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Superconducting three-dimensional networks in a magnetic field: Frustrated systems
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Making use of the de Gennes—Alexander network equation, we have investigated the transition temperature
of three-dimensional superconducting networks in a magnetic field. For the magnetiel fie5<Ha?/®,,
<2.25), a superconducting tetrahedron has a nonsuperconducting vertex because of the frustration. In contrast
to this, the C60 fullerene network shows antifluxons when the magnetic field is normal to one of the pentagons
and hexagons, because of the frustration that comes from the rotational symmetry around these polygons.
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Multiply connected type-I superconductors shows a pecuand structure of magnetic flux in a magnetic field. As a can-
liar response to the external magnetic field. This is becausdidate of three-dimensional networks, we consider a tetrahe-
magnetic flux can go through the holes of the superconducdral network and a fullerenéC60) network. In these net-
ors in the unit of the flux quanta without much loss of energyworks, only their edges are superconductors.
and the magnetic flux through the hole causes the winding of A tetrahedron is the simplest symmetrical polyhedron,
the phaseé of the superconducting order parametsr Which consists of three triangles. It has a threefold rotational
—|A|€'. This is in contrast to the complete Meissner stateSYMmmetry around an axis that is normal to the one of the face

of the simply connected type-l superconductors. A simple2nd goes through the opposite vertex, fDllerene is a trun-
example is the Little-Parks experimértwhich shows peri- cated icosahedron. This truncated icosahedron has 12 penta-
odic variation of transition temperature of the superconductdons and 20 hexagons. lts geometry has many symmetrical
ing cylinder as a function of the magnetic field which is @es. Around an axis that is normal to a pentagon and
parallel to the cylinder. through the center of the fullerene, there is fivefold rotational
Superconducting networks are extreme examples of then§yMmetry. Also around the axis of a hexagon that is the same
They consist of connected superconducting wires. TheoretiS the pentagon, there is threefold symmetry and around an
cal studies of superconducting networks began with déXis that goes through the center of an edge that is shared by
Gennes’ work on the superconducting lasso under magneti@djacent two hexagons, there is twofold symmetry. The sym-
field. The subsequent work of Alexandegeneralized de Metries of the two networks make the magnetic flux structure
Gennes’ method which is an application of the linearizedcOmMplex. _ _ o
Ginzburg-LandauGL) equation, to the general supercon- N the following we only consider the vicinity of the tran-

ducting networks. This is called the de Gennes—Alexandefition temperature of networks in a magnetic field, therefore
network equation. the linearized Ginzburg-Landau equation is applicable. Also

The  two-dimensional  networks are  studied W€ assume that the diameter of the wires is small compared
theoreticallj—° and experimentalff2°because they can be 0 the GL coherence leng#(T) and the penetration depth
made from the superconducting films. From the viewpoint of*- Then the order parameter and the magnetic field are uni-
the multiple connectivity, however, we can expect threeform across the cross section of the wires. We rotate the
dimensional superconducting networks to show other pecuapphed magnetic field from the normal direction of the basal
liar behaviors. In the case of three-dimensional networksPlane. We define this applied field and its vector potential as
because quantized flux must go inside through one of the ) ] .
faces and go out through another, if the areas of two faces are H=(H sinf# cos¢,H sinfsin¢,H coso), (€
different, it causes a different frustration. Also there are sev-
eral symmetry axes for different kinds of rotation around _ )
them. Symmetry of the superconductors causes frustration A= 7 (Zsin#sing—y cosd,x cosé
under a magnetic field and induces unusual magnetic flux

structures. For example, an antivortex and giant vortex ap- —zsinf cosg,ysinfcosp—xsindsing). (2
pear in mesoscopic superconducting plate for suitable exter-
nal magnetic field!~2® First we consider a tetrahedral network, as shown in Fig.

In this Brief Report we propose three-dimensional superi(a). We denote the order parameter at each vertex 1, 2, 3,
conducting networks and study their transition temperatur@and 4 asAq, A,, A3, andA,.
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FIG. 1. (a) A tetrahedral network. 1-4 are indices of the vertex.

a is the length of the bondb) Decrease of the transition tempera-
ture as a function of the magnitude of the external field when th
field is parallel toz direction.

Then the de Gennes—Alexander equation is given as

Ay
3cos 2 | 22
COS—
ET)| Az
A,
0 M, M* M3 A,
M: 0 M1 MoMs | [ 5,
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Here we defineM;=g'? % M,=g72/2snfsind3 ~gng
Mg=g 72sin0cost \yhere y=27d/3D,, ®=H3a%4 is

the flux through the basal triangle when the field is perpen-

dicular to it, and®y=hc/2e is a flux quantum.
Solving this equation as an eigenvalue problem, we ge

the eigenvalues 3 c@(T)]=3 cosy1—T/To/ &y), Where

Teo is the superconducting transition temperature of the bulk

at zero field and, is the coherence length at zero tempera-
ture. The largest eigenvalue is related to the transition tem
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FIG. 2. Order parameter and fluxoid structure of the tetrahedral
network for ®/®,=0.5 (a), ®/P,=1.0 (b), ®/Py,=2.0 (c), and
®/dy=2.5(d). In the left column, a cube shows the magnitude of
the order parameteY; at the vertex. In the right column, an arrow
shows the magnitude and direction of the fluxoid.

1(b). The transition temperature is periodic with perioét 3
because whed® =3®d,, the magnetic flux through all of the
triangle on the surface becomes a multipledgf. The flux-
Lid can be calculated from the order paraméféhe struc-
ture of the order parameter and the fluxoid vary with increas-
ing applied field as shown in Fig. 2. Wheh/®,=1, a
quantum fluxoid goes through the basal triangle. But it can-
not be divided to 1/3 quantum at upper three triangle surface,
then the superconductivity is destroyed at the vertex 4. This
state is stable untd®/®y=1.5. For®/®,>1.5, the fluxoid
that goes through the basal triangle becomes two flux quanta
and the order parameter structure is similar to the previous
state. These two states are not very stabl®ab,=1.5,
therefore the transition temperature becomes lowest at
d/Py=1.5.

Dependence of the transition temperature on the direction
of the applied field is shown in Fig. 3. The tetrahedron has
threefold symmetry in the direction, so the transition tem-

t
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FIG. 3. The transition temperature as a function of the direction

perature. We show the decrease of the transition temperatueé the applied field. The magnitude of the applied field is set as
as a function of the magnitude of the external field in Fig.®=\3Ha%4=d,,.
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FIG. 4. The structure of the order parametar and magnetic ~ 0.1 T
flux (b) for ¢=0, 9= arccos(1{3) and®d = D,,.
perature also shows threefold symmetry. Maximum destruc- 0 . .
tion of the transition temperature occurs @a=0 and 6 0 1 2 3 4
=arccos(1{/3), where the field is perpendicular to the edge O/Dg

41. The structures of the order parameter and fluxoid for this o
case are shown in Fig. 4. In this state, the quantized fluxoid F!G. 6. The magnetic field dependence of decrease of the tran-
comes through each of two triangular faces 234 and 123 anjtion temperatt;re when the field is perpendicular to a pentagon,
goes out through each of other two faces 431 and 124,  Where®=172H.

Next we investigate a C60 fullerene superconducting net:

work (C60SNW in a magnetic field. Each of the vertices is hexagons is irrational. Each of the dip structures in Fig. 6
connected to three vertices in the éGOSNW as shown in Fi corresponds to a different fluxon distribution structure where

5. Therefore the de Gennes—Alexander equation for thC(;tl?l gggqﬁgccﬂix;h;?ggzn;ht?a?g‘t'y:r:ksg%‘igesgfsen;gqﬁteom”"
C60SNW at a vertex becomes as y usp ition poi w :

Stable fluxon distributions of C60SNW for several exter-
3 a nal fields are shown in Fig. 7. Each distribution holds five-
2 Ajexp(iy; j)=3 cos_—, (4)  fold rotational symmetry around a pentagon. Fb/®,
=1 ’ &(T) =0.45, an antifluxon appears at the central pentagon and
four fluxons go through the C60SNW. This is because if the
existence of antifluxons were not permitted, all four fluxons
27 (1 should go through the center pentagon because of five-fold
YiT oo A(r)-dr. (5 symmetry and this fluxon distribution is energetically un-
07T stable. Also ford/d,=0.20, total fluxons that go through
Herej denotes a vertex which is connected with the verfex the C60SNW is &, and because of symmetry &3 fluxon
r; is the position of the vertek A; is the order parameter of appears at the central pentagon.
the vertexi, anda is the length of edges of C60SNW. Next, we consider the case where the magnetic field is
We now discuss the case where the direction of the exteerpendicular to a hexagon of C60SNW. We show the tran-
nal magnetic field is normal to a pentagon of C60SNW. Bysition temperature variation with external magnetic field in
solving Eq.(4), we get the magnetic field dependence of theFig. 8. The dip and cusp structures appears as in the previous
transition temperature and order parameters at 60 vertice€ase.
The transition temperature is shown in Fig. 6. Here we de- The C60SNW has threefold symmetry around a hexagon.
fined external magnetic flux per a pentagdn’: 17%2H Therefore fluxon distributions of C60SNW, which are shown
The transition temperature curve is nonperiodicdafd,,  in Fig. 9, also show this symmetry. Fdr/®(=0.55, five
because the ratio of projection areas of a pentagon to théuxons go through the C60SNW. Therefore an antifluxon

normal plane of the external field and that of its neighboringaPpears at the central hexagon, for the same reasons as in the
previous case.

where

@ fluxon ® anti-fluxon

FIG. 7. Top views of the fluxon distribution of C60SNW in the
magnetic field perpendicular to a pentagon. Magnitudes of the field
corresponds to®/®;=0.20 (a), ®/Py,=0.45 (b), and ®/D,

FIG. 5. A vertex pointi and it's connected pointgs. =0.60(c).
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FIG. 9. Top views of the fluxon distribution of C60SNW in the
magnetic field perpendicular to a hexagon. Magnitudes of the field
correspond tab/®,=0.25(a), ®/P,=0.40 (b), and®/P,=0.55
(©).
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tional symmetry around each of the vertices and supercon-
ductivity disappears at the top vertex when the magnetic field
is applied along the symmetry axis and 0<25/®;<<0.75.

But for C60 networks, there is a rotational symmetry around

0 - ' each of the polygon surfaces and antifluxons appear for
2 keeping the symmetry for the magnetic field parallel to the

/Do symmetry axis.

FIG. 8. The magnetic field dependence of the decrease of the These peculiar t.)ehavilors show the possipility of applica-
transition temperature when the field is perpendicular to a hexagoﬁ'on_ of the three-dimensional super.conlductlng networks as
where® = 1.7222H. devices controlled by the magnetic field. We hope that
progress with the fabrication technique will realize these

three-dimensional networks in the near future, especially

This appearance of antifluxons to keep the symmetry ot structures, since this structure is considered to be one of
the system is also found in the finite superconducting squarge staple spherical ones.

lattice networks. An antifluxon also appears in the mesos-

copic superconducting platé:23 We thank T. Ishida for fruitful discussions. Also we thank
In summary, we have studied three-dimensional supercon¥. Kayanuma, and other members of quantum physics re-

ducting networks. In the tetrahedral network, there is rotasearch group at Osaka Prefecture University.

*Electronic address: gpsato@Ilas.osaka-pct.ac.jp and D. Spencer, Phys. Rev.@5, 214503(2002.
Electronic address: kato@ms.osakafu-u.ac.jp 14B. Pannetier, J. Chaussy, and R. Rammal, Jpn. J. Appl. Phys.,
IW.A. Little and R.D. Parks, Phys. Rev. Le#. 9 (1962. Suppl.26, 1994(1987).
2R.D. Parks and W.A. Little, Phys. Re¥33 A97 (1964). 15C. Bonetto, N.E. Israeloff, N. Pokrovskiy, and R. Bojko, Phys.
3P.G. de Gennes, C.R. Seances Acad. Sci., S2922279(1981). Rev. B58, 128(1998.
4. Alexander, Phys. Re®7, 1541(1983. 18T, Puig, E. Rosseel, L.V. Look, M.J.V. Bael, V.V. Moshchalkov,
5J. Simonin, D. Rodrigues, and A. pez, Phys. Rev. Lettl9, 944 and Y. Bruynseraede, Phys. Rev5B, 5744(1998.
(1982. 17M. Yoshida, T. Ishida, and K. Okuda, Physica357-36Q 608
6H.J. Fink, A. Lgez, and R. Maynard, Phys. Rev. I, 5237 (2001).
(1982. 18T, Ishida, M. Yoshida, K. Okuda, S.0.M. Sasase, K. Hojou, A.
’R. Rammal, T.C. Lubensky, and G. Toulouse, Phys. Re27B Odawara, A. Nagata, T. Morooka, S. Nakayama, and K. Chi-
2820(1983. none, Physica B57-36Q 604 (2001).
8Connectivity and Superconductivitgdited by J. Berger and J. °M. Yoshida, S. Nakata, and T. Ishida, Supercond. Sci. Technol.
Rubinstein(Springer, Berlin, 2000 14, 1166(2001).
0. Sato and M. Kato, Phys. Rev. @8, 094509(2003. 20T, |shida, M. Yoshida, S. Okayasu, and K. Hojou, Supercond. Sci.
103.C.B. Pannetier and R. Rammal, Phys. Rev. LB8. 1845 Technol.14, 1128(2002).
(1984).

21 F. Chibotaru, A. Ceulemans, V. Bryyndoncx, and V.V. Mosh-
11c.c. Abilio, P. Butaud, T. Fournier, and B. Pannetier, Phys. Rev. chalkov, NaturgLondon 408 833(2000.

Lett. 83, 5102(1999. 22\/R. Misko, V.M. Fomin, J. Devreese, and V. Moshchalkov, Phys.
2M.J3. Higgins, Y. Xiao, S. Bhattacharya, P.M. Chaikin, S. Sethura- Rev. Lett.90, 147003(2003.

man, R. Bojko, and D. Spencer, Phys. Re\6B894R) (2000.  23L.F. Chibotaru, A. Ceulemans, V. Bruyndoncx, and V. Mosh-
13y, Xiao, D.A. Huse, P.M. Chaikin, M.J. Higgins, S. Bhattacharya,  chalkov, Phys. Rev. Let86, 1323(2001).

092505-4



