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Absence of localization in a model with correlation measure as a random lattice

Lars Kroon* and Rolf Riklund
Department of Physics and Measurement Technology, Linko¨ping University, SE-581 83 Linko¨ping, Sweden

~Received 29 October 2003; published 23 March 2004!

A coherent picture of localization in one-dimensional aperiodically ordered systems is still missing. We
show the presence of purely singular continuous spectrum for a discrete system whose modulation sequence
has a correlation measure which is absolutely continuous, such as for a random sequence. The system showing
these properties is modeled by the Rudin-Shapiro sequence, whose correlation measure even has a uniform
density. The absence of localization is also supported by a numerical investigation of the dynamics of elec-
tronic wave packets showing weakly anomalous diffusion and an extremely slow algebraic decay of the
temporal autocorrelation function.
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I. INTRODUCTION

The phenomenon of localization in a one-dimensional
tice in the presence of a quasiperiodic potential1,2 has been
subject to a great deal of attention over the past two deca
The motivation is to a large extent founded on the discov
of quasicrystals3 showing long-range orientational orde
without being translational invariant. Another source of
spiration for studying the physical properties of structu
intermediate between those of periodic and random syst
is the experimental fabrication of aperiodic superlattice4

One of the most studied models of a one-dimensional qu
crystal is the Fibonacci lattice, which exhibits a critical b
havior of localization of the eigenstates independent of
two values taken by the substitution potential. The critica
of the localization is revealed by a singular continuous
ergy spectrum consisting of a Cantor set of zero Lebes
measure for the Fibonacci Hamiltonian.5–7 This is in contrast
to the behavior of models for incommensurate crysta8

where the potential takes values from a continuous
which can show both localization and delocalization depe
ing on the modulation potential.9,10 The study of localized
magnetic moments in the context of aperiodic Ising mod
has also been a subject of great popularity.11

Substitution sequences provide examples of various ty
of aperiodic structures, built up from a finite number of e
ments, which can be characterized by the nature of t
Fourier spectrum. An important conceptual question
whether the spectral and transport properties of these sys
depend on the correlation measures12 of the sequences them
selves. Quasiperiodic sequences have correlation mea
which are pure point, but where the positions of thed peaks
are incompatible with any translational invariance. A prom
nent example of a substitution sequence not being quasi
odic is given by the Thue-Morse sequence, whose correla
measure is singular continuous. However, the spectrum
tight-binding Hamiltonian with a Thue-Morse potential
purely singular continuous,13 and the corresponding eigen
states are again neither localized nor extended in the u
~more formal! sense. Due to a certain type of correlation
the Thue-Morse sequence, there exist states extended
the entire lattice.14–16It is also interesting to note that simila
extended states even have been found in correlated ran
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systems.17 Within the class of substitutionally generable sy
tems the Rudin-Shapiro sequence18,19holds a unique position
inasmuch as its correlation measure is absolut
continuous,12 such as for random sequences. Based on
feature one would expect the Rudin-Shapiro lattice to h
properties close to that of a random system, especially s
its correlation measure has a uniform density. However,
Rudin-Shapiro sequence has zero configurational entr
since it is deterministic in the sense that it does not adm
stochastic description. There is still no rigorous result on
absence of eigenvalues in the spectrum of a Hamilton
with a Rudin-Shapiro potential. Quite on the contrary, exte
sive numerical simulations of large but finite approximatio
of the Rudin-Shapiro lattice have even suggested a p
point spectrum,20,21 at least for strong enough values of th
potential, exactly like what is valid for a random lattice. A
analogous result has been obtained from numerical sim
tions of the dynamics of electronic wave packets in t
lattice.22

The main purpose of this paper is to prove the absenc
localization in a one-dimensional tight-binding model with
Rudin-Shapiro potential. This is a unique result on the
sence of point spectrum of a Hamiltonian with a substitut
potential whose correlation measure is absolutely conti
ous. This example shows that the relation between the s
trum of the Hamiltonian and the Fourier spectrum of t
underlying sequence is completely lost in the sense that
gaps in the energy spectrum~which is a Cantor set of zero
Lebesgue measure! constitute a dense set in spite of the a
sence of singularities in the Fourier spectrum. Such a r
tion, present for periodic and smooth enough quasiperio
structures, seems to be limited to first-order perturbat
theory.23 This result, presented in Sec. II, strongly sugge
that singular continuous energy spectrum is generic and q
independent of the correlation measures of the aperiodic
quences from the class of substitutionally genera
systems.24

To get a more complete and coherent understanding of
physics of aperiodic order the dynamical localization pro
erties are of fundamental importance. In Sec. III, we illu
trate numerically that the dynamics of an initially localize
excitation in finite approximations of the Rudin-Shapiro la
tice is characterized by anomalous diffusion, which is a qu
©2004 The American Physical Society04-1
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general behavior of transport in systems with singular c
tinuous energy spectrum. We also find the temporal auto
relation function, which measures the time average of
probability of return, to decay algebraically in time. In co
trast to the conjecture in Ref. 22, this result is in accorda
with the here proven absence of a point component in
spectrum.

II. SPECTRAL CHARACTERIZATION

We will study the spectrum of the discrete Schro¨dinger
operatorHv , with wave functionscP l 2(Z), defined by

~Hvc!n[tn,n11cn111tn,n21cn211y~vn!cn . ~1!

The on-site potentialVn[y(vn) depends on an elementv
from a substitution dynamical system (Vu ,S), where u
5(un)n>0 represents a fixed point of a primitive substitutio
defined on a finite alphabetA. Extendingu to the left, using
arbitrary letters fromA, giving v, and definingVu as the set
of accumulation points of$SnvunPN%, whereS is the left
shift (Sv)n5vn11, makes the dynamical system (Vu ,S)
minimal and uniquely ergodic.12 An aperiodic sequence o
potentialsVnP$VA ,VB% can be obtained using an injectiv
mapy from A to the set of real numbersR. Nearest-neighbor
hopping integralstn61[tn,n61P$tA,A ,tA,B ,tB,A ,tB,B% may
be assigned in correlation with the on-site potential defin
a mixed tight-binding Hamiltonian.

An allowed value of the electron energyE is found from
a solution of the Schro¨dinger equationHvc5Ec. The en-
ergy spectrum is efficiently studied by rewriting this equati
in the transfer matrix formalism. IntroducingFn
5(cn11 ,cn)T gives rise to the difference equationFn
5Tvn ,tn61

Fn21, where the transfer matrix reads

Tvn ,tn61
5S „E2y~vn!…

tn,n11
2

tn,n21

tn,n11

1 0
D . ~2!

For n>0 the potentialsVn5y(un) are to follow the Rudin-
Shapiro sequence. WhenVnP$21,1%, this sequence can b
obtained fromV051 recursively by definingV2n5Vn and
V2n115(21)nVn .12 For an arbitrary binary distribution o
letters denoted byA and B, which represent the two value
VA and VB of the potential, the Rudin-Shapiro sequen
translates into

u5~un!n>05AAABAABAAAABBBAB. . . . ~3!

This deterministic aperiodic sequence can also be gener
from a substitutionj defined by12

j~a!5ab, j~b!5ac, j~c!5db, j~d!5dc, ~4!

acting by concatenation on the alphabet$a,b,c,d%. A final
projection of the fixed pointj`(a)[ limn→`jn(a), which is
obtained from an infinite application of the substitution ru
~4! to the seedj0(a)[a, gives the binary sequence~3!.
There is, however, no one-to-one mapping between the
~4! generating the sequence~3! and the corresponding se
quence of transfer matrices given by Eq.~2!. This is due to
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the presence of the hopping integralstA,A , tA,B , tB,A , and
tB,B in the transfer matrices, a fact which also implies th
not all of the matrices~2! belong to the group of unimodula
matrices SL(2,R) on their own. This difficulty can be over
come by applying the shiftSu5(un11)n>0 to Eq. ~3! giving
the sequence

Su5~un!n>15AABAABAAAABBBABA. . . . ~5!

This sequence cannot be obtained from the rule~4! since the
uniformly continuous shiftS is not one to one here. Recentl
we studied25 the possibility of transforming certain mixe
tight-binding lattices to on-site models on renormalized l
tices, where suitable chosen unimodular blocks of trans
matrices are renormalizable with respect to the substitu
potential. It was found that the matrix relationTSu
5•••Tu4

Tu3
Tu2

Tu1
, where the hopping dependence of ea

matrix ~2! is suppressed, can be represented as a dynam
system on SL(2,R) in one-to-one correspondence with a su
stitution generating the sequence~5!. The spectral characte
thus remains invariant compared to the case wheretn,n61
51 in the transfer matrix~2! for all n. For negativen
the matrix relation can then be written asT(vn)n<0

5•••Tv23

21 Tv22

21 Tv21

21 Tv0

21.

Without loss of generality, we study the spectrum of t
Hamiltonian ~1! with all the hopping matrix element
tn,n6151. The dynamical system on the level of the trans
matrices is now trivially inherited from the one generated
the substitution rule at hand. Guided by the result in Ref.
we infer the substitution

s~a!5ab, s~b!5cd,

s~c!5ae, s~e!5cg,

s~ f !5hd, s~d!5 f b,

s~h!5hg, s~g!5 f e, ~6!

defined on the alphabetA5$a,b,c,d,e, f ,g,h%. This substi-
tution has the fixed points`(a)[ lim

n→`
sn(a) from which

one can obtain the sequence~5! using the projectiony(a)
5y(b)5y(d)5y( f )5VA , y(c)5y(e)5y(g)5y(h)5VB .
Another obvious choice of projection offers the possibility
obtaining also the Rudin-Shapiro sequence~3!. Both the se-
quenceu in Eq. ~3! and its translated versionSu in Eq. ~5!
are thus contained in some elementvPVs`(a) using suitable
projections. By minimality of the dynamical system, th
spectrum of Hv is the same for all nonperiodicv
PVs`(a) . Due to the absence of an absolutely continuo
spectrum,26,27 the spectral classification reduces to the d
tinction between point spectrum and singular continuo
spectrum. Moreover, the spectrum is a Cantor set of z
Lebesgue measure28 since the substitution~6! is primitive.
However, the absence of isolated points of a Cantor set d
not imply the absence of eigenvalues in the spectrum.

For the exclusion of point spectrum, we consider anot
dynamical system based on the traces of the transfer m
ces. Given a primitive substitution on an alphabetA, there is
4-2
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a trace map over a set of wordsB,A* , whereA* is the set
of words onA. To the trace map one can associate a redu
trace map,29 being a monomial, and to this map a substituti
on B. This induced substitution can be chosen to
semiprimitive,30 which means that there is a setC,B such
that the induced substitution is primitive when restricted
the setC.29 The authors of Ref. 30 also removed the hypo
esis of the existence of a square word, which was neede
Ref. 29 to assure a singular spectrum, and showed tha
spectrum indeed is a Cantor set. Here we can choose th
C5$s2(a),s2(b),s2(g),s2(h)%,B, where B is defined
from a set of trace coordinates, some of which aream

(n)

5tr Tsn1m(a) , bm
(n)5tr Tsn1m(b) , gm

(n)5tr Tsn1m(g) , andhm
(n)

5tr Tsn1m(h) for 0<m<2 and a fixedn>0. Following the
lines in Ref. 30, we find a reduced trace map whose indu
substitution onB diminishes to

a2
(n11)5a2

(n)b2
(n) , b2

(n11)5a2
(n)g2

(n) ,

g2
(n11)5h2

(n)b2
(n) , h2

(n11)5h2
(n)g2

(n) , ~7!

when restricted to the setC. This relation, defining the setC,
resembles the substitution~4!, but here the order between th
elements is of no importance. It is useful to define the f
groupGA , an extension of the free semigroupA* , by adding
the formal inverses of the letters inA as generators.31 A
representation of this group on the level of the transfer m
trices can be established by settingTd21[Td

21 for d21

PGA together with an extension ofs to a group automor-
phism onGA . Using this extension of the substitution~6!,
we can write

sn13~a!5sn~g!sn~g!sn~d21g!sn11~e21!

3sn~b21e!sn11~d!, ~8!

whereg[s2(a)PC. From the observation of the existenc
of an elementd5d21gPGA satisfying

sn12~d21g!5sn11~b21e!5sn~d21g!, ~9!

the norms of the transfer matricesTsn(d)
21 are bounded uni-

formly in n. The relations~8! and~9! imply31 the absence o
eigenvalues for somevPVs`(a) so that, for all energies in
the spectrum, no solution of the Schro¨dinger equation tends
to zero at plus infinity. A similar result is obtained at min
infinity from extendings`(a) by concatenation to the lef
giving v5§`(g l)s

`(g), where §`(g l)[ lim
n→`

s2n12(b)

is a left fixed point of g l[s2(b)PC. Now s2n12(b)
5s2n(a)s2n(e)s2n( f )s2n(b) can be manipulated as in Eq
~8! such that it ends with a square preceded by an invar
element as in Eq.~9!. This concludes the proof of the ab
sence of point spectrum of the HamiltonianHv for tn,n61
51 and some fixedv in Vs`(a) there among the Rudin
Shapiro sequence~3!.

Returning to the mixed Hamiltonian with the hopping m
trix elements defined in correlation with the potentialy(vn),
where the sequence~5! represents the potential forn>1, the
spectrum remains purely singular continuous. Moreov
since this system maps onto the description of elastic vib
09420
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tions in a harmonic lattice with particles having massesmA
and mB with the same arrangement, the classical phono
spectrum is purely singular continuous.25 One may note that
neither the substitution~4! nor the Thue-Morse substitutio
defined byj(A)5AB and j(B)5BA permits an exclusion
of eigenvalues using the method in Ref. 31. Along the lin
described above one can, however, prove the absence o
calization in mixed Thue-Morse lattices generated by
substitution rulet(a)5ab, t(b)5ca, t(c)5cd, andt(d)
5ac.25

III. DYNAMICAL LOCALIZATION PROPERTIES

The study of the dynamical localization properties is t
most appealing approach in determining the physical cha
teristics of singular continuous energy spectrum. The tra
port properties can be determined from the behavior of
time evolution of c(t)5e2 i tH vc(0) for an initial state
c(0)5cn0

(0) localized at siten0 in the lattice. A measure o

the spreading of the wave packetc(t) is the mean-square
displacement

^x2~ t !&5(
n

~n2n0!2ucn~ t !u2, ~10!

which behaves liket2b2 in the asymptotic time regime. Th
scaling exponentb2 governing the diffusion has been prove
to be bounded from below,D1<b2, by the information di-
mensionD1 of the spectral measure associated with the
tial state.32,33 We have studied the time evolution of th
square root of the quantity~10! by numerical integration of
the time-dependent Schro¨dinger equationHvc(t)5 i ċ(t) for
finite lattices, whereN sites of typeA and B are assigned
different valuesVA52VB5V.0 of the potential, in units
of a constant hopping integral. Rigid boundary conditions
used. The dynamics of the logarithm of root-mean-squ
displacement for the relatively strong~compared to the hop
ping integral! valueV5A2 of the potential arranged accord
ing to the Rudin-Shapiro sequence~3! with N54095 (n0
52047) is depicted in Fig. 1. Here the probability of findin
the electron at either border is less then 102160 minimizing
boundary effects. Due to multiscaling in time, also call
quantum intermittency,34 linear fitting procedures can be dif
ficult. The least-squares method applied to the asymptotic
Fig. 1 gives the scaling exponentb250.1560.01. This
weakly subdiffusive (0,b2,1/2) behavior of the dynamics
is a consequence of the localization properties of the co
sponding eigenstates35 and resonance effects emerging fro
the class of states which supports the motion. Depending
the sizeN of the chosen approximant of the Rudin-Shap
lattice, small quantitative differences in the scaling expon
b2 can emerge, because the corresponding eigenstates
show variations in their localization properties.36 However,
the qualitative picture of an anomalous diffusion, which
characterized by a positive scaling exponent in the inter
0,b2,1 (b251/2 for ordinary diffusion! is not violated. In
the limit of the infinite lattice the anomalous diffusion
consistent with the singular continuous nature of the sp
trum. We have studied the diffusion process for a numbe
4-3
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LARS KROON AND ROLF RIKLUND PHYSICAL REVIEW B69, 094204 ~2004!
different values of the potential strength in the range
<V<2, and found the weakly subdiffusive dynamics to
an essentially generic behavior of the transport. Only un
very special circumstances, such as for the valueV51/A2,
we find superdiffusive (1/2,b2,1) dynamics, which is a
consequence of the existence of states uniformly exten
over the lattice.37 One may notice that several hundred tho
sand units of time need to be considered in order to cap
the asymptotic behavior in Fig. 1. In particular, the abse
of diffusion (b250) found for this system in Ref. 20 is du
to the fact that the time interval considered there was
long enough. Since the Rudin-Shapiro sequence share
property of having an absolutely continuous correlation m
sure with random sequences, we have for comparison stu
the dynamics of excitations in random lattices with the sa
parameter values and of the same lengths. The random la
can be used as a reference system to the approximant o
Rudin-Shapiro lattice in order to ensure that an asympt
region in time has been reached. We show in Fig. 2 the re
corresponding to the dynamics displayed in Fig. 1, but for
uncorrelated random sequence with an equal fraction of s
of type A and B. Here the value of the scaling exponent
b250, which shows the typical behavior of the absence
diffusion in an uncorrelated random lattice.

Another quantity of interest for the dynamical localizatio
properties is the temporal autocorrelation function

C~ t !5
1

t E0

t

ucn0
~ t8!u2 dt8, ~11!

which is a measure of the time average of the probability
find the electron at the initial site. In the asymptotic tim
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FIG. 1. The time evolution of the logarithm of the root-mea
square displacement@^x2(t)&#1/2 for an electron, which at timet
50 was localized at siten052047, in a lattice withN54095 sites.
The valuesVA52VB5A2 of the potential are arranged accordin
to the Rudin-Shapiro sequence~3!. The inset shows the tempora
autocorrelation functionC(t).
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limit C(t);t2D, where the scaling exponentD ruling the
algebraic decay of the averaged return probability is equa
the correlation dimensionD2.38–40 For a random system
with pure point spectrum this scaling exponent isD50. An
example of this property can be seen in the inset of Fig. 2
the uncorrelated random lattice. This feature is qualitativ
different from what we find for the approximations of th
Rudin-Shapiro lattice, which generically display very sm
D.0. An illustration of this behavior is shown in the inset
Fig. 1, where an asymptotic fitting yields the scaling exp
nentD50.0360.01. This numerically found algebraic deca
of the temporal autocorrelation function thus supports
absence of localized eigenstates in the Rudin-Shapiro la
from a dynamical point of view.

IV. CONCLUSIONS

In conclusion, we have rigorously proved that an ab
lutely continuous correlation measure of the aperio
Rudin-Shapiro potential is not sufficient to obtain localiz
tion in one dimension. A numerical study of the dynamic
localization properties of electronic wave packets in this p
tential revealed an anomalous diffusive behavior. Suc
transport property is a rather general characteristic of sin
lar continuous spectrum, which in turn seems to be qu
independent of the nature of the correlation measure of
aperiodically ordered structure. A numerically found alg
braic decay of the temporal autocorrelation function co
firmed the absence of localization in the Rudin-Shapiro
tice. Finally, from an experimental point of view a Rudin
Shapiro photonic crystal could be an interesting model
slowing down light.
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