
PHYSICAL REVIEW B 69, 092505 ~2004!
Superconducting three-dimensional networks in a magnetic field: Frustrated systems
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Making use of the de Gennes–Alexander network equation, we have investigated the transition temperature
of three-dimensional superconducting networks in a magnetic field. For the magnetic fieldH(0.75,Ha2/F0

,2.25), a superconducting tetrahedron has a nonsuperconducting vertex because of the frustration. In contrast
to this, the C60 fullerene network shows antifluxons when the magnetic field is normal to one of the pentagons
and hexagons, because of the frustration that comes from the rotational symmetry around these polygons.
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Multiply connected type-I superconductors shows a pe
liar response to the external magnetic field. This is beca
magnetic flux can go through the holes of the supercond
ors in the unit of the flux quanta without much loss of ener
and the magnetic flux through the hole causes the windin
the phaseu of the superconducting order parameterD
5uDueiu. This is in contrast to the complete Meissner st
of the simply connected type-I superconductors. A sim
example is the Little-Parks experiment,1,2 which shows peri-
odic variation of transition temperature of the supercondu
ing cylinder as a function of the magnetic field which
parallel to the cylinder.

Superconducting networks are extreme examples of th
They consist of connected superconducting wires. Theo
cal studies of superconducting networks began with
Gennes’ work3 on the superconducting lasso under magne
field. The subsequent work of Alexander4 generalized de
Gennes’ method which is an application of the lineariz
Ginzburg-Landau~GL! equation, to the general superco
ducting networks. This is called the de Gennes–Alexan
network equation.

The two-dimensional networks are studie
theoretically5–9 and experimentally10–20 because they can b
made from the superconducting films. From the viewpoint
the multiple connectivity, however, we can expect thre
dimensional superconducting networks to show other pe
liar behaviors. In the case of three-dimensional netwo
because quantized flux must go inside through one of
faces and go out through another, if the areas of two faces
different, it causes a different frustration. Also there are s
eral symmetry axes for different kinds of rotation arou
them. Symmetry of the superconductors causes frustra
under a magnetic field and induces unusual magnetic
structures. For example, an antivortex and giant vortex
pear in mesoscopic superconducting plate for suitable ex
nal magnetic field.21–23

In this Brief Report we propose three-dimensional sup
conducting networks and study their transition temperat
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and structure of magnetic flux in a magnetic field. As a ca
didate of three-dimensional networks, we consider a tetra
dral network and a fullerene~C60! network. In these net-
works, only their edges are superconductors.

A tetrahedron is the simplest symmetrical polyhedro
which consists of three triangles. It has a threefold rotatio
symmetry around an axis that is normal to the one of the f
and goes through the opposite vertex. C60 fullerene is a trun-
cated icosahedron. This truncated icosahedron has 12 p
gons and 20 hexagons. Its geometry has many symmet
axes. Around an axis that is normal to a pentagon a
through the center of the fullerene, there is fivefold rotatio
symmetry. Also around the axis of a hexagon that is the sa
as the pentagon, there is threefold symmetry and aroun
axis that goes through the center of an edge that is share
adjacent two hexagons, there is twofold symmetry. The sy
metries of the two networks make the magnetic flux struct
complex.

In the following we only consider the vicinity of the tran
sition temperature of networks in a magnetic field, theref
the linearized Ginzburg-Landau equation is applicable. A
we assume that the diameter of the wires is small compa
to the GL coherence lengthj(T) and the penetration dept
l. Then the order parameter and the magnetic field are
form across the cross section of the wires. We rotate
applied magnetic field from the normal direction of the ba
plane. We define this applied field and its vector potentia

H5~H sinu cosf,H sinu sinf,H cosu!, ~1!

A5
H

2
~z sinu sinf2y cosu,x cosu

2z sinu cosf,y sinu cosf2x sinu sinf!. ~2!

First we consider a tetrahedral network, as shown in F
1~a!. We denote the order parameter at each vertex 1, 2
and 4 asD1 , D2 , D3, andD4.
©2004 The American Physical Society05-1
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Then the de Gennes–Alexander equation is given as

3 cos
a

j~T! S D1

D2

D3

D4

D
5S 0 M1 M1* M2*

M1* 0 M1 M2M3

M1 M1* 0 M2M3*

M2 M2* M3* M2* M3 0
D S D1

D2

D3

D4

D . ~3!

Here we defineM15eig cosu, M25eig2A2sinu sin f/A3, and
M35eigA2sinu cosu, where g52pF/3F0 , F5HA3a2/4 is
the flux through the basal triangle when the field is perp
dicular to it, andF05hc/2e is a flux quantum.

Solving this equation as an eigenvalue problem, we
the eigenvalues 3 cos@a/j(T)#53 cos(aA12T/Tc0/j0), where
Tc0 is the superconducting transition temperature of the b
at zero field andj0 is the coherence length at zero tempe
ture. The largest eigenvalue is related to the transition t
perature. We show the decrease of the transition tempera
as a function of the magnitude of the external field in F

FIG. 1. ~a! A tetrahedral network. 1–4 are indices of the verte
a is the length of the bond.~b! Decrease of the transition temper
ture as a function of the magnitude of the external field when
field is parallel toz direction.
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1~b!. The transition temperature is periodic with period 3F0,
because whenF53F0, the magnetic flux through all of the
triangle on the surface becomes a multiple ofF0. The flux-
oid can be calculated from the order parameter.9 The struc-
ture of the order parameter and the fluxoid vary with incre
ing applied field as shown in Fig. 2. WhenF/F051, a
quantum fluxoid goes through the basal triangle. But it c
not be divided to 1/3 quantum at upper three triangle surfa
then the superconductivity is destroyed at the vertex 4. T
state is stable untilF/F051.5. ForF/F0.1.5, the fluxoid
that goes through the basal triangle becomes two flux qu
and the order parameter structure is similar to the previ
state. These two states are not very stable atF/F051.5,
therefore the transition temperature becomes lowest
F/F051.5.

Dependence of the transition temperature on the direc
of the applied field is shown in Fig. 3. The tetrahedron h
threefold symmetry in thez direction, so the transition tem

.

e

FIG. 2. Order parameter and fluxoid structure of the tetrahe
network for F/F050.5 ~a!, F/F051.0 ~b!, F/F052.0 ~c!, and
F/F052.5 ~d!. In the left column, a cube shows the magnitude
the order parameterD i at the vertexi. In the right column, an arrow
shows the magnitude and direction of the fluxoid.

FIG. 3. The transition temperature as a function of the direct
of the applied field. The magnitude of the applied field is set
F5A3Ha2/45F0.
5-2



u

ge
th
o
a

e
is
Fi
th

x
f

te
B
h
ice
de

t
in

. 6
ere
ni-
m.
r-
e-

and
the
ns
fold
n-
h

is
an-
in
ious

on.
n

on
in the

ran-
on,

e
eld

BRIEF REPORTS PHYSICAL REVIEW B69, 092505 ~2004!
perature also shows threefold symmetry. Maximum destr
tion of the transition temperature occurs atf50 and u
5arccos(1/A3), where the field is perpendicular to the ed
41. The structures of the order parameter and fluxoid for
case are shown in Fig. 4. In this state, the quantized flux
comes through each of two triangular faces 234 and 123
goes out through each of other two faces 431 and 124.

Next we investigate a C60 fullerene superconducting n
work ~C60SNW! in a magnetic field. Each of the vertices
connected to three vertices in the C60SNW as shown in
5. Therefore the de Gennes–Alexander equation for
C60SNW at a vertexi becomes as

(
j 51

3

D jexp~ ig i , j !53 cos
a

j~T!
, ~4!

where

g i , j5
2p

F0
E

ri

r j
A~r!•dr. ~5!

Herej denotes a vertex which is connected with the vertei,
r i is the position of the vertexi, D i is the order parameter o
the vertexi, anda is the length of edges of C60SNW.

We now discuss the case where the direction of the ex
nal magnetic field is normal to a pentagon of C60SNW.
solving Eq.~4!, we get the magnetic field dependence of t
transition temperature and order parameters at 60 vert
The transition temperature is shown in Fig. 6. Here we
fined external magnetic flux per a pentagon,F51.72a2H.
The transition temperature curve is nonperiodic ofF/F0,
because the ratio of projection areas of a pentagon to
normal plane of the external field and that of its neighbor

FIG. 4. The structure of the order parameter~a! and magnetic
flux ~b! for f50, u5arccos(1/A3) andF5F0.

FIG. 5. A vertex pointi and it’s connected pointsj ’s.
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hexagons is irrational. Each of the dip structures in Fig
corresponds to a different fluxon distribution structure wh
total magnetic flux through the networks increases monoto
cally and the cusps are the transition points between the

Stable fluxon distributions of C60SNW for several exte
nal fields are shown in Fig. 7. Each distribution holds fiv
fold rotational symmetry around a pentagon. ForF/F0
50.45, an antifluxon appears at the central pentagon
four fluxons go through the C60SNW. This is because if
existence of antifluxons were not permitted, all four fluxo
should go through the center pentagon because of five-
symmetry and this fluxon distribution is energetically u
stable. Also forF/F050.20, total fluxons that go throug
the C60SNW is 2F0 and because of symmetry a 2F0 fluxon
appears at the central pentagon.

Next, we consider the case where the magnetic field
perpendicular to a hexagon of C60SNW. We show the tr
sition temperature variation with external magnetic field
Fig. 8. The dip and cusp structures appears as in the prev
case.

The C60SNW has threefold symmetry around a hexag
Therefore fluxon distributions of C60SNW, which are show
in Fig. 9, also show this symmetry. ForF/F050.55, five
fluxons go through the C60SNW. Therefore an antiflux
appears at the central hexagon, for the same reasons as
previous case.

FIG. 6. The magnetic field dependence of decrease of the t
sition temperature when the field is perpendicular to a pentag
whereF51.72a2H.

FIG. 7. Top views of the fluxon distribution of C60SNW in th
magnetic field perpendicular to a pentagon. Magnitudes of the fi
corresponds toF/F050.20 ~a!, F/F050.45 ~b!, and F/F0

50.60 ~c!.
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This appearance of antifluxons to keep the symmetry
the system is also found in the finite superconducting squ
lattice networks.9 An antifluxon also appears in the meso
copic superconducting plate.21–23

In summary, we have studied three-dimensional superc
ducting networks. In the tetrahedral network, there is ro
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