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Tight-binding calculations of stacking energies and twinnability in fcc metals
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We calculate the material properties needed to evaluate the tendency of a face-centered-cubic~fcc! metal to
plastically deform by forming crystallographic twins as opposed to dislocation-mediated slip. We refer to this
property as thetwinnability of the metal. We use a formulation for twinnability derived from a coupling of
continuum mechanics with an atomistic stress-slip relation. The essential quantities for evaluating the twin-
nability are elastic constants, which are measurable experimentally, and energies for various stacking se-
quences of the fcc~111! planes. These stacking sequences include the intrinsic stacking fault configuration as
well as the unstable-stacking energy and unstable-twinning energy configurations which can only be deter-
mined computationally. We use a tight-binding model to evaluate the necessary stacking energies, as well as
the extrinsic stacking fault energy and twin-boundary energy, for eight fcc metals. The accuracy of the tight-
binding parameters is established by comparing them with first-principles values obtained through an extensive
study of the literature. The results of the literature survey are included in the paper as a resource for the reader.
We show that the ranking of these metals in order of twinnability agrees with available experimental results.
We reproduce the low incidence of deformation twinning in Al, and explain it in terms of the material
parameters using an approximation to the twinnability expression. We also predict that Pd, which has not been
studied experimentally, should twin as easily as Cu.

DOI: 10.1103/PhysRevB.69.094116 PACS number~s!: 62.20.Fe, 61.72.Mm, 61.72.Lk, 71.15.Nc
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I. INTRODUCTION

One of the great promises of computational methods
materials science is the ability to guide material developm
by predicting physical properties without empirical inpu
Even with advances in theoretical methods and comp
power, the wide range of time and length scales involv
make this a challenging goal.1 Mechanical properties, fo
example, depend on processes ranging from atomic r
rangements occurring on femtosecond time scales to ma
scopic deformation changing over seconds or longer. On
the most effective ways to span this gap is to develo
formulation for a macroscopic property in terms of para
eters that can be computed from first principles. Such a
mulation can give insight and make predictions about exp
mental measurements based on a limited number of atom
calculations. In this paper we present calculations of
stacking energies needed to evaluate a predictive criterion
the mode of plastic deformation in a face-centered-cu
~fcc! metal.

Plastic deformation is essential for the useful properties
metals as structural materials. By plastically deforming u
der load metals dissipate energy, allowing them to be sha
and to absorb impacts without failing. Two of the most co
mon modes of plastic deformation in fcc metals at low te
peratures are slip and deformation twinning~DT!.2,3 Slip is
propagated through dislocations, line defects carrying a
continuous jump in displacement, that move through
crystal lattice leaving behind a slipped region@Fig. 1~a!#.
Deformation twinning occurs when a region of crystal
transformed by the external loading into its twin~mirror!
counterpart@Fig. 1~b!#. We refer to the likelihood of a mate
rial to twin, as opposed to slip, as itstwinnability.

While DT is well known, the material parameters th
0163-1829/2004/69~9!/094116~10!/$22.50 69 0941
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control the twinnability of a material are not well unde
stood. Even a quantitative experimental measuremen
twinnability is not obvious. Two types of experiments ca
provide some information on this: twinning stress and tw
related texture. Twinning stress experiments measure
critically resolved shear stress on the twinning planesT at
the instant of twin nucleation in a sample undergoi
uniaxial tension or compression. However,sT is probably
not a material property—it depends sensitively on many f
tors including the purity level of the material, the grain stru
ture, the loading orientation, and internal stre
concentrations.3 Texture is a measure of the alignment of t
orientations of the crystalline grains in the material. Sepa
ing out the portion of the generated texture resulting fro
DT ~twin-related texture! quantifies the amount of twinning
occurring relative to slip. The amount of twin-related textu
in cold-drawn wires of fcc metals was measured by Engl
and Chin.4

Experimental observations have shown that a low intr
sic stacking fault energy~SFE! is correlated with a higher
tendency to twin in fcc metals.5 The intrinsic SFE is the
energy cost per unit area for changing the local stacking
the fcc (111) planes fromABCABC to ABCuBCA. The
experimental trend is understandable, since a crysta
graphic twin can be thought of as a sequence of stack
faults, as shown in Fig. 2. However, it is clear that this p
ture is misleading, since the twinned region has locally p
fect ~but reversed! fcc stacking. Indeed, the experiment
trend is accompanied by significant scatter. One exampl
particular technological interest is Al, which does not exhi
DT in bulk samples, despite having a lower intrinsic SF
than Ni and Ir, which do DT.6 Deformation twinning in Al
has only been observed near cracks in thin foils7 and in nano-
crystalline thin films under nanoindentation.8 The failure of
©2004 The American Physical Society16-1
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N. BERNSTEIN AND E. B. TADMOR PHYSICAL REVIEW B69, 094116 ~2004!
the intrinsic SFE to reliably predict twinnability strongl
suggests that other factors are important for DT.

A theoretical measure for twinnability in a bulk fcc meta
based on a criterion for DT at a crack tip,9 has recently been
introduced by the authors.10 This measure is defined in term
of elastic constants and energies for various stackings of
(111) planes. These stacking energies include the intri
SFE, as well as two energies characterizing unstable-stac
configurations described in more detail in Sec. II A. We u
the tight-binding~TB! method developed at the Naval R
search Laboratory11,12 ~NRL! to compute the stacking ene
gies for eight fcc metals: Ag, Al, Au, Cu, Ir, Pb, Pd, and P
The TB approach’s explicit description of the quantu
mechanical nature of bonding gives it a predictive power t
is combined with an efficient treatment of the moderat
large systems needed to compute stacking energies. Sinc
twinnability criterion is presented in detail elsewhere,10 we
concentrate in this paper on the TB calculations neede
evaluate the relevant material properties. We show that u
these calculated values we can reproduce the experim

FIG. 1. Illustrations of two modes of plastic deformation. Pan
~a! shows a dislocation, split into two partial dislocations bound
a stacking fault~dashed line!, leading to the translation of the uppe
part of the crystal relative to the lower. Panel~b! shows a deforma-
tion twin bounded by mirror planes~dotted lines! created by a se-
quence of partial dislocations, also leading to a translation of
upper part of the crystal.

FIG. 2. Stacking order for a twinned region, with dotted lin
indicating twin boundaries and dashed lines indicating stack
faults
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ranking in order of twinnability. Through an approximatio
to the twinnability criterion we can gain insight into the e
fect of the different material properties and explain t
anomalous absence of DT in Al. We also predict that P
which has not been studied experimentally, should twin re
tively easily, comparable to Cu.

In addition to the parameters required for calculating
twinnability we compute two additional stacking energie
the extrinsic SFE and the twin-boundary energy. The ext
sic SFE is analogous to the intrinsic SFE, but instead
changing the fcc stacking by removing a plane, a plane
added, changing the stacking fromABCABC to
ABCuBuABC. The twin-boundary energy is simply the en
ergy cost per unit area of the boundary between the nor
stacking and its crystallographic twin. These energies do
enter into the twinnability measure, but they play an imp
tant role in the growth of twins and other mechanical p
cesses, and are therefore included.

In Sec. II we briefly review the twinnability measure, an
discuss the TB calculations used to evaluate the stac
energies, including the TB method, the fitting procedure u
to generate parameters for the TB models, and the calc
tions of the stacking energies. We describe our results in S
III and discuss them in comparison with experiment in S
IV. Finally in Sec. V we present our conclusions.

II. METHOD

A. Twinnability

A criterion for DT at a crack tip was derived by Tadmo
and Hai9 based on an analysis analogous to Rice’s criter
for dislocation nucleation at a crack tip.13 The crack-tip DT
criterion was validated by comparing its predictions to sim
lations with the quasicontinuum method using an embedd
atom empirical potential.7 Rice’s original work gave expres
sions for the critical stress intensity factors~SIF’s! for the
emission of a leading partial dislocation and a trailing par
dislocation from a crack tip. The two partials are separa
by a stacking fault@see Fig. 1~a!#. The crack-tip DT criterion
is determined by comparing the critical SIF for the emiss
of the trailing partialK' with the critical SIF for the emis-
sion of a second leading partial on a plane adjacent to
original slip planeKT. The former process leads to a fu
dislocation, and the latter to a minimal~two layer! twinned
region. The resulting expression for the twinning tenden
is9

T[
K'

KT
5lcrit~a,b,u,f,n,g isf /gus!Agus

gut
, ~1!

where lcrit is a measure of the additional load required
emit the trailing partial of a dissociated dislocation relative
the leading partial. WhenT,1 the SIF to nucleate a trailing
partial is lower than the SIF to nucleate an adjacent-pl
leading partial, and slip is favored; conversely, whenT.1
twinning is favored. The anglesa, b, u, andf characterize
the crystallographic orientation and loading directions. T
expression forT depends on four material properties: Po
son’s ration, the intrinsic SFEg isf , the unstable-stacking
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TIGHT-BINDING CALCULATIONS OF STACKING . . . PHYSICAL REVIEW B69, 094116 ~2004!
energygus, and the unstable-twinning energygut . Poisson’s
ratio is an elastic constant which can be measured quite
curately. The intrinsic SFEg isf can also be measured expe
mentally, although typically with considerable scatter.14 The
unstable-stacking energygus was defined by Rice to be th
energy barrier to rigidly slipping one-half of an infinite cry
tal relative to the other half along a partial dislocati
direction.13 The unstable-twinning energygut is a similar
quantity computed by rigidly slipping half of the crystal on
plane adjacent to a preexisting stacking fault.9 The two un-
stable energiesgus andgut characterize saddle point configu
rations associated with energy barriers. They cannot be
rectly measured experimentally, but must be compu
theoretically or numerically.

To relate this to deformation in the bulk we assume t
the sample is polycrystalline and that there are many st
concentrators, which do not need to be microcracks. By
tegrating the crack-tip DT criterion over all orientations a
loadings and normalizing we derive the dimensionless tw
nability measure10

t5
L

p4
Agus

gut
, ~2!

where

L5E E E E lcrit~a,b,u,f,n,g isf /gus!da db du df,

~3!

is a material property that must be computed numerically
It can be shown that the dependence oft onn is weak and

that an excellent approximation for Eq.~2! is given by10

ta5F1.13620.151
g isf

gus
GAgus

gut
. ~4!

The coefficients 1.136 and 0.151 are universal constants
the fcc lattice. It is clear from Eq.~4! that reducing the in-
trinsic SFE increases the twinnability of the metal, i.
makes it more likely to twin, however the dependence ot
on the unstable energies is also clear.

B. Tight-binding calculations

To make the twinnability criteriont predictive, we need
to compute all of the necessary material specific proper
without empirical input. Poisson’s ration can be computed
from a Voigt average of the three cubic elastic constantsc11,
c12, andc44, which can be easily obtained by computing t
energy of a primitive fcc lattice unit cell.15 Although we use
the experimentaln here, as we mention above, the effect on
on the twinnability is negligible. The three stacking energ
g isf , gus, andgut can be computed by comparing the ener
of a system with the appropriate stacking sequence to
perfect crystal. We use the TB method to compute th
quantities. With a minimal-basis description of the quantu
mechanical nature of the electrons that mediate interato
09411
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bonding, the TB approach combines transferability and co
putational efficiency that makes it possible to predict u
stable stacking energies.

We use the NRL-TB method, which uses a nonorthogo
basis with on-site orbital energies that depend on the lo
atomic environment.11,12 In the nonorthogonal TB approac
the electrons that mediate bonding are described by a Ha
tonian and overlap matrix, with the matrix elements betwe
orbitals of two atoms written explicitly as a function of th
relative positions of the two atoms. In the NRL-TB metho
the angular dependence of the off-diagonal matrix eleme
is given by the Slater-Koster two-center form, and the d
tance dependence is parametrized to fit first-principles ca
lations as described below. The on-site matrix elements a
function of the local atomic environment. The total energy
given by the sum of the occupied eigenstates of the Ham
tonian. For most of the elements the Hamiltonian and ov
lap matrices are written in ansp3d5 basis with nine orbitals
per atom. The one exception is Pb, where ansp3 basis with
four orbitals per atom is sufficient.

The original NRL-TB models were derived by fitting th
energy bands and total energies of several high-symm
bulk structures to first-principles density-functional-theo
calculations. For the fcc metals we are interested in~Ag, Al,
Au, Cu, Ir, Pb, Pd, and Pt!, these structures include fcc an
body-centered cubic, as well as additional structures suc
simple cubic and diamond structure for some elements.12 As
an initial point for our calculations we use the parametriz
tions used by Mehlet al. to computeg isf and gus.

16 While
experimental measurements and NRL-TB parametrizati
for Ni are also available, our implementation of the TB sim
lation program did not include support for ferromagnetic m
terials.

To compute the stacking energies we create periodic
percells in a slab geometry, with 20 (111)̄ layers, each con-
taining one atom with1

2 @101#3 1
2 @011# periodicity in plane.

To sample the Brillouin zone~BZ! of the slab supercell we
use a mesh of 3433432 k points in reciprocal space aligne
with the reciprocal lattice vectors. An equivalent density
points converges the bulk lattice constant to about 0.01
and the bulk energy to about 1 meV/atom. All slab superc
calculations are carried out at the TB equilibrium lattice co
stant.

For the calculation ofg isf andgus the layers are initially
arranged in fcc stacking except for two twin boundaries
layers apart, as shown in Fig. 3~a!. This initial configuration
is relaxed by minimizing the energy using a conjugate g
dient algorithm17 with respect to atomic displacements alo
the @111̄# direction, and with respect to the unit cell siz
along the@111̄# direction. The positions are relaxed until th
root-mean-squared force is less than 0.0022 eV/Å and
normal virial is less than 0.01 eV. For Cu, for example, th
tolerance on the virial corresponds to a stress of less t
4.631025 eV/Å357 MPa.

To create a stacking fault, a slab of nine layers surrou
ing one of the twin boundaries is moved along the@112#

direction. The slab is moved in 20120 aA 3
2 steps, wherea is

the lattice constant. At each step the system is relaxed
6-3
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N. BERNSTEIN AND E. B. TADMOR PHYSICAL REVIEW B69, 094116 ~2004!
described above. At the final step two intrinsic stacki
faults are formed, and the difference between the initial a
final relaxed energies is twiceg isf . The maximum energy
point along the path determinesgus. The calculation ofgut is
similar, except for the slab which initially consists of 2
layers, with two twin boundaries and two stacking faults@see
Fig. 3~b!#. The translated slab is adjacent to the two stack
faults, as shown in Fig. 3~b!, consistent with the definition o
gut . At the end of the translation, two extrinsic stackin
faults are formed.

We found that the relaxedg isf computed using the pub
lished parametrizations was not sufficiently accurate for
purposes: The ranking in order of intrinsic SFE did not ag
with experiment~see Table I!. To fix this we added an unre
laxed intrinsic stacking fault configuration to the fitting d
tabase for Ag, Cu, Ir, and Pb. For the fitting energy we to

FIG. 3. Schematic representations of the unit cells used to
culate the stacking energies, with the fcc (111) stacking order i
cated by the lettersA, B, andC. Panel~a! shows the initial and final
configurations of the supercell for computingg isf and gus, and
panel ~b! shows the initial and final configurations for computin
gut .
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a value close to the high end of the range of experime
values, although experimental measurements are of co
relaxed. Since we were not concerned with an exact fit
rather with a reasonable reproduction of the experime
ordering and energy scales, this approach was sufficient.
resulting parameters did not noticeably change the fit of
original bulk structure fitting database, indicating that t
original fitting problem is somewhat underconstrained. T
new parameter sets are listed in Appendix A. While the
trinsic SFE for these four elements can no longer be con
ered a prediction of the TB model, the two experimenta
inaccessible quantitiesgus and gut , as well as the extrinsic
SFE and twin boundary energy, still are.

III. RESULTS

The results of our stacking energy calculations are plot
in Fig. 4. The different fcc metals show different behavio
The overall range of energies is wide, from about 100
almost 1000 mJ/m2, reflecting the general trend of decrea
ing ductility from Ag to Ir. The shapes of the curves vary
well. The positions of the maxima are mostly half way b
tween stable configurations, although exceptions such a
are noticeable. The relative heights of the two unstab
stacking-energy maxima and the intrinsic SFE minimu
which control the twinnability, vary significantly among th
eight metals.

The relevant energies are listed in Table I. We list t
quantities needed for computingt: g isf , gus, and gut , as
well as the extrinsic SFEgesf and twice the twin-boundary
energy 2g t . The table includes the results for the origin
NRL-TB parametrization along with our parametrizations f
Ag, Cu, Ir, and Pb. The set of TB parametrizations we use
the twinnability calculations~referred to as the current pa
rametrization set! is comprised of Agn, Al, Au, Cun, Irn,
Pbn, Pd, and Pt. The TB results are compared with exp
mental data and first-principles~FP! calculations. It is clear
from the range of the experimental and FP values that th
quantities are difficult to determine accurately. The avera
uncertainty, across all parameters, in the experimental res
is 617.7% and in the FP results621.6%.

To evaluate the accuracy of the TB results, we presen
Table II the average relative deviations between the FP
ues and experiment, the TB values and experiment, and
TB and FP values. We note that the agreement between
TB results and experiment is comparable to the agreem
between the FP results and experiment. In fact, for the int
sic SFE, the current set of TB parametrizations gives be
agreement with experiment than the FP calculations. The
son for this is that these parametrizations include the intrin
SFE as a fitted quantity. The overall agreement between
and FP is about 30% for the stacking energies and 24%
the unstable stacking energy. This agreement is compar
to the accuracy of the first-principles results themselves.

Crampinet al.18 noted in their first-principles calculation
that due to small long-range interactions, stacking energ
are generally proportional to the number of faults. Thus,
relation 2g t'g isf'gesf is expected to hold, with the intrinsic
SFE normally a little higher than the extrinsic SFE. Th

l-
i-
6-4



TIGHT-BINDING CALCULATIONS OF STACKING . . . PHYSICAL REVIEW B69, 094116 ~2004!
TABLE I. Stacking energies for fcc metals in mJ/m2: intrinsic SFEg isf , extrinsic SFEgesf, twice the twin-boundary energy 2g t ,
unstable-stacking energygus, and unstable-twinning energygut . Listed values include a range of published data~listed in detail in Appendix
B! from experiment~expt.! and from first-principles calculations~FP!, as well as our tight-binding work~TB!. Results from the new
parametrizations are indicated with a superscript ‘‘n. ’’

Mat. g isf
expt g isf

FP g isf
TB gesf

expt gesf
FP gesf

TB 2g t
expt 2g t

FP 2g t
TB gus

FP gus
TB gut

TB

Agn 1863 35615 18 3365 20 16 3365 25 190 93 105
Ag 36 39 43 123 143
Al 167633 203677 99 180 184676 94 195645 185675 83 199625 164 207
Au 3768 44 49 44 52 30 42 52 110 135
Cun 61617 54616 64 63610 65 48 6468 60 184626 200 236
Cu 30 32 33 182 202
Irn 390690 474660 305 494 260 486 257 910 679 872
Ir 555 523 526 691 957
Pbn 25 30 31 20 12 98 108
Pb 63 72 76 108 143
Pd 17763 16868 107 167611 102 165613 112 265 313 355
Pt 322 270 316 322 60 388 521
T
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relation is satisfied to reasonable accuracy by all of the
parametrizations with the exception of Pt and the parame
zation for Pb. For Pb, the experimental values suggest
the calculated intrinsic and extrinsic SFEs are a little h
and the twin-boundary energy is a little low. For Pt, the c
culated intrinsic SFE is a little too low and the twin
boundary energy is dramatically too low. The reasons
these deviations, and in particular for the very low twi

FIG. 4. Energy as a function of total fractional displacement
each element, starting with displacement corresponding to the
mation of an intrinsic stacking fault 0<d<1, followed by the dis-
placement corresponding to the formation of an extrinsic stack
fault 1<d<2. The unstable-stacking structure is atd'0.5, intrin-
sic stacking fault atd51.0, unstable-twinning fault atd'1.5, and
the extrinsic stacking fault atd52.0. The small discontinuity atd
51.0 reflects the difference between the 20 and 22 layer s
caused by incomplete convergence with respect to slab thick
and BZ sampling.
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boundary energy for Pt, are not clear. However, errors
twin-boundary energy will not affect the evaluation of twin
nability discussed next. In their calculations, Crampinet al.
also found that on average the intrinsic SFE is larger than
extrinsic SFE by 7.7%. Discounting Pt with its too low in
trinsic SFE, we find similarly that the intrinsic SFE is larg
than the extrinsic SFE by 7.9% on average.

The twinnability of the fcc metals we studied is listed
Table III. We include results of experimental twinning stre
twin-related texture, a numerically integrated evaluation ot
from Eq. ~2!, andta from Eq. ~4!. The twinnabilitiest and
ta are computed using the TB stacking energies and the
perimental Poisson’s ratio~only used int). From the two
experimental measures we can determine the following ra
ing in order of increasing twinning tendency:

Al,Ir,~Au! f,Ni,Cu,Pb,~Au!s,Ag. ~5!

The two measures are consistent except for the ranking
Au, which we label by (Au)f for the twin-related texture
ranking and by (Au)s for the twinning stress ranking. We
place Al below Ir because while there are numerous
amples of DT in Ir,19–21Al does not twin as described in Se
I. The theoretical twinnability measuret gives a ranking of

Pt,Al,Ir,Au,Cu,Pd,Pb,Ag, ~6!

TABLE II. Average relative deviation~%! for the listed material
parameters between FP and experiment, TB and experiment,
TB and FP. For the TB values the numbers outside the parenth
are for the current set of parametrizations and the numbers in
rentheses for the original parametrizations.

g isf gesf 2g t gus

FP vs expt. 29.3 46.1
TB vs expt. 22.8~65.4! 52.2 ~97.6!
TB vs FP 31.1~24.6! 32.7 ~29.9! 31.3 ~33.2! 24.2 ~19.2!

r
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TABLE III. Twinnability measures from experiment and ou
calculations. Experimental measures are twinning stresssT ~MPa!
and fraction of twin-related texturef ~%!. Twinning stress results
are listed as the range of observed values listed in detail in App
dix B. The twinnability measuret and approximate twinnability
measureta are unitless.

Mat. sT f t ta

Ag 65.5625.5 9565 1.044 1.042
Pb 105660 1.040 1.038
Pd 1.020 1.018
Cu 110670 34 1.001 1.001
Ni 300 27
Au 90610 16 0.965 0.965
Ir 1000 0.943 0.943
Al 6.561.5 0.930 0.930
Pt 0.892 0.890

TABLE IV. Parameters for NRL-TB Ag Hamiltonian in the no
tation of Ref. 28.

On-site parameters
l 1.2249

Orbital a ~Ry! b ~Ry! c ~Ry! d ~Ry!

s 0.1715 8.3847 217.2341 0.0000
p 0.6054 12.3508 21.0041 0.0000
d 0.0043 0.0860 20.5580 0.0000

Hamiltonian matrix parameters
Interaction e ~Ry! f ~Ry/a.u.! g (Ry/a.u.2) h ~a.u.21/2)

Hsss 23.0391 0.2734 0.0000 0.7539
Hsps 2.4618 20.0673 0.0000 0.7936
Hpps 215.2682 4.5479 0.0000 0.8991
Hppp 21241.6549 103.5693 0.0000 1.7147
Hsds 21.1265 0.0945 0.0000 0.7072
Hpds 3.7277 21.4888 0.0000 0.9002
Hpdp 2.2826 0.0992 0.0000 1.0413
Hdds 23.0612 20.6645 0.0000 0.9771
Hddp 9.7425 20.8077 0.0000 1.0155
Hddd 28.7825 213.0338 0.0000 1.3706

Overlap matrix parameters
Interaction p (a.u.21) q (a.u.22) r (a.u.23) s (a.u.21/2)

Ssss 5.1571 20.1874 0.0000 0.8604
Ssps 22.3772 20.1850 0.0000 0.7744
Spps 23.7611 20.5032 0.0000 0.9064
Sppp 25483.6580 1301.8405 0.0000 1.3654
Ssds 0.2886 0.0328 0.0000 0.7242
Spds 27.1302 2.6584 0.0000 0.9526
Spdp 21.8137 0.2638 0.0000 0.7566
Sdds 14.0832 22.5248 0.0000 0.9447
Sddp 27.9469 0.2773 0.0000 1.0472
Sddd 33.5650 210.7158 0.0000 1.1595
09411
in agreement with the experimental ranking using the tw
related-texture measure for Au.

To gauge the effect of the TB error on the twinnabili
predictions we consider the error in the ratiog isf /gus upon
which twinnability depends~the error in the ratiogus/gut
cannot be evaluated since FP results for the unsta
twinning energy are not available!. The average deviation
between TB and FP is 26.8%.22 Neglecting the error in
Agus/gut ~Ref. 23! the maximum and minimum values fo
the twinnability from Eq.~4! are

ta
min5@1.13620.151~11e!g#Agus

gut
,

ta
max5@1.13620.151~12e!g#Agus

gut
, ~7!

whereg5g isf /gus ande is the typical error ing. The relative
error in twinnability is then

~ta
min2ta!/ta520.151e/~1.13620.151g!,

n-

TABLE V. Parameters for NRL-TB Cu Hamiltonian in the no
tation of Ref. 28.

On-site parameters
l 1.4564

Orbital a ~Ry! b ~Ry! c ~Ry! d ~Ry!

s 0.0286 60.7425 25801.5500 220027.8101
p 0.3390 88.8634 26288.1282 176181.3499
d 20.0029 22.7834 439.8528 213354.9851

Hamiltonian matrix parameters
Interaction e ~Ry! f ~Ry/a.u.! g ~Ry/a.u.2) h (a.u.21/2)

Hsss 25.5681 1.6333 20.4423 0.9684
Hsps 1.4289 0.1135 0.0214 0.8157
Hpps 20.7219 0.6779 20.0324 0.7706
Hppp 20.2720 21.6311 0.2893 0.9186
Hsds 20.4868 20.1222 20.0278 0.9259
Hpds 20.2936 20.0722 0.0013 0.7427
Hpdp 21.7962 0.8572 0.1392 1.0456
Hdds 22.6746 0.6147 20.0343 0.7956
Hddp 7.6177 21.7022 0.1236 1.0069
Hddd 20.2164 20.1560 20.0614 1.0926

Overlap matrix parameters
Interaction p (a.u.21) q (a.u.22) r (a.u.23) s (a.u.21/2)

Ssss 21.7966 1.0111 0.2955 0.9633
Ssps 34.9588 213.0188 0.6087 0.9870
Spps 47.0517 215.0274 0.4065 1.0306
Sppp 245.2743 21.2989 22.2218 0.9728
Ssds 1.8783 21.0250 0.0327 1.1319
Spds 1.1845 20.7127 20.3112 1.0760
Spdp 28.2648 0.7368 0.0209 1.0207
Sdds 5.7560 0.1723 20.2743 1.0148
Sddp 28.6622 0.3814 0.5494 1.2074
Sddd 0.1331 20.2943 0.0784 0.9834
6-6
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~ta
max2ta!/ta50.151e/~1.13620.151g!. ~8!

The upper bound on the error is obtained forg51 when the
denominator is minimal. Fore526.8% the maximum erro
in twinnability is 4%. This is a low value which suggests th
the accuracy of the TB calculations is sufficient for t
present analysis. Errors in the TB parameters may affect
ordering according to twinnability of some neighboring m
terials, but will not affect our main conclusions.

IV. DISCUSSION

The agreement in the ranking of the fcc metals accord
to the experimental and theoretical twinnabilities valida
our expression fort and shows that the TB approach is su
ficiently accurate for computing stacking energies that en
into t. In particular, the agreement with the texture rela
ranking for Au is expected. From Eq.~1! it is clear thatT is
a measure of whether a particular slip system will twin
slip, sot as the orientational average ofT is a measure of the
number and strength of active twinning systems in a po
crystal. It is reasonable that a material with more active tw

TABLE VI. Parameters for NRL-TB Ir Hamiltonian in the no
tation of Ref. 28.

On-site parameters
l 1.4884

Orbital a ~Ry! b ~Ry! c ~Ry! d ~Ry!

s 0.2703 95.925024247.47162271016.4612
p 0.6429 125.3454 9083.2794 131963.68
d 0.0583 0.6588 218.0724222557.5909

Hamiltonian matrix parameters
Interaction e ~Ry! f ~Ry/a.u.! g (Ry/a.u.2) h (a.u.21/2)

Hsss 21.2866 20.1142 20.0016 0.8144
Hsps 1.7556 0.5706 20.0016 0.8466
Hpps 1.2729 1.0542 0.0023 0.8303
Hppp 192.5692 241.4208 0.0544 1.1381
Hsds 22.9749 0.3208 20.0048 0.7852
Hpds 1.8261 20.6489 20.0017 0.8274
Hpdp 1.0552 20.0604 0.0029 0.8222
Hdds 21.7256 20.3260 20.0023 0.8656
Hddp 4.4714 20.0413 0.0350 0.9368
Hddd 20.9373 0.0982 20.0015 0.8338

Overlap matrix parameters
Interaction p (a.u.21) q (a.u.22) r (a.u.23) s (a.u.21/2)

Ssss 8.1003 21.3087 0.0028 0.8834
Ssps 1907.9810 2538.4131 6.7154 1.4135
Spps 5851.063226938.2576 1077.0171 1.5473
Sppp 696.9628 2136.6318 0.4710 1.2257
Ssds 21.3139 0.4873 20.0001 0.7332
Spds 0.9721 20.0648 20.0001 0.5194
Spdp 21.2268 0.4554 0.0036 0.8802
Sdds 0.8247 20.0155 0.0007 0.7182
Sddp 23.4569 20.0556 20.0094 0.8882
Sddd 138.8453 24.2736 24.3770 1.1991
09411
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ning systems will produce more twin-related texture up
mechanical deformation.

As Table III shows, the approximation fort in Eq.~ 4! is
accurate to about 0.2%. This result makes it straightforw
to compute the twinnability of a material without any expe
mental input, sinceta depends only on the three stackin
energies. Using a first-principles method or a TB model fit
first-principles results we can compute the three stacking
ergiesg isf , gus, andgut with a reasonable amount of com
putational effort. Another important benefit to the simple e
pression forta is that it gives us insight into the role o
different material properties in controlling DT. For examp
the reason for the low incidence of DT in Al compared to C
is clear. Two ratios controlta through the two terms in the
product in Eq.~4!: g isf /gus andgus/gut . The differences be-
tween Al and Cu in each ratio result in a 4% difference
ta , so both ratios contribute equally to the 8% difference
ta between Al and Cu. Thus, the low incidence of DT in A
is caused both by a high intrinsic SFE and a high unsta
twinning energy compared with the unstable-stacking ene

Another result to come out of our calculations is that
should twin relatively easily. According to the values oft in
Table III, Pd should twin comparably to Cu or Pb, despite
significantly higher intrinsic SFE, closer to that of Al~see
Table I!. In fact, Pd’s higher intrinsic SFE does lead to t
g isf /gus term suppressing twinnability relative to Cu, but th
gus/gut term enhances it, leading to a net 2% enhancemen
ta . Again, as in the case of Al, all three stacking energies
important for determining the twinnability of Pd. To ou
knowledge an experimental study of DT in bulk Pd has n
been carried out. However, deformation twins have been
served in electrodeposited Pd.24 The authors find that when
electrodeposited Pd is thinned into TEM foils, a high dens
of deformation twins forms in the film. The large number
twins and the fact that they form at room temperature in

TABLE VII. Parameters for NRL-TB Pb Hamiltonian in the
notation of Ref. 28.

On-site-parameters
l 1.0715

Orbital a ~Ry! b ~Ry! c ~Ry! d ~Ry!

s 20.3457 4.6131 243.6552 2760.9337
p 0.4666 21.0573 2106.0625 2305.8282

Hamiltonian matrix parameters
Interaction e ~Ry! f ~Ry/a.u.! g ~Ry/a.u.2) h (a.u.21/2)

Hsss 219.7480 21.5860 20.1731 1.0024
Hsps 222.7677 11.4624 22.2656 1.0327
Hpps 26.4979 20.6030 0.8579 0.9708
Hppp 20.6946 0.3947 20.0639 0.9300

Overlap matrix parameters
Interaction p (a.u.21) q (a.u.22) r (a.u.23) s (a.u.21/2)

Ssss 140.7587 222.3809 0.8875 0.9892
Ssps 59.6957 2.8046 20.1521 0.9906
Spps 226.9853 18.6299 23.7955 0.9794
Sppp 7.4559 24.4049 0.7728 0.9538
6-7
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TABLE VIII. Literature values for stacking energies (mJ/m2) and twinning stress~MPa! from first-principles~FP! calculations and
experiment~expt!. First-principles values labeled with an asterisk indicate unrelaxed energies.

Mat. g isf
expt g isf

FP gesf
expt gesf

FP 2g t
expt 2g t

FP gus
FP sT

Ag 16 ~Ref. 29! 50 ~Ref. 30! 29* ~Ref. 31! 16 ~Ref. 32! 28* ~Ref. 31! 190 ~Ref. 30! 40-60 ~Ref. 5!
22 ~Ref. 32! 46 ~Ref. 16! 38 ~Ref. 18! 38 ~Ref. 18! 48 ~Ref. 33!
21 ~Ref. 34! 21* ~Ref. 31! 58-71 ~Ref. 34!

33 ~Ref. 18! 63 ~Ref. 4!
69-91 ~Ref. 35!

Al 150 ~Ref. 36! 158 ~Ref. 37! 180 ~Ref. 38! 147* ~Ref. 31! 150 ~Ref. 32! 146* ~Ref. 31! 175 ~Ref. 37!
166 ~Ref. 32! 170 ~Ref. 30! 138 ~Ref. 39! 150 ~Ref. 38! 120 ~Ref. 40! 215 ~Ref. 30!
135 ~Ref. 38! 164 ~Ref. 41! 138 ~Ref. 40! 240 ~Ref. 42! 148 ~Ref. 43! 224 ~Ref. 41!
200 ~Ref. 42! 164 ~Ref. 16! 151 ~Ref. 43! 260 ~Ref. 44! 183 ~Ref. 31!

143 ~Ref. 31! 260 ~Ref. 44! 108 ~Ref. 45!
154 ~Ref. 39! 108 ~Ref. 45! 112 ~Ref. 18!
156 ~Ref. 40! 118 ~Ref. 18! 118 ~Ref. 46!
161 ~Ref. 43! 133 ~Ref. 47! 122 ~Ref. 47!
280 ~Ref. 44! 130 ~Ref. 48! 110 ~Ref. 49!
126 ~Ref. 45! 130 ~Ref. 48!
124 ~Ref. 18!
160 ~Ref. 47!
142 ~Ref. 49!
140 ~Ref. 48!

Au 33 ~Ref. 50! 44 ~Ref. 18! 44 ~Ref. 18! 30 ~Ref. 32! 42 ~Ref. 18! 80-100~Ref. 5!
32 ~Ref. 51! 91-99 ~Ref. 34!
45 ~Ref. 32!
30 ~Ref. 34!

Cu 45 ~Ref. 52! 39 ~Ref. 37! 54* ~Ref. 31! 48 ~Ref. 32! 56* ~Ref. 31! 158 ~Ref. 37! 40 ~Ref. 53!
78 ~Ref. 32! 49 ~Ref. 54! 73 ~Ref. 18! 72 ~Ref. 18! 210 ~Ref. 54! 125-180~Ref. 5!

35-45 ~Ref. 55! 64 ~Ref. 56! 58 ~Ref. 46! 140-158~Ref. 55!
51* ~Ref. 31!
70 ~Ref. 18!

Ir 480 ~Ref. 21! 414 ~Ref. 30! 494 ~Ref. 18! 486 ~Ref. 18! 910 ~Ref. 30! 1000 ~Ref. 19!
300 ~Ref. 32! 534 ~Ref. 18!

Ni 183 ~Ref. 54! 175* ~Ref. 31! 86 ~Ref. 32! 174* ~Ref. 31! 350 ~Ref. 54! 300 ~Ref. 5!
125 ~Ref. 57! 145 ~Ref. 54! 149 ~Ref. 18! 86 ~Ref. 58! 140 ~Ref. 18! 269 ~Ref. 54!
128 ~Ref. 32! 182* ~Ref. 31!

180-300~Ref. 59! 180 ~Ref. 18!
Pb 25~Ref. 58! 20 ~Ref. 59! 45-165~Ref. 60!
Pd 175~Ref. 32! 176 ~Ref. 31! 178* ~Ref. 31! 178* ~Ref. 31! 265 ~Ref. 31!

180 ~Ref. 42! 161 ~Ref. 18! 156 ~Ref. 18! 194 ~Ref. 44!
152 ~Ref. 18!

Pt 322~Ref. 32! 322 ~Ref. 32!
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rectly reinforce our claim that Pd is one of the more tw
nable of the fcc metals.

V. CONCLUSIONS

We have presented TB calculations of stacking energie
fcc metals and used them to evaluate a theoretical pred
of twinnability, the tendency of a material to plastically d
form by DT as opposed to dislocation-mediated slip. Us
the NRL-TB method we evaluated the intrinsic SF
unstable-stacking energy and unstable-twinning energy
control twinnability, as well as the extrinsic SFE and twi
09411
in
or

g
,
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boundary energy, in eight fcc metals. We find that the ra
ing of the metals in order of twinnability agrees with th
experimental ranking, with Ag the most twinnable and Pt t
least twinnable. An accurate approximation for the tw
nability makes the calculation straightforward, and gives
sight into the material properties that control twinnability.
particular, both the low incidence of DT in Al and the pr
diction of high twinnability for Pd can only be explained b
differences in the intrinsic SFE combined with differences
the unstable-stacking energies. We hope that our predic
for DT in Pd will be investigated experimentally.

The measure for twinnability presented here is strictly a
6-8
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plicable only to DT at zero temperature under quasist
loading. Further work remains to extend this approach
finite temperatures, finite loading rates, and different cry
lattice structures, all of which are known experimentally
affect twinning.

Furthermore, the twinnability measure constitutes only
average qualitative measure for the inherent tendency
material to twin. A more exact measure must account for
complexity inherent in materials and in the loading appl
to them. From a theoretical standpoint, this could
achieved by incorporating the DT criterion into a crys
plasticity model that can then be used to predict the ma
scopic response in a continuum plasticity simulation. Idea
such analyses should be compared with direct atom
molecular-dynamics or lattice-statics simulations. For
ample, one might simulate the plastic deformation nea
crack tip or under a nanoindenter and compare the res
with the predictions of crystal plasticity models. Atomist
simulations of this type would need to rely on new advan
in coupling different computational techniques,25–27using an
explicit TB description solely at the expected twinnin
dislocation nucleation site. A direct simulation could reve
new atomic scale detail about the microscopic mechanis
but would need to address the challenges of the required
of the TB region, the time scales for development of
-
n,

nd

ng

hy

-

er

ng
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twinned region, and the difficulties in simulating a metal
system. For the foreseeable future combinations of analyt
and numerical calculations, such as we presented here,
direct atomistic simulations will complement each other.
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APPENDIX A: TIGHT-BINDING MODEL PARAMETERS

In Tables IV–VII we list the TB model parameters for Ag
Cu, Ir, and Pb, respectively.

APPENDIX B: EXPERIMENTAL AND FIRST-PRINCIPLES
STACKING ENERGIES

In Table VIII we list a summary of previously publishe
experimental and first-principles values for the intrinsic SF
extrinsic SFE, twin-boundary energy, unstable-stacking en
gies, and twinning stress.
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