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Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects
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Carbon nanotubes are being contemplated as reinforcements for the next generation of composite materials.
Stress and strain measures at an atomic scale are required to study the effect of inhomogeneities in nanotube
based structures. In this work, we have adapted three different stress measures at atomic scales and introduced
strain measures as energetically conjugate quantities. These measures are validated for defect free nanotubes
and are then used to study the mechanics of 5-7-7-5 topological defects in various single wall nanotubes. It is
observed that there is a decrease in the load carrying capacity in the defected region, and this decrease can be
attributed to the changes in the kinetics and kinematics in the vicinity of the defects.
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I. INTRODUCTION

The exceptional mechanical properties of carbon na
tubes~CNTs! and their potential use in structural compone
and devices have stimulated great interest and extensiv
search, ever since their discovery by Iijima1 in 1991. The
stiffness and strength of CNTs are in the range of TPa
GPa, respectively, while the nearest competing materials
hibit these properties in the range of GPa and MPa, res
tively. Also the fact that CNTs are extremely lightweig
compared to other materials makes them potential candid
as reinforcing fibers in superstrong composites. Before t
can be applied in real nanocomposites, the strength and
ness of CNTs as stand alone units and their ability to tran
loads between a matrix and the nanotubular fibers thro
nanoscale interfaces needs to be clearly understood. A
heart of the problem is the very definition of strength a
stiffness at these scales. Strength and stiffness are de
based on stresses and strains at the macroscopic contin
level and these definitions are ambiguous at the nanosc
level. This issue is neither philosophical nor pedagogical
one of practical relevance, as will be illustrated in this pap
Widely reported computational and experimental results
CNT strength and stiffness are based on averaged quan
computed or measured at the length scale of a nano
which is many orders greater than the local atomic dim
sions. Though these averaged quantities may lead to ac
able properties for a few idealized configurations, local m
sures are required to unequivocally determine cer
extremum behaviors such as inelasticity, damage, fract
and failure. Such is the case when we need to study
origin and effect of deviations from the regular hexago
arrangement of carbon in a graphene sheet or in carbon n
tubes. Local mechanical behavior, for example in a 5-7-
Stone-Wales defect, is entirely different from that of a reg
away from the defect, all within the same nanotube subjec
to a far field force. The relation between the average
local behaviors is a well-known problem in the macro wo
but is manifested with even more vigor in the CNT bas
nanoworld, and is the subject of the present paper. Tho
we have focused on single walled CNTs in this work, t
methodology developed here is equally applicable to mu
walled CNTs. Since we mainly deal with single wall carb
0163-1829/2004/69~9!/094101~12!/$22.50 69 0941
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nanotubes in this work, the term CNT refers to a single w
carbon nanotube unless indicated otherwise.

Experimental observations have revealed that topolog
defects such as the 5-7-7-5 Stone-Wales defect are c
monly present in nanotubes.2 These local defects can alte
not only the inelastic properties but also the elastic prop
ties, e.g., the Young’s modulus and Poisson’s ratio. Con
quently, these defects may alter the longitudinal, lateral s
nesses, and flexural rigidity in response to tension, tors
and bending, respectively. It should be noted that analog
point or line defects~vacancies, substitutional atoms, an
dislocations! in bulk crystalline materials tend to influenc
only the inelastic properties because these types of defe
though quite large in number, are still extremely small vo
metrically. Because of the unique planar hexagonal mesh
structure of the carbon nanotubes, topological defects
alter the deformation response and hence the elastic pro
ties. In addition, these can also be potential sites where
irreversible mechanical response is initiated.3 While these
assertions are true even for planar graphene sheets, w
rolled as carbon nanotubes these defects locally alter the
vature of the tubes causing further nonlinear effects. Con
quently, they respond differently not only when the diame
varies, albeit to a lesser extent, compared to the chira
where the rolling orientation directly affects the geome
near the defects.

Studies have shown that defects in CNTs may not o
affect the mechanical properties but the electronic, magne
and hybridization characteristics, and hence needed to be
derstood thoroughly.4–6 Also the transition in theY junction
contemplated in CNT based molecular electronics
achieved through the incorporation of many 5-7-7-5 defe
either by design or otherwise.7 Similarly, a transition of
nanotubes from one diameter to another can be achieve
locating a few of these defects strategically in the transit
region. In addition, when nanotubes are used as fiber
nanocomposites interfacial bonding may preferably occu
these defects regions based on energy considerations.
when studying load transfer issues in CNTs, understand
the mechanics of these zones is critical. Another area of
tential application of CNTs is in the effective storage of h
drogen for possible use in fuel cells. Here again the prop
sity for hydrogen penetrating a defected region and ente
the tube is higher than regular regions.
©2004 The American Physical Society01-1
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In this paper, we introduce definitions of atomic stress a
atomic strain quantities as applicable to carbon nanotu
Though these stress measures have already been us
compute stresses in general three-dimensional crysta
materials, their application to carbon nanotubes entails a
tain re-evaluation of what constitutes the proper volume i
planar configuration. We have formulated a methodology
evaluate the kinematic measure of atomic strain specific
for carbon nanotubes. Strain at the atomic level is still
fined as the spatial gradient of the displacement field;
displacement field is expressed in terms of atomic displa
ments and interpolation functions. These measures are
plied to CNTs with and without 5-7-7-5 Stone-Wales defec
Local stress-strain responses in the defected and perfec
gions are then examined. It is observed that the defect
duces stress and strain concentration effects in the vicinit
the defect due to changes in the geometric configuration
concomitant force fields. Thelocal stiffnesssubstantially de-
creases in the defected region and the mechanics of why
happens is examined in terms of both the kinematics
kinetics.

II. ATOMIC LEVEL STRESS MEASURES

Stress is a measure defined to quantify the internal re
tance of a material to counter external disturbances. Th
external disturbances can be either mechanical, ther
electrical, magnetic, or gravitational in nature. While m
chanical loads appear as forces and moments at the sur
of the body, other loads are distributed throughout the v
ume as body forces. Stress in a simplified sense can be
strued as force over an infinitesimal area as the area ten
zero in the limiting process. It is implied in this definitio
that force acting over the infinitesimal area is uniform, lea
ing to a unique state of stress. Without loss of generality
concept of uniform force over an infinitesimal volume can
extended to the three-dimensional state of stress with fo
acting on the surfaces of the cube.

When we define stress at a point, in the sense of c
tinuum mechanics we implicitly assume that a homogen
state of stress exists within the appropriately chosen infi
tesimal volume surrounding that point. As we apply this co
cept todiscrete lattice mechanics, we need to identify a vol-
ume around a given point over which the stress beco
homogeneous. Such a selection of appropriate volu
clearly depends on the degree of stress heterogeneity exi
at the material in question. It should be noted that the h
erogeneity in the stress state can be caused either due t
heterogeneity in the material~e.g., defects such as inclu
sions! or due to inhomogeneous loading conditions~e.g.,
bending!. If stress in a selected volume has a very sh
spatial gradient, then we are required to choose smaller
smaller volumes to evaluate the stress quantity with a c
objective of choosing the largest possible volume to sat
the condition of homogeneity within that volume.

In this context there have been various formulations
stress in molecular dynamics such as virial stress,8 BDT or
atomic stress,9 Lutsko stress,10,11 and mechanical stress b
Cheung and Yip.12 We invoke these various definitions o
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stress measures with different volumes of interrogation
apply them to carbon nanotubes in a molecular dynam
formulation based on the Brenner potential.13 The most com-
monly used stress measure at the atomic scale is the v
stress8 (S i j ). For a pair potentialV this can be expressed a

S i j 5
1

VTot (
a51,n

S 1

2
mav i

av j
a1 (

b51,n

r ab
i r ab

j

ur abu
dV

drab
D . ~1!

Here i and j denote the indices in Cartesian coordinate s
tems 1, 2, and 3, whilea andb are the atomic indices. The
summation is over all the atoms occupying total volum
VTot. ma andva denote the mass and velocity of atoma. r ab
is the distance between atomsa andb. The termdV/drab is
the scalar of force exerted on atoma by atomb. Without
loss of generality this expression can be rewritten for pot
tials dependent on bond angles such as bond order poten
as

S i j 5
1

VTot
(

a51,n
S 1

2
mav i

av j
a1 (

b51,n
r ab

j f ab
i D , ~2!

where f ab
i is the force on atoma due to atomb resolved in

the i th direction. We have used this form to calculate vir
stress. A similar form for atomic stress has been used fo
modeled with the Tersoff potential by Yu and Madhukar14

Based on the preceding discussion regarding volume it m
be noted that this stress formulation is strictly valid on
when a homogenous stress state exists in the entire vol
of the simulation box. For example, this measure would
valid for uniformly loaded nanotubes without defects.

The above definition of bulk stress has been extende
one atomic volume by Basinski, Deusberry, and Taylor9 to
define atomic stress~also called BDT stress!. This is based
on the assumption that a bulk stress measure would be v
for a small volumeVa around an atoma. This definition of
atomic stress (s i j

a ) for atoma can be expressed as

s i j
a 5

1

Va S 1

2
mav i

av j
a1 (

b51,n
r ab

j f ab
i D . ~3!

Theoretically, the above definitions are valid only for h
mogenous systems, though BDT stress gives a fair indica
of the nature of stresses in systems with defects and has
used to study point defects and grain boundaries in a num
of metallic systems.9,15,16The total volume and volume of a
single atom are required for the calculation of virial and BD
stresses. Further, to ensure consistency,

S i j 5
1

VTot (
a

s i j
a Va. ~4!

The total volume has been used extensively in the co
putation of an elastic modulus based on an energy appro
~see the references in Table I!. We have used the most com
monly used volumeVTot5pdtl whered is the diameter,l is
the length, andt53.4 Å is the interplanar spacing in graph
ite. The atomic volume has been computed based on
interatomic distance~1.42 Å in undeformed tubes! and the
interplanar spacing~3.4 Å!.
1-2
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TABLE I. Values of Young’s Modulus computed for CNT by different methods in the literature.

Author & Year Method

Young’s
Modulus

~TPa!

Other
Material

Parameters Comments

Hernandez, Goze
Bernier, Rubio

~1998!

Total-energy,
non-orthogonal
tight binding.
Axial tension

1.22-1.26 Poisson’s ratio:
0.18

wall thickness50.34 nm
Y5Vo

21(]2E/]«2)

Timur Halicioglu
~1998!

Molecular dynamics
~Brenner’s Pot!
Axial tension

0.50 Poisson’s ratio:
0.18

wall thickness50.34 nm
Y5(]s/]«)«50

Dong Qian. Wing kam
Liu and Rodney S. Ruoff

~2001!

Analytical method
on graphene sheet

0.989 Poisson’s ratio:
0.367

wall thickness50.34 nm
Ci jkl 5(]2W/]F ji ]Flk)

Y. Xia, M. Zhao, Y. Ma,
M. Ying, X. Liu, P. Liu,

and L. Mei
~2002!

Molecular dynamics
andab initio

Internal pressure

C(5.5)
2.55(«zz,0.003)
0.85(«zz,0.04)
1.14(« rr ,0.003)

0.52-0.26-
(0.003,« rr ,0.04)

Poisson’s ratio used
in calculation

0.17

Independent of wall
thickness,Y increases
with 5-7-7-5 defect

G. Zhou, W. Duan, B. Gu
~2000!

First principles
cluster method~LDA !

Axial tension

0.764 Poisson’s ratio:
0.32

Tensile strength56.249
GPa.

J. P. Lu
~1997!

Empirical force
constant model

0.971-0.975 Poisson’s ratio:
0.277-0.280

wall thickness50.34 nm

J. M. Molina, S. S. Savinsky,
and N. V. Khokhriakov

~1995!

Tight binding 1.4 ---- wall thickness50.34 nm

A. Krishnan, E. Dujardin,
T. W. Ebbesen, P. N. Yianilos,

and M. M. J. Treacy
~1998!

Experimental: free
standing room

temperature vibrations

1.25 ----- Weighted average value

B. I. Yakobson, C. J. Brabec,
and J. Bernholc,

~2001!

Many body potential
and continuum shell

model

5.5 Poisson’s ratio:
0.19

wall thickness50.066 nm

B. G. Demczyk, Y. M. Wang,
J. Cumings, M. Hetman,

W Han, A. Zettl, R. O. Ritchie
~2002!

Experimental pull
and bend test

0.91 Tensile strength
50.15 TPa

wall thickness50.334 nm
with continuum

correction Young’s
modulus50.8 TPA

M. F. Yu, B. S. Files,
S. Arepalli, R. S. Ruoff

~2002!

Experimental
Tension test

0.32-1.47 Failure strength:
13-52 GPa

wall thickness50.34 nm

Z. C. Tu and Z. C. O. Yang
~2002!

LDA 4.7 Poisson’s ratio:
0.34

wall thickness50.075 nm

G. V. Lier, C. V. Alsenoy,
V. V. Doren, P. Geerlings

~2000!

Ab initio 0.72-1.120 Poisson’s ratio:
0.026-0.125

wall thickness50.34 nm

M. M. J. Treacy, T. W. Ebbesen,
J. M. Gibbson~1996!

Experimental
~TEM!

1.81 ----- First measurement ofY

J. P. Salveta, G. A. D. Briggs,
J. M. Bonard, R. R. Bacsa,

A. J. Kulik, T. Stockli,
N. A. Burnham, and L. Forro

~1999!

Experimental
~Atomic Force
Microscope!

1.0 Shear modulus
51 GPa.

wall thickness50.34 nm

N. Yao, V. Lordi
~1998!

Molecular Dynamics
~Thermal vibrational

frequencies!

1.0 ---- wall thickness50.34 nm

C. F. Cornwell and L. T. Wille
~1997!

Molecular Dynamics
~axial Compression!

0.2-2.0 ----- Y varies with radius
094101-3
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Other definitions of stress have been advanced
Lutsko10 and Cheung and Yip12 to study inhomogeneous sys
tems. According to Cheung and Yip’s definition, mechani
stress is calculated as the sum of the time rate of the cha
of the momentum flux and forces divided by area across
particular surface of interest. The concept of local stress
vanced by Lutsko and extended by Cormieret al.11 is based
on the local stress tensor of statistical mechanics. Furt
this definition has been shown to conserve linear moment
The Lutsko stress (s i j

L ) can be expressed as

s i j
L 5

1

VAvg (
a51,n

S 1

2
mav i

av j
a1 (

b51,n
r ab

j f ab
i l abD . ~5!

Here l ab denotes the fraction of the length ofaub bond
lying inside the averaging volumeVAvg. Further, this aver-
aging volume can be a small part of the total volume po
bly containing defects. Lutsko stress has been used to ev
ate the local elastic properties of grain boundaries in met
Cormieret al.11 have recently shown that this measure giv
a better match for continuum solution of inclusion proble

In bulk materials the averaging volume~for the Lutsko
stress! is typically considered as a spherical volume, thou
the derivation of the stress tensor places no such restric
We have considered an averaging volume shown in Fig. 1
this calculation.

In summary, Virial stress can be used if the stress sta
homogeneous in the entire volume~of simulation cell!;
Lutsko stress can be computed for a partial volume and
homogeneity restriction is still applicable to that volume.
the stress needs to be computed around a single atom,
BDT stress can be used. Here again homogeneity is assu
in the volume in which stress is computed. In the converse
inhomogeneity exists then the choice of the stress mea
depends on the extent of spatial inhomogeneity. For exam
if we need to examine the overall effect of a 5-7-7-5 Sto
Wales defect, we need to use Lutsko stress. If we are fur
interested in the role of a specific atom in the defected
gion, then we need to use BDT stress to capture the phy
of the problem.

In spite of the fact that these various definitions have b
used with regularity in studying metallic systems~both for
EAM and pair potentials!, and some nonmetallic system

FIG. 1. Averaging volume used for the Lutsko stress in
simulations.
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such as Si and Ge,14 to the best of our knowledge they hav
not been used for carbon nanotubes. For carbon nanotu
Halicioglu17 has obtained the atomic stress values in carb
nanotubes based on the strain energy consideration usin

s i j 5
1

V

]Ea

]« i j
. ~6!

Here Ea is the strain energy and« i j is the corresponding
strain component. This measure is used for the entire t
and requires knowledge of conjugate strain. Belytsch
et al.18 calculated stress based on applied forces and
cross sectional area of the nanotube. Xiaet al.19 calculated
stress based on the pressure exerted by hydrogen atom
the nanotube and the averaged increase in the dimensio
the nanotube.

The prevailing methods of evaluating elastic moduli a
the stress-strain behavior of nanotubes implicitly assume
a homogenous state of stress exists, allowing them to
energy to compute the modulus. Further they need to kn
the value of the strain and to assume that the strain is c
stant throughout the domain. This would not pose any pr
lems for nanotubes without defects under uniaxial loadi
We show in later sections that when the condition of hom
geneity is violated, as in a defected system, or in the cas
multiaxial state of loading local stress and strain measu
would prove to be more useful than global energy ba
approaches. Now we proceed to develop the kinematic
strain measure for nanotubes at an atomic scale.

III. ATOMIC LEVEL STRAIN AND ENERGY MEASURES

In the description of continuous media, the thermom
chanical behavior of materials is usually prescribed by re
ing the kinetic quantity at a given material point~or particle!
to a kinematic quantity through a constitutive equation. F
example, in Hooke’s law for isotropic materials the kin
matic quantity strain« is related to the kinetic measure stre
s, using the simple relations5E«, whereE is the Young’s
modulus. This modulus is usually evaluated in a uniax
tensile test where the stress state is uniaxial (s115s) but the
strain state is multiaxial («115«;«225«3352n«) and the
modulus isE5s11/«115s/«. The strain energy associate
with the deformation is given by

dW5sd«⇒W5
s2

2E
5

E«2

2
. ~7!

If Young’s modulus is a constant then the stress-strain
sponse is linear and strain energy in Eq.~7! is valid. Such is
the case for a linear elastic isotropic material. The abo
equation illustrates the fact that in order to evaluate Youn
modulus in a linear elastic model, only any two of the va
ables stress, strain, and energy are independent. While e
ating the former two, many workers used energy and str
to obtain these quantities under homogenous conditio
Young’s modulus can be evaluated using energy and s
strain measure using the equation,
1-4
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E5
2W

«2 or in general terms asE5
]2W

]«2 . ~8!

In the above equation selection of any strain measur«
yields a corresponding modulusE, though it can be easily
noticed that the pairs are not unique. For example, if o
were to select a new measuree* and then evaluateE* then
this new modulus will be quite different, as shown below

e* 5a«, s* 5bs⇒E* 5gE where

g5
b

a
given that ab51. ~9!

The above equation holds good for any arbitrary value oa
andb. It is thus clear that one can get quite different valu
of Young’s modulus based on the selection of strain meas
or stress measure. For the more general case of anisot
elastic materials, ifW is assumed to be a function of only
current deformed state and independent of the history of
deformation then the material is hyperelastic with

Ci jkl 5
]2W

]« i j ]«kl
, ~10!

whereCi jkl are the components of the fourth order elastic
tensor and« i j are the components of the strain tensor. U
fortunately for the above equation to be consistent with
usual elasticity tensor components one needs to identify« i j
as the components of the frame invariant Green-Lagra
strain tensor. Thus evaluating stiffness components using
~10! or ~8! has several shortcomings.

~1! The magnitude of the Young’s modulus even for is
tropic cases, depends on the choice of strain measure
shown in Eq.~9!.

~2! In using Eq.~7! the carbon nanotubes exhibit a dire
tional independence in their material orientations. Clea
this is not the case as the mechanical response of a zi
tube is different from that of an armchair tube. Thus t
equation presumes that a material is isotropic which is inc
rect.

~3! The equation implicitly assumes that a state of hom
geneous deformation occurs throughout the volume of in
rogation, which is not always the case.

~4! We need to implicitly assume that a strain energy d
sity function exists for these classes of materials.

~5! We need to assume that the internal strain energ
the material is always equal to the change in potential ene
as given by the interatomic potentials. This would not be t
for simulations at a finite temperature.

Based on the above argument, the proposed metho
evaluating local stresses and strains is a better approac
the problem. Strain is a measure of the deformation suffe
by a body, and is typically measured by the relative chan
in length and angles of line segments of the deformed c
figuration compared to the original. The simplest form
strain is the uniaxial strain defined by«5(L2Lo)/Lo ,
whereL is the current length andLo is the original length.
Though this form of strain has been used for nanotubes,18,20
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it may not be sufficient to represent multiaxial strain state
prove adequate for inhomogeneous distributions.

A more general measure that is applicable to large de
mation and finite rotation cases is the deformation grad
tensorF which relates the deformed configurationx to the
undeformed configurationX given by

F5
dx

dX
. ~11!

The displacementu of a given atom can be expressed as

u5x2X. ~12!

An infinitesimal strain measure« defined as

«5
]u

]X
5~F2I !, ~13!

is used in this work. For a theoretically consistent formu
tion one needs to identify a set of frame invariant stress
strain measures that are not only conjugate quantities bu
evaluated in the same configuration, either in the undeform
or the deformed state. There are many choices available
the selection criterion is beyond the scope of this pap
However, if we choose to use the deformed configuration
our reference state, then we can use Cauchy stress an
mansi strain as the conjugate quantities. Further, Alma
strain can be approximated to the small strain measure
sented above@Eq. ~13!#, if the strains are not large and if th
rigid body rotations during the deformations are limited.

The computational methodology for calculating strains
as follows: a defect free nanotube can be considered
mesh of hexagons. Each of these hexagons can be treat
containing four triangles. A local coordinate syste
(X8Y8Z8) is constructed for each of these triangles with
centroid as the origin, and the localZ8 axis is along the
length of tube~see Fig. 2!, the localY8 coincides with the
radial direction of the centroid of the triangle. The localX8 is
obtained as cross product ofZ8 andX8 axes, so that atoms
lie on theX82Z8 plane. The in-plane strains («z8 ,«x8 ,«z8x8)
for this configuration can be evaluated using displaceme
of atomsi, j, and l (ui ,v i ,..) which form the triangle as

FIG. 2. A typical triangular facet, with the local coordinate
(x8,y8,z8) coinciding with the centroid of the triangular element
1-5
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H «z8
«y8

gz8y8

J 5@B#$ui v i uj v j ul v l%
T,

where @B# is the matrix of the gradient of the interpolatio
functions.21 Once the strains of the triangular facets are o
tained, strains in hexagons are evaluated as the area weig
average of the triangles contained in the hexagons. In
case of tubes with 5-7-7-5 defects the mesh described a
contains heptagons and pentagons along with hexag
These pentagons and heptagons are composed of thre
five triangular facets respectively. The strain at each ato
location is evaluated as average of three hexagons~or
heptagons/pentagons! that encompass the concerned atom

IV. RESULTS AND DISCUSSION

In this section we present results obtained from molecu
static simulations using conjugate gradient algorithm a
Brenner potentials. Periodic boundary conditions were
plied to model tubes of infinite length. For simulating CN
under uniaxial loading, displacements were applied to
atoms in the longitudinal direction. Stress, strain, and ene
measures at the local and global levels were computed fo
cases. In order to validate the local stress and strain m
sures, a perfect~9,0! CNT was analyzed. Once validate
these measures are used to study the 5-7-7-5 defect in t
with different diameters and chiralities.

In zigzag (n,0) nanotubes 5-7-7-5 defects can be ma
fested in two different types, type I and type II, as shown
Figs. 3 and 4. In a type I defect, a horizontal bond o
hexagonal network is rotated by 90° so that when the de
is formed, two of the hexagons are transformed to two h
tagons and two pentagons, placed symmetrically aboutx ~or
y!-z axes. In the type II defect heptagons and pentagons
asymmetric withx ~or y!-z axes.

FIG. 3. ~9,0! tube containing a 5-7-7-5 defect of type I.

FIG. 4. ~9,0! tube containing a 5-7-7-5 defect of type II.
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A. Validation of stress and strain measures

When subjected to a far field, load on a defect free h
mogenous state of stress and strain exists. Strain calcula
based on a triangular facet approach give consistent re
for tubes with different chiralities and diameters. Also t
three stress measures yield consistent stress values. F
tube with uniform strain, the variation in BDT stress~com-
puted for each atom! from atom to atom is negligible, and
the magnitude of BDT stress and virial stress are found to
identical. For homogenous systems by definition, virial a
BDT stresses coincide, since the volumeV tot in Eq. ~2! is
equal tonVa in Eq. ~3! wheren is the number of atoms in
the system. When Lutsko stress is computed, a volu
slightly larger than twice cutoff radius is used. The addition
l ab term @see Eq.~4!# leads to a small difference betwee
Lutsko and virial stresses. If we choose a larger volume
the Lutsko stress, the difference reduces and completely
ishes when the interrogating volume is equal to total volum
However, the slope of the stress-strain curve in all the th
cases is identical.

It is interesting to note that the strain values in the t
angles are not necessarily equal to the applied strain val
Though the magnitude of strain in adjacent triangles is d
ferent, the weighted average of strain in any hexagon is
same, and is identical to the applied strain. Consequen
every atom experiences the same state of strain. The v
tion of the strain state within the hexagon~in different trian-
gular facets! is a consequence of different orientations
interatomic bonds with respect to the applied load axis.

Further, to validate the applicability of the three stre
measures and the strain measure, stress-strain curve
plotted for a perfect~9,0! CNT under uniaxial tension. Figure
5 shows the stress-strain curves based on virial, Lutsko,
BDT stresses, measured in the longitudinal~Z! direction, and
longitudinal strain«z . The Young’s modulus is evaluated a
the slope of stress-strain curve at zero strain~initial tangent!.
We obtain a Young’s modulus value of 1.002 TPa for a~9,0!

FIG. 5. Stress-strain curve for a~9,0! perfect tube subject to
uniaxial tension based on three stress measures.
1-6
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CNT. This compares favorably with values published in t
literature as shown in Table I. Though there is a wide va
tion in the value of the Young’s modulus~0.5–5.5 TPa!,
based on different computational and experimental
proaches, the value centers around 1 TPa which comp
well with this investigation.22–33

Having validated the stress and strain measures, in
IV B we present the mechanical response of nanotubes
5-7-7-5 defects. The results are then followed by a discus
of interesting observations in Sec. IV C

B. Deformation of nanotubes with a 5-7-7-5 defect

Figure 6 shows the variation of Lutsko stresss33 along
the length of the~9,0! tube. The tube has a symmetric 5-
7-5 defect placed in the middle of the tube. The nanotub
divided into seven segments along the length, and a stri
atoms in each segment as shown in Fig. 1, is selected
computing average stresses and strains. It can be clearly
served from Fig. 6 that there is a stress amplification in
central segment which contains the defect. We note that e
at zero strain level, a stress value of about 15 GPa is
served at the defect, analogous to residual stresses at m
scales. As the strain level increases, the stress concentr
factor ~defined as the ratio of peak stress to average str!
decreases.

Figure 7 shows the variation of longitudinal strain«33
along a length of a CNT for different strain levels. At a 0
external strain, the local strains at all points are equate
zero and form the reference configuration against which
ther deformation is measured. Though it is possible to
other reference states~for example, a defect-free CNT with
hexagonal network! the present choice is preferred since d
placements are identically zero. With this definition of t
initial state, the strain is zero, in not only defect free he
gons, but also in pentagons and heptagons.

From Fig. 7, it can be observed that magnitude of
strain increases at the defect and is uniform away from

FIG. 6. Variation of Lutsko’s stress along the length of a~9,0!
SWCNT containing a 5-7-7-5 defect of type I near the center of
tube.
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defect. The longitudinal strain response is considerably
ferent from that of the stress. The strain concentration~de-
fined as the ratio of local to the global average! increases
with increase in externally applied load, while the stress c
centration is found to decrease with increasing applied str
The shear strains are equal to zero in nanotubes without
fects but a small amount of shear~about one tenth of applied
strain! is present in defected tubes. This effect is found
extend to the areas adjoining defected region.

Since the local values of the stress and strain vary
each of the atoms in the defected region, it is useful to
amine the spatial variation of these quantities using a con
plot. Figure 8 shows the stress and strain contour plots n
the defected region for various applied strains. Stress c
tours are based on BDT~atomic! stresses and correspond
the strain states which are also computed at each atom.
stress and strain contours show concentration effects on
rotated bond that engenders the type I defect. Though
shown here, peak stress occurs at the defect even at
applied strain and this corresponds to the stress caused d
the presence of defect. Contour plots show that both st
and strain values monotonically increase though there
some differences in their responses.

Use of Lutsko stress enables us to examine the str
strain response of the defected region per se and compa
with the properties of a defect free CNT. Figure 9 sho
Lutsko stress-strain curves for a defect free~9,0! nanotube
@plot ~a!# and compares it with the Lutsko stress-strain curv
of the defected regions. From this plot it can be observed
there is a drop in stiffness at the defect. The stiffness
region with type I defect@plot ~b!# is 0.621 TPa and that o
type II defect@plot ~c!# is 0.627 TPa in contrast to a muc
higher Young’s modulus value of 1.002 TPa for a defect fr
CNT.

We now proceed to compare the effect of defects on m
chanical properties for various diameters. The numerical v
ues of stiffness of defected regions in different CNTs a
tabulated in Table II, and Fig. 10 shows the stress-str

e
FIG. 7. Variation of strain«33 along the length of a~9,0!

SWCNT containing a 5-7-7-5 defect of type I near the center of
tube.
1-7
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FIG. 8. Contour plots of the longitudinal strain«33 strain and stresss33 near the defected region drawn at different applied strain lev
~a! Strain contours at an applied strain of 1%.~b! Stress contours at an applied strain of 1%.~c! Strain contours at an applied strain of 3%
~d! Stress contours at an applied strain of 3%.~e! Strain contours at an applied strain of 5%.~f! Stress contours at an applied strain of 5%
~g! Strain contours at an applied strain of 8%.~h! Stress contours at an applied strain of 8%.
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curves. There is only a marginal difference in the local st
ness values for various (n,0) CNTs.

C. Discussion

It is quite noteworthy that even for fully equilibrated d
fect free CNTs, a nonzero stress of a few GPa is observe
zero strain~see Figs. 9 and 10!. This can be construed a
residual stresses which are defined as self equilibrating in
nal stresses even in the absence of external loads~thermal or
mechanical!. If these nonzero residual stresses are cau
by the geometry of formation, then the magnitude of str
should depend on the diameter. Figure 11 shows the varia
of zero-strain stresses with an inverse of the radius for v
ous (n,0) type CNTs. It can be seen from Fig. 11 that the
stresses decrease monotonically with the radius of CNTs
approach zero for an infinite radius, i.e., a graphene sh
Since these stresses vanish for a graphene sheet and inc
with the curvature, these stresses can be considered fo
tion stresses relative to a graphene sheet and hence form
induced residual stresses. The residual stresses should
correspond to strain energy relative to graphene sheets
are supported by the results of Robertsonet al.34

Further, in nanotubes with defects at zero strain, ther
an additional stress~and hence energy! that corresponds to
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the formation of defects~see Fig. 6!. Thus in defected re-
gions residual stresses arise both due to the curvature
defect formation. Atomic structure in the vicinity of the de
fect has a greater deviation from a perfectSP2 hybridized
structure~planar with bond angles of 120° as in a graphe
sheet! compared to perfect regions of a CNT. While stress
due to curvature are influenced by the radius of the CN
stresses due to defect formation are affected by the typ
defect.

It is observed in Fig. 6 that the stress concentration du
the presence of defects decreases at higher strains. In
words, with increased strain levels, the effect of defects
enhancing the local stress level decreases. Sev
investigators35–39 have observed the spontaneous format
of defects at higher strains. These studies have shown
the defected structures have a lower energy at hig
strains.38 A lowered energy is manifested by a lowered stre
concentration effect.

Contrary to the stress concentration, the strain concen
tion at the defect increases as the applied strain is incre
~see Fig. 7!. In order to understand this, let us look mo
closely at the deformation pattern away from the defect a
near the defect. Consider a defect free region as show
Fig. 12~b!. The basic hexagonal network is expected
stretch under the action of an axial load. As a result ther
1-8
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a reduction in bond angles such asUPQ̂ and a correspond
ing increase in bond angles such asPQR̂. The geometrical
constraint due to the hexagonal nature of the mesh en
that an increase in anglesPQR̂ be about two times the de
crease in anglesUPQ̂ as observed in Fig. 13. In addition, th
bonds in the line of action of an axial load such asPY are
expected to stretch, and bonds such asPQ stretch and rotate
The deformation induces predominantly longitudinal stra
and compressive lateral strains due to Poisson’s effect. S
strains are caused by angle changes between any two pe
dicular lines before and after deformation. Since the hexa
is extended in one direction and compressed in the other,
type of deformation does not induce any shear strain.

Now consider the region with a 5-7-7-5 defect as sho
in Fig. 12~a!. The defected regions comprise irregular hep
gons and pentagons. Also the angles between bonds
considerable deviation from a perfectsp2 structure~with a
bond angle of 120°!. It is intuitive to expect that a deforma
tion of this high energy structure would occur by rearrang
bond angles rather than bond lengths. Figure 14 shows b
angle changes for selected atoms near the defected re
with respect to applied strains. A significant variation in bo

FIG. 9. Stress-strain curves for a~9,0! carbon tube with and
without defects.~a! Stress-strain curve for a tube without defect.~b!
Stress-strain curve for a type I defect.~c! Stress-strain curve for a
type II defect.

TABLE II. Stiffness of defected region of different nanotubes.

Nanotube Radius~nm! Chiral angle Stiffness~TPa!

~9,0! ~Defect Type I! 0.352 0° 0.621
~9,0! ~Defect Type II! 0.352 0° 0.627
~10,0! 0.391 0° 0.639
~11,0! 0.431 0° 0.639
~13,0! 0.509 0° 0.638
~15,0! 0.587 0° 0.629
~5,5! 0.339 30° 0.524
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angles is observed; for example there is an angular varia
of up to 11% inABĤ at an applied strain of 8% in contras
to a maximum angle variation of 4% in defect free structu
for a ~9,0! CNT. Larger changes in bond angles induce
larger component of rotation to the strain leading to high
longitudinal strains in the defected region. In addition, t
irregularity of the heptagons and pentagons combined w
large angular changes results in higher shear strain. A
result of these larger strains at lower stresses, the local s
ness of defected region is much lower than correspond
defect free regions. A fluctuation in the radius of curvature
observed at the defect. For example the radius of curvatu
the defect varies from 3.45 to 3.53 Å in a~9,0! CNT with a
radius of 3.523 Å. This fluctuation creates an instability

FIG. 10. Stress-strain curves for tubes of different diamet
with and without defects. Stress-strain curves with filled symb
are for tubes without defects and stress-strain curves with o
symbols are for tubes with defects.

FIG. 11. Residual stress variation with radius.
1-9
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FIG. 12. ~a! Atomic configuration of a 5-7-7-5 defect in a~9,0! carbon nanotube with a local variation of strains around one of the cri
atoms.~b! Atomic configuration of a perfect region far away from the 5-7-7-5 defect in a~9,0! carbon nanotube with a local variation o
strains around a typical atom. Dashed lines indicate subelement divisions.
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the defect similar to a notch and contributes to the str
concentration and lowering of stiffness.

Stiffness reduction at the defect not only affects the ela
behavior, but is also expected to alter the inelastic behav
The elastic behavior~for example, the Young’s modulus! of a
long nanotube with a few defects is marginally lowered b
cause of the relatively low area fraction of the defects. Ho
ever, plasticity, fracture, and failure are localized phenom
wherein the defects play a major role. It is now understo
that the limiting behavior of nanotubes either for the onse
plasticity or for fracture is the generation of topological d
fects. Once the defects are nucleated they tend to serv
sites for further propagation of defects,36 or result in crack
propagation and brittle fracture18 depending on various fac
tors such as the chirality and temperature.38 Belytchko
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et al.18 reported that there is a reduction in fracture stress
the presence of a 5-7-7-5 defect; in addition, the def
serves as a nucleation site for fracture. Defected region
CNTs experience higher strains for similar values of str
compared to defect free tubes. The lower stiffness of
defect region studied here is a clear indication of a redu
load carrying capacity. This causes the higher localized st
concentrations responsible for failure at lower appli
strains.

Local stiffness values of various CNTs with varying d
ameter are shown in Table II. It can be observed that ther
very marginal difference in stiffness values for differe
(n,0) types of nanotubes~0.621–0.639 TPa!. However, the
stiffness of the defect region in the~5,5! nanotube@compa-
rable in diameter to the~9,0! CNT# is much lower~0.524
1-10
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TPa!. This indicates that the curvature of the nanotube pl
a minimal role in determining the mechanical behavior of
defected region. The lack of radial symmetry at the def
suggests an anisotropic behavior of the defect region. A
result the stiffness of the defect in the~5,5! tube is lower than
the stiffness of other (n,0) types of tubes. It is interesting t
note that the formation energy40 of the defects is much
higher for ~5,5! nanotubes~3.34 eV! than (n,0) nanotubes
~2.12–2.75 eV!.

V. CONCLUSION

This paper demonstrates that atomic level stress and s
measures can be used to determine the Young’s modulu

FIG. 13. Bond angle variation with applied strain for a few bo
angles at a perfect region away from the defect.
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carbon nanotubes. Further, these measures can be used
tively to evaluate the changes in mechanical behavior du
defects. The stiffness of defects reduces by about 30–5
and is dependent on a number of factors such as the chira
the diameter, and the loading conditions.
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FIG. 14. Bond angle variation with applied strain for a few bo
angles near a defected region.
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