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Phase diagram and quantum critical behavior of an integrable Kondo lattice model
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An integrable Kondo lattice model describing a strongly correlated electron host interacting with a spin-1
2

lattice is proposed. It is found that with the variations of the Kondo couplingJ, the hole concentrationnh , and
the magnetic fieldH, the system may fall into a variety of phases. The phase boundaries of the ground state are
determined exactly. The marginal excitations and the quantum critical behavior at the phase boundaries are
discussed.
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Metallic compounds containing partially filledf bands be-
long to the general category of heavy fermions.1 Recently,
with the discovery of the Kondo insulators2 and the non-
Fermi-liquid behavior,3 the interest in this field has bee
greatly renewed. Especially, the non-Fermi-liquid behav
found in some heavy fermion compounds, which stimulate
strong challenge to Landau’s Fermi-liquid theory, reveals
quantum critical behavior of these systems at l
temperatures.4 The heavy fermion systems are usually mo
eled by the periodic Anderson model or the Kondo latt
model in some limiting cases. The single-impurity Kon
problem has been studied extensively and exact solutio5,6

were obtained. In addition, important progress has b
achieved recently for the Kondo problem in strongly cor
lated hosts.7–10Nevertheless, the understanding to the Kon
lattice systems is rather unsatisfactory. Though many eff
have been made, an exactly solvable Kondo lattice mo
which may provide us some crucial information of a hea
fermion system, is still absent. In fact, a generic tw
impurity problem is very hard to be solved even in one
mension. We note a few integrable models consisting
many impurities have been proposed.11,12 The impurities in
these models are very artificial and are almost independe
each other since only forward scattering between the con
tion electrons and the impurities survive. The physical eff
of these impurities is additive and therefore the problem
still at the single-impurity level.

In this paper, we propose an exactly solvable Kondo
tice model consisting of a correlated electron host interac
with a spin-12 lattice. In one dimension, we show the mod
is exactly solvable via algebraic Bethe ansatz. The mo
Hamiltonian reads

H5t(
i ,d

hi ,i 1d~11tW i•tW i 1d!1J(
i

SW i•tW i ,

hi , j5 (
s5↑,↓

PFci ,s
† cj ,s1cj ,s

† ci ,s12S SW i•SW j1
3

4
ninj D GP

2~ni1nj !11, ~1!

whereci ,s
† (ci ,s) are the creation~annihilation! operators of

the conduction electrons with spins on site i, SW i

5 1
2 (s,s8ci ,s

† tWs,s8ci ,s8 are the spin operators of the condu
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tion electrons (tW the Pauli matrices!, ni denotes the electron
number on sitei, P means the constrictionni<1, tW i are the
Pauli matrices indicating the local spin on sitei, t, andJ are
two real constants indicating the hoping amplitude and
Kondo coupling constant, respectively,i 5( i 1 , . . . ,i d) in d
dimension, andd are the basic vectors of the lattice,d51 in
one dimension and (1,0), (0,1) in two dimensions etc. O
viously, Eq. ~1! describes an SU(3)-invariant t-J system13

coupled with a spin lattice. The first term of Eq.~1! repre-
sents the hoping and interactions of the conduction electr
which depend not only on the local electron states, but a
on the local spin environment. As discussed in some pre
ous works,14 the electron-spin interactions contained in t
first term can be mediated either by phonons or ordin
Coulomb repulsions. The second term describes the u
Kondo interactions.

In the present form, the solvability of Eq.~1! is rather
hidden. We note that the first term can be rewritten
( i ,dPi ,i 1d , wherePi , j is the permutation operator betwee
the i th site and thej th site. For any given orthogonal an
complete set of Dirac states$ua i&% spanning the Hilbert
space of thei th site,Pi , j can be expressed as(a,bXi

abXj
ba ,

whereXi
ab[ua i&^b i u represent the Hubbard operators. No

we check the possible states of a single site. A natural ch
of $ua i&% is ug i ,t i

z&, where g i5↑,0,↓ denote one electron
with spin up, no electron, and one electron with spin dow
respectively, andt i

z5↑,↓ denote the two components of th
local spin. Obviously, the local Hilbert space is six dime
sional and therefore the first term of Eq.~1! is SU(6) invari-
ant. To diagonalize the whole Hamiltonian, we introduce
following notations:

u0&5
1

A2
~ u↑,↓&2u↓,↑&),

u1&5u0,↑&, u2&5u0,↓&, u3&5u↑,↑&,

u4&5
1

A2
~ u↑,↓&1u↓,↑&), u5&5u↓,↓&. ~2!
©2004 The American Physical Society02-1
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u0& represents a Kondo singlet;u1&,u2& denote two hole
states andu3&,u4& and u5& indicate the Kondo triplets. Obvi
ously,^aub&5da,b . Therefore, we can rewrite Eq.~1! as~up
to an irrelevant constant!

H52t(
i ,d

(
a,b50

5

Xi
abXi 1d

ba 22J(
i

Xi
002J(

i
~Xi

111Xi
22!.

~3!

Now it is clear that the Kondo interaction term represe
one of the conserved quantities of the system. In fact,
have six types of conserved chargesNa5( iXi

aa , which cor-
respond to the number of local stateua& in the whole system.
After this transformation, the Hamiltonian~3! takes the exac
form of an SU~6!-invariant spin chain model introduced b
Sutherland13 but with the Kondo couplingJ as an effective
field. In any dimensions, we have five branches of elem
tary excitations relative to a reference stateua&g5ua1&
^ •••^ uaN&. For example, if we chooseu0&g as the pseudo
vacuum, we have two degenerate hole bands~corresponding
to u0,↑& andu0,↓&) and three degenerate triplet bands. For
half-filled case, no hole state is allowed and the o
dimensional model is reduced to the SU~4!-invariant spin
ladder considered by one of the present authors.15 There is a
critical value of the Kondo couplingJ. When J.Jc , u0&g
becomes the ground state and the degenerate triplet band
empty. Consider a single excitation upon the ground s
with momentumkW5(k1 , . . . ,kd). The corresponding wave
function readsukW &5( rWexp(ikW•rW)XrW

a0u0&g , where rW runs all
sites anda53,4,5 in the half-filled case. This excitation is
generalized spin wave and its energy ise(kW )
54t( j 51

d @cos(kj)21#12J. Therefore,Jc54utud. For J&Jc ,
the triplet excitations are massive, while forJ5Jc , these
excitations are marginal and the system may show quan
critical behavior. For the latter case, the dispersion relation
the low-lying excitations behaves ase(kW );4utukW2 and the
asymptotic density of states isr(e);ed/221 as for the spin
waves in an ordinary ferromagnet. This allows us to der
the leading temperature dependence of some thermodyn
quantities easily. For example, the low-temperature spe
heat and susceptibility at the critical point behave asC
;Td/2, x;Td/221. In fact, the massive spin excitations
the half-filled case correspond to a Kondo insulator phas
we allow double occupation of electrons on a single s
This can be realized by replacing the SU~3! t-J term hi , j in
Eq. ~1! by the SU~4! or SU(2u2) Hubbard term.16 In the
latter case, the system exhibits also a charge gap which t
the same value of the spin gapD52(J2Jc) at half filling.
For any non-half-filling case, we have two degenerate ‘‘h
seas’’ in the ground-state configuration and the charge
spin excitations are always gapless. However, there is st
critical pointJc . WhenJ.Jc , the triplet states are forbidde
in the ground state. This critical value is generally fillin
dependent and is hard to be derived in higher dimensio
The Kondo singlets behave as spin polarons. Because t
is a finite gap to excite a triplet whenJ.Jc , we expect some
type of condensation of the Kondo singlets at low tempe
tures.
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In one dimension, the Hamiltonian~3! can be solved with
the standard method,13 which is in fact related to a class o
integrable spin-ladder models.15,17 Not losing generality, we
set 2t51 in the following text and choose the Kondo ins
lator stateu0&g as the pseudovacuum state. We note that h
the Kondo hole statesu1& and u2& are fermion states while
the Kondo singlet and Kondo triplets are boson states,
@Xi

a0 ,Xj
b0#50 for a,b50,3,4,5, iÞ j and $Xi

a0 , Xj
b0%50

for a,b51,2, iÞ j . However, the fermion states can b
transformed to boson states with the Jordan-Wigner trans
mation. Fora51,2, we define

Xi
a05X̃i

a0)
j 51

i 21

eip(X̃j
11

1X̃j
22),

Xi
0a5)

j 51

i 21

e2 ip(X̃j
11

1X̃j
22)X̃i

0a , X̃i
aa5Xi

aa .

We have @X̃i
a0 ,X̃j

b0#50 for iÞ j . With the identity Xi
ab

5Xi
a0Xi

0b we can check that the Hamiltonian~1! is invariant
under the Jordan-Wigner transformation but with a sligh
different boundary condition, which is not important in th
thermodynamic limit. In such a sense, the local statesua i&
(a>1) can be treated as colored hardcore bosons with
single occupation condition(a50

5 Xi
aa[1. Therefore, our

model is just theB6 case of Ref. 13 and the Bethe ansa
equations read

S l j
(1)2

i

2

l j
(1)1

i

2

D N

52)
l 51

M1 l j
(1)2l l

(1)2 i

l j
(1)2l l

(1)1 i
)
k51

M2 l j
(1)2lk

(2)1
i

2

l j
(1)2lk

(2)2
i

2

,

)
l 51

Mn l j
(n)2lk

(n)2 i

l j
(n)2lk

(n)1 i
52 )

t5n61
)
k51

Mt l j
(n)2lk

(t)2
i

2

l j
(n)2lk

(t)1
i

2

,

n52,3,4,5, ~4!

with the eigenvalue of the Hamiltonian~3! as

E52(
j 51

M1 S 1

2

l j
(1)21

1

4

22JD 2J~N11N2!, ~5!

whereMn5Nn1•••1N5 andM6[0, l j
(n) are the rapidities

of the flavor waves~holons and spinons!. Note that the
boundary conditionX1

ab5XN11
ab has been used in derivin

Eq. ~4! and an irrelevant constant has been omitted in
~5!. Relative to the Kondo insulator stateu0&g , the unoccu-
pied statesu0,↑& and u0,↓& can be treated as Kondo hole
which are responsible to the dynamical properties of a do
Kondo insulator. For large enoughJ.Jc , there is no triplet
states in the ground-state configuration, i.e.,M350. The ef-
2-2
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fective low-energy hamiltonian of the system is therefo
equivalent to an SU~3!-invariant t-J model.

For a given Kondo-hole concentrationnh5(N11N2)/N,
there is a phase boundaryJc(nh) above which the spin triple
states will be eliminated from the ground state. Setrn(l) as
the distribution ofl (n) modes in the ground state. WhenJ
.Jc , from Eq. ~4! we have

r1~l!5a1~l!1E
2L2

L2
a1~l2n!r2~n!dn

2E
2L1

L1
a2~l2n!r1~n!dn,

r2~l!5E
2L1

L1
a1~l2n!r1~n!dn

2E
2L2

L2
a2~l2n!r2~n!dn,rn~l!50, n>3,

~6!

where an(l)5n/@2p(l21n2/4)# and the cutoffsL1,2 are
determined by

E
2L1

L1
r1~l!dl5nh , E

2L2

L2
r1~l!dl5

1

2
nh . ~7!

By integrating the second equation of Eq.~6!, we obtain
L25`. The excitation energy of a triplet mode can be e
actly derived by considering the processM1→M111, M2
→M211, andM351. Such an excitation can be realized
adding al (1) mode lp

(1) above thel (1) sea, al (3) mode
lp

(3) , and al (2) hole lh
(2) in the l (2) sea. After some ma

nipulation we obtain the excitation energ
DE(lp

(1) ,lh
(2) ,lp

(3)) as

DE5e1~lp
(1)!2e2~lh

(2)!1e3~lp
(3)!, ~8!

where the dressed energyen(l) satisfy ~see, for example
Ref. 16!

e1~l!52pa1~l!2m1E
2`

`

a1~l2n!e2~n!dn

2E
2L1

L1
a2~l2n!e1~n!dn,

e2~l!5E
2L1

L1
a1~l2n!e1~n!dn2E

2`

`

a2~l2n!e2~n!dn,

e3~l!5m12J1E
2`

`

a1~l2n!e2~n!dn, ~9!

where m52pa1(L1) denotes the chemical potential. Th
energy gap associated with this excitation is given
D(nh)5e3(0). @Note thate1(6L1)50 ande2(6`)50.# D
is a monotonically increasing function ofnh and ranges from
2(J22) for nh50 to 2J for nh51, while Jc is a monotoni-
cally decreasing function ofnh and ranges fromJc52 for
nh50 to Jc50 for nh51. For nh52/3, the dressed energ
e3(l) reads
09240
-

y

e3~l,nh52/3!52
1

2E e21/2uvue2 ivl

4cosh2
v

2
21

dv12J. ~10!

The energy gapD(2/3) and the critical valueJc(2/3) can be
easily derived as

D~2/3!52J2
p

2A3
1

1

2
ln 3, Jc~2/3!5

p

4A3
2

1

4
ln 3.

~11!
WhenJ,Jc(nh), the triplet excitations become massle

and the system behaves as a Luttinger liquid with a ho
band and four-spinon bands. Exactly at the critical poinJ
5Jc(nh), the triplet excitations are marginal, indicating
quantum phase transition at this point. To see it clearly, le
consider the dispersion relation of the triplet excitations
J5Jc(nh). From the third equation of the Bethe ansatz eq
tions ~4! we know that a singlel (3) mode with rapidityl is
quantized as

2pI

N
5

1

N (
j 51

M2

2 arctan@2~l2l j
(2)!#, ~12!

where I is an arbitrary integer or half integer depending
the parity ofM2. Therefore, the left-hand side of Eq.~12!
can be treated as the quasimomentak(l) of thel (3) mode.18

In the thermodynamic limitN→`,

k~l!52E
2`

`

arctan@2~l2n!#r2~n!dn. ~13!

From Eqs.~6! and ~9! one finds that the velocity of thel (3)

modev35 lim
k→0

]e3(l)/]k(l)50, implying a finite mass

of this excitation. Therefore, the dispersion relation takes
following form:

e3@k~l!#5k2/~2m!

for k→0. The effective mass of the excitation reads

m5 lim
l→0

F ]2e3~l!

]k2~l!
G21

. ~14!

It can be easily demonstrated thatm takes positive values fo
any givennh . At very low temperatures, only few excita
tions exist and behave as a quasi-ideal quantum gas obe
the Pauli exclusion principle but with a zero effective chem
cal potential. The quantum critical behavior atJ5Jc(nh) is
mainly governed by the marginal excitations. For examp
the low-temperature specific heat and susceptibility of
system behave as

C;T1/2, x;T21/2. ~15!

The divergence of the susceptibility atT50 is due to the
singularity of the density of states of the marginal exci
tions.

WhenJ,Jc(nh), the system behaves as a five-compon
Luttinger liquid, while forJ.Jc(nh), an external magnetic
field may drive some quantum phase transitions at zero t
perature. For a given hole concentrationnh , there are three
critical fields Hc

1 , Hc
2 , and Hc

3 . In a very weak field, the
susceptibility is Pauli type due to the response of the Kon
2-3
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holes. WhenH reachesHc
1 , the Kondo holes are completel

polarized, while whenH5Hc
2 , the Kondo singlets begin to

be broken and the zero-temperature susceptibility has a
gularity at this point,x(H);(H2Hc

2)21/2 (H>Hc
2). For a

strong enoughH>Hc
3 , the Kondo holes are completely po

larized and the spin singlets are completely broken.Hc
1

ranges from 0 (nh50) to 4 (nh51), 2(J22)<Hc
2<2J and

Hc
3 ranges from 2(J12) (nh50) to 4 (nh51). For Hc

1

,H,Hc
2 , a magnetization plateau occurs since in this ca

the Kondo holes are completely polarized whileH is still not
strong enough to excite the triplet modes. ForHc

2,Hc
1 , sin-

glet broken occurs before the saturation of the holes’ mag
tization. There is no magnetization plateau forH,Hc

3 but
there are a singularity atH5Hc

2 and a kink atH5Hc
1 in the

x-H curve. To see the situation clearly, let us consider
ground-state properties ofnh51/2 andJ.Jc(1/2) case. With
a magnetic field, the eigenenergy reads~up to an irrelevant
constant!

E52(
j 51

M1

1

2

l j
~1!1

1

4

22JN02H~N32N5!2
1

2
H~N12N2!.

~16!

In this case,Hc
1,Hc

2,Hc
3 . WhenH5Hc

1 , the ground-state
configuration is described byN05N/25N15M1 and Nn
50 for n.2. The density ofl (1) is still given by Eq.~6! but
with r2(l)50 andL15`. The critical fieldHc

1 can be de-
rived by considering the excitation processN1→N/221,
N2→1. This is realized by putting a hole in thel (1) sea and
adding a particle to thel (2) band. Denoting the rapidities o
the hole and the particle aslh and lp , respectively, and
settingdr1(l)/N as the change ofr1(l) due tolh andlp ,
from Eq. ~6! we have
r.

at

09240
in-

e,

e-

e

dr1~l!52E
2`

`

a2~l2n!dr1~n!dn1a1~l2lp!

2d~l2lh!. ~17!

The excitation energy associated with this excitation is

e~lh ,lp!52pE
2`

`

a1~l!dr1~l!dl1H. ~18!

Solving Eq.~17! by Fourier transformation and substitutin
it into Eq. ~18!, we readily obtain the energy gapD1

5e(`,0)5H2 ln 2. Obviously,Hc
15 ln 2. Hc

2 can be derived
in a similar way. For convenience, we chooseu1&g as the
vacuum state. The excitation breaking a Kondo singlet c
responds toM15N0→N/221, M2→1. The energy gap as
sociated with this excitation isD252J2H2 ln 2. Therefore,
Hc

252J2 ln 2. To deriveHc
3 , we choose stillu1&g as the

vacuum state. WhenH.Hc
3 , the ground state is describe

by N15N35N/2. With the same procedure we readily o
tain the energy gap associated with this excitation readsD3

5H22J2 ln 2. ThereforeHc
352J1 ln 2.

In conclusion, we introduce an integrable Kondo latti
model describing a strongly correlated electron gas inter
ing with a Heisenberg spin chain. The ground-state ph
boundaries and the critical behaviors around the ph
boundaries are derived exactly. We remark that though
model is somehow artificial, it is indeed related to some
perimental observations, such as the Kondo insulators,
quantum critical behavior in some heavy fermion compoun
and the magnetization plateau in some low-dimensional s
tems.
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