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Phase diagram and quantum critical behavior of an integrable Kondo lattice model
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An integrable Kondo lattice model describing a strongly correlated electron host interacting With%i spin-
lattice is proposed. It is found that with the variations of the Kondo cougljrige hole concentration,, , and
the magnetic fieldH, the system may fall into a variety of phases. The phase boundaries of the ground state are
determined exactly. The marginal excitations and the quantum critical behavior at the phase boundaries are
discussed.
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Metallic compounds containing partially filldcbands be-  tion electrons § the Pauli matrices n; denotes the electron
Io_ng to the_ general category of hgavy fermidrRecently, number on siteé, P means the constriction;<1, ?i are the
with t_h_e d_|scovery_of the Kondo msula’;@rs_md the non- Pauli matrices indicating the local spin on site¢, andJ are
Fermi-liquid behavior, th_e interest in this f_|e_Id _has beef‘ two real constants indicating the hoping amplitude and the
greatly renewed. Especially, the non-Fermi-liquid behaworKondo coupling constant, respectivelys (i i) in d
found in some heavy fermion compounds, which stimulates Rimension. and are the b’asic vectors 6f tﬁé .Iallt.ti’ogz 1in
strong challenge to Landau’s Fermi-liquid theory, reveals theOne dimen,sion and (1,0), (0,1) in two dimensioné etc. Ob-
quantum critical behavior of these systems at IowViously Eq. (1) describ’es' an’S@.’s)-invariantt-J Systenjlé
temperatureé.The heavy fermion systems are usually mo.d'coupleéj Wifh a spin lattice. The first term of E({) repre-
(rar:(ce)getl)yinthseor?]eenﬁr?:ﬁir%nizfgg 'In']r?ges!ir?gglg-]i;pKuor?tg/OKlg;t:jCcfsentS the hoping and interactions of the conduction electrons,

. C which depend not only on the local electron states, but also
problem has been studied extensively and exact soltitfons on the local spin environment. As discussed in some previ-

gggﬁevzzt?g]f:hﬂInfoar‘dtﬂ'gO;(;nmpo:;%?;mpri?}g;?;sn rllascokr)?ee- us workst* the electron-spin interactions contained in the
lated hostg‘loNe)\//ertheless the uﬁderstandin to t%g Kondg 'St erm can be mediated either by phonons or ordinary
. ) ) L 9 Coulomb repulsions. The second term describes the usual
lattice systems is rather unsatisfactory. Though many effort ondo interactions
\k/}vi\ilshbnizn r??\cji%,eaunsesxoarﬁtelzycf&l:\ilglbilr?fof?nne?t%r|1agml‘cs r?;g?/e’ In the present form, the solvability of Eql) is rather
) y P ; ; : Yhidden. We note that the first term can be rewritten as
fermion system, is still absent. In fact, a generic two-

) : : : . 2 sPiiv s, WhereP; ; is the permutation operator between
impurity problem is very hard to be solved even in one di-_, "°. '« 0 :

; . L }he ith site and thgth site. For any given orthogonal and
mension. We note a few integrable models consisting o . ) .

X o 2 . L complete set of Dirac state§«;)} spanning the Hilbert
many impurities have been proposed? The impurities in  thth site. P b 4 by B
these models are very artificial and are almost independent GP2¢€ oaﬁ_e site, P; ; can be expressed as, gXi"Xj™,
each other since only forward scattering between the condud/NereXi””=|a;)(B;| represent the Hubbard operators. Now
tion electrons and the impurities survive. The physical effectV® check the possible states of a single site. A natural choice
of these impurities is additive and therefore the problem if {lei)} is |, ), wherey=1,0, denote one electron
still at the single-impurity level. with spin up, no electron, and one electron with spin down,

In this paper, we propose an exactly solvable Kondo latrespectively, and{=1, | denote the two components of the
tice model consisting of a correlated electron host interactingocal spin. Obviously, the local Hilbert space is six dimen-
with a spin3 lattice. In one dimension, we show the model sional and therefore the first term of Hd) is SU(6) invari-
is exactly solvable via algebraic Bethe ansatz. The modeint. To diagonalize the whole Hamiltonian, we introduce the
Hamiltonian reads following notations:

H:t% hi,i+5(1+7_:i'7_:i+,9)+\]2_ S, 1
|0>:E(|T,l>_|l,T>),
ninj)

_(ni+nj)+1, (1)

hi,j: 2 PC?‘UCJ"U.‘FC;O.CLO."‘Z P

o=T1,l

S-S+

Bl w

[D=10.1), [2)=0.L), [3)=[T.1),

WherecIU (ci ) are the creatiortannihilation) operators of
the conduction electrons with spinr on site i, S |4)= i(” DALY, 15 =]1.1) @)
=13, ,/Cl ,Ts.0/Ci o, are the spin operators of the conduc- NP s '

i,o
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|0) represents a Kondo singlefl),|2) denote two hole In one dimension, the HamiltonigB) can be solved with
states and3),|4) and|5) indicate the Kondo triplets. Obvi- the standard method,which is in fact related to a class of

ously,(a|B) =5, 5. Therefore, we can rewrite E() as(up  integrable spin-ladder models’’ Not losing generality, we
to an irrelevant constant set 2=1 in the following text and choose the Kondo insu-

. lator state|0)4 as the pseudovacuum state. We note that here
the Kondo hole stategl) and|2) are fermion states while
HZZ"% a;:o XPXEe s~ 232 X?O—JZ (X X7). the Kondo singlet anSDKondc') t>riplets are boson states, i.e.,
C @ [X°XP]=0 for a,8=0,3,45,i#] and {X®, X[}=0
for @,8=1,2, i#]j. However, the fermion states can be
Now it is clear that the Kondo interaction term representsransformed to boson states with the Jordan-Wigner transfor-
one of the conserved quantities of the system. In fact, wenation. Fora=1,2, we define
have six types of conserved chardés= =;X{**, which cor-

respond to the number of local state) in the whole system. -1

. . . . a0_ /a0 i w(;(;l+’;(?2)
After this transformation, the HamiltonigB) takes the exact X=X H e
form of an SUe6)-invariant spin chain model introduced by =
Sutherland® but with the Kondo coupling as an effective i1
field. In any dimensions, we have five branches of elemen- x0«=T] e in(X XA 0a  Faa_ yaa
tary excitations relative to a reference stdte),=|a;) B bt b

®---®|ay). For example, if we choog®), as the pseudo- o
vacuum, we have two degenerate hole bajedsresponding  We have[X(© Xf°]=0 for i#j. With the identity X"
to|0,1) and|0,|)) and three degenerate triplet bands. For the= X{*°X# we can check that the Hamiltoniah) is invariant
half-filled case, no hole state is allowed and the one-under the Jordan-Wigner transformation but with a slightly
dimensional model is reduced to the @Winvariant spin  different boundary condition, which is not important in the
ladder considered by one of the present authdiere is a  thermodynamic limit. In such a sense, the local states
critical value of the Kondo coupling. WhenJ>J., |0);  (@=1) can be treated as colored hardcore bosons with the
becomes the ground state and the degenerate triplet bands aiRrgle occupation conditior=®_X**=1. Therefore, our
empty. Consider a single excitation upon the ground statenodel is just theB® case of Ref. 13 and the Bethe ansatz
with momentumk=(ky, ... Kq). The corresponding wave equations read

function reads|K) == exp(k-r)x¢’|0);, wherer runs all

H N
sites ande=3,4,5 in the half-filled case. This excitation is a A !

[
1 2

generalized spin wave and its energy is(IZ) —2 =— —
=4t={_[cosk;)—1]+2J. Therefore,J =4|t|d. For J)J, N F1 AP APkt NN
the triplet excitations are massive, while fd=J., these 2 J K
excitations are marginal and the system may show quantum

critical behavior. For the latter case, the dispersion relation of NG [

the low-lying excitations behaves agk)~4|t|k? and the Mo AW\ My AT ANT TS
asymptotic dens_lty of states ;z(e)~ed’2_‘1 as for the spin. LL m= - AL T
waves in an ordinary ferromagnet. This allows us to derive j k - MY\ + >

the leading temperature dependence of some thermodynamic
guantities easily. For example, the low-temperature specific
heat and susceptibility at the critical point behave Gs n=2,3,4,5, (4)
~T92 y~T9~1 |n fact, the massive spin excitations in

) . with the eigenvalue of the Hamiltonig8) as
the half-filled case correspond to a Kondo insulator phase il genvai litoniz)

we allow double occupation of electrons on a single site. 1
This can be realized by replacing the @Ut-J termh; ; in M >
Eg. (1) by the SU4) or SU(22) Hubbard termt? In the E=-> | — % 23| —3(N;+N,) )
latter case, the system exhibits also a charge gap which takes j=1 N '
i

the same value of the spin gap=2(J—J;) at half filling.

For any non-half-filling case, we have two degenerate “hole
seas” in the ground-state configuration and the charge an@hereM,=N,+---+NsandM=0, \{" are the rapidities
spin excitations are always gapless. However, there is still &f the flavor waves(holons and spinons Note that the
critical pointJ, . WhenJd>J., the triplet states are forbidden boundary conditionX{?=Xg , has been used in deriving

in the ground state. This critical value is generally filling Eq. (4) and an irrelevant constant has been omitted in Eq.
dependent and is hard to be derived in higher dimensiongb). Relative to the Kondo insulator stalt@}Q, the unoccu-
The Kondo singlets behave as spin polarons. Because thepéed stateg0,]) and|0,|) can be treated as Kondo holes
is a finite gap to excite a triplet wheh>J., we expect some which are responsible to the dynamical properties of a doped
type of condensation of the Kondo singlets at low temperakKondo insulator. For large enough>J., there is no triplet
tures. states in the ground-state configuration, iMg=0. The ef-

4
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fective low-energy hamiltonian of the system is therefore 1 e V2olg=ior
equivalent to an S(B)-invariantt-J model. es(\,np=2/3)=— | —————dw+2J. (10
For a given Kondo-hole concentratiop=(N;+ N,)/N, 2 400332_ 1

there is a phase boundaiy(n;,,) above which the spin triplet
states will be eliminated from the ground state. Bdi\) as
the distribution ofA(" modes in the ground state. Whén
>J., from Eq.(4) we have

The energy gap (2/3) and the critical valud.(2/3) can be
easily derived as

A(213)=2]— — In3 J.(2/3)= T lha

( 2 ( 4
1D

fAl WhenJ<J.(ny), the triplet excitations become massless

A
P1(>\)=al()\)+f A a;(A—v)py(v)dv
—A;

ax(N—v)p1(v)dy, and the system behaves as a Luttinger liquid with a holon
M band and four-spinon bands. Exactly at the critical pdint

Ay =J.(ny), the triplet excitations are marginal, indicating a
pa(N)= f a;(N—v)py(v)dy quantum phase transition at this point. To see it clearly, let us
—Ay consider the dispersion relation of the triplet excitations for
A J=Jc(nh). From the third equation of the Bethe ansatz equa-

_f ay(\— 1) po(»)dw,p(\)=0, N=3, tions (4) we know that a singla.® mode with rapidity\ is
~Ay guantized as

©) 2ml 1 Y2 "
where a,(\) =n/[27(A?+n?/4)] and the cutoffsA, , are N N 1241 2 arctaf2(A —\j7)], (12

determined b
y wherel is an arbitrary integer or half integer depending on

Aq _ Az 1 the parity of M,. Therefore, the left-hand side of E(L2)

J'Al (M)dh=ny, fAzpl()\)d)‘_ >Mh- () canbe treated as the quasimomek(te) of thex®) mode!®
In the thermodynamic limiN— oo,

By integrating the second equation of E®), we obtain

A,=. The excitation energy of a triplet mode can be ex- D _

actly derived by considering the procedlsg —M+1, M, k()\)—zﬁxarctarEZ()\ V)p2(v)dy. (13

—M,+1, andM;=1. Such an excitation can be realized by

adding ax® mode A{" above thex® sea, ax® mode

A, and ar® hole \{?) in the A(?) sea. After some ma-

nipulation  we obtain the  excitation energy

From Eqs.(6) and(9) one finds that the velocity of the(®)
modevz=lim, _ des(N)/dk(N)=0, implying a finite mass

of this ex0|tat|0n. Therefore, the dispersion relation takes the

AE()\E)J_),)\EZ),)\E)S)) as following form:
k(N)]=K?/(2m
A= 600 - a0 +a0d),  © slkovI=iciem -~
, for k—0. The effective mass of the excitation reads
where the dressed energy(\) satisfy (see, for example, B
Ref. 16 im 8%e3(\) 14
() () f (\—»)ex(v)d ol L)
€ =—ma —upt a1 (AN —v)ey(v)dy
' ' rr) 2 It can be easily demonstrated tmatakes positive values for
N any givenn,,. At very low temperatures, only few excita-
_f ta (A=) ey (v)dy tions exist and behave as a quasi-ideal quantum gas obeying
—Aq 2 ! ’ the Pauli exclusion principle but with a zero effective chemi-
cal potential. The quantum critical behaviordt J.(ny) is
Ag * mainly governed by the marginal excitations. For example,
€2(N)= f_A ar(A—v)e(v)dv— f_maZ(A_V)EZ(V)dV’ the low-temperature specific heat and susceptibility of the
system behave as
63(A)=M+2J+f a;(N— ) ex(v)dv, (9) C~TY, x~T712 (15)

The divergence of the susceptibility @=0 is due to the
where u=—ma;(A,) denotes the chemical potential. The singularity of the density of states of the marginal excita-
energy gap associated with this excitation is given bytions.

A(np) = e3(0). [Note thate;(=A;)=0 andey(=2)=0.] A WhenJ<J.(n;,), the system behaves as a five-component
is a monotonically increasing function of, and ranges from  Luttinger liquid, while forJ>J.(np), an external magnetic
2(J—2) forn,=0 to 2J for n,=1, while J. is a monotoni-  field may drive some quantum phase transitions at zero tem-
caIIy decreasmg func“on crﬁh and ranges fromd,=2 for  Perature. For a given hole concentratiop, there are three

es(\) reads susceptlblllty is Paull type due to the response of the Kondo
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o

holes. WherH reaches-ié, the Kondo holes are completely
ay(N—v)dpi(v)dv+a(A—\y)

polarized, while wherH=H?2, the Kondo singlets begin to op1(N)=— f_
be broken and the zero-temperature susceptibility has a sin-

gularity at this point,y(H)~(H—H2)"*2 (H=H?). For a —8(N—X\p). (17)
strong enough—leg‘, the Kondo holes are completely po-
larized and the spin singlets are completely brokbiﬂr.
ranges from 01¢,=0) to 4 (n,=1), 2(0—2)< H§$2J and
H? ranges from 2J+2) (n,=0) to 4 (n,=1). For H} 6()\h,)\p)=—77f
<H<H2, a magnetization plateau occurs since in this case, -
the Kondo holes are completely polarized witlas still not  gqying Eq.(17) by Fourier transformation and substituting

strong enough to excite the triplet ques. thr<Hé, sin- it into Eq. (18), we readily obtain the energy gaf;
glet broken occurs before the saturation of the holes’ magne-. €(2,0)=H— In 2. Obviously,H:=1In 2. H2 can be derived
1 . 1 C . [of

tization. There is no magnetization plateau fd)KHg but
there are a singularity &l =H2 and a kink atH=H_ in the
x-H curve. To see the situation clearly, let us consider th
ground-state properties of,=1/2 andJ>J.(1/2) case. With

a magnetic field, the eigenenergy reddp to an irrelevant

The excitation energy associated with this excitation is

[

in a similar way. For convenience, we choddg, as the
vacuum state. The excitation breaking a Kondo singlet cor-
eresponds toM;=Ny—N/2—1, M,—1. The energy gap as-
sociated with this excitation i&,=2J—H—In 2. Therefore,
HZ=2J-In2. To deriveH?, we choose still1), as the

constark vacuum state. Whehi>H?, the ground state is described
1 by N;=N3;=N/2. With the same procedure we readily ob-
My 2 1 tain the energy gap associated with this excitation refgs
E=—2 ——2INo~H(N3=Ng)= 5H(N1=No).  —p-2J-In2. ThereforeH3=2J+In2.
: )\J(l>+ 7 In conclusion, we introduce an integrable Kondo lattice

(16) model describing a strongly correlated electron gas interact-

ing with a Heisenberg spin chain. The ground-state phase
In this caseH;<HZ<HJ. WhenH=H{, the ground-state houndaries and the critical behaviors around the phase
configuration is described bio=N/2=N;=M; and N,  boundaries are derived exactly. We remark that though the
=0 forn>2. The density ok (V) is still given by Eq.(6) but  model is somehow artificial, it is indeed related to some ex-
with po(A)=0 andA;=0. The critical fieIdHi can be de- perimental observations, such as the Kondo insulators, the
rived by considering the excitation procebg—N/2—1, quantum critical behavior in some heavy fermion compounds
N,—1. This is realized by putting a hole in thé?) sea and and the magnetization plateau in some low-dimensional sys-
adding a particle to the(?) band. Denoting the rapidities of tems.

the hole and the particle as, and \,, respectively, and This work was supported in part by the Earmarked Grant
setting8py(\)/N as the change gfy(\) due tox, and\,,  for Researct{Project No. CUHK 4037/02Pof the HKSAR,
from Eqg. (6) we have China and NSFC under Grant No. 90103024.
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