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Monte Carlo simulation of the dielectric susceptibility of Ginzburg-Landau mode relaxors
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The electric dipole configuration and dielectric susceptibility of a Ginzburg-Landau model ferroelectric
lattice with randomly distributed defects are simulated using the Monte Carlo method. The simulated charac-
teristics of the lattice configuration and dielectric susceptibility indicate that the model lattice evolves from a
normal ferroelectric state to a typical relaxor state with increasing defect concentration. Consequently, the
energy and dielectric susceptibility characteristics associated with the ferroelectric phase transitions become
smeared. The simulated results approve the applicability of the Ginzburg-Landau model in approaching relaxor
ferroelectrics.
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Ferroelectric relaxors have been receiving attention fronby the randomly distributed field. Consequently, the dielec-
physicists and materials researchers for over 40 yearsiic behaviors under different internal and external conditions
mainly because of their fascinating electric-dipole orderinghave been investigatéd:*® However, for an electric-dipole
and phase transition phenomena and the excellent dielectrardered lattice, the involved interactions may be more com-
and electromechanic properties for practical applicatiofis. plicated. One needs to consider the Landau potefitiathe
The well-established features for the dielectric response aflipole-dipole interactiorf;,, the gradient energf/; associ-
relaxors include the diffusive ferroelectric phase transitionated with the spatial distribution of dipoles and long-range
strong frequency dispersion, and sensitivity to external elecelastic interactiorig, in addition to the electric field induced
tric bias. Over the past 40 years, a number of theoreticalectrostatic energys.**®It can be argued that in these
models were proposed to explain these features that are quiteteractions, the latter four terms are the resultant terms upon
different from normal ferroelectrics, and those well- the dipole moment and alignment in the lattice, and only the
documented models include the compositional inhomogekandau free energy is the origin to generate an electric di-
neous modet, spin(dipole)-glass-like modef, superparaelec- pole. Therefore, one may argue that introduction of a defect
tric model? and defect model? etc. One essence of these into the lattice will mainly influencef, , and consequently
models is the existence of internal random field as inducednodulate the other free energy terms. In fact, this is the main
by either compositional inhomogeneity or defects. This conargument of the Ginzburg-LanddGL) model for relaxors
cept is popular and well accepteéd@he major effect of the recently developed by Semonovskastaal,'” which allows
internal random field is characterized by the coexistence ofis to access the evolution of the dipole configuration and
nanosized electric dipole clusters embedded in the matrix afielectric property in a ferroelectric lattice as function of the
paraelectric phase. These nanoclusters hold their stabilitjiduced defects.
over a wide range of temperatufe leading to a weak hys- In this report, we would like to perform a Monte Carlo
teresis of polarization above the phase transition point andtudy on the dielectric relaxation behaviors of a GL-model
the frozen microregions of electric dipoles at I@win fact, relaxor. The MC simulation is performed on a two-
the system at lowl may exhibit the same behaviors as thedimensional(2D) L XL lattice with periodic boundary con-
normal ferroelectrics. ditions applied. Four equivalent orientation statef0,1],

While some of the models mentioned above consider re==[1,0] for each dipole are allowed. We note that a three-
laxors as spinlike systenighe Hamiltonian includes a term dimensional(3D) simulation would produce more reliable
accounting the randomly distributed internal field. In addi-simulations than the 2D simulation. In the earlier simulations
tion to the statistical mechanics approach, the Monte Carl®ased on the random-field models, 3DX1B5X 16 lattice
(MC) method represents a popular technique employed twas often employed, however, the one-dimensional ige
investigate the static and dynamic dielectric behaviors ofattice unitg is too small for the present simulation based on
relaxors® The predicted behaviors are similar somehow tothe GL model, since the dipole-cluster statistics seems to be
those identified for spin-glass systems. The simplest and repuuite bad if one notes that the intercluster separationl®
resentative dynamics is the multistate Potts model with dattice units. A 3D lattice larger than 4#040X 40 makes the
random Potts field;}°in which the random field is imposed computational capability unavailable to us because we would
by assigning a variable spin-interaction factor or a variablesimulate the lattice evolution over a wide temperature range.
internal electrostatic energy obeying some assumed distribuAs for the 2D simulations, Semonovskagaall’ employed
tion function, such as the Gaussian distribution. In these lattice as large as 128128. In our presimulation, we did
models, the dielectric relaxation is dynamically modulatednot find substantial difference whenis reduced to 64 in
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terms of the system energy and dielectric susceptibility

evaluation. Therefore, we take=64 in our simulations. H=2 [f +fa+Tfaptfsl, 5)
The GL theory on normal ferroelectrics was proposed W

earlier™>'" For each lattice site, a dipole vectoP  which serves as the Hamiltonian for the system used in our

=[P,(r),P,(r)] with its moment and orientation defined by simulation, wher€i) represents a summation over the whole

the system energy minimization, wheRg and P, are the lattice.

two components along theaxis andy axis, respectively, is As mentioned above, in the GL modélintroduction of a

imposed. It is known that for ferroelectric crystals the fer-defect into the lattice is thought to change the stability of a

roelastic effect cannot be ignored. However, this effectocal dipole. For example, in Pb(MgNb,3) O5 (PMN) with

would be weak for relaxors where no long-range orderingacceptor dopants, where ®vacancies are introduced. Each

structure exists. The Landau double-well poterttjals writ-  vacancy may be combined with a metal impurity ion to form

ten as® a defect dipole which may be imposed onto the local lattice
dipole. Therefore, the moment of dipoles at these sites at-
fL(Pi):Al(P)2(+ P§)+A11( p;‘-+ p‘y‘)+A12p§p§ tached with def(_apts can be erjhanced or suppressed. In other
words, the stability of these sites for a local dipole becomes
+A1(PR+PD), (1)  site dependent. Because the stability of a dig@gmoment

) ) o is mainly determined by coefficiert; of the Landau poten-
where subscript refers to lattice sité and Ay, Ay1, A, tial Eq. (1), the randomly distributed defects in fact impose
andA,;, are the energy coefficients, respectively. For normakne spatial-dependent coefficiertts, A1, Asp, andAq in
ferroelectrics, the first-order phase transitions occuAif  Eq (1). Following the argument of Semenovskastaal, it is

<0. When a spatial distribution of the dipoles exists, theggsuymed that onlp., is affected by the defedis
as-induced gradient energy fig : 167

A(r;)=Asot b,
1
fa(Pij)= 5 G Pyxt Pyy) + G1oPusPy,y A= a(T-T%), a>0, ®)

1 1 wherea>0 is a materials cgnstanT,O is a criti_cal tempera-
+ §G44( Pyyt Py %+ §G£4(Px,y— Pyx)?, ture for a normal ferroelectric crystal of the first-order phase
transitions, parameter(=0,1) labels the defect state of a
(20  site.c=1 means that siteis imposed with a defect and it
remains perfect iE=0. Parameteb,, is the coefficient char-
whereP; ;=dP;/dx;. Since parameteiS;, Giz, Gas, and  acterizing the influence of defects on the dipole stability. In
Gy, are all positive,f>0 in general, which favors the ho- this model, coefficienb,, can be positive or negative in our
mogeneous dipole alignment in the lattice. The dipole-dipolesimulation in order to model a suppression or enhancement
interactionf y, is long-ranged. In the Sl unit, this term at site of the dipole stability.

i is written as® The MC simulation is performed via the following proce-
dure. For a lattice, each site is imposed a dipole with its
P(ri)P(rj) momentP and orientation randomly chosen with{@—1.0
faip(Pi) = 8meox |ri_rj|3 and the four equivalent states. Also, on each site is probably

imposed a defect, with the probability determinedQy, the

defect concentration of the lattice. A random numBgris
) generated and this site is attached with a defeet ) if

R;<C,, and not €¢=0) otherwise. The defect type to this
where(j) represents a summation over all sites within a cyclesite is measured by a random numBerwithin (—0.5, 0.5
of infinite radius R==) centered at sité, parameters;, associated with a choice bf,, within (— by, ,by), whereby,
ri, P(r;), andP(r;) here should be vectors, andr; are the s the maximal ob,,,. The simulation begins at an extremely
coordinates of sitesandj, respectively. However, in simu- high temperaturd = 8.0 at which no freezing effect remains
lation, a finite cutoff is needed and we takRe=8 in our  (T°=3.0). The simulation follows the standard kineti€-
simulation. A difference of~2% is estimated as compared TrRopoLIs algorithm for dipole flip among the all candidate
with the value obtained a@®=30 becausd y, decays very states. For a site chosen randomly, all those energy terms
rapidly with vector ¢;—r;). Therefore, takindiR=8 will not  defined in Eqs(1)—(4) are calculated for the whole lattice to
produce substantial error in the simulation. A minimizing of obtainH=H, from Eq.(5) and then this site is imposed with
f 4ip Over the lattice favors a head-to-tail alignment of dipoles.a new dipole chosen randomly to simulate the dipole flip.
Finally, the external electric fieléE introduces the electro- Those energy terms are calculated again and we olbtain
static energy =H,. Consequently, a third random numl®y is generated

to compare with probabilityp defined below:

B[P (ri—r)JIPr(ri—rj)]

|ri_rj|5

fs(Pi)=—Pi-E, 4 _
p=eXF[—(H2—H1)/T] |f H2>H1,
whereP; andE should be vectors. The total interaction en-
ergy counting these interactions is p=1 if Hy<H, (7)
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where T is the temperature scaled by energyl) and the TABLE |. System parameters used in the simulation.
Boltzmann constark is omitted. IfR;<p, the dipole flip is
approved and rejected otherwise. Then one cycle is conParameter ~ Value  Parameter Value Parameter  Value

leted. This cycle is repeated until a given number of cycles
% o ched Y p 9 y TO 3.0 @ 1.0 Ay ~05
o . . . A 9.0 A 0.8 G 1.0
The time of simulation is scaled by the Monte Carlo step Glz 02 Glll 10 Lll o2
(MCS) and one MCS representsx L chosen flip events. In 14 1'0 C““ 0 '1 0
0 — 4.

our simulation, at each temperature, the initial 600 MCS runs ™M
are discarded and then the configuration averaging is per-
formed over the subsequent 2500 MCS. Here it should be

pointed out that such a short time for configuration averagin%:igr?;imnfliorl‘i(t%‘gt);i;’]"dhggig is the dc biasE is the ac-

is not long enough for simulating many statistical mechani->"2 _* . . ' .

cal phenomena. However, it was verified that for spin-glass- Figure 1 presents the simulated dipole configurations at
like systems such as relaxors studied here, the short-tim /T%=0.3 for three lattices of various defect concentration
Monte Carlo simulation gave excellent agreement with™~0: As 90:0'0.[':'9' 1_(a)], a normal ferroelectnc configu-
experiment<® In fact, we performed one averaging sampling ration with multidomained structure is shown. The parallel
over a time series as long as 40000 MCS and no substantigjPC!€ alignment within each domain and the 90° head-to-tail
difference of the data from our short-time data was found. | or_nalnhwalls Qa_'r be |dent|f|ed.h,_b?ll dr:poles W'tr:"n thﬁ do-
addition, the data presented below represent an averagi aln”s lave similar moment while those at the walls are
over four runs with different seeds for random number genSMaller in moment. A€,>0[Cy=0.4, Fig. 1b)], one sees

erator of both the initial lattice and defect distribution. UnderC/€arly the lattice inhomogeneity and the moment of those
an ac-electric field of frequenay, the lattice dielectric sus- diPoles near the walls begins to shrink, while it is interesting
ceptibility x is written ad® to note that the defects are randomly distributed in the lattice.

-

t

K[|N 1 C,=0, T=037" ||t
WELI S T e
N 1+ (o))’

K| oT 3
XN F ) ®

where( ) represents the configuration averaging,and x”

are the real and imaginary parts gf 7 is the time for the
dipole at site flipping from one state to anotheé¥,=L? and
K is a temperature-dependent constant. Because the lattice is P
inhomogeneous ondg,>0, time 7 becomes site dependent €704 T203T
and it can be expressed in the Arrhenius f&tm %

[N

pif

7= 1o eXp{AH/T) = rgoexp( — fo /T)exp(AH/T),  (9)

where 7y is the preexponential factor scaling the character-
istic time for lattice vibrationg is the typical flip time for a
noninteracting system which should be dependent of the de-
fect concentratiorCg, f, is the Landau potential for a de-
fective system of no dipole-interaction, aad is the differ-
ence in Hamiltonian after and before the dipole flip. Under
the assumption of nondipole interactiofy, is actually the
Landau potentialf, in the mean-field approximation. Ex-
cluding the higher-order tern{ourth order and aboyeone
hasfo~A;Pa~[a(T—T%+b,Co]P3, wherePy is the av-
eraged dipole momentmagnitude. Here, 7oo0=1.0 and 7

= 1o/n is obtained from the statistics of the MC sequences
wheren is the number of dipole flips at siieper MCS.

In the simulationby, is given andC, is treated as vari-
ables to investigate. The other lattice parameters are chosen
and the dimensionless normalization of them is done follow-
ing the works by Huetal. on the dynamics of domain FIG. 1. Snapshot dipole configuration of mode ferroelectric lat-
switching in BaTiQ.® These parameters are given in Tabletice with different defects concentratiof, at T/T°=0.3. E,

[. In addition, the external electric field takes the foEn =0.0,E,=0.2, andw=0.01.
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FIG. 3. Simulated dielectric susceptibilitigs (a) and x” (b) as
a function of temperaturkT for different defect concentratio@,
(from bottom to top,Cy=0.0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.&,
=0.0,E,,=0.2, andw=0.01. The curves are shifted for eye guid-
ance(see text

with sharp dielectric pealg,, at T~T,, is observed. With
increasing defect concentration, the temperature dependence
of both ¥’ and x” becomes diffusive and the transition peak
shifts upward andr, is slightly up to a higher value, indi-
FIG. 2. Snapshot dipole configuration of mode ferroelectric lat-cating the typical dielectric characteristics for relaxors. As
tice at different normalized temperatur@$T° as Co=0.8. E;  C,>0.6, the temperature range covered by the ferroelectric
=0.0,E=0.2, andw=0.01. The cycles label the dipole clusters. ansition is already very broad. It is well known that for a
relaxor the dielectric susceptibility abovEe, can be de-
As Co=0.8[Fig. 1(0)], the two-phase coexistence picture in scribed by the following equatiof?:**
the lattice becomes quite clear. The lattice consists of local
ferroelectric regions embedded in the matrix of paraelectric ii i—C‘l - \y
. . ; - = (T-Tw?, (10
phase, a typical pattern for relaxor ferroelectrics. We also X' xh
observe the temperature dependence of this two-phase coex-
isted structure, as shown in Fig. 2, whé&g=0.8. While the where C is a material constant similar to the Curie-Weiss
ferroelectric phase dominates over the latticeTA§°=0.2, ~ constant andy is the transition exponent characterizing the
at T/T°=0.7 the ferroelectric phase becomes minor and itgliffusivity of the phase transition. The biggeris, the more
size is much smaller than that T°=0.2. AsT/T°=1.4, diffusive the transition is. A best fitting of the data shown in
the ordered dipole clusters become too small to be easilffi9- 3@ by Eq.(10) produces the fitted parametey§, C,
identified. Anyhow, one is shown that some small-sized di-Tm, and y as a function of defect concentratiddy,, as
pole clusters remain stable at a temperature much higher thahown in Figs. 4a) and 4b), respectively. Whiley,, remains
the stability pointTO. Therefore, the present model producesroughly unchanged, consta@tdrops down slowly ang and
a lattice configuration of dipoles consistent with our compre-Ty, increases withCq, until y~1.8 atCy,=0.6 and above.
hensive understanding of relaxors. This exponent is quite close to the experimentally evaluated
The evaluated dielectric susceptibility as a functioriTof values for several relaxors, such @s-1.64 for PMN and
for several lattices of different defect concentrations as indi<.76 for PZN[Pb(ZrsNb,5) 05].%° This is a positive evi-
cated is presented in Fig(e8 for real part and Fig. ®) for dence to support the present GL model.
imaginary part. These curves are shifted for a clear illustra- Our simulation reveals a stronger frequency dispersion of
tion, and in fact the value of these curvesTat 6.0 are very the dielectric susceptibility for a lattice of highé®,. A
close to each other. The bigg€y is, the slightly higher the lower x,, value and a highell,, value are observed when
value is. AsCy=0, a typical ferroelectric phase transition frequencyw increases. We also simulate the effect of ac-field
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FIG. 4. (a) Evaluated maximal value of', x,, and constan€,
and (b) evaluated temperatufg,, for x,, and transition exponengt
as a function of defect concentrati@y,. E;,=0.0, E,,=0.2, and
0=0.01.

amplitude and dc-electric bias on the dielectric susceptibility.
It is revealed that the value gf;, drops down and,, shifts
toward the higher value with increasing dc-electric bias. The
effect of the ac-field amplitude is opposite to that of the
dc-electric bias. With enhancing ac-field amplitude, the tran- . ) ) ) .
sition peak shifts upward ant,, approaches a lower value in 0.9 1 2 3 4 5 [
the same time. All of these features are reflected in typical T
relaxors.
To understand this broadening behavior of the phase tran- FIG. 5. Simulated Landau potenti&l , dipole-dipole interac-
sition as reflected by the dielectric susceptibility as a function fq,, and gradient energfe (per sitg as a function of tem-
tion of T in a defective lattice, one may look at the evolution PeraturekT, respectively, for different defect concentratid@
of the Landau potential and interaction terfjs fg,, and  (from bottom to top.Co=0.0, 0.1, 0.2, 0.4, 0.6, 0.8, and L.&,
f with defect concentration. In Fig. 5 are shown these termg 9-0: Em=0.2, andw=0.01.
as a function ofT, respectively. AsC,=0, each of these
terms as a function of can be divided into two temperature
regions: the paraelectric region and ferroelectric regionferroelectric phase transitions proceed and the recorded tran-
separated by a clean boundary around which the phase tragition region extends towards both the I@wrange and
sition occurs. A prominent feature as reflected upon increasigh-T range in the same time.
ing C, is the obvious smearing of the boundary region. For  Unfortunately, to the best knowledge of the authors, there
f,_, the slope jump of the linear relation is disappearing withhas never been an experimental system reported in which the
increasingC,. The rapid change of bothy, andfs over the  defect concentration can be modulated to cover the whole
low-T range is weakened as the lattice contains more defectsomposition range, so that a direct checking of the present
It is noted that in the lowF range, the dipole-dipole interac- model becomes possible. It has been reported recently that
tion and the gradient energy are lifted, and as a compensatian irradiation of some ferroelectric copolymers by electrons,
a big drop of the Landau free energy is observed. ions, or protons introduces defects into the systems and re-
For the perfect lattice of no any defect, the ferroelectricsults in an evolution of the dielectric behaviors from a nor-
phase transitions are mainly determined by coefficRentn mal ferroelectric state to a relaxorlike stafeHowever, such
Eq. (1). As T<T?, the paraelectric phase loses its stability.an irradiation basically suppresses the ferroelectric phase
The introduction of defects into the lattice generates an intransitions, probably by amorphorization, while no dipole
homogeneity over the lattice where the stability for paraeleceluster can be stably retained at a temperature above the
tric phase varies from site to site. Some sites favor ferroelecCurie point for the nonirradiated sample. Thus, such a defec-
tric phase asT>T°, while some others favor paraelectric tive system seems not compatible with the present model.
phase ag <T°. Therefore, the essence of the GL model for  In conclusion, we have performed a Monte Carlo simula-
relaxors is to broaden the temperature range at which thgon on the electric-dipole configuration and dielectric behav-

f; (arb. unit)
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ior of a Ginzburg-Landau ferroelectric lattice with randomly Ginzburg-Landau model represents a realistic approach to
distributed defects. It has been revealed that introduction othe phase transition and dielectric property of relaxor ferro-
the defects results in a gradual evolution of the system fronglectrics.

a normal ferroelectric state to a typical relaxor state, charac-

terized by the diffusive phase transitions, strong frequency The authors would like to acknowledge the financial sup-
dispersion, and enhancement of the dielectric susceptibilityport from the Natural Science Foundation of China through
A smearing effect of the Landau potential, the dipole-dipolethe innovative group project and Project No. 50332020, the
interaction, and the gradient energy over the phase transitioNational Key Project for Basic Research of Chi@ant No.
region has been observed. It is suggested that the prese2@02CB613308 and LSSMS of Nanjing University.
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