G' , (A2)
L _(G2+k2)(G£+kl)CG7Gr_(GZ+k2)(Gé+k2)C67Gr_
- 5(32’)676, 45 -
MS’G; —(G1+ky)(Gy+ kl)cgs_e/_(61+ ki) (Gy+ kz)CEA_G/ , (A3)
| —(Gatky)(Gi+ky)CG 5 — (Gatky)(Gytky)C 5 |

(1) _(Gl+kl)cé5_(;r_(GZ+k2)C?56_Gr
S = ' 15 ) 56 | (A4)
’ —(G1+k)Cq_ g —(Gyt+ky)Cqly:
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@ _ —(G1+ky)CE ¢ —(Gotko)CE &)
G| —(Gi+k))Cq o —(Ghtky)CE |’
@ _ —(Gl+k1>C§Z,G,—<Gz+k2>C§:,G,
GG | —(G1+k)CZ o —(Go+ka)Co o |
1) _ 55 2) _ 44 (3) _ 33
Ne e =~Co-cr Noo="Csoar Noo=Colar
o —(G1 k) (G +k)CE o = (Gy+ky)(Gh+k)CE
GG | —(Gytky)(Gi+k))C o, —(Gytky)(Ghtk)CZ (|
@ | (G1tk)(Gi+k)Ce o —(Gy+ky)(Gy+ka)CE g,
GG | —(Gytky)(Gi+ky)CE o — (Gt ko) (Gptky)CE (|
o) _ ~(G1+k)Cq' 6~ (Gt ky)Cq
GG | —(Gj+k)CL o —(Gy+k)CZ . |
0@, _| T(CitkCe e~ (Gatka)Co g,
GG | — (G +k))CY o —(Ght+k)Co o, |’
T(Gl,)G': —CéS_G, ' T(GZ,)G’: —CéS_G, '
L) —(G1+ky)(Gj+ky)CE o — (G1+ky)(Gy+ko)Co s
6| —(Got ko) (G +k1)CE g~ (Got ko) (G ko) CE g |
L@ —(G1+k) (G +k)CL o — (G +ky)(Gy+ko)Co o
GG | —(Gyt+kp) (G +ky)CE o — (Gt kp)(Gy+ky)CE |7
() _[T(GrrkuCE e ~(Gat ko) CE
GG | —(Gi+k))CY o —(Gy+k)Ca o |
(@ _ —(Gl+kl)c%i_e,—(ez+k2)c§j_e,
GG | — (G +k))Cq o —(Ghtky)Ca /|’
V(Gl’)Gr: _C?és_er ’ V(GZ’)Gr: _CéA_Gr ’
W —(G1+k) (G +k)Cq o —(G1+kp)(Gy+k)CY o,
GG | —(Gytkp)(Gi+ky)Cob o — (Got ko) (Gy+ko)Co o0 |
W _ —(Gl+kl)(ei+kl)ci%z,G,—(Gl+kl)(eg+k2)c§G,
GG’ _(GZ+k2)(GJ’_+kl)CG—G’_(GZ+k2)(Gé+k2)CefG/ !

@ _ —(G1+ky)CP o — (Gt ky)CE
GG | =(Gi+ky)Cq o — (G +k)CE /]’
3o —(G1+ky)CE ¢ — (Gatko)Co s
GG | —(G+k))CY o —(Gp+k)CZ |’

(1) __ 3 (2 __ 34
Xéer = —Co g Xeo =~ Co ar-
In the above equations, Voigt's notation has been used to re@{t¥ asCy .
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