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Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects
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Carbon nanotubes are being contemplated as reinforcements for the next generation of composite materials.
Stress and strain measures at an atomic scale are required to study the effect of inhomogeneities in nanotube
based structures. In this work, we have adapted three different stress measures at atomic scales and introduced
strain measures as energetically conjugate quantities. These measures are validated for defect free nanotubes
and are then used to study the mechanics of 5-7-7-5 topological defects in various single wall nanotubes. It is
observed that there is a decrease in the load carrying capacity in the defected region, and this decrease can be
attributed to the changes in the kinetics and kinematics in the vicinity of the defects.
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[. INTRODUCTION nanotubes in this work, the term CNT refers to a single wall
carbon nanotube unless indicated otherwise.

The exceptional mechanical properties of carbon nano- Experimental observations have revealed that topological
tubes(CNT9) and their potential use in structural componentsdefects such as the 5-7-7-5 Stone-Wales defect are com-
and devices have stimulated great interest and extensive rglonly present in nanotubésThese local defects can alter
search, ever since their discovery by lijinim 1991. The not only the inelastic properties but also the elastic proper-
stiffness and strength of CNTs are in the range of TPa anéeS. .9, the Young's modulus and Poisson’s ratio. Conse-
GPa, respectively, while the nearest competing materials exauently, these defects may al'ter the longitudinal, .Iateral St'lff-
hibit these properties in the range of GPa and MPa, respef€SSes, a_nd flexural _rlgldlty in response to tension, torsion,
tively. Also the fact that CNTs are extremely lightweight an_d bendl_ng, respectively. It.ShOUId be_ nqted that analogous
compared to other materials makes them potential candidat®9't O Ilne. defects(vacan_mes, subgutuuonal atoms, and
as reinforcing fibers in superstrong composites. Before the |sIocat|qn$ n t.)u"( crystgllme materials tend to influence
can be applied in real nanocomposites, the strength and sti ﬁnolﬁ tEe :Jri]teel a}:\trlce%oﬁﬁmﬁzrbz?:ljs?iﬁ tef;(?rseenglp esrr?;"d\%?uc_ts’
ness of CNTs as stand alone units and their ability to transf gh d g ! y

loads b . d th bular fib h etrically. Because of the unique planar hexagonal meshlike
oads between a matrix and the nanotubular fibers throudy,cyyre of the carbon nanotubes, topological defects can

nanoscale interfaces needs to be clearly understood. At thgier the deformation response and hence the elastic proper-
heart of the problem is the very definition of strength andijes |n addition, these can also be potential sites where an
stiffness at these scales. Strength and stiffness are defingebyersiple mechanical response is initiafewhile these
based on stresses and strains at the maCI‘OSCOpiC Continu%ertions are true even for p|anar graphene SheetS, when
level and these definitions are ambiguous at the nanoscopiglled as carbon nanotubes these defects locally alter the cur-
level. This issue is neither philosophical nor pedagogical buyature of the tubes causing further nonlinear effects. Conse-
one of practical relevance, as will be illustrated in this paperquently, they respond differently not only when the diameter
Widely reported computational and experimental results oaries, albeit to a lesser extent, compared to the chirality
CNT strength and stiffness are based on averaged quantitiehere the rolling orientation directly affects the geometry
computed or measured at the length scale of a nanotubmear the defects.

which is many orders greater than the local atomic dimen- Studies have shown that defects in CNTs may not only
sions. Though these averaged quantities may lead to acceptffect the mechanical properties but the electronic, magnetic,
able properties for a few idealized configurations, local meaand hybridization characteristics, and hence needed to be un-
sures are required to unequivocally determine certaimlerstood thoroughl§® Also the transition in theé¥ junction
extremum behaviors such as inelasticity, damage, fractureontemplated in CNT based molecular electronics is
and failure. Such is the case when we need to study thachieved through the incorporation of many 5-7-7-5 defects
origin and effect of deviations from the regular hexagonaleither by design or otherwiseSimilarly, a transition of
arrangement of carbon in a graphene sheet or in carbon nannanotubes from one diameter to another can be achieved by
tubes. Local mechanical behavior, for example in a 5-7-7-3ocating a few of these defects strategically in the transition
Stone-Wales defect, is entirely different from that of a regionregion. In addition, when nanotubes are used as fibers in
away from the defect, all within the same nanotube subjectedanocomposites interfacial bonding may preferably occur in
to a far field force. The relation between the average antdhese defects regions based on energy considerations. Thus
local behaviors is a well-known problem in the macro worldwhen studying load transfer issues in CNTs, understanding
but is manifested with even more vigor in the CNT basedthe mechanics of these zones is critical. Another area of po-
nanoworld, and is the subject of the present paper. Thougtential application of CNTs is in the effective storage of hy-
we have focused on single walled CNTs in this work, thedrogen for possible use in fuel cells. Here again the propen-
methodology developed here is equally applicable to multisity for hydrogen penetrating a defected region and entering
walled CNTs. Since we mainly deal with single wall carbonthe tube is higher than regular regions.
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In this paper, we introduce definitions of atomic stress andtress measures with different volumes of interrogation and
atomic strain quantities as applicable to carbon nanotubespply them to carbon nanotubes in a molecular dynamics
Though these stress measures have already been usedfaemulation based on the Brenner potentfslhe most com-
compute stresses in general three-dimensional crystallinmonly used stress measure at the atomic scale is the virial
materials, their application to carbon nanotubes entails a cestres§ (3; j). For a pair potentiaV/ this can be expressed as
tain re-evaluation of what constitutes the proper volume in a
planar configuration. We have formulated a methodology to 1 2 1 . z
evaluate the kinematic measure of atomic strain specifically Zij Q™ A, 2 MYy +ﬁ:1]n
for carbon nanotubes. Strain at the atomic level is still de- _ ) o ) ) _
fined as the spatial gradient of the displacement field; th&lerei andj denote the indices in Cartesian coordinate sys-
displacement field is expressed in terms of atomic displacd€ms 1, 2, and 3, whiler and 8 are the atomic indices. The
ments and interpolation functions. These measures are agmmation Is over all the atoms occupying total volume
plied to CNTs with and without 5-7-7-5 Stone-Wales defects{ - M“ andv“ denote the mass and velocity of atenr .5
Local stress-strain responses in the defected and perfect ris-the distance between atomsand 8. The termdV/dr .5 is
gions are then examined. It is observed that the defect préhe scalar of force exerted on atomby atom 3. Without
duces stress and strain concentration effects in the vicinity dss of generality this expression can be rewritten for poten-
the defect due to changes in the geometric configuration anégls dependent on bond angles such as bond order potentials
concomitant force fields. Thecal stiffnessubstantially de- &S
creases in the defected region and the mechanics of why this 1 1
happens is examined in terms of both the kinematics and Si=—— > | am@f+ > rl ] )
kinetics. P Qrora=in | 2 = CR

rglls dV

.1
|raﬁ| draﬁ ()

Wherefiaﬁ is the force on atona due to atomg resolved in
Il. ATOMIC LEVEL STRESS MEASURES theith dire'cti'on. We have used this form to calculate virial
_ _ _ _ _stress. A similar form for atomic stress has been used for Si
Stress is a measure defined to quantify the internal resisnodeled with the Tersoff potential by Yu and Madhukr.
tance of a_materlal to counter ex_ternal disturbgnces. Thesgased on the preceding discussion regarding volume it may
external disturbances can be either mechanical, thermabe noted that this stress formulation is strictly valid only
electrical, magnetic, or gravitational in nature. While me-when a homogenous stress state exists in the entire volume
chanical loads appear as forces and moments at the surfacgsthe simulation box. For example, this measure would be
of the body, other loads are distributed throughout the volvalid for uniformly loaded nanotubes without defects.
ume as body forces. Stress in a simplified sense can be con- The above definition of bulk stress has been extended to
strued as force over an infinitesimal area as the area tends ¢de atomic volume by Basinski, Deusberry, and Taytor
zero in the limiting process. It is implied in this definition define atomic stresglso called BDT stregsThis is based
that force acting over the infinitesimal area is uniform, |ead-on the assumption that a bulk stress measure would be valid

ing to a unique state of stress. Without loss of generality thigor a small volumeQ)® around an atone. This definition of
concept of uniform force over an infinitesimal volume can begtgmic stress«!) for atom« can be expressed as

extended to the three-dimensional state of stress with forces
acting on the surfaces of the cube. . 1 . i

When we define stress at a point, in the sense of con- Tij=qal MUYy +B:21n Fogfag |- (3
tinuum mechanics we implicitly assume that a homogenous ’
state of stress exists within the appropriately chosen infiniTheoretically, the above definitions are valid only for ho-
tesimal volume surrounding that point. As we apply this con-mogenous systems, though BDT stress gives a fair indication
cept todiscrete lattice mechanicsve need to identify a vol-  of the nature of stresses in systems with defects and has been
ume around a given point over which the stress becomegsed to study point defects and grain boundaries in a number
homogeneous. Such a selection of appropriate volumef metallic system&**®The total volume and volume of a
clearly depends on the degree of stress heterogeneity existiisgngle atom are required for the calculation of virial and BDT
at the material in question. It should be noted that the hetstresses. Further, to ensure consistency,
erogeneity in the stress state can be caused either due to the
heterogeneity in the materidk.g., defects such as inclu- 2-~=i2 agya (4
sions or due to inhomogeneous loading conditiofesg., i Qotes Tith
bending. If stress in a selected volume has a very sharp
spatial gradient, then we are required to choose smaller and The total volume has been used extensively in the com-
smaller volumes to evaluate the stress quantity with a clegputation of an elastic modulus based on an energy approach
objective of choosing the largest possible volume to satisfysee the references in Table We have used the most com-
the condition of homogeneity within that volume. monly used volume) ™= 7dtl whered is the diameter, is

In this context there have been various formulations ofthe length, and=3.4 A is the interplanar spacing in graph-
stress in molecular dynamics such as virial stfeBOT or  ite. The atomic volume has been computed based on the
atomic stres$, Lutsko stres$%!! and mechanical stress by interatomic distancg1.42 A in undeformed tubgsand the
Cheung and Yig? We invoke these various definitions of interplanar spacing3.4 A).
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TABLE |. Values of Young's Modulus computed for CNT by different methods in the literature.

Young'’s Other
Modulus Material
Author & Year Method (TP Parameters Comments
Hernandez, Goze Total-energy, 1.22-1.26 Poisson’s ratio: wall thickness=0.34 nm
Bernier, Rubio non-orthogonal 0.18 Y=V, (6%El9&?)
(1998 tight binding.
Axial tension
Timur Halicioglu Molecular dynamics 0.50 Poisson’s ratio: wall thickness=0.34 nm
(1998 (Brenner’s Pot 0.18 Y=(dolde), —g
Axial tension
Dong Qian. Wing kam Analytical method 0.989 Poisson’s ratio: wall thickness=0.34 nm
Liu and Rodney S. Ruoff on graphene sheet 0.367 Cijk,=(o72W/aFjiaF,k)
(2001
Y. Xia, M. Zhao, Y. Ma, Molecular dynamics C(5.5) Poisson’s ratio used Independent of wall

M. Ying, X. Liu, P. Liu,
and L. Mei
(2002

G. Zhou, W. Duan, B. Gu
(2000

J.P. Lu
(1997
J. M. Molina, S. S. Savinsky,
and N. V. Khokhriakov
(1995
A. Krishnan, E. Dujardin,
T. W. Ebbesen, P. N. Yianilos,
and M. M. J. Treacy
(1998
B. I. Yakobson, C. J. Brabec,
and J. Bernholc,
(2001
B. G. Demczyk, Y. M. Wang,
J. Cumings, M. Hetman,
W Han, A. Zettl, R. O. Ritchie
(2002
M. F. Yu, B. S. Files,
S. Arepalli, R. S. Ruoff
(2002
Z.C.Tuand Z. C. O. Yang
(2002
G. V. Lier, C. V. Alsenoy,
V. V. Doren, P. Geerlings
(2000
M. M. J. Treacy, T. W. Ebbesen,
J. M. Gibbson(1996
J. P. Salveta, G. A. D. Briggs,
J. M. Bonard, R. R. Bacsa,
A. J. Kulik, T. Stockili,
N. A. Burnham, and L. Forro
(1999
N. Yao, V. Lordi
(1998

C. F. Cornwell and L. T. Wille
(1997

andab initio
Internal pressure

2.55(¢,,<0.003)
0.85(,,<0.04)
1.14(¢,,<0.003)

0.52-0.26-
(0.003<g,,<0.04)
First principles 0.764
cluster methodLDA)
Axial tension
Empirical force 0.971-0.975
constant model
Tight binding 1.4
Experimental: free 1.25
standing room
temperature vibrations
Many body potential 5.5
and continuum shell
model
Experimental pull 0.91
and bend test
Experimental 0.32-1.47
Tension test
LDA 47
Ab initio 0.72-1.120
Experimental 1.81
(TEM)
Experimental 1.0
(Atomic Force
Microscope
Molecular Dynamics 1.0
(Thermal vibrational
frequencies
Molecular Dynamics 0.2-2.0

(axial Compression

in calculation thickness,Y increases
0.17 with 5-7-7-5 defect

Poisson’s ratio: Tensile strength 6.249
0.32 GPa.

Poisson’s ratio:
0.277-0.280
---- wall thickness0.34 nm

wall thickness=0.34 nm

----- Weighted average value

Poisson’s ratio: wall thickness=0.066 nm

0.19

Tensile strength
=0.15 TPa

wall thickness=0.334 nm
with continuum
correction Young'’s
modulus=0.8 TPA
Failure strength: wall thickness=0.34 nm

13-52 GPa

Poisson’s ratio:
0.34
Poisson’s ratio:
0.026-0.125

wall thickness=0.075 nm

wall thickness=0.34 nm

..... First measurement of

Shear modulus wall thickness=0.34 nm

=1 GPa.

- wall thickness-0.34 nm

..... Y varies with radius
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Yooy 2z such as Si and G¥,to the best of our knowledge they have
v not been used for carbon nanotubes. For carbon nanotubes,

g Halicioglu!’ has obtained the atomic stress values in carbon

nanotubes based on the strain energy consideration using

Averaging Volume
for Lutsko stress

B 1 oE®
_5 &sij '

(6)

Uij

Here E* is the strain energy and;; is the corresponding
strain component. This measure is used for the entire tube
and requires knowledge of conjugate strain. Belytschko
et al® calculated stress based on applied forces and the
] ] cross sectional area of the nanotube. Xtaal® calculated

_ FIG._ 1. Averaging volume used for the Lutsko stress in thegirass pased on the pressure exerted by hydrogen atoms in
simulations. the nanotube and the averaged increase in the dimensions of

I the nanotube.

Otheor definitions - of stress have_ been advanced by 1pq prevailing methods of evaluating elastic moduli and
Lutsko'® and Qheung and Yig to stqdy mhqmpgeneous SYS- the stress-strain behavior of nanotubes implicitly assume that
tems. According to Cheung and Yip’s definition, mec:hanlcala homogenous state of stress exists, allowing them to use
stress is calculated as the sum of the time rate of the chan ergy to compute the modulus. Furtr’1er they need to know
of the momentum flux and forces divided by area across thg,. \4iue of the strain and to assume that the strain is con-
particular surface of interest. The concept of I?lc_al stress aOE':ant throughout the domain. This would not pose any prob-
vanced by Lutsko and extended by Qormwral. IS based lems for nanotubes without defects under uniaxial loading.
on the local stress tensor of statistical mechanics. Furthe{ya show in later sections that when the condition of homo-
this definition has b(Een shown to conserve linear momem“nbeneity is violated, as in a defected system, or in the case of
The Lutsko stressqjj) can be expressed as multiaxial state of loading local stress and strain measures
would prove to be more useful than global energy based
approaches. Now we proceed to develop the kinematic or
strain measure for nanotubes at an atomic scale.

1 1 o
ath; Emavf*vf+521nrgﬁf;5|a,g>. (5)

=1n

Herel,; denotes the fraction of the length ef—g bond
lying inside the averaging volum@”9. Further, this aver- !l ATOMIC LEVEL STRAIN AND ENERGY MEASURES

aging volume can be a small part of the total volume possi- |, the description of continuous media, the thermome-
bly containing defects. Lutsko stress has been used to evaldnanical behavior of materials is usually prescribed by relat-
ate th_e local fllastlc properties of grain bou.ndanes in mgtalqng the kinetic quantity at a given material poir particle
Cormieret al have recently shown that this measure givesyy 5 kinematic quantity through a constitutive equation. For
a better match for continuum solution of inclusion problem.e)((,jmwe in Hooke’s law for isotropic materials the kine-

In bulk materials the averaging voluniéor the Lutsko  maiic quantity strair: is related to the kinetic measure stress
stres$ is ty_plcally considered as a spherical volume, th(_)u_ghm using the simple relation=Ee, whereE is the Young's
the derivation of the stress tensor places no such restriction,oqulus. This modulus is usually evaluated in a uniaxial
We have considered an averaging volume shown in Fig. 1 fOfgngije test where the stress state is uniaxial€ o) but the
this calculation. _ strain state is multiaxial €= &;&,,=£33= — ve) and the

In summary, Virial stress can be used if the stress state is,,qulus iSE= o /&= o/e. The strain energy associated
homogeneous in the entire volumef simulation cel); with the deform;tlionl%s given by
Lutsko stress can be computed for a partial volume and the

homogeneity restriction is still applicable to that volume. If 2 2
the stress needs to be computed around a single atom, then dW= odemW= — — Ee” &
BDT stress can be used. Here again homogeneity is assumed 2B 2

in the volume in which stress is computed. In the converse, if
inhomogeneity exists then the choice of the stress measuté Young’s modulus is a constant then the stress-strain re-
depends on the extent of spatial inhomogeneity. For exampleponse is linear and strain energy in Eg.is valid. Such is
if we need to examine the overall effect of a 5-7-7-5 Stonethe case for a linear elastic isotropic material. The above
Wales defect, we need to use Lutsko stress. If we are furthexquation illustrates the fact that in order to evaluate Young’s
interested in the role of a specific atom in the defected remodulus in a linear elastic model, only any two of the vari-
gion, then we need to use BDT stress to capture the physiables stress, strain, and energy are independent. While evalu-
of the problem. ating the former two, many workers used energy and strain
In spite of the fact that these various definitions have beemo obtain these quantities under homogenous conditions.
used with regularity in studying metallic systerfisoth for  Young's modulus can be evaluated using energy and some
EAM and pair potentials and some nonmetallic systems strain measure using the equation,
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2W , W
E=;2— or in general terms asE=£2—. (8

In the above equation selection of any strain measure
yields a corresponding modulds though it can be easily
noticed that the pairs are not unique. For example, if one
were to select a new measw® and then evaluate* then
this new modulus will be quite different, as shown below:

€ =ae, o*=pBo=E*=yE where

‘y=§ given that aB=1. 9

The above equation holds good for any arbitrary valuer of FIG. 2. A typical triangular facet, with the local coordinates
andg. It is thus clear that one can get quite different valuesx’,y’ z') coinciding with the centroid of the triangular element.
of Young’s modulus based on the selection of strain measure
or stress measure. For the more general case of anisotropianay not be sufficient to represent multiaxial strain state or
elastic materials, i#V is assumed to be a function of only a prove adequate for inhomogeneous distributions.
current deformed state and independent of the history of the A more general measure that is applicable to large defor-
deformation then the material is hyperelastic with mation and finite rotation cases is the deformation gradient
tensorF which relates the deformed configuratigno the
W undeformed configuratioX given by
Cijki = e e’ (10
8”078k|
dx

whereCj;, are the components of the fourth order elasticity F= ax” 1D
tensor ance;; are the components of the strain tensor. Un- . _
fortunately for the above equation to be consistent with thelhe displacement of a given atom can be expressed as
usual elasticity tensor components one needs to ideatjfy
as the components of the frame invariant Green-Lagrange u=x—-X. (12)
strain tensor. Thus evaluating stiffness components using Egv infinitesimal strain measure defined as
(10) or (8) has several shortcomings.

(1) The magnitude of the Young’s modulus even for iso-
tropic cases, depends on the choice of strain measure, as e= s =(F=1), (13
shown in Eq.(9).

(2) In using Eq.(7) the carbon nanotubes exhibit a direc- is used in this work. For a theoretically consistent formula-
tional independence in their material orientations. Clearlytion one needs to identify a set of frame invariant stress and
this is not the case as the mechanical response of a zigz&tyain measures that are not only conjugate quantities but are
tube is different from that of an armchair tube. Thus theevaluated in the same configuration, either in the undeformed
equation presumes that a material is isotropic which is incorer the deformed state. There are many choices available and
rect. the selection criterion is beyond the scope of this paper.

(3) The equation implicitly assumes that a state of homo-However, if we choose to use the deformed configuration as
geneous deformation occurs throughout the volume of interour reference state, then we can use Cauchy stress and Al-

rogation, which is not always the case. mansi strain as the conjugate quantities. Further, Almansi
(4) We need to implicitly assume that a strain energy denstrain can be approximated to the small strain measure pre-
sity function exists for these classes of materials. sented abovgEq. (13)], if the strains are not large and if the

(5) We need to assume that the internal strain energy imigid body rotations during the deformations are limited.
the material is always equal to the change in potential energy The computational methodology for calculating strains is
as given by the interatomic potentials. This would not be trueas follows: a defect free nanotube can be considered as a
for simulations at a finite temperature. mesh of hexagons. Each of these hexagons can be treated as
Based on the above argument, the proposed method ebntaining four triangles. A local coordinate system
evaluating local stresses and strains is a better approach ¢(X’'Y’Z") is constructed for each of these triangles with a
the problem. Strain is a measure of the deformation sufferedentroid as the origin, and the locdl' axis is along the
by a body, and is typically measured by the relative changekength of tube(see Fig. 2, the localY’ coincides with the
in length and angles of line segments of the deformed conradial direction of the centroid of the triangle. The lo¥alis
figuration compared to the original. The simplest form ofobtained as cross product @f and X’ axes, so that atoms
strain is the uniaxial strain defined by=(L—L,)/L,, lie on theX’ —Z' plane. The in-plane straing { ,ey ,&,/x1)
wherelL is the current length ant, is the original length. for this configuration can be evaluated using displacements
Though this form of strain has been used for nanotdb&%, of atomsi, j, and! (u;,v;,..) which form the triangle as
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60 o Lutsko Stress (E=0.997 TPa) -
[ 5 Bulkstress (E=1.002 TPa) N
50
sl
= [
o [
6 |
30
2 L
FIG. 3. (9,0 tube containing a 5-7-7-5 defect of type I. % [
20
€z i
Eyr =[B]{Ui Ui Uj Uj U U|}T, 10
’yzryr v
E
where[B] is the matrix of the gradient of the interpolation o(; —— '0:)2' - 1054' - '056' T
functions?* Once the strains of the triangular facets are ob- ' girain '

tained, strains in hexagons are evaluated as the area weighted

average of the triangles contained in the hexagons. In the FIG. 5. Stress-strain curve for @,0) perfect tube subject to
case of tubes with 5-7-7-5 defects the mesh described abow#iaxial tension based on three stress measures.

contains heptagons and pentagons along with hexagons.

These pentagons and heptagons are composed of three and A. Validation of stress and strain measures

five triangular facets respectively. The strain at each atomic
location is evaluated as average of three hexag@rs
heptagons/pentagonthat encompass the concerned atom.

When subjected to a far field, load on a defect free ho-
mogenous state of stress and strain exists. Strain calculations
based on a triangular facet approach give consistent results
for tubes with different chiralities and diameters. Also the
IV. RESULTS AND DISCUSSION three stress measures yield consistent stress values. For a

In thi " ¢ its obtained f lecul tube with uniform strain, the variation in BDT stre@om-
N this section we present results obtained irom molecuiay, yoq for each atojnfrom atom to atom is negligible, and
static simulations using conjugate gradient algorithm an

. 2 L he magnitude of BDT stress and virial stress are found to be
Brenner potentials. Periodic boundary conditions were ap;

. o : . dentical. For homogenous systems by definition, virial and
plied to model tubes of infinite length. For simulating CNTs 9 y y

q aial loading. displ ‘ lied to th BDT stresses coincide, since the voluf¥®' in Eq. (2) is
up er .un,lﬁx'? O.‘i‘ ('jng’ | c;.Sp at(_:emesr: S Werte app Ied 0 eequal tonQ* in Eq. (3) wheren is the number of atoms in
atoms in the fongrtudinal direction. SIress, strain, and energy, o system. When Lutsko stress is computed, a volume

measures at the local and global levels were computed for lightly larger than twice cutoff radius is used. The additional

cases. In order to validate the local stress and strain meqa term [see Eq.(4)] leads to a small difference between
sures, a perfec(9,0) CNT was analyzed. Once validated, Lutsko and virial stresses. If we choose a larger volume for

these measures are used to study the 5-7-7-5 defect in tubgg, | \epq stress, the difference reduces and completely van-
with different diameters and chiralities.

. . ishes when the interrogating volume is equal to total volume.
In zigzag £,0) nanotubes 5-7-7-5 defects can be man-owever, the slope of the stress-strain curve in all the three
fested in two different types, type | and type Il, as shown in
Figs. 3 and 4. In a type | defect, a horizontal bond of a
hexagonal network is rotated by 90° so that when the defecén
is formed, two of the hexagons are transformed to two hep:l.h
tagons and two pentagons, placed symmetrically akdat
y)-z axes. In the type Il defect heptagons and pentagons al

asymmetric withx (or y)-z axes.

cases is identical.
It is interesting to note that the strain values in the tri-
gles are not necessarily equal to the applied strain values.
ough the magnitude of strain in adjacent triangles is dif-
;erent, the weighted average of strain in any hexagon is the
Same, and is identical to the applied strain. Consequently,
every atom experiences the same state of strain. The varia-
tion of the strain state within the hexag@n different trian-
gular facets is a consequence of different orientations of
interatomic bonds with respect to the applied load axis.
Further, to validate the applicability of the three stress
measures and the strain measure, stress-strain curves are
plotted for a perfec{9,00 CNT under uniaxial tension. Figure
5 shows the stress-strain curves based on virial, Lutsko, and
BDT stresses, measured in the longitudif@ldirection, and
longitudinal straine,. The Young's modulus is evaluated as
the slope of stress-strain curve at zero stfaiitial tangenj.
FIG. 4. (9,0 tube containing a 5-7-7-5 defect of type II. We obtain a Young’s modulus value of 1.002 TPa fq@#)
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FIG. 6. Variation of Lutsko’s stress along the length of%0) FIG. 7. Variation of strainss; along the length of &9,0

tS\Q/CNT containing a 5-7-7-5 defect of type | near the center of theg\ycnT containing a 5-7-7-5 defect of type | near the center of the
ube.
tube.

CNT. This compares favorably with values published in thedefect. The longitudinal strain response is considerably dif-
literature as shown in Table I. Though there is a wide variaferent from that of the stress. The strain concentratite:
tion in the value of the Young's modulu®.5-5.5 TPy  fined as the ratio of local to the global averagecreases
based on different computational and experimental apwith increase in externally applied load, while the stress con-
proaches, the value centers around 1 TPa which compareentration is found to decrease with increasing applied strain.
well with this investigatiorf>—3 The shear strains are equal to zero in nanotubes without de-
Having validated the stress and strain measures, in Setgcts but a small amount of she@bout one tenth of applied
IV B we present the mechanical response of nanotubes withtrain is present in defected tubes. This effect is found to
5-7-7-5 defects. The results are then followed by a discussiogxtend to the areas adjoining defected region.
of interesting observations in Sec. IVC Since the local values of the stress and strain vary for
each of the atoms in the defected region, it is useful to ex-
amine the spatial variation of these quantities using a contour
plot. Figure 8 shows the stress and strain contour plots near
Figure 6 shows the variation of Lutsko stresg; along  the defected region for various applied strains. Stress con-
the length of thg9,0) tube. The tube has a symmetric 5-7- tours are based on BD{&tomig stresses and correspond to
7-5 defect placed in the middle of the tube. The nanotube ishe strain states which are also computed at each atom. Both
divided into seven segments along the length, and a strip aftress and strain contours show concentration effects on the
atoms in each segment as shown in Fig. 1, is selected faotated bond that engenders the type | defect. Though not
computing average stresses and strains. It can be clearly oshown here, peak stress occurs at the defect even at zero
served from Fig. 6 that there is a stress amplification in theapplied strain and this corresponds to the stress caused due to
central segment which contains the defect. We note that evahe presence of defect. Contour plots show that both stress
at zero strain level, a stress value of about 15 GPa is oband strain values monotonically increase though there are
served at the defect, analogous to residual stresses at magome differences in their responses.
scales. As the strain level increases, the stress concentration Use of Lutsko stress enables us to examine the stress-
factor (defined as the ratio of peak stress to average $tresstrain response of the defected region per se and compare it
decreases. with the properties of a defect free CNT. Figure 9 shows
Figure 7 shows the variation of longitudinal straég;  Lutsko stress-strain curves for a defect fi®0) nanotube
along a length of a CNT for different strain levels. At a 0% [plot (a)] and compares it with the Lutsko stress-strain curves
external strain, the local strains at all points are equated tof the defected regions. From this plot it can be observed that
zero and form the reference configuration against which furthere is a drop in stiffness at the defect. The stiffness of
ther deformation is measured. Though it is possible to useegion with type | defecfplot (b)] is 0.621 TPa and that of
other reference statéfor example, a defect-free CNT with a type Il defect[plot (c)] is 0.627 TPa in contrast to a much
hexagonal netwopkthe present choice is preferred since dis-higher Young’s modulus value of 1.002 TPa for a defect free
placements are identically zero. With this definition of the CNT.
initial state, the strain is zero, in not only defect free hexa- We now proceed to compare the effect of defects on me-
gons, but also in pentagons and heptagons. chanical properties for various diameters. The numerical val-
From Fig. 7, it can be observed that magnitude of theues of stiffness of defected regions in different CNTs are
strain increases at the defect and is uniform away from théabulated in Table Il, and Fig. 10 shows the stress-strain

B. Deformation of nanotubes with a 5-7-7-5 defect
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FIG. 8. Contour plots of the longitudinal strain; strain and stressz; near the defected region drawn at different applied strain levels.
(a) Strain contours at an applied strain of 186) Stress contours at an applied strain of 1&.Strain contours at an applied strain of 3%.
(d) Stress contours at an applied strain of 3&.Strain contours at an applied strain of 5. Stress contours at an applied strain of 5%.
(g) Strain contours at an applied strain of 8f) Stress contours at an applied strain of 8%.

curves. There is only a marginal difference in the local stiff-the formation of defect¢see Fig. 6 Thus in defected re-
ness values for various1(0) CNTs. gions residual stresses arise both due to the curvature and
defect formation. Atomic structure in the vicinity of the de-
fect has a greater deviation from a perf&®2 hybridized
structure(planar with bond angles of 120° as in a graphene
It is quite noteworthy that even for fully equilibrated de- sheet compared to perfect regions of a CNT. While stresses
fect free CNTs, a nonzero stress of a few GPa is observed due to curvature are influenced by the radius of the CNT,
zero strain(see Figs. 9 and 20This can be construed as stresses due to defect formation are affected by the type of
residual stresses which are defined as self equilibrating intettefect.
nal stresses even in the absence of external Igthdsmal or It is observed in Fig. 6 that the stress concentration due to
mechanicdl If these nonzero residual stresses are causethe presence of defects decreases at higher strains. In other
by the geometry of formation, then the magnitude of stressvords, with increased strain levels, the effect of defects in
should depend on the diameter. Figure 11 shows the variatiomnhancing the local stress level decreases. Several
of zero-strain stresses with an inverse of the radius for variinvestigator®3° have observed the spontaneous formation
ous (n,0) type CNTSs. It can be seen from Fig. 11 that theseof defects at higher strains. These studies have shown that
stresses decrease monotonically with the radius of CNTs anthe defected structures have a lower energy at higher
approach zero for an infinite radius, i.e., a graphene sheestrains®® A lowered energy is manifested by a lowered stress
Since these stresses vanish for a graphene sheet and increasacentration effect.
with the curvature, these stresses can be considered forma- Contrary to the stress concentration, the strain concentra-
tion stresses relative to a graphene sheet and hence formatitian at the defect increases as the applied strain is increased
induced residual stresses. The residual stresses should alsee Fig. 7. In order to understand this, let us look more
correspond to strain energy relative to graphene sheets amtbsely at the deformation pattern away from the defect and
are supported by the results of Robertsaral 3 near the defect. Consider a defect free region as shown in
Further, in nanotubes with defects at zero strain, there i§ig. 12b). The basic hexagonal network is expected to
an additional stres&and hence energythat corresponds to stretch under the action of an axial load. As a result there is

C. Discussion
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FIG. 10. Stress-strain curves for tubes of different diameters
FIG. 9. Stress-strain curves for (8,0) carbon tube with and with and without defects. Stress-strain curves with filled symbols

without defects(a) Stress-strain curve for a tube without defépy. ~ are for tubes without defects and stress-strain curves with open
Stress-strain curve for a type | defe@t) Stress-strain curve for a Symbols are for tubes with defects.
type 1l defect.

angles is observed; for example there is an angular variation
a reduction in bond angles such @d®Q and a correspond- of up to 11% inABH at an applied strain of 8% in contrast
ing increase in bond angles such ﬁQ\R The geometrical 10 @ maximum angle variation of 4% in defect free structure
constraint due to the hexagonal nature of the mesh entaif" @ (9,00 CNT. Larger changes in bond angles induce a
that an increase in anglés/Q\R be about two times the de- larger component of rotation to the strain leading to higher

. —— o . longitudinal strains in the defected region. In addition, the
crease in angled PQ as observed in Fig. 13. In addition, the irregularity of the heptagons and pentagons combined with

bonds in the line of action of an axial load suchR¥®are  |3ge angular changes results in higher shear strain. As a
expected to stretch, and bonds suctPgsstretch and rotate. oqit of these larger strains at lower stresses, the local stiff-
The deformatlpn induces pr(_adomlnantly Ipng|tud|nal strainsyess of defected region is much lower than corresponding
and compressive lateral strains due to Poisson’s effect. Shegbsect free regions. A fluctuation in the radius of curvature is
strains are caused by angle changes between any two perpejlserved at the defect. For example the radius of curvature at
dicular lines before and after deformation. Since the hexagofhe gefect varies from 3.45 to 3.53 A in(®,0 CNT with a

is extended in one direction and compressed in the other, thig,iys of 3.523 A. This fluctuation creates an instability at
type of deformation does not induce any shear strain.

Now consider the region with a 5-7-7-5 defect as shown

. . . . Ms,0)
in Fig. 12a). The defected regions comprise irregular hepta- /
gons and pentagons. Also the angles between bonds have y
considerable deviation from a perfexp2 structure(with a /

bond angle of 120¢ It is intuitive to expect that a deforma-

tion of this high energy structure would occur by rearranging
bond angles rather than bond lengths. Figure 14 shows bond
angle changes for selected atoms near the defected regione

»

with respect to applied strains. A significant variation in bond 3 sk //110,0)
TABLE Il. Stiffness of defected region of different nanotubes. g [ / o)
n [ /
Nanotube Radiugnm) Chiral angle Stiffnes$TPg y /l'm’o)
(9,0 (Defect Type ) 0.352 0° 0.621 [
(9,0 (Defect Type 1) 0.352 0° 0.627 1 (5.0
(10,0 0391  ©0° 0.639 s /./rm,o»
(11,0 0431  0° 0.639 [ o W00
(13,0 0509  0° 0.638 T
(15,0 0.587 0° 0.629 ' 1/Radius (A) '
(5,5 0.339 30° 0.524

FIG. 11. Residual stress variation with radius.
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FIG. 12. (a) Atomic configuration of a 5-7-7-5 defect in(8,0) carbon nanotube with a local variation of strains around one of the critical
atoms.(b) Atomic configuration of a perfect region far away from the 5-7-7-5 defect (8,@ carbon nanotube with a local variation of
strains around a typical atom. Dashed lines indicate subelement divisions.
the defect similar to a notch and contributes to the strairet al® reported that there is a reduction in fracture stress in
concentration and lowering of stiffness. the presence of a 5-7-7-5 defect; in addition, the defect

Stiffness reduction at the defect not only affects the elastiserves as a nucleation site for fracture. Defected regions of
behavior, but is also expected to alter the inelastic behaviolCNTs experience higher strains for similar values of stress
The elastic behaviaifor example, the Young’s modulusfa  compared to defect free tubes. The lower stiffness of the
long nanotube with a few defects is marginally lowered be-defect region studied here is a clear indication of a reduced
cause of the relatively low area fraction of the defects. Howdoad carrying capacity. This causes the higher localized strain
ever, plasticity, fracture, and failure are localized phenomenaoncentrations responsible for failure at lower applied
wherein the defects play a major role. It is now understoodstrains.
that the limiting behavior of nanotubes either for the onset of Local stiffness values of various CNTs with varying di-
plasticity or for fracture is the generation of topological de-ameter are shown in Table Il. It can be observed that there is
fects. Once the defects are nucleated they tend to serve @sry marginal difference in stiffness values for different
sites for further propagation of defecfsor result in crack (n,0) types of nanotubef.621-0.639 TPa However, the
propagation and brittle fractufédepending on various fac- stiffness of the defect region in th&,5 nanotubecompa-
tors such as the chirality and temperattfteBelytchko rable in diameter to th€9,0) CNT] is much lower(0.524
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FIG. 13. Bond angle variation with applied strain for a few bond ~ FIG. 14. Bond angle variation with applied strain for a few bond
angles at a perfect region away from the defect. angles near a defected region.

TPa. This indicates that the curvature of the nanotube playgarbon nanotubes. Further, these measures can be used effec-
a minimal role in determining the mechanical behavior of thetively to evaluate the changes in mechanical behavior due to
defected region. The lack of radial symmetry at the defectlefects. The stiffness of defects reduces by about 30—-50 %
suggests an anisotropic behavior of the defect region. As and is dependent on a number of factors such as the chirality,
result the stiffness of the defect in tf®5) tube is lower than the diameter, and the loading conditions.

the stiffness of otherr(,0) types of tubes. It is interesting to
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higher for (5,5 nanotubeq3.34 e\) than (n,0) nanotubes
(2.12-2.75 eV. The authors wish to acknowledge the research collabora-

tions with Professors Leon van Dommelen and Ashok Srini-
vasan during various phases of this work as a part of the
Computational nanotechnology group at Florida State Uni-

This paper demonstrates that atomic level stress and straversity. The funding provided by FSU Foundation is also
measures can be used to determine the Young’s modulus gfatefully acknowledged.

V. CONCLUSION

1s. lijima, Nature(London 354, 56 (1997). 12K, s. Cheung and S. Yip, J. Appl. Phy&0, 5688(1996.
2T. W. Ebbesen and T. Takada, Carb&8) 973(1995. 13p. Brenner, Phys. Rev. B2, 9458(1990.
3B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. T6tt.  **W. Yu and A. Madhukar, Phys. Rev. Left9, 905 (1997).
2511(1996. 15X. Y. Liu and J. B. Adams, Acta Mate#6, 3467 (1998.
4V. H. Crespi, M. L. Cohen, and A. Rubio, Phys. Rev. L&t®,  5S. Namilae, N. Chandra, and T. G. Nieh, Scanning Micrdsc.
2093(1997). 49 (2001).
5T. Kostyrko, M. Bartkowaik, and G. D. Mahan, Phys. Rev5®  'T. Halicioglu, Thin Solid Films312, 11 (1998.
3241(1999. 18T, Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff, Phys.
63. C. Charlier, T. W. Ebbesen, and P. Lambin, Phys. Re&3B Rev. B 65, 235430(2002.
11 108(1996. 19y, Xia, M. Zhao, Y. Ma, M. Ying, X. Liu, P. Liu, and L. Mei,
7Z.Yao, H. W. C. Postma, L. Balents, C. Dekker, Nat(rendon Phys. Rev. B65, 155415(2002.
402, 6759(1999. 208, A. Galanov, S. B. Galanov, and Y. Gogotsi, J Nanoparticle
8M. P. Allen and W. J. TildesleyComputer Simulation of Liquids Res.,4, 207 (2002.
(Oxford University Press, Oxford, 1989 210. C. Zienkiewicz, The Finite Element MethodTMH, New
9Z. S. Basinski, M. S. Duesberry, and R. Taylor, Can. J. P49s. Delhi, 1979.
2160(1971). 22E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Appl. Phys. A:
103, F. Lutsko, J. Appl. Phy$4, 1152(1988. Solids Surf.68, 287 (1999.
113, Cormier, J. M. Rickman, and T. J. Delph, J. Appl. Pt8%.99  2°D. Qian, W. K. Liu, and R. S. Ruoff, J. Phys. Chem. 1B5,
(2001. 10753(2001).

094101-11



N. CHANDRA, S. NAMILAE, AND C. SHET

24G. Zhou, W. Duan, and B. Gu, Chem. Phys. Le383 344
(2002.

257, Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M.
M. J. Treacy, Phys. Rev. B8, 14 013(2003).

263. P. Lu, Phys. Rev. Leti79, 1297(1997.

/g, G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A.
Zettl, and R. O. Ritchie, Mater. Sci. Eng.,384, 173(2002.

28G. V. Lier, C. V. Alsenoy, V. V. Doren, and P. Gerrrlings, Chem.
Phys. Lett.326, 181 (2000.

297, C.Tu and Z. C. O. Yang, Phys. Rev.@5, 233407(2002.

30M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibbson, Natuon-
don) 381, 678(1996.

PHYSICAL REVIEW B69, 094101 (2004

33C. F. Cornwell and L. T. Wille, Solid State Commub01, 555
(1997).

34D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Phys. Rev.
B 45, 12 592(1992.

358, |. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev6B
2511(1996.

36M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Re\ve B
R4277(1998.

87C. Wei, K. Cho, and D. Srivastava, Phys. Rev.6B, 115407
(2003.

%M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. Lett.
81, 4656(1998.

313, P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J*°P. Zhang, P. E. Lammert, and V. H. Crespi, Phys. Rev. I8t

Kulik, T. Stockli, Nancy A. Burnham, and L. Forro, Phys. Rev.
Lett. 82, 944 (1999.
32N. Yao and V. Lordi, J. Appl. Phys84, 1939(1998.

5346(1999.
40B. C. Pan, W. S. Yang, and J. Yang, Phys. Rev6B 12 652
(2000.

094101-12



