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Monte Carlo simulation of the dielectric susceptibility of Ginzburg-Landau mode relaxors
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The electric dipole configuration and dielectric susceptibility of a Ginzburg-Landau model ferroelectric
lattice with randomly distributed defects are simulated using the Monte Carlo method. The simulated charac-
teristics of the lattice configuration and dielectric susceptibility indicate that the model lattice evolves from a
normal ferroelectric state to a typical relaxor state with increasing defect concentration. Consequently, the
energy and dielectric susceptibility characteristics associated with the ferroelectric phase transitions become
smeared. The simulated results approve the applicability of the Ginzburg-Landau model in approaching relaxor
ferroelectrics.
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Ferroelectric relaxors have been receiving attention fr
physicists and materials researchers for over 40 ye
mainly because of their fascinating electric-dipole order
and phase transition phenomena and the excellent diele
and electromechanic properties for practical applications1–6

The well-established features for the dielectric response
relaxors include the diffusive ferroelectric phase transiti
strong frequency dispersion, and sensitivity to external e
tric bias. Over the past 40 years, a number of theoret
models were proposed to explain these features that are
different from normal ferroelectrics, and those we
documented models include the compositional inhomo
neous model,1 spin~dipole!-glass-like model,3 superparaelec
tric model,2 and defect model,2,4 etc. One essence of thes
models is the existence of internal random field as indu
by either compositional inhomogeneity or defects. This c
cept is popular and well accepted.5 The major effect of the
internal random field is characterized by the coexistence
nanosized electric dipole clusters embedded in the matri
paraelectric phase. These nanoclusters hold their stab
over a wide range of temperatureT, leading to a weak hys
teresis of polarization above the phase transition point
the frozen microregions of electric dipoles at lowT. In fact,
the system at lowT may exhibit the same behaviors as t
normal ferroelectrics.

While some of the models mentioned above consider
laxors as spinlike systems,7 the Hamiltonian includes a term
accounting the randomly distributed internal field. In ad
tion to the statistical mechanics approach, the Monte C
~MC! method represents a popular technique employed
investigate the static and dynamic dielectric behaviors
relaxors.8 The predicted behaviors are similar somehow
those identified for spin-glass systems. The simplest and
resentative dynamics is the multistate Potts model wit
random Potts field,9,10 in which the random field is impose
by assigning a variable spin-interaction factor or a varia
internal electrostatic energy obeying some assumed distr
tion function, such as the Gaussian distribution. In th
models, the dielectric relaxation is dynamically modulat
0163-1829/2004/69~9!/094114~6!/$22.50 69 0941
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by the randomly distributed field. Consequently, the diel
tric behaviors under different internal and external conditio
have been investigated.11–13 However, for an electric-dipole
ordered lattice, the involved interactions may be more co
plicated. One needs to consider the Landau potentialf L , the
dipole-dipole interactionf dip , the gradient energyf G associ-
ated with the spatial distribution of dipoles and long-ran
elastic interactionf E , in addition to the electric field induced
electrostatic energyf S .14–16 It can be argued that in thes
interactions, the latter four terms are the resultant terms u
the dipole moment and alignment in the lattice, and only
Landau free energy is the origin to generate an electric
pole. Therefore, one may argue that introduction of a de
into the lattice will mainly influencef L , and consequently
modulate the other free energy terms. In fact, this is the m
argument of the Ginzburg-Landau~GL! model for relaxors
recently developed by Semonovskayaet al.,17 which allows
us to access the evolution of the dipole configuration a
dielectric property in a ferroelectric lattice as function of t
induced defects.

In this report, we would like to perform a Monte Carl
study on the dielectric relaxation behaviors of a GL-mod
relaxor. The MC simulation is performed on a two
dimensional~2D! L3L lattice with periodic boundary con
ditions applied. Four equivalent orientation states6@0,1#,
6@1,0# for each dipole are allowed. We note that a thre
dimensional~3D! simulation would produce more reliabl
simulations than the 2D simulation. In the earlier simulatio
based on the random-field models, 3D 16316316 lattice
was often employed, however, the one-dimensional size~16
lattice units! is too small for the present simulation based
the GL model, since the dipole-cluster statistics seems to
quite bad if one notes that the intercluster separation is;10
lattice units. A 3D lattice larger than 40340340 makes the
computational capability unavailable to us because we wo
simulate the lattice evolution over a wide temperature ran
As for the 2D simulations, Semonovskayaet al.17 employed
a lattice as large as 1283128. In our presimulation, we did
not find substantial difference whenL is reduced to 64 in
©2004 The American Physical Society14-1
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LIU, WANG, CHAN, AND CHOY PHYSICAL REVIEW B 69, 094114 ~2004!
terms of the system energy and dielectric susceptib
evaluation. Therefore, we takeL564 in our simulations.

The GL theory on normal ferroelectrics was propos
earlier.15–17 For each lattice site, a dipole vectorP
5@Px(r),Py(r)# with its moment and orientation defined b
the system energy minimization, wherePx and Py are the
two components along thex axis andy axis, respectively, is
imposed. It is known that for ferroelectric crystals the fe
roelastic effect cannot be ignored. However, this eff
would be weak for relaxors where no long-range order
structure exists. The Landau double-well potentialf L is writ-
ten as16

f L~Pi !5A1~Px
21Py

2!1A11~Px
41Py

4!1A12Px
2Py

2

1A111~Px
61Py

6!, ~1!

where subscripti refers to lattice sitei and A1 , A11, A12,
andA111 are the energy coefficients, respectively. For norm
ferroelectrics, the first-order phase transitions occur ifA1
,0. When a spatial distribution of the dipoles exists, t
as-induced gradient energy isf G :16,17

f G~Pi , j !5
1

2
G11~Px,x

2 1Py,y
2 !1G12Px,xPy,y

1
1

2
G44~Px,y1Py,x!

21
1

2
G448 ~Px,y2Py,x!

2,

~2!

wherePi , j5]Pi /]xj . Since parametersG11, G12, G44, and
G448 are all positive,f G.0 in general, which favors the ho
mogeneous dipole alignment in the lattice. The dipole-dip
interactionf dip is long-ranged. In the SI unit, this term at si
i is written as16

f dip~Pi !5
1

8p«0x (̂
j &

FP~r i !P~r j !

ur i2r j u3

2
3@P~r i !~r i2r j !#@P~r j !~r i2r j !#

ur i2r j u5 G , ~3!

where^j& represents a summation over all sites within a cy
of infinite radius (R⇒`) centered at sitei, parametersr i ,
r j , P(r i), andP(r j ) here should be vectors,r i andr j are the
coordinates of sitesi and j, respectively. However, in simu
lation, a finite cutoff is needed and we takeR58 in our
simulation. A difference of;2% is estimated as compare
with the value obtained atR530 becausef dip decays very
rapidly with vector (r i2r j ). Therefore, takingR58 will not
produce substantial error in the simulation. A minimizing
f dip over the lattice favors a head-to-tail alignment of dipol
Finally, the external electric fieldE introduces the electro
static energy

f S~Pi !52Pi•E, ~4!

wherePi andE should be vectors. The total interaction e
ergy counting these interactions is
09411
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H5(̂
i &

@ f L1 f G1 f dip1 f S#, ~5!

which serves as the Hamiltonian for the system used in
simulation, wherêi& represents a summation over the who
lattice.

As mentioned above, in the GL model,17 introduction of a
defect into the lattice is thought to change the stability o
local dipole. For example, in Pb(Mg1/3Nb2/3)O3 ~PMN! with
acceptor dopants, where O22 vacancies are introduced. Eac
vacancy may be combined with a metal impurity ion to for
a defect dipole which may be imposed onto the local latt
dipole. Therefore, the moment of dipoles at these sites
tached with defects can be enhanced or suppressed. In
words, the stability of these sites for a local dipole becom
site dependent. Because the stability of a dipole~its moment!
is mainly determined by coefficientA1 of the Landau poten-
tial Eq. ~1!, the randomly distributed defects in fact impo
the spatial-dependent coefficientsA1 , A11, A12, andA111 in
Eq. ~1!. Following the argument of Semenovskayaet al., it is
assumed that onlyA1 is affected by the defects17

A1~r i !5A101bmc,

A105a~T2T0!, a.0, ~6!

wherea.0 is a materials constant,T0 is a critical tempera-
ture for a normal ferroelectric crystal of the first-order pha
transitions, parameterc(50,1) labels the defect state of
site. c51 means that sitei is imposed with a defect and i
remains perfect ifc50. Parameterbm is the coefficient char-
acterizing the influence of defects on the dipole stability.
this model, coefficientbm can be positive or negative in ou
simulation in order to model a suppression or enhancem
of the dipole stability.

The MC simulation is performed via the following proce
dure. For a lattice, each site is imposed a dipole with
momentP and orientation randomly chosen within~0–1.0!
and the four equivalent states. Also, on each site is proba
imposed a defect, with the probability determined byC0 , the
defect concentration of the lattice. A random numberR1 is
generated and this site is attached with a defect (c51) if
R1,C0 , and not (c50) otherwise. The defect type to thi
site is measured by a random numberR2 within ~20.5, 0.5!
associated with a choice ofbm within (2bM ,bM), wherebM
is the maximal ofbm . The simulation begins at an extreme
high temperatureT58.0 at which no freezing effect remain
(T053.0). The simulation follows the standard kineticME-

TROPOLIS algorithm for dipole flip among the all candidat
states. For a site chosen randomly, all those energy te
defined in Eqs.~1!–~4! are calculated for the whole lattice t
obtainH5H0 from Eq.~5! and then this site is imposed wit
a new dipole chosen randomly to simulate the dipole fl
Those energy terms are calculated again and we obtaiH
5H1 . Consequently, a third random numberR3 is generated
to compare with probabilityp defined below:

p5exp@2~H22H1!/T# if H2.H1 ,

p51 if H2<H1 , ~7!
4-2
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MONTE CARLO SIMULATION OF THE . . . PHYSICAL REVIEW B 69, 094114 ~2004!
where T is the temperature scaled by energy~kT! and the
Boltzmann constantk is omitted. IfR3,p, the dipole flip is
approved and rejected otherwise. Then one cycle is c
pleted. This cycle is repeated until a given number of cyc
is reached.

The time of simulation is scaled by the Monte Carlo st
~MCS! and one MCS representsL3L chosen flip events. In
our simulation, at each temperature, the initial 600 MCS r
are discarded and then the configuration averaging is
formed over the subsequent 2500 MCS. Here it should
pointed out that such a short time for configuration averag
is not long enough for simulating many statistical mecha
cal phenomena. However, it was verified that for spin-gla
like systems such as relaxors studied here, the short-
Monte Carlo simulation gave excellent agreement w
experiments.18 In fact, we performed one averaging sampli
over a time series as long as 40 000 MCS and no substa
difference of the data from our short-time data was found
addition, the data presented below represent an avera
over four runs with different seeds for random number g
erator of both the initial lattice and defect distribution. Und
an ac-electric field of frequencyv, the lattice dielectric sus
ceptibility x is written as19

x85
K

N K (
i

N
1

11~vt!2L ,

x95
K

N K (
i

N
vt

11~vt!2L , ~8!

where^ & represents the configuration averaging,x8 andx9
are the real and imaginary parts ofx, t is the time for the
dipole at sitei flipping from one state to another,N5L2 and
K is a temperature-dependent constant. Because the latt
inhomogeneous onceC0.0, time t becomes site depende
and it can be expressed in the Arrhenius form19

t5t0 exp~DH/T!5t00exp~2 f 0 /T!exp~DH/T!, ~9!

wheret00 is the preexponential factor scaling the charact
istic time for lattice vibration,t0 is the typical flip time for a
noninteracting system which should be dependent of the
fect concentrationC0 , f 0 is the Landau potential for a de
fective system of no dipole-interaction, andDH is the differ-
ence in Hamiltonian after and before the dipole flip. Und
the assumption of nondipole interaction,f 0 is actually the
Landau potentialf L in the mean-field approximation. Ex
cluding the higher-order terms~fourth order and above!, one
has f 0;A1P0

2;@a(T2T0)1bmC0#P0
2, whereP0 is the av-

eraged dipole moment~magnitude!. Here, t0051.0 andt
5t0/n is obtained from the statistics of the MC sequenc
wheren is the number of dipole flips at sitei per MCS.

In the simulation,bM is given andC0 is treated as vari-
ables to investigate. The other lattice parameters are ch
and the dimensionless normalization of them is done follo
ing the works by Huet al. on the dynamics of domain
switching in BaTiO3 .16 These parameters are given in Tab
I. In addition, the external electric field takes the formE
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5E01Emsin(2pvt), whereE0 is the dc bias,Em is the ac-
signal amplitude, andt is time.

Figure 1 presents the simulated dipole configurations
T/T050.3 for three lattices of various defect concentrati
C0 . As C050.0 @Fig. 1~a!#, a normal ferroelectric configu
ration with multidomained structure is shown. The paral
dipole alignment within each domain and the 90° head-to-
domain walls can be identified. All dipoles within the do
mains have similar moment while those at the walls
smaller in moment. AsC0.0 @C050.4, Fig. 1~b!#, one sees
clearly the lattice inhomogeneity and the moment of tho
dipoles near the walls begins to shrink, while it is interesti
to note that the defects are randomly distributed in the latt

TABLE I. System parameters used in the simulation.

Parameter Value Parameter Value Parameter Va

T0 3.0 a 1.0 A11 20.5
A12 9.0 A111 0.8 G11 1.0
G14 0.2 G44 1.0 L 64
bM 10 C0 0–1.0

FIG. 1. Snapshot dipole configuration of mode ferroelectric l
tice with different defects concentrationC0 at T/T050.3. E0

50.0, Em50.2, andv50.01.
4-3
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LIU, WANG, CHAN, AND CHOY PHYSICAL REVIEW B 69, 094114 ~2004!
As C050.8 @Fig. 1~c!#, the two-phase coexistence picture
the lattice becomes quite clear. The lattice consists of lo
ferroelectric regions embedded in the matrix of paraelec
phase, a typical pattern for relaxor ferroelectrics. We a
observe the temperature dependence of this two-phase c
isted structure, as shown in Fig. 2, whereC050.8. While the
ferroelectric phase dominates over the lattice asT/T050.2,
at T/T050.7 the ferroelectric phase becomes minor and
size is much smaller than that atT/T050.2. As T/T051.4,
the ordered dipole clusters become too small to be ea
identified. Anyhow, one is shown that some small-sized
pole clusters remain stable at a temperature much higher
the stability pointT0. Therefore, the present model produc
a lattice configuration of dipoles consistent with our comp
hensive understanding of relaxors.

The evaluated dielectric susceptibility as a function oT
for several lattices of different defect concentrations as in
cated is presented in Fig. 3~a! for real part and Fig. 3~b! for
imaginary part. These curves are shifted for a clear illus
tion, and in fact the value of these curves atT56.0 are very
close to each other. The biggerC0 is, the slightly higher the
value is. AsC050, a typical ferroelectric phase transitio

FIG. 2. Snapshot dipole configuration of mode ferroelectric
tice at different normalized temperaturesT/T0 as C050.8. E0

50.0, Em50.2, andv50.01. The cycles label the dipole cluster
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with sharp dielectric peakxm8 at T;Tm is observed. With
increasing defect concentration, the temperature depend
of bothx8 andx9 becomes diffusive and the transition pe
shifts upward andTm is slightly up to a higher value, indi-
cating the typical dielectric characteristics for relaxors.
C0.0.6, the temperature range covered by the ferroelec
transition is already very broad. It is well known that for
relaxor the dielectric susceptibility aboveTm can be de-
scribed by the following equation:20,21

1

x8
2

1

xm8
5C21~T2Tm!g, ~10!

where C is a material constant similar to the Curie-Wei
constant andg is the transition exponent characterizing t
diffusivity of the phase transition. The biggerg is, the more
diffusive the transition is. A best fitting of the data shown
Fig. 3~a! by Eq. ~10! produces the fitted parametersxm8 , C,
Tm , and g as a function of defect concentrationC0 , as
shown in Figs. 4~a! and 4~b!, respectively. Whilexm8 remains
roughly unchanged, constantC drops down slowly andg and
Tm increases withC0 , until g;1.8 at C050.6 and above.
This exponent is quite close to the experimentally evalua
values for several relaxors, such asg51.64 for PMN and
1.76 for PZN @Pb(Zr1/3Nb2/3)O3#.20 This is a positive evi-
dence to support the present GL model.

Our simulation reveals a stronger frequency dispersion
the dielectric susceptibility for a lattice of higherC0 . A
lower xm8 value and a higherTm value are observed whe
frequencyv increases. We also simulate the effect of ac-fie

-

FIG. 3. Simulated dielectric susceptibilitiesx8 ~a! andx9 ~b! as
a function of temperaturekT for different defect concentrationC0

~from bottom to top,C050.0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0!. E0

50.0, Em50.2, andv50.01. The curves are shifted for eye gui
ance~see text!.
4-4
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MONTE CARLO SIMULATION OF THE . . . PHYSICAL REVIEW B 69, 094114 ~2004!
amplitude and dc-electric bias on the dielectric susceptibi
It is revealed that the value ofxm8 drops down andTm shifts
toward the higher value with increasing dc-electric bias. T
effect of the ac-field amplitude is opposite to that of t
dc-electric bias. With enhancing ac-field amplitude, the tr
sition peak shifts upward andTm approaches a lower value i
the same time. All of these features are reflected in typ
relaxors.

To understand this broadening behavior of the phase t
sition as reflected by the dielectric susceptibility as a fu
tion of T in a defective lattice, one may look at the evolutio
of the Landau potential and interaction termsf L , f dip , and
f G with defect concentration. In Fig. 5 are shown these te
as a function ofT, respectively. AsC050, each of these
terms as a function ofT can be divided into two temperatur
regions: the paraelectric region and ferroelectric regi
separated by a clean boundary around which the phase
sition occurs. A prominent feature as reflected upon incre
ing C0 is the obvious smearing of the boundary region. F
f L , the slope jump of the linear relation is disappearing w
increasingC0 . The rapid change of bothf dip and f G over the
low-T range is weakened as the lattice contains more defe
It is noted that in the low-T range, the dipole-dipole interac
tion and the gradient energy are lifted, and as a compensa
a big drop of the Landau free energy is observed.

For the perfect lattice of no any defect, the ferroelect
phase transitions are mainly determined by coefficientA1 in
Eq. ~1!. As T,T0, the paraelectric phase loses its stabili
The introduction of defects into the lattice generates an
homogeneity over the lattice where the stability for parael
tric phase varies from site to site. Some sites favor ferroe
tric phase asT@T0, while some others favor paraelectr
phase asT!T0. Therefore, the essence of the GL model
relaxors is to broaden the temperature range at which

FIG. 4. ~a! Evaluated maximal value ofx8, xm and constantC,
and~b! evaluated temperatureTm for xm and transition exponentg
as a function of defect concentrationC0 . E050.0, Em50.2, and
v50.01.
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ferroelectric phase transitions proceed and the recorded
sition region extends towards both the low-T range and
high-T range in the same time.

Unfortunately, to the best knowledge of the authors, th
has never been an experimental system reported in which
defect concentration can be modulated to cover the wh
composition range, so that a direct checking of the pres
model becomes possible. It has been reported recently
an irradiation of some ferroelectric copolymers by electro
ions, or protons introduces defects into the systems and
sults in an evolution of the dielectric behaviors from a no
mal ferroelectric state to a relaxorlike state.22 However, such
an irradiation basically suppresses the ferroelectric ph
transitions, probably by amorphorization, while no dipo
cluster can be stably retained at a temperature above
Curie point for the nonirradiated sample. Thus, such a de
tive system seems not compatible with the present mode

In conclusion, we have performed a Monte Carlo simu
tion on the electric-dipole configuration and dielectric beha

FIG. 5. Simulated Landau potentialf L , dipole-dipole interac-
tion f dip , and gradient energyf G ~per site! as a function of tem-
perature kT, respectively, for different defect concentrationC0

~from bottom to top,C050.0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0!. E0

50.0, Em50.2, andv50.01.
4-5
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LIU, WANG, CHAN, AND CHOY PHYSICAL REVIEW B 69, 094114 ~2004!
ior of a Ginzburg-Landau ferroelectric lattice with random
distributed defects. It has been revealed that introduction
the defects results in a gradual evolution of the system fr
a normal ferroelectric state to a typical relaxor state, cha
terized by the diffusive phase transitions, strong freque
dispersion, and enhancement of the dielectric susceptib
A smearing effect of the Landau potential, the dipole-dip
interaction, and the gradient energy over the phase trans
region has been observed. It is suggested that the pre
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