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Absence of localization in a model with correlation measure as a random lattice
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A coherent picture of localization in one-dimensional aperiodically ordered systems is still missing. We
show the presence of purely singular continuous spectrum for a discrete system whose modulation sequence
has a correlation measure which is absolutely continuous, such as for a random sequence. The system showing
these properties is modeled by the Rudin-Shapiro sequence, whose correlation measure even has a uniform
density. The absence of localization is also supported by a numerical investigation of the dynamics of elec-
tronic wave packets showing weakly anomalous diffusion and an extremely slow algebraic decay of the
temporal autocorrelation function.
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I. INTRODUCTION systems.” Within the class of substitutionally generable sys-
tems the Rudin-Shapiro sequetft¥ holds a unique position

The phenomenon of localization in a one-dimensional latinasmuch as its correlation measure is absolutely
tice in the presence of a quasiperiodic potefhfidlas been continuous'? such as for random sequences. Based on this
subject to a great deal of attention over the past two decadefeature one would expect the Rudin-Shapiro lattice to have
The motivation is to a large extent founded on the discoveryproperties close to that of a random system, especially since
of quasicrystafs showing long-range orientational order its correlation measure has a uniform density. However, the
without being translational invariant. Another source of in-Rudin-Shapiro sequence has zero configurational entropy
spiration for studying the physical properties of structuressince it is deterministic in the sense that it does not admit a
intermediate between those of periodic and random systensochastic description. There is still no rigorous result on the
is the experimental fabrication of aperiodic superlattftes. absence of eigenvalues in the spectrum of a Hamiltonian
One of the most studied models of a one-dimensional quasiith a Rudin-Shapiro potential. Quite on the contrary, exten-
crystal is the Fibonacci lattice, which exhibits a critical be-sive numerical simulations of large but finite approximations
havior of localization of the eigenstates independent of thexf the Rudin-Shapiro lattice have even suggested a pure
two values taken by the substitution potential. The criticalitypoint spectrunf®?! at least for strong enough values of the
of the localization is revealed by a singular continuous enpotential, exactly like what is valid for a random lattice. An
ergy spectrum consisting of a Cantor set of zero Lebesguanalogous result has been obtained from numerical simula-
measure for the Fibonacci Hamiltoni@r. This is in contrast tions of the dynamics of electronic wave packets in this
to the behavior of models for incommensurate crystals, lattice 22
where the potential takes values from a continuous set, The main purpose of this paper is to prove the absence of
which can show both localization and delocalization dependlocalization in a one-dimensional tight-binding model with a
ing on the modulation potenti&® The study of localized Rudin-Shapiro potential. This is a unique result on the ab-
magnetic moments in the context of aperiodic Ising modelsence of point spectrum of a Hamiltonian with a substitution
has also been a subject of great populdfity. potential whose correlation measure is absolutely continu-

Substitution sequences provide examples of various typesus. This example shows that the relation between the spec-
of aperiodic structures, built up from a finite number of ele-trum of the Hamiltonian and the Fourier spectrum of the
ments, which can be characterized by the nature of theiunderlying sequence is completely lost in the sense that the
Fourier spectrum. An important conceptual question isgaps in the energy spectrufwhich is a Cantor set of zero
whether the spectral and transport properties of these systerhebesgue measureonstitute a dense set in spite of the ab-
depend on the correlation measdfesf the sequences them- sence of singularities in the Fourier spectrum. Such a rela-
selves. Quasiperiodic sequences have correlation measurésn, present for periodic and smooth enough quasiperiodic
which are pure point, but where the positions of thpeaks  structures, seems to be limited to first-order perturbation
are incompatible with any translational invariance. A promi-theory?® This result, presented in Sec. Il, strongly suggests
nent example of a substitution sequence not being quasipetirat singular continuous energy spectrum is generic and quite
odic is given by the Thue-Morse sequence, whose correlatiomdependent of the correlation measures of the aperiodic se-
measure is singular continuous. However, the spectrum of quences from the class of substitutionally generated
tight-binding Hamiltonian with a Thue-Morse potential is systems*
purely singular continuou$, and the corresponding eigen-  To get a more complete and coherent understanding of the
states are again neither localized nor extended in the usuphysics of aperiodic order the dynamical localization prop-
(more formal sense. Due to a certain type of correlation inerties are of fundamental importance. In Sec. Ill, we illus-
the Thue-Morse sequence, there exist states extended oueate numerically that the dynamics of an initially localized
the entire latticé* 81t is also interesting to note that similar excitation in finite approximations of the Rudin-Shapiro lat-
extended states even have been found in correlated randaioe is characterized by anomalous diffusion, which is a quite
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general behavior of transport in systems with singular conthe presence of the hopping integrésa, tag, tg o, and
tinuous energy spectrum. We also find the temporal autocott g in the transfer matrices, a fact which also implies that
relation function, which measures the time average of thenot all of the matrice$2) belong to the group of unimodular
probability of return, to decay algebraically in time. In con- matrices SL(Z) on their own. This difficulty can be over-
trast to the conjecture in Ref. 22, this result is in accordanceome by applying the shifsu= (U, 1) =0 to Eq.(3) giving
with the here proven absence of a point component in itshe sequence
spectrum.

Su=(u,)=1=AABAABAAAABBBABA.. . (5

Il. SPECTRAL CHARACTERIZATION This sequence cannot be obtained from the (djesince the

We will study the spectrum of the discrete Safirger ~ Uniformly continuous shifSis not one to one here. Recently,
operatorH,, , with wave functionsye 12(Z), defined by we studied® the possibility of transforming certain mixed
tight-binding lattices to on-site models on renormalized lat-

(Ho)n=thnt1¥n+1ttan_1¥n_1tv(own)y,. (1)  tices, where suitable chosen unimodular blocks of transfer
matrices are renormalizable with respect to the substitution
potential. It was found that the matrix relatiofig,

=Ty, Tu,Tu,Tuy, where the hopping dependence of each

matrix (2) is suppressed, can be represented as a dynamical
system on SL(Z) in one-to-one correspondence with a sub-
stitution generating the sequen. The spectral character
thus remains invariant compared to the case wligre ;

=1 in the transfer matrix(2) for all n. For negativen

the matrix relation can then be written as(, ) _,

The on-site potential/,=v(w,) depends on an element
from a substitution dynamical systen{}(,S), where u
=(u,)n=0 represents a fixed point of a primitive substitution
defined on a finite alphabet. Extendingu to the left, using
arbitrary letters from4, giving w, and defining(},, as the set
of accumulation points ofS"w|ne N}, whereSiis the left
shift (Sw),=w,+1, Makes the dynamical systenfl(,S)
minimal and uniquely ergodit® An aperiodic sequence of
potentialsV,, e {V,,Vg} can be obtained using an injective

mapuv from A to the set of real numbefs. Nearest-neighbor =---T,* T,* T,* T, "

hopping integralst,.;=t, n+1€{taa:tas te A tesf May Without loss of generality, we study the spectrum of the
be assigned in correlation with the on-site potential definingHamiltonian (1) with all the hopping matrix elements
a mixed tight-binding Hamiltonian. t,n-1=1. The dynamical system on the level of the transfer

An allowed value of the electron ener@yis found from  matrices is now trivially inherited from the one generated by
a solution of the Schainger equatiorH ,y=E. The en-  the substitution rule at hand. Guided by the result in Ref. 25,
ergy spectrum is efficiently studied by rewriting this equationwe infer the substitution
in the transfer matrix formalism. Introducing®,
=(¥n.1.¥n)" gives rise to the difference equatioi, o(a)=ab, o(b)=cd,
=To, t,.,Pn-1, Where the transfer matrix reads
- o(c)=ae, o(e)=cg,
(E_U(wn)) _tn,nfl ¢ hd q b
Ta, R tn,n-%—l tn,n-%—l . (2) o(f)= ol )_ '
! 0 o(h)=hg, o(g)=Te, (©)

Forn=0 the potentials/,= v(u,) are to follow the Rudin-  yefined on the alphabet={a,b,c,d,e,f,g,h}. This substi-
Shapiro sequence. Whaf, e {— 1,1}, this sequence can be {iion has the fixed point“(a)=lim _o"(a) from which
obtained fromVy=1 recursively by definingv,,=V, and . e o

Ve 1=(—1)"V, .12 For an arbitrary binary distribution of ©N€ can obtain the sequen® using the projection(a)
letters denoted byA and B, which represent the two values ~— v(b)=v(d)=uv(f)=Va, v(c)=v(€)=uv(g)=uv(h)=Vs.

V, and Vg of the potential, the Rudin-Shapiro SequenceAnother obvious choice of projection offers the possibility of

translates into obtaining also the Rudin-Shapiro sequefi8e Both the se-
guenceu in Eqg. (3) and its translated versioBu in Eq. (5)
u=(u,)n=0=AAABAABAAAABBBAB... (3) arethus contained in some element () .=, using suitable

. s . rojections. By minimality of the dynamical system, the
This determmlst}c aper|'0d|c seguence can also be generat %ectrum of H, is the same for all nonperiodias
from a substitutior¢ defined by €O, . Due to the absence of an absolutely continuous
ga)=ab, &b)=ac, &c)=db, £d)=dc, () ?peqtrumz,e'27 the spectral classification reduces to the dis-
inction between point spectrum and singular continuous
acting by concatenation on the alphaketb,c,d}. A final  spectrum. Moreover, the spectrum is a Cantor set of zero
projection of the fixed poing”(a)=Ilim, ...£"(a), which is  Lebesgue meastffesince the substitutioti6) is primitive.
obtained from an infinite application of the substitution rule However, the absence of isolated points of a Cantor set does
(4) to the seedé®(a)=a, gives the binary sequend®).  not imply the absence of eigenvalues in the spectrum.
There is, however, no one-to-one mapping between the rule For the exclusion of point spectrum, we consider another
(4) generating the sequen¢d) and the corresponding se- dynamical system based on the traces of the transfer matri-
guence of transfer matrices given by E8). This is due to  ces. Given a primitive substitution on an alphaldetthere is
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a trace map over a set of wortf& A* , whereA* is the set  tions in a harmonic lattice with particles having massgs

of words onA. To the trace map one can associate a reduce8nd mg with the same arrangement, the classical phononic
trace mag? being a monomial, and to this map a substitutionspectrum is purely singular continuot’sOne may note that

on B. This induced substitution can be chosen to beneither the substitutiofd) nor the Thue-Morse substitution
semiprimitive®® which means that there is a 8C 58 such  defined by&(A)=AB and £(B)=BA permits an exclusion
that the induced substitution is primitive when restricted toof eigenvalues using the method in Ref. 31. Along the lines
the setC.?° The authors of Ref. 30 also removed the hypoth-described above one can, however, prove the absence of lo-
esis of the existence of a square word, which was needed igalization in mixed Thue-Morse lattices generated by the
Ref. 29 to assure a singular spectrum, and showed that tisibstitution ruler(a)=ab, (b)=ca, 7(c)=cd, and7(d)
spectrum indeed is a Cantor set. Here we can choose the se@iC.

C={o?(a),a?(b),0?%(g),0?(h)}CB, where B is defined

from a set of trace coordinates, some of which af# lll. DYNAMICAL LOCALIZATION PROPERTIES

=tr Tgn+m(a) s bg‘):tr Tgn+m(b) s gET?)ZU‘ To.n+m(g) , and hETT)
=trTyn+mpyy for 0=sm=2 and a fixedh=0. Following the
lines in Ref. 30, we find a reduced trace map whose induce
substitution onB diminishes to

The study of the dynamical localization properties is the

ost appealing approach in determining the physical charac-

ristics of singular continuous energy spectrum. The trans-
port properties can be determined from the behavior of the

Al D= aMp() p+ D) — 4o time evolution of y(t)=e "Mwy(0) for an initial state
2 272 2 2520 #(0)= 1, (0) localized at site, in the lattice. A measure of
g D=h{MpM AT =hMgm (7)  the spreading of the wave packg(t) is the mean-square

. . . " displacement
when restricted to the sét This relation, defining the sé}

resembles the substituti@gd), but here the order between the ) ) )

elements is of no importance. It is useful to define the free (X (t)>=§n: (N—=no) [ n(1)]%, (10
groupl’ 4, an extension of the free semigrou, by adding

the formal inverses of the letters id as generator®: A which behaves lik¢??2 in the asymptotic time regime. The
representation of this group on the level of the transfer mascaling exponeng, governing the diffusion has been proved
trices can be established by settifig-1=T;* for 5% to be bounded from belovD;<g,, by the information di-
eI 4 together with an extension ef to a group automor- mensionD, of the spectral measure associated with the ini-
phism onI" ,. Using this extension of the substituti¢f), ~ tial state’*® We have studied the time evolution of the

we can write square root of the quantit{d0) by numerical integration of
- - the time-dependent Schitimger equatiomH , g (t) =i y(t) for

" 3(a)=0c"(y)o"(y)o"(d )0 (e h) finite lattices, whereN sites of typeA and B are assigned

X o"(b~te) o™ (d), ®) different valuesV,=—Vg=V>0 of the potential, in units

of a constant hopping integral. Rigid boundary conditions are
where y=o?(a) e C. From the observation of the existence used. The dynamics of the logarithm of root-mean-square

of an elemenw=d 'geT , satisfying displacement for the relatively strorfigompared to the hop-
P 1 oo ping integra) valueV = 2 of the potential arranged accord-
o' (d g)=0"""(b"e)=0"(d"9), (9 ing to the Rudin-Shapiro sequen¢® with N=4095 (n,

=2047) is depicted in Fig. 1. Here the probability of finding
the electron at either border is less then 18 minimizing
boundary effects. Due to multiscaling in time, also called
quantum intermittency! linear fitting procedures can be dif-
ficult. The least-squares method applied to the asymptotics in
Fig. 1 gives the scaling exponem,=0.15+0.01. This

the norms of the transfer matricas;nl(s are bounded uni-
formly in n. The relationg8) and(9) imply*! the absence of
eigenvalues for some € () .=, so that, for all energies in
the spectrum, no solution of the ScHioger equation tends
to zero at plus infinity. A similar result is obtained at minus

mﬁmty frommextenglnga (a) by gonca_tgnatmn tzonfge et weakly subdiffusive (6<3,<1/2) behavior of the dynamics
giving w=s"(y)o"(y), wheres™(y)=lim___o™"%(b) i3 consequence of the localization properties of the corre-
is a left fixed point of y=0%(b)eC. Now o?""2(b) sponding eigenstat&sand resonance effects emerging from
=o?"(a)o?"(e) o?"(f) ®"(b) can be manipulated as in Eq. the class of states which supports the motion. Depending on
(8) such that it ends with a square preceded by an invariarthe sizeN of the chosen approximant of the Rudin-Shapiro
element as in Eq(9). This concludes the proof of the ab- lattice, small quantitative differences in the scaling exponent
sence of point spectrum of the Hamiltoni&h, for t, ., B, can emerge, because the corresponding eigenstates can
=1 and some fixedv in (), there among the Rudin- show variations in their localization propertigsHowever,
Shapiro sequence). the qualitative picture of an anomalous diffusion, which is
Returning to the mixed Hamiltonian with the hopping ma- characterized by a positive scaling exponent in the interval
trix elements defined in correlation with the potentiédy,)), 0<B,<1 (B,=1/2 for ordinary diffusionis not violated. In
where the sequend®) represents the potential foe=1, the  the limit of the infinite lattice the anomalous diffusion is
spectrum remains purely singular continuous. Moreoverconsistent with the singular continuous nature of the spec-
since this system maps onto the description of elastic vibratrum. We have studied the diffusion process for a number of

—
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FIG. 1. The time evolution of the logarithm of the root-mean-  FIG. 2. Same as in Fig. 1, but for an uncorrelated random se-
square displacemeritx?(t))]¥2 for an electron, which at time guence with an equal fraction of elements of typandB.
=0 was localized at sita,=2047, in a lattice witiN=4095 sites.
The valuesv,=—Vg= 2 of the potential are arranged according
to the Rudin-Shapiro sequen€®. The inset shows the temporal
autocorrelation functioic(t).

limit C(t)~t 2, where the scaling exponent ruling the
algebraic decay of the averaged return probability is equal to
the correlation dimensiom,.*~%° For a random system
with pure point spectrum this scaling exponenilis 0. An

different values of the potential strength in the range 1/2[example of this property can be seen in the inset of Fig. 2 for

e S . he uncorrelated random lattice. This feature is qualitatively
<V=2, and found the weakly subdiffusive dynamics to bedifferent from what we find for the approximations of the

an essentllally_genenc behavior of the transport. Only undeﬁudin-Shapiro lattice, which generically display very small
very_spemal cw_cum_stances, such as for the Va‘l*?l/@ A>0. An illustration of this behavior is shown in the inset of
we find superdiffusive (1/28,<1) dynamics, which is @ g 1 \where an asymptotic fitting yields the scaling expo-
consequence of the existence of states uniformly extendeghz — .03+ 0.01. This numerically found algebraic decay
over the.lattlce?’. One may notice that several hundred thou- ¢ e temporal autocorrelation function thus supports the
sand units of time need to be considered in order to capturgyqence of localized eigenstates in the Rudin-Shapiro lattice
the _asyr_nptotlc behavior in Fig. _1. In partl_cular, the gbsencqrom a dynamical point of view.

of diffusion (8,=0) found for this system in Ref. 20 is due

to the fact that the time interval considered there was not V. CONCLUSIONS

long enough. Since the Rudin-Shapiro sequence shares the

property of having an absolutely continuous correlation mea- [N conclusion, we have rigorously proved that an abso-
sure with random sequences, we have for comparison studiédtely continuous correlation measure of the aperiodic
the dynamics of excitations in random lattices with the saméXudin-Shapiro potential is not sufficient to obtain localiza-
parameter values and of the same lengths. The random latti¢@n in one dimension. A numerical study of the dynamical
can be used as a reference system to the approximant of thcalization properties of electronic wave packets in this po-
Rudin-Shapiro lattice in order to ensure that an asymptotiéentia| revealed an anomalous diffusive behavior. Such a
region in time has been reached. We show in Fig. 2 the resulfansport property is a rather general characteristic of singu-
corresponding to the dynamics displayed in Fig. 1, but for ad@r continuous spectrum, which in turn seems to be quite
uncorrelated random sequence with an equal fraction of sité§dependent of the nature of the correlation measure of the
of type A and B. Here the value of the scaling exponent is aperiodically ordered structure. A numerically found alge-
B>=0, which shows the typical behavior of the absence oforaic decay of the temporal autocorrelation function con-

diffusion in an uncorrelated random lattice. firmed the absence of localization in the Rudin-Shapiro lat-
Another quantity of interest for the dynamical localization tice. Finally, from an experimental point of view a Rudin-
properties is the temporal autocorrelation function Shapiro photonic crystal could be an interesting model for

slowing down light.
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